EC 1.1.1.22     
Accepted name: UDP-glucose 6-dehydrogenase
Reaction: UDP-α-D-glucose + 2 NAD+ + H2O = UDP-α-D-glucuronate + 2 NADH + 2 H+
Other name(s): UDP-glucose dehydrogenase; uridine diphosphoglucose dehydrogenase; UDPG dehydrogenase; UDPG:NAD oxidoreductase; UDP-α-D-glucose:NAD oxidoreductase; UDP-glucose:NAD+ oxidoreductase; uridine diphosphate glucose dehydrogenase; UDP-D-glucose dehydrogenase; uridine diphosphate D-glucose dehydrogenase
Systematic name: UDP-α-D-glucose:NAD+ 6-oxidoreductase
Comments: Also acts on UDP-α-D-2-deoxyglucose.
References:
1.  Druzhinina, T.N., Kusov, Y.Y., Shibaev, V.N., Kochetkov, N.K., Biely, P., Kucar, S. and Bauer, S. Uridine diphosphate 2-deoxyglucose. Chemical synthesis, enzymic oxidation and epimerization. Biochim. Biophys. Acta 381 (1975) 301–307. [PMID: 1091296]
2.  Maxwell, E.S., Kalckar, H.M. and Strominger, J.L. Some properties of uridine diphosphoglucose dehydrogenase. Arch. Biochem. Biophys. 65 (1956) 2–10. [PMID: 13373402]
3.  Strominger, J.L. and Mapson, L.W. Uridine diphosphoglucose dehydrogenase of pea seedlings. Biochem. J. 66 (1957) 567–572. [PMID: 13459898]
4.  Strominger, J.L., Maxwell, E.S., Axelrod, J. and Kalckar, H.M. Enzymatic formation of uridine diphosphogluconic acid. J. Biol. Chem. 224 (1957) 79–90. [PMID: 13398389]
[EC 1.1.1.22 created 1961]
 
 
EC 1.1.1.136     
Accepted name: UDP-N-acetylglucosamine 6-dehydrogenase
Reaction: UDP-N-acetyl-α-D-glucosamine + 2 NAD+ + H2O = UDP-2-acetamido-2-deoxy-α-D-glucuronate + 2 NADH + 2 H+
Other name(s): uridine diphosphoacetylglucosamine dehydrogenase; UDP-acetylglucosamine dehydrogenase; UDP-2-acetamido-2-deoxy-D-glucose:NAD oxidoreductase; UDP-GlcNAc dehydrogenase; WbpA; WbpO
Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 6-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide.
References:
1.  Fan, D.-F., John, C.E., Zalitis, J. and Feingold, D.S. UDPacetylglucosamine dehydrogenase from Achromobacter georgiopolitanum. Arch. Biochem. Biophys. 135 (1969) 45–49. [PMID: 4312076]
2.  Miller, W.L., Wenzel, C.Q., Daniels, C., Larocque, S., Brisson, J.R. and Lam, J.S. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 279 (2004) 37551–37558. [PMID: 15226302]
[EC 1.1.1.136 created 1972, modified 2012]
 
 
EC 1.1.1.158      
Transferred entry: UDP-N-acetylmuramate dehydrogenase. Now EC 1.3.1.98, UDP-N-acetylmuramate dehydrogenase
[EC 1.1.1.158 created 1976, modified 1983, modified 2002, deleted 2013]
 
 
EC 1.1.1.305     
Accepted name: UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating)
Reaction: UDP-α-D-glucuronate + NAD+ = UDP-β-L-threo-pentapyranos-4-ulose + CO2 + NADH + H+
Other name(s): UDP-GlcUA decarboxylase; ArnADH; UDP-glucuronate:NAD+ oxidoreductase (decarboxylating)
Systematic name: UDP-α-D-glucuronate:NAD+ oxidoreductase (decarboxylating)
Comments: The activity is part of a bifunctional enzyme also performing the reaction of EC 2.1.2.13 (UDP-4-amino-4-deoxy-L-arabinose formyltransferase).
References:
1.  Breazeale, S.D., Ribeiro, A.A., McClerren, A.L. and Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 280 (2005) 14154–14167. [PMID: 15695810]
2.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Biochemistry 43 (2004) 13370–13379. [PMID: 15491143]
3.  Williams, G.J., Breazeale, S.D., Raetz, C.R.H. and Naismith, J.H. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. J. Biol. Chem. 280 (2005) 23000–23008. [PMID: 15809294]
4.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13 (2005) 929–942. [PMID: 15939024]
5.  Yan, A., Guan, Z. and Raetz, C.R.H. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J. Biol. Chem. 282 (2007) 36077–36089. [PMID: 17928292]
[EC 1.1.1.305 created 2010]
 
 
EC 1.1.1.335     
Accepted name: UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase
Reaction: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate + NAD+ = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + NADH + H+
Other name(s): WlbA; WbpB
Systematic name: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate:NAD+ 3-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the the enzyme catalysing the next step the pathway (EC 2.6.1.98, UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase). The enzyme also possesses an EC 1.1.99.2 (L-2-hydroxyglutarate dehydrogenase) activity, and utilizes the 2-oxoglutarate produced by EC 2.6.1.98 to regenerate the tightly bound NAD+. The enzymes from Bordetella pertussis and Chromobacterium violaceum do not bind NAD+ as tightly and do not require 2-oxoglutarate to function.
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
3.  Thoden, J.B. and Holden, H.M. Structural and functional studies of WlbA: A dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 49 (2010) 7939–7948. [PMID: 20690587]
4.  Thoden, J.B. and Holden, H.M. Biochemical and structural characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Biochemistry 50 (2011) 1483–1491. [PMID: 21241053]
[EC 1.1.1.335 created 2012]
 
 
EC 1.1.1.336     
Accepted name: UDP-N-acetyl-D-mannosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-mannosamine + 2 NAD+ + H2O = UDP-N-acetyl-α-D-mannosaminuronate + 2 NADH + 2 H+
Other name(s): UDP-ManNAc 6-dehydrogenase; wecC (gene name)
Systematic name: UDP-N-acetyl-α-D-mannosamine:NAD+ 6-oxidoreductase
Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme has no activity with NADP+.
References:
1.  Namboori, S.C. and Graham, D.E. Acetamido sugar biosynthesis in the Euryarchaea. J. Bacteriol. 190 (2008) 2987–2996. [PMID: 18263721]
[EC 1.1.1.336 created 2012]
 
 
EC 1.1.1.367     
Accepted name: UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase
Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose + NAD(P)+ = UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose + NAD(P)H + H+
Glossary: UDP-2-acetamido-2,6-dideoxy-β-L-talose = UDP-N-acetyl-β-L-pneumosamine
Other name(s): WbjC; Cap5F
Systematic name: UDP-2-acetamido-2,6-dideoxy-L-talose:NADP+ oxidoreductase
Comments: Part of the biosynthesis of UDP-N-acetyl-L-fucosamine. Isolated from the bacteria Pseudomonas aeruginosa and Staphylococcus aureus.
References:
1.  Kneidinger, B., O'Riordan, K., Li, J., Brisson, J.R., Lee, J.C. and Lam, J.S. Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem. 278 (2003) 3615–3627. [PMID: 12464616]
2.  Mulrooney, E.F., Poon, K.K., McNally, D.J., Brisson, J.R. and Lam, J.S. Biosynthesis of UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J. Biol. Chem. 280 (2005) 19535–19542. [PMID: 15778500]
3.  Miyafusa, T., Tanaka, Y., Kuroda, M., Ohta, T. and Tsumoto, K. Expression, purification, crystallization and preliminary diffraction analysis of CapF, a capsular polysaccharide-synthesis enzyme from Staphylococcus aureus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 512–515. [PMID: 18540063]
[EC 1.1.1.367 created 2014]
 
 
EC 1.1.1.374     
Accepted name: UDP-N-acetylglucosamine 3-dehydrogenase
Reaction: UDP-N-acetyl-α-D-glucosamine + NAD+ = UDP-2-acetamido-3-dehydro-2-deoxy-α-D-glucopyranose + NADH + H+
Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 3-oxidoreductase
Comments: The enzyme from the archaeon Methanococcus maripaludis is activated by KCl (200 mM).
References:
1.  Namboori, S.C. and Graham, D.E. Enzymatic analysis of uridine diphosphate N-acetyl-D-glucosamine. Anal. Biochem. 381 (2008) 94–100. [PMID: 18634748]
[EC 1.1.1.374 created 2014]
 
 
EC 1.1.1.426     
Accepted name: UDP-N-acetyl-α-D-quinovosamine dehydrogenase
Reaction: UDP-N-acetyl-α-D-quinovosamine + NAD(P)+ = UDP-2-acetamido-2,6-dideoxy-α-D-xylohex-4-ulose + NAD(P)H + H+
Glossary: UDP-N-acetyl-α-D-quinovosamine = UDP-N-acetyl-6-deoxy-α-D-glucosamine
Other name(s): wbpV (gene name); wreQ (gene name)
Systematic name: UDP-N-acetyl-α-D-quinovosamine:NAD(P)+ 4-dehydrogenase
Comments: The enzyme participates in the biosynthesis of N-acetyl-α-D-quinovosamine, a 6-deoxy sugar that is present in the O antigens of many Gram-negative bacteria, including Pseudomonas aeruginosa serotypes O6 and O10, Rhizobium etli, and Brucella abortus.
References:
1.  Belanger, M., Burrows, L.L. and Lam, J.S. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology (Reading) 145 (1999) 3505–3521. [PMID: 10627048]
2.  Forsberg, L.S., Noel, K.D., Box, J. and Carlson, R.W. Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J. Biol. Chem. 278 (2003) 51347–51359. [PMID: 14551189]
3.  Li, T., Simonds, L., Kovrigin, E.L. and Noel, K.D. In vitro biosynthesis and chemical identification of UDP-N-acetyl-D-quinovosamine (UDP-D-QuiNAc). J. Biol. Chem. 289 (2014) 18110–18120. [PMID: 24817117]
[EC 1.1.1.426 created 2021]
 
 
EC 1.1.2.10     
Accepted name: lanthanide-dependent methanol dehydrogenase
Reaction: methanol + 2 oxidized cytochrome cL = formaldehyde + 2 reduced cytochrome cL
Other name(s): XoxF; XoxF-MDH; Ce-MDH; La3+-dependent MDH; Ce3+-induced methanol dehydrogenase; cerium dependent MDH
Systematic name: methanol:cytochrome cL oxidoreductase
Comments: Isolated from the bacterium Methylacidiphilum fumariolicum and many Methylobacterium species. Requires La3+, Ce3+, Pr3+ or Nd3+. The higher lanthanides show decreasing activity with Sm3+, Eu3+ and Gd3+. The lanthanide is coordinated by the enzyme and pyrroloquinoline quinone. Shows little activity with Ca2+, the required cofactor of EC 1.1.2.7, methanol dehydrogenase (cytochrome c).
References:
1.  Hibi, Y., Asai, K., Arafuka, H., Hamajima, M., Iwama, T. and Kawai, K. Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J. Biosci. Bioeng. 111 (2011) 547–549. [PMID: 21256798]
2.  Nakagawa, T., Mitsui, R., Tani, A., Sasa, K., Tashiro, S., Iwama, T., Hayakawa, T. and Kawai, K. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 7:e50480 (2012). [PMID: 23209751]
3.  Pol, A., Barends, T.R., Dietl, A., Khadem, A.F., Eygensteyn, J., Jetten, M.S. and Op den Camp, H.J. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 16 (2014) 255–264. [PMID: 24034209]
4.  Bogart, J.A., Lewis, A.J. and Schelter, E.J. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. Chemistry Eur. J. 21 (2015) 1743–1748. [PMID: 25421364]
5.  Prejano, M., Marino, T. and Russo, N. How can methanol dehydrogenase from Methylacidiphilum fumariolicum work with the alien Ce(III) ion in the active center? A theoretical study. Chemistry 23 (2017) 8652–8657. [PMID: 28488399]
6.  Masuda, S., Suzuki, Y., Fujitani, Y., Mitsui, R., Nakagawa, T., Shintani, M. and Tani, A. Lanthanide-dependent regulation of methylotrophy in Methylobacterium aquaticum strain 22A. mSphere 3 (2018) e00462. [PMID: 29404411]
[EC 1.1.2.10 created 2019]
 
 
EC 1.1.99.36     
Accepted name: alcohol dehydrogenase (nicotinoprotein)
Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH; ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase
Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydrogenases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can accept many primary alcohols as substrates, including benzylalcohol [1].
References:
1.  Van Ophem, P.W., Van Beeumen, J. and Duine, J.A. Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica. Eur. J. Biochem. 212 (1993) 819–826. [PMID: 8385013]
2.  Piersma, S.R., Visser, A.J., de Vries, S. and Duine, J.A. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Biochemistry 37 (1998) 3068–3077. [PMID: 9485460]
3.  Schenkels, P. and Duine, J.A. Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146 (2000) 775–785. [PMID: 10784035]
4.  Piersma, S.R., Norin, A., de Vries, S., Jornvall, H. and Duine, J.A. Inhibition of nicotinoprotein (NAD+-containing) alcohol dehydrogenase by trans-4-(N,N-dimethylamino)-cinnamaldehyde binding to the active site. J. Protein Chem. 22 (2003) 457–461. [PMID: 14690248]
5.  Norin, A., Piersma, S.R., Duine, J.A. and Jornvall, H. Nicotinoprotein (NAD+ -containing) alcohol dehydrogenase: structural relationships and functional interpretations. Cell. Mol. Life Sci. 60 (2003) 999–1006. [PMID: 12827287]
[EC 1.1.99.36 created 2010]
 
 
EC 1.3.1.98     
Accepted name: UDP-N-acetylmuramate dehydrogenase
Reaction: UDP-N-acetyl-α-D-muramate + NADP+ = UDP-N-acetyl-3-O-(1-carboxyvinyl)-α-D-glucosamine + NADPH + H+
Other name(s): MurB reductase; UDP-N-acetylenolpyruvoylglucosamine reductase; UDP-N-acetylglucosamine-enoylpyruvate reductase; UDP-GlcNAc-enoylpyruvate reductase; uridine diphosphoacetylpyruvoylglucosamine reductase; uridine diphospho-N-acetylglucosamine-enolpyruvate reductase; uridine-5′-diphospho-N-acetyl-2-amino-2-deoxy-3-O-lactylglucose:NADP-oxidoreductase
Systematic name: UDP-N-acetyl-α-D-muramate:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). NADH can to a lesser extent replace NADPH.
References:
1.  Taku, A. and Anwar, R.A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. IV. Activation of uridine diphospho-N-acetylenolpyruvylglucosamine reductase by monovalent cations. J. Biol. Chem. 248 (1973) 4971. [PMID: 4717533]
2.  Taku, A., Gunetileke, K.G. and Anwar, R.A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. 3. Purification and properties of uridine diphospho-N-acetylenolpyruvyl-glucosamine reductase. J. Biol. Chem. 245 (1970) 5012–5016. [PMID: 4394163]
3.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 1.3.1.98 created 1976 as EC 1.1.1.158, modified 1983, modified 2002, transferred 2013 to EC 1.3.1.98]
 
 
EC 1.17.4.1     
Accepted name: ribonucleoside-diphosphate reductase
Reaction: 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-diphosphate + thioredoxin
Other name(s): ribonucleotide reductase (ambiguous); CDP reductase; ribonucleoside diphosphate reductase; UDP reductase; ADP reductase; nucleoside diphosphate reductase; ribonucleoside 5′-diphosphate reductase; ribonucleotide diphosphate reductase; 2′-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2′-oxidoreductase; RR; nrdB (gene name); nrdF (gene name); nrdJ (gene name)
Systematic name: 2′-deoxyribonucleoside-5′-diphosphate:thioredoxin-disulfide 2′-oxidoreductase
Comments: This enzyme is responsible for the de novo conversion of ribonucleoside diphosphates into deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. There are three types of this enzyme differing in their cofactors. Class Ia enzymes contain a diiron(III)-tyrosyl radical, class Ib enzymes contain a dimanganese-tyrosyl radical, and class II enzymes contain adenosylcobalamin. In all cases the cofactors are involved in generation of a transient thiyl (sulfanyl) radical on a cysteine residue, which attacks the substrate, forming a ribonucleotide 3′-radical, followed by water loss to form a ketyl (α-oxoalkyl) radical. The ketyl radical is reduced to 3′-keto-deoxynucleotide concomitant with formation of a disulfide anion radical between two cysteine residues. A proton-coupled electron-transfer from the disulfide radical to the substrate generates a 3′-deoxynucleotide radical, and the final product is formed when the hydrogen atom that was initially removed from the 3′-position of the nucleotide by the thiyl radical is returned to the same position. The disulfide bridge is reduced by the action of thioredoxin. cf. EC 1.1.98.6, ribonucleoside-triphosphate reductase (formate) and EC 1.17.4.2, ribonucleoside-triphosphate reductase (thioredoxin).
References:
1.  Larsson, A. and Reichard, P. Enzymatic synthesis of deoxyribonucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli. J. Biol. Chem. 241 (1966) 2533–2539. [PMID: 5330119]
2.  Larsson, A. and Reichard, P. Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coli B. J. Biol. Chem. 241 (1966) 2540–2549. [PMID: 5330120]
3.  Moore, E.C. and Hurlbert, R.B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. Biol. Chem. 241 (1966) 4802–4809. [PMID: 5926184]
4.  Larsson, A. Ribonucleotide reductase from regenerating rat liver. II. Substrate phosphorylation level and effect of deoxyadenosine triphosphate. Biochim. Biophys. Acta 324 (1973) 447–451. [PMID: 4543472]
5.  Lammers, M. and Follmann, H. The ribonucleotide reductases - a unique group of metalloenzymes essential for cell-proliferation. Struct. Bonding 54 (1983) 27–91.
6.  Stubbe, J., Ator, M. and Krenitsky, T. Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3′-C--H bond cleavage. J. Biol. Chem. 258 (1983) 1625–1631. [PMID: 6337142]
7.  Lenz, R. and Giese, B. Studies on the Mechanism of Ribonucleotide Reductases. J. Am. Chem. Soc. 119 (1997) 2784–2794.
8.  Lawrence, C.C., Bennati, M., Obias, H.V., Bar, G., Griffin, R.G. and Stubbe, J. High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5′-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 96 (1999) 8979–8984. [PMID: 10430881]
9.  Qiu, W., Zhou, B., Darwish, D., Shao, J. and Yen, Y. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits. Biochem. Biophys. Res. Commun. 340 (2006) 428–434. [PMID: 16376858]
[EC 1.17.4.1 created 1972, modified 2017]
 
 
EC 2.1.2.13     
Accepted name: UDP-4-amino-4-deoxy-L-arabinose formyltransferase
Reaction: 10-formyltetrahydrofolate + UDP-4-amino-4-deoxy-β-L-arabinopyranose = 5,6,7,8-tetrahydrofolate + UDP-4-deoxy-4-formamido-β-L-arabinopyranose
Other name(s): UDP-L-Ara4N formyltransferase; ArnAFT
Systematic name: 10-formyltetrahydrofolate:UDP-4-amino-4-deoxy-β-L-arabinose N-formyltransferase
Comments: The activity is part of a bifunctional enzyme also performing the reaction of EC 1.1.1.305 [UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating)].
References:
1.  Breazeale, S.D., Ribeiro, A.A., McClerren, A.L. and Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 280 (2005) 14154–14167. [PMID: 15695810]
2.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain. An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Biochemistry 44 (2005) 5328–5338. [PMID: 15807526]
3.  Williams, G.J., Breazeale, S.D., Raetz, C.R.H. and Naismith, J.H. Structure and function of both domains of ArnA, a dual function decarboxylase and a formyltransferase, involved in 4-amino-4-deoxy-L-arabinose biosynthesis. J. Biol. Chem. 280 (2005) 23000–23008. [PMID: 15809294]
4.  Gatzeva-Topalova, P.Z., May, A.P. and Sousa, M.C. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13 (2005) 929–942. [PMID: 15939024]
5.  Yan, A., Guan, Z. and Raetz, C.R.H. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J. Biol. Chem. 282 (2007) 36077–36089. [PMID: 17928292]
[EC 2.1.2.13 created 2010]
 
 
EC 2.3.1.4     
Accepted name: glucosamine-phosphate N-acetyltransferase
Reaction: acetyl-CoA + D-glucosamine 6-phosphate = CoA + N-acetyl-D-glucosamine 6-phosphate
Other name(s): phosphoglucosamine transacetylase; phosphoglucosamine acetylase; glucosamine-6-phosphate acetylase; D-glucosamine-6-P N-acetyltransferase; aminodeoxyglucosephosphate acetyltransferase; glucosamine 6-phosphate acetylase; glucosamine 6-phosphate N-acetyltransferase; N-acetylglucosamine-6-phosphate synthase; phosphoglucosamine N-acetylase; glucosamine-6-phosphate N-acetyltransferase
Systematic name: acetyl-CoA:D-glucosamine-6-phosphate N-acetyltransferase
References:
1.  Davidson, E.A. Glucosamine 6-phosphate N-acetylase. Methods Enzymol. 9 (1966) 704–707.
2.  Davidson, E.A., Blumenthal, H.J. and Roseman, F. Glucosamine metabolism. II. Studies of glucosamine 6-phosphate N-acetylase. J. Biol. Chem. 226 (1957) 125–133. [PMID: 13428743]
3.  Pattabiraman, T.N. and Bachhawat, B.K. Purification of glucosamine-6-phosphate N-acetylase from sheep brain. Biochim. Biophys. Acta 59 (1962) 681–689. [PMID: 14484387]
4.  Boehmelt, G., Fialka, I., Brothers, G., McGinley, M.D., Patterson, S.D., Mo, R., Hui, C.C., Chung, S., Huber, L.A., Mak, T.W. and Iscove, N.N. Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association. J. Biol. Chem. 275 (2000) 12821–12832. [PMID: 10777580]
[EC 2.3.1.4 created 1961, modified 2002]
 
 
EC 2.3.1.72     
Accepted name: indoleacetylglucose—inositol O-acyltransferase
Reaction: 1-O-(indol-3-yl)acetyl-β-D-glucose + myo-inositol = D-glucose + O-(indol-3-yl)acetyl-myo-inositol
Other name(s): indole-3-acetyl-β-1-D-glucoside:myo-inositol indoleacetyltransferase; 1-O-(indol-3-ylacetyl)-β-D-glucose:myo-inositol indole-3-ylacetyltransferase
Systematic name: 1-O-(indol-3-yl)acetyl-β-D-glucose:myo-inositol (indol-3-yl)acetyltransferase
Comments: The position of acylation is indeterminate because of the ease of acyl transfer between hydroxy groups.
References:
1.  Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207 (1982) 273–281. [PMID: 6218801]
2.  Michalczuk, L. and Bandurski, R.S. UDP-glucose: indoleacetic acid glucosyl transferase and indoleacetyl-glucose: myo-inositol indoleacetyl transferase. Biochem. Biophys. Res. Commun. 93 (1980) 588–592. [PMID: 6446303]
[EC 2.3.1.72 created 1984, modified 2003]
 
 
EC 2.3.1.129     
Accepted name: acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + UDP-N-acetyl-α-D-glucosamine = an [acyl-carrier protein] + a UDP-3-O-[(3R)-3-hydroxyacyl]-N-acetyl-α-D-glucosamine
Other name(s): lpxA (gene name); UDP-N-acetylglucosamine acyltransferase; uridine diphosphoacetylglucosamine acyltransferase; acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase; (R)-3-hydroxytetradecanoyl-[acyl-carrier-protein]:UDP-N-acetylglucosamine 3-O-(3-hydroxytetradecanoyl)transferase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:UDP-N-acetyl-α-D-glucosamine 3-O-(3-hydroxyacyl)transferase
Comments: Involved with EC 2.4.1.182, lipid-A-disaccharide synthase, and EC 2.7.1.130, tetraacyldisaccharide 4′-kinase, in the biosynthesis of the phosphorylated glycolipid, Lipid A, in the outer membrane of Gram-negative bacteria.
References:
1.  Anderson, M.S., Bulawa, C.E. and Raetz, C.R.H. The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of Escherichia coli. J. Biol. Chem. 260 (1985) 15536–15541. [PMID: 3905795]
2.  Anderson, M.S., Bull, H.G., Galloway, S.M., Kelly, T.M., Mohan, S., Radika, K. and Raetz, C.R. UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J. Biol. Chem. 268 (1993) 19858–19865. [PMID: 8366124]
3.  Raetz, C.R. and Roderick, S.L. A left-handed parallel β helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270 (1995) 997–1000. [PMID: 7481807]
4.  Williams, A.H. and Raetz, C.R. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl. Acad. Sci. USA 104 (2007) 13543–13550. [PMID: 17698807]
5.  Bainbridge, B.W., Karimi-Naser, L., Reife, R., Blethen, F., Ernst, R.K. and Darveau, R.P. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J. Bacteriol. 190 (2008) 4549–4558. [PMID: 18456814]
[EC 2.3.1.129 created 1990, modified 2021]
 
 
EC 2.3.1.157     
Accepted name: glucosamine-1-phosphate N-acetyltransferase
Reaction: acetyl-CoA + α-D-glucosamine 1-phosphate = CoA + N-acetyl-α-D-glucosamine 1-phosphate
Systematic name: acetyl-CoA:α-D-glucosamine-1-phosphate N-acetyltransferase
Comments: The enzyme from several bacteria (e.g., Escherichia coli, Bacillus subtilis and Haemophilus influenzae) has been shown to be bifunctional and also to possess the activity of EC 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase.
References:
1.  Mengin-Lecreulx, D. and van Heijenoort, J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol. 176 (1994) 5788–5795. [PMID: 8083170]
2.  Gehring, A.M., Lees, W.J., Mindiola, D.J., Walsh, C.T. and Brown, E.D. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35 (1996) 579–585. [PMID: 8555230]
3.  Olsen, L.R. and Roderick, S.L. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40 (2001) 1913–1921. [PMID: 11329257]
[EC 2.3.1.157 created 2001]
 
 
EC 2.3.1.191     
Accepted name: UDP-3-O-(3-hydroxyacyl)glucosamine N-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine = a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine + a holo-[acyl-carrier protein]
Other name(s): lpxD (gene name); UDP-3-O-acyl-glucosamine N-acyltransferase; UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase; acyltransferase LpxD; acyl-ACP:UDP-3-O-(3-hydroxyacyl)-GlcN N-acyltransferase; firA (gene name); (3R)-3-hydroxymyristoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxymyristoyl]-α-D-glucosamine N-acetyltransferase; UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucosamine N-acetyltransferase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine N-acyltransferase
Comments: The enzyme catalyses a step of lipid A biosynthesis. LpxD from Escherichia coli prefers (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein] [3], but it does not have an absolute specificity for 14-carbon hydroxy fatty acids, as it can transfer other fatty acids, including odd-chain fatty acids, if they are available to the organism [5].
References:
1.  Kelly, T.M., Stachula, S.A., Raetz, C.R. and Anderson, M.S. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J. Biol. Chem. 268 (1993) 19866–19874. [PMID: 8366125]
2.  Buetow, L., Smith, T.K., Dawson, A., Fyffe, S. and Hunter, W.N. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc. Natl. Acad. Sci. USA 104 (2007) 4321–4326. [PMID: 17360522]
3.  Bartling, C.M. and Raetz, C.R. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 47 (2008) 5290–5302. [PMID: 18422345]
4.  Bainbridge, B.W., Karimi-Naser, L., Reife, R., Blethen, F., Ernst, R.K. and Darveau, R.P. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J. Bacteriol. 190 (2008) 4549–4558. [PMID: 18456814]
5.  Bartling, C.M. and Raetz, C.R. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48 (2009) 8672–8683. [PMID: 19655786]
6.  Badger, J., Chie-Leon, B., Logan, C., Sridhar, V., Sankaran, B., Zwart, P.H. and Nienaber, V. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69 (2013) 6–9. [PMID: 23295477]
7.  Kroeck, K.G., Sacco, M.D., Smith, E.W., Zhang, X., Shoun, D., Akhtar, A., Darch, S.E., Cohen, F., Andrews, L.D., Knox, J.E. and Chen, Y. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci. Rep. 9:15450 (2019). [PMID: 31664082]
[EC 2.3.1.191 created 2010, modified 2021]
 
 
EC 2.3.1.201     
Accepted name: UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase
Reaction: acetyl-CoA + UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate = CoA + UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate
Other name(s): WbpD; WlbB
Systematic name: acetyl-CoA:UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate N-acetyltransferase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide.
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
[EC 2.3.1.201 created 2012]
 
 
EC 2.3.1.202     
Accepted name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Reaction: acetyl-CoA + UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine = CoA + UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose
Other name(s): PseH
Systematic name: acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine N-acetyltransferase
Comments: Isolated from Helicobacter pylori. The enzyme is involved in the biosynthesis of pseudaminic acid.
References:
1.  Schoenhofen, I.C., McNally, D.J., Brisson, J.R. and Logan, S.M. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16 (2006) 8C–14C. [PMID: 16751642]
[EC 2.3.1.202 created 2012]
 
 
EC 2.3.1.203     
Accepted name: UDP-N-acetylbacillosamine N-acetyltransferase
Reaction: acetyl-CoA + UDP-N-acetylbacillosamine = CoA + UDP-N,N′-diacetylbacillosamine
Glossary: UDP-N-acetylbacillosamine = UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine
UDP-N,N′-diacetylbacillosamine = UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose
Other name(s): UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine N-acetyltransferase; pglD (gene name)
Systematic name: acetyl-CoA:UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine N-acetyltransferase
Comments: The product, UDP-N,N′-diacetylbacillosamine, is an intermediate in protein glycosylation pathways in several bacterial species, including N-linked glycosylation of certain L-asparagine residues in Campylobacter species [1,2] and O-linked glycosylation of certain L-serine residues in Neisseria species [3].
References:
1.  Olivier, N.B., Chen, M.M., Behr, J.R. and Imperiali, B. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45 (2006) 13659–13669. [PMID: 17087520]
2.  Rangarajan, E.S., Ruane, K.M., Sulea, T., Watson, D.C., Proteau, A., Leclerc, S., Cygler, M., Matte, A. and Young, N.M. Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni. Biochemistry 47 (2008) 1827–1836. [PMID: 18198901]
3.  Hartley, M.D., Morrison, M.J., Aas, F.E., Borud, B., Koomey, M. and Imperiali, B. Biochemical characterization of the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans containing N,N′-diacetylbacillosamine. Biochemistry 50 (2011) 4936–4948. [PMID: 21542610]
[EC 2.3.1.203 created 2012, modified 2013]
 
 
EC 2.3.1.276     
Accepted name: galactosamine-1-phosphate N-acetyltransferase
Reaction: acetyl-CoA + α-D-galactosamine 1-phosphate = CoA + N-acetyl-α-D-galactosamine 1-phosphate
Other name(s): ST0452 (locus name)
Systematic name: acetyl-CoA:α-D-galactosamine-1-phosphate N-acetyltransferase
Comments: The enzyme, characterized from the archaeon Sulfolobus tokodaii, is also active toward α-D-glucosamine 1-phosphate (cf. EC 2.3.1.157, glucosamine-1-phosphate N-acetyltransferase). In addition, that enzyme contains a second domain that catalyses the activities of EC 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase, EC 2.7.7.24, glucose-1-phosphate thymidylyltransferase, and EC 2.7.7.83, UDP-N-acetylgalactosamine diphosphorylase.
References:
1.  Zhang, Z., Tsujimura, M., Akutsu, J., Sasaki, M., Tajima, H. and Kawarabayasi, Y. Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J. Biol. Chem. 280 (2005) 9698–9705. [PMID: 15598657]
2.  Zhang, Z., Akutsu, J. and Kawarabayasi, Y. Identification of novel acetyltransferase activity on the thermostable protein ST0452 from Sulfolobus tokodaii strain 7. J. Bacteriol. 192 (2010) 3287–3293. [PMID: 20400541]
3.  Dadashipour, M., Iwamoto, M., Hossain, M.M., Akutsu, J.I., Zhang, Z. and Kawarabayasi, Y. Identification of a direct biosynthetic pathway for UDP-N-acetylgalactosamine from glucosamine-6-phosphate in thermophilic crenarchaeon Sulfolobus tokodaii. J. Bacteriol. 200 (2018) . [PMID: 29507091]
[EC 2.3.1.276 created 2018]
 
 
EC 2.3.1.305     
Accepted name: acyl-[acyl-carrier protein]—UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose N-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose = an [acyl-carrier protein] + a UDP-2-acetamido-2,3-dideoxy-3-{[(3R)-3-hydroxyacyl]amino}-α-D-glucopyranose
Other name(s): lpxA (gene name) (ambiguous)
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier-protein]:UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose 3-N-[(3R)-hydroxyacyl]transferase
Comments: The enzyme is found in bacterial species whose lipid A contains 2,3-diamino-2,3-dideoxy-D-glucopyranose. Some enzymes, such as that from Leptospira interrogans, are highly specific for 2,3-diamino-2,3-dideoxy-D-glucopyranose, while others, such as the enzyme from Acidithiobacillus ferrooxidans, are also able to accept UDP-N-acetyl-α-D-glucosamine (cf. EC 2.3.1.129, acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase). The enzymes from different organisms also differ in their specificity for the acyl donor. The enzyme from Leptospira interrogans is highly specific for (3R)-3-hydroxydodecanoyl-[acp], while that from Mesorhizobium loti functions almost equally well with 10-, 12-, and 14-carbon 3-hydroxyacyl-[acp]s.
References:
1.  Sweet, C.R., Williams, A.H., Karbarz, M.J., Werts, C., Kalb, S.R., Cotter, R.J. and Raetz, C.R. Enzymatic synthesis of lipid A molecules with four amide-linked acyl chains. LpxA acyltransferases selective for an analog of UDP-N-acetylglucosamine in which an amine replaces the 3"-hydroxyl group. J. Biol. Chem. 279 (2004) 25411–25419. [PMID: 15044493]
2.  Robins, L.I., Williams, A.H. and Raetz, C.R. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48 (2009) 6191–6201. [PMID: 19456129]
[EC 2.3.1.305 created 2021]
 
 
EC 2.3.2.10     
Accepted name: UDP-N-acetylmuramoylpentapeptide-lysine N6-alanyltransferase
Reaction: L-alanyl-tRNAAla + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine = tRNAAla + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamyl-N6-(L-alanyl)-L-lysyl-D-alanyl-D-alanine
Other name(s): alanyl-transfer ribonucleate-uridine diphosphoacetylmuramoylpentapeptide transferase; UDP-N-acetylmuramoylpentapeptide lysine N6-alanyltransferase; uridine diphosphoacetylmuramoylpentapeptide lysine N6-alanyltransferase; L-alanyl-tRNA:UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine 6-N-alanyltransferase; L-alanyl-tRNA:UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine N6-alanyltransferase
Systematic name: L-alanyl-tRNAAla:UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine N6-alanyltransferase
Comments: Also acts on L-seryl-tRNASer.
References:
1.  Plapp, R. and Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. 18. Purification and properties of L-alanyl transfer ribonucleic acid-uridine diphosphate-N-acetylmuramyl-pentapeptide transferase from Lactobacillus viridescens. J. Biol. Chem. 245 (1970) 3675–3682. [PMID: 4248527]
[EC 2.3.2.10 created 1972, modified 2013]
 
 
EC 2.4.1.11     
Accepted name: glycogen(starch) synthase
Reaction: UDP-α-D-glucose + [(1→4)-α-D-glucosyl]n = UDP + [(1→4)-α-D-glucosyl]n+1
Other name(s): UDP-glucose—glycogen glucosyltransferase; glycogen (starch) synthetase; UDP-glucose-glycogen glucosyltransferase; UDP-glycogen synthase; UDPG-glycogen synthetase; UDPG-glycogen transglucosylase; uridine diphosphoglucose-glycogen glucosyltransferase; UDP-glucose:glycogen 4-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:glycogen 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The accepted name varies according to the source of the enzyme and the nature of its synthetic product (cf. EC 2.4.1.1, phosphorylase). Glycogen synthase from animal tissues is a complex of a catalytic subunit and the protein glycogenin. The enzyme requires glucosylated glycogenin as a primer; this is the reaction product of EC 2.4.1.186 (glycogenin glucosyltransferase). A similar enzyme utilizes ADP-glucose (EC 2.4.1.21, starch synthase).
References:
1.  Algranati, I.D. and Cabib, E. The synthesis of glycogen in yeast. Biochim. Biophys. Acta 43 (1960) 141–142. [PMID: 13682402]
2.  Basu, D.K. and Bachhawat, B.K. Purification of uridine diphosphoglucose-glycogen transglucosylase from sheep brain. Biochim. Biophys. Acta 50 (1961) 123–128. [PMID: 13687710]
3.  Leloir, L.F. and Cardini, C.E. UDPG-glycogen transglucosylase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 317–326.
4.  Leloir, L.F. and Goldemberg, S.H. Synthesis of glycogen from uridine diphosphate glucose in liver. J. Biol. Chem. 235 (1960) 919–923. [PMID: 14415527]
5.  Pitcher, J., Smythe, C. and Cohen, P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur. J. Biochem. 176 (1988) 391–395. [PMID: 2970965]
[EC 2.4.1.11 created 1961]
 
 
EC 2.4.1.12     
Accepted name: cellulose synthase (UDP-forming)
Reaction: UDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = UDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): UDP-glucose—β-glucan glucosyltransferase; UDP-glucose-cellulose glucosyltransferase; GS-I; β-1,4-glucosyltransferase; uridine diphosphoglucose-1,4-β-glucan glucosyltransferase; β-1,4-glucan synthase; β-1,4-glucan synthetase; β-glucan synthase; 1,4-β-D-glucan synthase; 1,4-β-glucan synthase; glucan synthase; UDP-glucose-1,4-β-glucan glucosyltransferase; uridine diphosphoglucose-cellulose glucosyltransferase; UDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase; UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme utilizes GDP-glucose [EC 2.4.1.29 cellulose synthase (GDP-forming)].
References:
1.  Glaser, L. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232 (1958) 627–636. [PMID: 13549448]
[EC 2.4.1.12 created 1961]
 
 
EC 2.4.1.13     
Accepted name: sucrose synthase
Reaction: NDP-α-D-glucose + D-fructose = NDP + sucrose
Other name(s): UDPglucose-fructose glucosyltransferase; sucrose synthetase; sucrose-UDP glucosyltransferase; sucrose-uridine diphosphate glucosyltransferase; uridine diphosphoglucose-fructose glucosyltransferase; NDP-glucose:D-fructose 2-α-D-glucosyltransferase
Systematic name: NDP-α-D-glucose:D-fructose 2-α-D-glucosyltransferase (configuration-retaining)
Comments: Although UDP is generally considered to be the preferred nucleoside diphosphate for sucrose synthase, numerous studies have shown that ADP serves as an effective acceptor molecule to produce ADP-glucose [3-9]. Sucrose synthase has a dual role in producing both UDP-glucose (necessary for cell wall and glycoprotein biosynthesis) and ADP-glucose (necessary for starch biosynthesis) [10].
References:
1.  Avigad, G. and Milner, Y. UDP-glucose:fructose transglucosylase from sugar beet roots. Methods Enzymol. 8 (1966) 341–345.
2.  Cardini, C.E., Leloir, L.F. and Chiriboga, J. The biosynthesis of sucrose. J. Biol. Chem. 214 (1955) 149–155. [PMID: 14367373]
3.  Delmer, D.P. The purification and properties of sucrose synthetase from etiolated Phaseolus aureus seedlings. J. Biol. Chem. 247 (1972) 3822–3828. [PMID: 4624446]
4.  Murata, T., Sugiyama, T., Minamikawa, T. and Akazawa, T. Enzymic mechanism of starch synthesis in ripening rice grains. Mechanism of the sucrose-starch conversion. Arch. Biochem. Biophys. 113 (1966) 34–44. [PMID: 5941994]
5.  Nakai, T., Konishi, T., Zhang, X.-Q., Chollet, R., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Mori, H., Sakai, F. and Hayashi, T. An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol. 39 (1998) 1337–1341. [PMID: 10050318]
6.  Porchia, A.C., Curatti, L. and Salerno, G.L. Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210 (1999) 34–40. [PMID: 10592030]
7.  Ross, H.A. and Davies, H.V. Purification and characterization of sucrose synthase from the cotyledons of Vicia fava L. Plant Physiol. 100 (1992) 1008–1013. [PMID: 16653008]
8.  Silvius, J.E. and Snyder, F.W. Comparative enzymic studies of sucrose metabolism in the taproots and fibrous roots of Beta vulgaris L. Plant Physiol. 64 (1979) 1070–1073. [PMID: 16661094]
9.  Tanase, K. and Yamaki, S. Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant Cell Physiol. 41 (2000) 408–414. [PMID: 10845453]
10.  Baroja-Fernández, E., Muñnoz, F.J., Saikusa, T., Rodríguez-López, M., Akazawa, T. and Pozueta-Romero, J. Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44 (2003) 500–509. [PMID: 12773636]
[EC 2.4.1.13 created 1961, modified 2003]
 
 
EC 2.4.1.14     
Accepted name: sucrose-phosphate synthase
Reaction: UDP-α-D-glucose + D-fructose 6-phosphate = UDP + sucrose 6F-phosphate
Other name(s): UDP-glucose—fructose-phosphate glucosyltransferase; sucrosephosphate—UDP glucosyltransferase; UDP-glucose-fructose-phosphate glucosyltransferase; SPS; uridine diphosphoglucose-fructose phosphate glucosyltransferase; sucrose 6-phosphate synthase; sucrose phosphate synthetase; sucrose phosphate-uridine diphosphate glucosyltransferase; sucrose phosphate synthase; UDP-glucose:D-fructose-6-phosphate 2-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:D-fructose-6-phosphate 2-α-D-glucosyltransferase (configuration-retaining)
Comments: Requires Mg2+ or Mn2+ for maximal activity [2]. The enzyme from Synechocystis sp. strain PCC 6803 is not specific for UDP-glucose as it can use ADP-glucose and, to a lesser extent, GDP-glucose as substrates [2]. The enzyme from rice leaves is activated by glucose 6-phosphate but that from cyanobacterial species is not [2]. While the reaction catalysed by this enzyme is reversible, the enzyme usually works in concert with EC 3.1.3.24, sucrose-phosphate phosphatase, to form sucrose, making the above reaction essentially irreversible [3]. The F in sucrose 6F-phosphate is used to indicate that the fructose residue of sucrose carries the substituent.
References:
1.  Mendicino, J. Sucrose phosphate synthesis in wheat germ and green leaves. J. Biol. Chem. 235 (1960) 3347–3352. [PMID: 13769376]
2.  Curatti, L., Folco, E., Desplats, P., Abratti, G., Limones, V., Herrera-Estrella, L. and Salerno, G. Sucrose-phosphate synthase from Synechocystis sp. strain PCC 6803: identification of the spsA gene and characterization of the enzyme expressed in Escherichia coli. J. Bacteriol. 180 (1998) 6776–6779. [PMID: 9852031]
3.  Huber, S.C. and Huber, J.L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 431–444. [PMID: 15012296]
4.  Cumino, A., Curatti, L., Giarrocco, L. and Salerno, G.L. Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Lett. 517 (2002) 19–23. [PMID: 12062401]
5.  Chua, T.K., Bujnicki, J.M., Tan, T.C., Huynh, F., Patel, B.K. and Sivaraman, J. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 20 (2008) 1059–1072. [PMID: 18424616]
[EC 2.4.1.14 created 1961, modified 2008]
 
 
EC 2.4.1.15     
Accepted name: α,α-trehalose-phosphate synthase (UDP-forming)
Reaction: UDP-α-D-glucose + D-glucose 6-phosphate = UDP + α,α-trehalose 6-phosphate
Other name(s): UDP-glucose—glucose-phosphate glucosyltransferase; trehalosephosphate-UDP glucosyltransferase; UDP-glucose-glucose-phosphate glucosyltransferase; α,α-trehalose phosphate synthase (UDP-forming); phosphotrehalose-uridine diphosphate transglucosylase; trehalose 6-phosphate synthase; trehalose 6-phosphate synthetase; trehalose phosphate synthase; trehalose phosphate synthetase; trehalose phosphate-uridine diphosphate glucosyltransferase; trehalose-P synthetase; transglucosylase; uridine diphosphoglucose phosphate glucosyltransferase; UDP-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: See also EC 2.4.1.36 [α,α-trehalose-phosphate synthase (GDP-forming)].
References:
1.  Cabib, E. and Leloir, L.F. The biosynthesis of trehalose phosphate. J. Biol. Chem. 231 (1958) 259–275. [PMID: 13538966]
2.  Candy, D.J. and Kilby, B.A. The biosynthesis of trehalose in the locust fat body. Biochem. J. 78 (1961) 531–536. [PMID: 13690400]
3.  Lornitzo, F.A. and Goldman, D.S. Purification and properties of the transglucosylase inhibitor of Mycobacterium tuberculosis. J. Biol. Chem. 239 (1964) 2730–2734. [PMID: 14216421]
4.  Murphy, T.A. and Wyatt, G.R. The enzymes of glycogen and trehalose synthesis in silk moth fat body. J. Biol. Chem. 240 (1965) 1500–1508. [PMID: 14285483]
[EC 2.4.1.15 created 1961]
 
 
EC 2.4.1.16     
Accepted name: chitin synthase
Reaction: UDP-N-acetyl-α-D-glucosamine + [(1→4)-N-acetyl-β-D-glucosaminyl]n = UDP + [(1→4)-N-acetyl-β-D-glucosaminyl]n+1
Glossary: chitin = [(1→4)-N-acetyl-β-D-glucosaminyl]n
Other name(s): chitin-UDP N-acetylglucosaminyltransferase; chitin-uridine diphosphate acetylglucosaminyltransferase; chitin synthetase; trans-N-acetylglucosaminosylase; UDP-N-acetyl-D-glucosamine:chitin 4-β-N-acetylglucosaminyl-transferase; UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Converts UDP-N-acetyl-α-D-glucosamine into chitin and UDP.
References:
1.  Glaser, L. and Brown, D.H. The synthesis of chitin in cell-free extracts of Neurospora crassa. J. Biol. Chem. 228 (1957) 729–742. [PMID: 13475355]
2.  Sburlati, A. and Cabib, E. Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. J. Biol. Chem. 261 (1986) 15147–15152. [PMID: 2945823]
[EC 2.4.1.16 created 1961]
 
 
EC 2.4.1.17     
Accepted name: glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + acceptor = UDP + acceptor β-D-glucuronoside
Other name(s): 1-naphthol glucuronyltransferase; 1-naphthol-UDP-glucuronosyltransferase; 17β-hydroxysteroid UDP-glucuronosyltransferase; 3α-hydroxysteroid UDP-glucuronosyltransferase; 4-hydroxybiphenyl UDP-glucuronosyltransferase; 4-methylumbelliferone UDP-glucuronosyltransferase; 4-nitrophenol UDP-glucuronyltransferase; 4-nitrophenol UDPGT; 17-OH steroid UDPGT; 3-OH androgenic UDPGT; bilirubin uridine diphosphoglucuronyltransferase; bilirubin UDP-glucuronosyltransferase; bilirubin monoglucuronide glucuronyltransferase; bilirubin UDPGT; bilirubin glucuronyltransferase; ciramadol UDP-glucuronyltransferase; estriol UDP-glucuronosyltransferase; estrone UDP-glucuronosyltransferase; uridine diphosphoglucuronosyltransferase; uridine diphosphoglucuronate-bilirubin glucuronoside glucuronosyltransferase; uridine diphosphoglucuronate-bilirubin glucuronosyltransferase; uridine diphosphoglucuronate-estriol glucuronosyltransferase; uridine diphosphoglucuronate-estradiol glucuronosyltransferase; uridine diphosphoglucuronate-4-hydroxybiphenyl glucuronosyltransferase; uridine diphosphoglucuronate-1,2-diacylglycerol glucuronosyltransferase; uridine diphosphoglucuronate-estriol 16α-glucuronosyltransferase; GT; morphine glucuronyltransferase; p-hydroxybiphenyl UDP glucuronyltransferase; p-nitrophenol UDP-glucuronosyltransferase; p-nitrophenol UDP-glucuronyltransferase; p-nitrophenylglucuronosyltransferase; p-phenylphenol glucuronyltransferase; phenyl-UDP-glucuronosyltransferase; PNP-UDPGT; UDP glucuronate-estradiol-glucuronosyltransferase; UDP glucuronosyltransferase; UDP glucuronate-estriol glucuronosyltransferase; UDP glucuronic acid transferase; UDP glucuronyltransferase; UDP-glucuronate-4-hydroxybiphenyl glucuronosyltransferase; UDP-glucuronate-bilirubin glucuronyltransferase; UDP-glucuronosyltransferase; UDP-glucuronyltransferase; UDPGA transferase; UDPGA-glucuronyltransferase; UDPGT; uridine diphosphoglucuronyltransferase; uridine diphosphate glucuronyltransferase; uridine 5′-diphosphoglucuronyltransferase; UDP-glucuronate β-D-glucuronosyltransferase (acceptor-unspecific)
Systematic name: UDP-α-D-glucuronate β-D-glucuronosyltransferase (acceptor-unspecific; configuration-inverting)
Comments: This entry denotes a family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines and fatty acids. Some of the activities catalysed were previously listed separately as EC 2.4.1.42, EC 2.4.1.59, EC 2.4.1.61, EC 2.4.1.76, EC 2.4.1.77, EC 2.4.1.84, EC 2.4.1.107 and EC 2.4.1.108. A temporary nomenclature for the various forms, whose delineation is in a state of flux, is suggested in Ref. 1.
References:
1.  Bock, K.W., Burchell, B., Dutton, G.J., Hanninen, O., Mulder, G.J., Owens, I.S., Siest, G. and Jephly, T.R. UDP-glucuronosyltransferase activities. Guidelines for consistent interim terminology and assay conditions. Biochem. Pharmacol. 32 (1983) 953–955. [PMID: 6404284]
2.  Bock, K.W., Josting, D., Lilienblum, W. and Pfeil, H. Purification of rat-liver microsomal UDP-glucuronyltransferase. Separation of two enzyme forms inducible by 3-methylcholanthrene or phenobarbital. Eur. J. Biochem. 98 (1979) 19–26. [PMID: 111930]
3.  Burchell, B. Identification and purification of multiple forms of UDP-glucuronosyltransferase. Rev. Biochem. Toxicol. 3 (1981) 1–32.
4.  Dutton, G.J. Glucuronidation of Drugs and Other Compounds, C.R.C. Press, Boca Raton, Florida, 1980.
5.  Green, M.D., Falany, C.N., Kirkpatrick, R.B. and Tephly, T.R. Strain differences in purified rat hepatic 3α-hydroxysteroid UDP-glucuronosyltransferase. Biochem. J. 230 (1985) 403–409. [PMID: 3931633]
6.  Jansen, P.L.M. The enzyme-catalyzed formation of bilirubin diglucuronide by a solublized preparation from cat liver microsomes. Biochim. Biophys. Acta 338 (1974) 170–182.
[EC 2.4.1.17 created 1961 (EC 2.4.1.42, EC 2.4.1.59 and EC 2.4.1.61 all created 1972, EC 2.4.1.76, EC 2.4.1.77 and EC 2.4.1.84 all created 1976, EC 2.4.1.107 and EC 2.4.1.108 both created 1983, all incorporated 1984)]
 
 
EC 2.4.1.21     
Accepted name: starch synthase (glycosyl-transferring)
Reaction: ADP-α-D-glucose + [(1→4)-α-D-glucosyl]n = ADP + [(1→4)-α-D-glucosyl]n+1
Other name(s): ADP-glucose—starch glucosyltransferase; adenosine diphosphate glucose-starch glucosyltransferase; adenosine diphosphoglucose-starch glucosyltransferase; ADP-glucose starch synthase; ADP-glucose transglucosylase; ADP-glucose-starch glucosyltransferase; ADPG starch synthetase; ADPG-starch glucosyltransferase; starch synthetase; ADP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase
Systematic name: ADP-α-D-glucose:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: The accepted name varies according to the source of the enzyme and the nature of its synthetic product, e.g. starch synthase, bacterial glycogen synthase. Similar to EC 2.4.1.11 [glycogen(starch) synthase] but the preferred or mandatory nucleoside diphosphate sugar substrate is ADP-α-D-glucose. The entry covers starch and glycogen synthases utilizing ADP-α-D-glucose.
References:
1.  Chambers, J.C. and Elbein, A.D. Biosynthesis of glucans in mung bean seedlings. Formation of β-(1,4)-glucans from GDP-glucose and β-(1,3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138 (1970) 620–631. [PMID: 4317490]
2.  Frydman, R.B. and Cardini, C.E. Studies on adenosine diphosphate D-glucose: α-1,4-glucan α-4-glucosyltransferase of sweet-corn endosperm. Biochim. Biophys. Acta 96 (1965) 294–303. [PMID: 14298833]
3.  Greenberg, E. and Preiss, J. Biosynthesis of bacterial glycogen. II. Purification and properties of the adenosine diphosphoglucose:glycogen transglucosylase of arthrobacter species NRRL B1973. J. Biol. Chem. 240 (1965) 2341–2348. [PMID: 14304835]
4.  Leloir, L.F., de Fekete, M.A. and Cardini, C.E. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. Biol. Chem. 236 (1961) 636–641. [PMID: 13760681]
5.  Preiss, J., Govins, S., Eidels, L., Lammel, C., Greenberg, E., Edelmann, P. and Sabraw, A. Regulatory mechanisms in the biosynthesis of α-1,4-glucans in bacteria and plants. In: Whelan, W.J. and Schultz, J. (Ed.), Miami Winter Symposia, vol. 1, North Holland, Utrecht, 1970, pp. 122–138.
[EC 2.4.1.21 created 1965]
 
 
EC 2.4.1.22     
Accepted name: lactose synthase
Reaction: UDP-α-D-galactose + D-glucose = UDP + lactose
Other name(s): UDP-galactose—glucose galactosyltransferase; N-acetyllactosamine synthase; uridine diphosphogalactose-glucose galactosyltransferase; lactose synthetase; UDP-galactose:D-glucose 4-β-D-galactotransferase; UDP-galactose:D-glucose 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:D-glucose 4-β-D-galactosyltransferase
Comments: The enzyme is a complex of two proteins, A and B. In the absence of the B protein (α-lactalbumin), the enzyme catalyses the transfer of galactose from UDP-α-D-galactose to N-acetylglucosamine (EC 2.4.1.90 N-acetyllactosamine synthase).
References:
1.  Fitzgerald, D.K., Brodbeck, U., Kiyosawa, I., Mawal, R., Colvin, B. and Ebner, K.E. α-Lactalbumin and the lactose synthetase reaction. J. Biol. Chem. 245 (1970) 2103–2108. [PMID: 5440844]
2.  Hill, R.L. and Brew, K. Lactose synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 43 (1975) 411–490. [PMID: 812340]
3.  Watkins, W.M. and Hassid, W.Z. The synthesis of lactose by particulate enzyme preparations from guinea pig and bovine mammary glands. J. Biol. Chem. 237 (1962) 1432–1440. [PMID: 14005251]
[EC 2.4.1.22 created 1965]
 
 
EC 2.4.1.23     
Accepted name: sphingosine β-galactosyltransferase
Reaction: UDP-α-D-galactose + sphingosine = UDP + psychosine
Other name(s): psychosine—UDP galactosyltransferase; galactosyl-sphingosine transferase; psychosine-uridine diphosphate galactosyltransferase; UDP-galactose:sphingosine O-galactosyl transferase; uridine diphosphogalactose-sphingosine β-galactosyltransferase; UDP-galactose:sphingosine 1-β-galactotransferase; UDP-galactose:sphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:sphingosine 1-β-galactosyltransferase
References:
1.  Cleland, W.W. and Kennedy, E.P. The enzymatic synthesis of psychosine. J. Biol. Chem. 235 (1960) 45–51. [PMID: 13810623]
[EC 2.4.1.23 created 1965]
 
 
EC 2.4.1.26     
Accepted name: DNA α-glucosyltransferase
Reaction: Transfers an α-D-glucosyl residue from UDP-glucose to an hydroxymethylcytosine residue in DNA
Other name(s): uridine diphosphoglucose-deoxyribonucleate α-glucosyltransferase; UDP-glucose-DNA α-glucosyltransferase; uridine diphosphoglucose-deoxyribonucleate α-glucosyltransferase; T2-HMC-α-glucosyl transferase; T4-HMC-α-glucosyl transferase; T6-HMC-α-glucosyl transferase
Systematic name: UDP-glucose:DNA α-D-glucosyltransferase
References:
1.  Kornberg, S.R., Zimmerman, S.B. and Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 236 (1961) 1487–1493. [PMID: 13753193]
[EC 2.4.1.26 created 1965]
 
 
EC 2.4.1.27     
Accepted name: DNA β-glucosyltransferase
Reaction: Transfers a β-D-glucosyl residue from UDP-α-D-glucose to an hydroxymethylcytosine residue in DNA
Other name(s): T4-HMC-β-glucosyl transferase; T4-β-glucosyl transferase; T4 phage β-glucosyltransferase; UDP glucose-DNA β-glucosyltransferase; uridine diphosphoglucose-deoxyribonucleate β-glucosyltransferase; UDP-glucose:DNA β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:DNA β-D-glucosyltransferase (configuration-inverting)
References:
1.  Kornberg, S.R., Zimmerman, S.B. and Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 236 (1961) 1487–1493. [PMID: 13753193]
[EC 2.4.1.27 created 1965]
 
 
EC 2.4.1.28     
Accepted name: glucosyl-DNA β-glucosyltransferase
Reaction: Transfers a β-D-glucosyl residue from UDP-α-D-glucose to a glucosylhydroxymethylcytosine residue in DNA
Other name(s): T6-glucosyl-HMC-β-glucosyl transferase; T6-β-glucosyl transferase; uridine diphosphoglucose-glucosyldeoxyribonucleate β-glucosyltransferase
Systematic name: UDP-α-D-glucose:D-glucosyl-DNA β-D-glucosyltransferase (configuration-inverting)
References:
1.  Kornberg, S.R., Zimmerman, S.B. and Kornberg, A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J. Biol. Chem. 236 (1961) 1487–1493. [PMID: 13753193]
[EC 2.4.1.28 created 1965]
 
 
EC 2.4.1.29     
Accepted name: cellulose synthase (GDP-forming)
Reaction: GDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = GDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): cellulose synthase (guanosine diphosphate-forming); cellulose synthetase; guanosine diphosphoglucose-1,4-β-glucan glucosyltransferase; guanosine diphosphoglucose-cellulose glucosyltransferase; GDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: GDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme [EC 2.4.1.12, cellulose synthase (UDP-forming)] utilizes UDP-α-D-glucose.
References:
1.  Chambers, J.C. and Elbein, A.D. Biosynthesis of glucans in mung bean seedlings. Formation of β-(1,4)-glucans from GDP-glucose and β-(1,3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138 (1970) 620–631. [PMID: 4317490]
2.  Flowers, H.M., Batra, K.K., Kemp, J. and Hassid, W.Z. Biosynthesis of cellulose in vitro from guanosine diphosphate D-glucose with enzymic preparations from Phaseolus aureus and Lupinus albus. J. Biol. Chem. 244 (1969) 4969. [PMID: 5824571]
[EC 2.4.1.29 created 1965]
 
 
EC 2.4.1.34     
Accepted name: 1,3-β-glucan synthase
Reaction: UDP-glucose + [(1→3)-β-D-glucosyl]n = UDP + [(1→3)-β-D-glucosyl]n+1
Other name(s): 1,3-β-D-glucan—UDP glucosyltransferase; UDP-glucose—1,3-β-D-glucan glucosyltransferase; callose synthetase; 1,3-β-D-glucan-UDP glucosyltransferase; UDP-glucose-1,3-β-D-glucan glucosyltransferase; paramylon synthetase; UDP-glucose-β-glucan glucosyltransferase; GS-II; (1,3)-β-glucan (callose) synthase; β-1,3-glucan synthase; β-1,3-glucan synthetase; 1,3-β-D-glucan synthetase; 1,3-β-D-glucan synthase; 1,3-β-glucan-uridine diphosphoglucosyltransferase; callose synthase; UDP-glucose-1,3-β-glucan glucosyltransferase; UDP-glucose:(1,3)β-glucan synthase; uridine diphosphoglucose-1,3-β-glucan glucosyltransferase; UDP-glucose:1,3-β-D-glucan 3-β-D-glucosyltransferase
Systematic name: UDP-glucose:(1→3)-β-D-glucan 3-β-D-glucosyltransferase
References:
1.  Maréchal, L.R. and Goldemberg, S.H. Uridine diphosphate glucose-β-1,3-glucan β-3-glucosyltransferase from Euglena gracilis. J. Biol. Chem. 239 (1964) 3163–3167. [PMID: 14245356]
[EC 2.4.1.34 created 1972]
 
 
EC 2.4.1.35     
Accepted name: phenol β-glucosyltransferase
Reaction: UDP-glucose + a phenol = UDP + an aryl β-D-glucoside
Other name(s): UDPglucosyltransferase (ambiguous); phenol-β-D-glucosyltransferase; UDP glucosyltransferase (ambiguous); UDP-glucose glucosyltransferase (ambiguous); uridine diphosphoglucosyltransferase
Systematic name: UDP-glucose:phenol β-D-glucosyltransferase
Comments: Acts on a wide range of phenols.
References:
1.  Dutton, G.J. Uridine diphosphate glucose and the synthesis of phenolic glucosides by mollusks. Arch. Biochem. Biophys. 116 (1966) 399–405. [PMID: 5961845]
[EC 2.4.1.35 created 1972]
 
 
EC 2.4.1.36     
Accepted name: α,α-trehalose-phosphate synthase (GDP-forming)
Reaction: GDP-glucose + glucose 6-phosphate = GDP + α,α-trehalose 6-phosphate
Other name(s): GDP-glucose—glucose-phosphate glucosyltransferase; guanosine diphosphoglucose-glucose phosphate glucosyltransferase; trehalose phosphate synthase (GDP-forming)
Systematic name: GDP-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase
Comments: See also EC 2.4.1.15 [α,α-trehalose-phosphate synthase (UDP-forming)].
References:
1.  Elbein, A.D. Carbohydrate metabolism in Streptomyces hygroscopicus. I. Enzymatic synthesis of trehalose phosphate from guanosine diphosphate D-glucose-14C. J. Biol. Chem. 242 (1967) 403–406. [PMID: 6022837]
[EC 2.4.1.36 created 1972]
 
 
EC 2.4.1.37     
Accepted name: fucosylgalactoside 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-fucosyl-(1→2)-D-galactosyl-R = UDP + α-D-galactosyl-(1→3)-[α-L-fucosyl(1→2)]-D-galactosyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): UDP-galactose:O-α-L-fucosyl(1→2)D-galactose α-D-galactosyltransferase; UDPgalactose:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-α-D-galactosyltransferase; [blood group substance] α-galactosyltransferase; blood-group substance B-dependent galactosyltransferase; glycoprotein-fucosylgalactoside α-galactosyltransferase; histo-blood group B transferase; histo-blood substance B-dependent galactosyltransferase; UDP-galactose:α-L-fucosyl-1,2-D-galactoside 3-α-D-galactosyltransferase; UDP-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:α-L-fucosyl-(1→2)-D-galactoside 3-α-D-galactosyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
References:
1.  Race, C., Ziderman, D. and Watkins, W.M. An α-D-galactosyltransferase associated with the blood-group B character. Biochem. J. 107 (1968) 733–735. [PMID: 16742598]
[EC 2.4.1.37 created 1972, modified 1999, modified 2002]
 
 
EC 2.4.1.38     
Accepted name: β-N-acetylglucosaminylglycopeptide β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-β-D-glucosaminylglycopeptide = UDP + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminylglycopeptide
Other name(s): UDP-galactose—glycoprotein galactosyltransferase; glycoprotein 4-β-galactosyl-transferase; β-N-acetyl-β1-4-galactosyltransferase; thyroid glycoprotein β-galactosyltransferase; glycoprotein β-galactosyltransferase; thyroid galactosyltransferase; uridine diphosphogalactose-glycoprotein galactosyltransferase; β-N-acetylglucosaminyl-glycopeptide β-1,4-galactosyltransferase; GalT; UDP-galactose:N-acetyl-β-D-glucosaminylglycopeptide β-1,4-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminylglycopeptide 4-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-glucosaminylglycopeptide 4-β-galactosyltransferase
Comments: Terminal N-acetyl-β-D-glucosaminyl residues in polysaccharides, glycoproteins and glycopeptides can act as acceptor. High activity is shown towards such residues in branched-chain polysaccharides when these are linked by β-1,6-links to galactose residues; lower activity towards residues linked to galactose by β-1,3-links. A component of EC 2.4.1.22 (lactose synthase).
References:
1.  Beyer, T.A., Sadler, J.E., Rearick, J.I., Paulson, J.C. and Hill, R.L. Glucosyltransferases and their uses in assessing oligosaccharide structure and structure-function relationship. Adv. Enzymol. 52 (1981) 23–175. [PMID: 6784450]
2.  Blanken, W.M., Hooghwinkel, G.J.M. and van den Eijnden, D.H. Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β1→4 galactosyltransferase. Eur. J. Biochem. 127 (1982) 547–552. [PMID: 6816588]
3.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
4.  Spiro, M.H. and Spiro, R.G. Glycoprotein biosynthesis: studies on thyroglobulin. Thyroid galactosyltransferase. J. Biol. Chem. 243 (1968) 6529–6537. [PMID: 5726898]
[EC 2.4.1.38 created 1972, modified 1976, modified 1980, modified 1986]
 
 
EC 2.4.1.39     
Accepted name: steroid N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + estradiol-17α 3-D-glucuronoside = UDP + 17α-(N-acetyl-D-glucosaminyl)-estradiol 3-D-glucuronoside
Other name(s): hydroxy steroid acetylglucosaminyltransferase; steroid acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-steroid acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:estradiol-17α-3-D-glucuronoside 17α-N-acetylglucosaminyltransferase
References:
1.  Collins, D.C., Jirku, H. and Layne, D.S. Steroid N-acetylglucosaminyl transferase. Localization and some properties of the enzyme in rabbit tissues. J. Biol. Chem. 243 (1968) 2928–2933. [PMID: 5660254]
[EC 2.4.1.39 created 1972]
 
 
EC 2.4.1.40     
Accepted name: glycoprotein-fucosylgalactoside α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + glycoprotein-α-L-fucosyl-(1→2)-D-galactose = UDP + glycoprotein-N-acetyl-α-D-galactosaminyl-(1→3)-[α-L-fucosyl-(1→2)]-D-galactose
Other name(s): A-transferase; histo-blood group A glycosyltransferase (Fucα1→2Galα1→3-N-acetylgalactosaminyltransferase); UDP-GalNAc:Fucα1→2Galα1→3-N-acetylgalactosaminyltransferase; α-3-N-acetylgalactosaminyltransferase; blood-group substance α-acetyltransferase; blood-group substance A-dependent acetylgalactosaminyltransferase; fucosylgalactose acetylgalactosaminyltransferase; histo-blood group A acetylgalactosaminyltransferase; histo-blood group A transferase; UDP-N-acetyl-D-galactosamine:α-L-fucosyl-1,2-D-galactose 3-N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:glycoprotein-α-L-fucosyl-(1,2)-D-galactose 3-N-acetyl-D-galactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:glycoprotein-α-L-fucosyl-(1→2)-D-galactose 3-N-acetyl-D-galactosaminyltransferase
Comments: Acts on blood group substance, and can use a number of 2-fucosyl-galactosides as acceptors.
References:
1.  Kobata, A., Grollman, E.F. and Ginsburg, V. An enzymic basis for blood type A in humans. Arch. Biochem. Biophys. 124 (1968) 609–612. [PMID: 5661629]
2.  Takeya, A., Hosomi, O. and Ishiura, M. Complete purification and characterization of α-3-N-acetylgalactosaminyltransferase encoded by the human blood group A gene. J. Biochem. (Tokyo) 107 (1990) 360–368. [PMID: 2341371]
3.  Yates, A.D., Feeney, J., Donald, A.S.R. and Watkins, W.M. Characterization of a blood-group A-active tetrasaccharide synthesized by a blood-group-B gene-specified glycosyltransferase. Carbohydr. Res. 130 (1984) 251–260. [PMID: 6434182]
[EC 2.4.1.40 created 1972, modified 1999]
 
 
EC 2.4.1.41     
Accepted name: polypeptide N-acetylgalactosaminyltransferase
Reaction: (1) UDP-N-acetyl-α-D-galactosamine + [protein]-L-serine = UDP + [protein]-3-O-(N-acetyl-α-D-galactosaminyl)-L-serine
(2) UDP-N-acetyl-α-D-galactosamine + [protein]-L-threonine = UDP + [protein]-3-O-(N-acetyl-α-D-galactosaminyl)-L-threonine
Other name(s): protein-UDP acetylgalactosaminyltransferase; UDP-GalNAc:polypeptide N-acetylgalactosaminyl transferase; UDP-N-acetylgalactosamine:κ-casein polypeptide N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-glycoprotein acetylgalactosaminyltransferase; glycoprotein acetylgalactosaminyltransferase; polypeptide-N-acetylgalactosamine transferase; UDP-acetylgalactosamine-glycoprotein acetylgalactosaminyltransferase; UDP-acetylgalactosamine:peptide-N-galactosaminyltransferase; UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase; UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine-glycoprotein N-acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine-protein N-acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine:protein N-acetylgalactosaminyl transferase; ppGalNAc-T; UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase
Systematic name: UDP-N-α-acetyl-D-galactosamine:[protein]-3-O-N-acetyl-α-D-galactosaminyl transferase (configuration-retaining)
Comments: Requires both Mn2+ and Ca2+. The glycosyl residue is transferred to threonine or serine hydroxy groups on the polypeptide core of submaxillary mucin, κ-casein, apofetuin and some other acceptors of high molecular mass.
References:
1.  Sugiura, M., Kawasaki, T. and Yamashina, I. Purification and characterization of UDP-GalNAc:polypeptide N-acetylgalactosamine transferase from an ascites hepatoma, AH 66. J. Biol. Chem. 257 (1982) 9501–9507. [PMID: 6809738]
2.  Takeuchi, M., Yoshikawa, M., Sasaki, R. and Chiba, H. Purification and characterization of UDP-N-acetylgalactosamine-κ-casein polypeptide N-acetylgalactosaminyltransferase from mammary-gland of lactating cow. Agric. Biol. Chem. 49 (1985) 1059–1069.
[EC 2.4.1.41 created 1972, modified 1989]
 
 
EC 2.4.1.42      
Deleted entry:  UDP-glucuronate—estriol 17β-D-glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.42 created 1972, deleted 1984]
 
 
EC 2.4.1.43     
Accepted name: polygalacturonate 4-α-galacturonosyltransferase
Reaction: UDP-α-D-galacturonate + [(1→4)-α-D-galacturonosyl]n = UDP + [(1→4)-α-D-galacturonosyl]n+1
Other name(s): UDP galacturonate-polygalacturonate α-galacturonosyltransferase; uridine diphosphogalacturonate-polygalacturonate α-galacturonosyltransferase; UDP-D-galacturonate:1,4-α-poly-D-galacturonate 4-α-D-galacturonosyltransferase; UDP-D-galacturonate:(1→4)-α-poly-D-galacturonate 4-α-D-galacturonosyltransferase
Systematic name: UDP-α-D-galacturonate:(1→4)-α-poly-D-galacturonate 4-α-D-galacturonosyltransferase (configuration-retaining)
References:
1.  Villemez, C.L., Swanson, A.L. and Hassid, W.Z. Properties of a polygalacturonic acid-synthesizing enzyme system from Phaseolus aureus seedlings. Arch. Biochem. Biophys. 116 (1966) 446–452. [PMID: 5961848]
[EC 2.4.1.43 created 1972]
 
 
EC 2.4.1.44     
Accepted name: lipopolysaccharide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + lipopolysaccharide = UDP + 3-α-D-galactosyl-[lipopolysaccharide glucose]
Other name(s): UDP-galactose:lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:polysaccharide galactosyltransferase; uridine diphosphate galactose:lipopolysaccharide α-3-galactosyltransferase; uridine diphosphogalactose-lipopolysaccharide α,3-galactosyltransferase; UDP-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:lipopolysaccharide 3-α-D-galactosyltransferase
Comments: Transfers α-D-galactosyl residues to D-glucose in the partially completed core of lipopolysaccharide [cf. EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
References:
1.  Endo, A. and Rothfield, L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide α-3-galactosyl transferase. Biochemistry 8 (1969) 3500–3507. [PMID: 4898284]
2.  Wollin, R., Creeger, E.S., Rothfield, L.I., Stocker, B.A.D. and Lindberg, A.A. Salmonella typhimurium mutants defective in UDP-D-galactose:lipopolysaccharide α-1,6-D-galactosyltransferase. Structural, immunochemical, and enzymologic studies of rfaB mutants. J. Biol. Chem. 258 (1983) 3769–3774. [PMID: 6403519]
[EC 2.4.1.44 created 1972, modified 2002]
 
 
EC 2.4.1.45      
Deleted entry: 2-hydroxyacylsphingosine 1-β-galactosyltransferase, now included with EC 2.4.1.47, N-acylsphingosine galactosyltransferase
[EC 2.4.1.45 created 1972, deleted 2016]
 
 
EC 2.4.1.46     
Accepted name: monogalactosyldiacylglycerol synthase
Reaction: UDP-α-D-galactose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol
Other name(s): uridine diphosphogalactose-1,2-diacylglycerol galactosyltransferase; UDP-galactose:diacylglycerol galactosyltransferase; MGDG synthase; UDP galactose-1,2-diacylglycerol galactosyltransferase; UDP-galactose-diacylglyceride galactosyltransferase; UDP-galactose:1,2-diacylglycerol 3-β-D-galactosyltransferase; 1β-MGDG; 1,2-diacylglycerol 3-β-galactosyltransferase; UDP-galactose:1,2-diacyl-sn-glycerol 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:1,2-diacyl-sn-glycerol 3-β-D-galactosyltransferase
Comments: This enzyme adds only one galactosyl group to the diacylglycerol; EC 2.4.1.241, digalactosyldiacylglycerol synthase, adds a galactosyl group to the product of the above reaction. There are three isoforms in Arabidopsis that can be divided into two types, A-type (MGD1) and B-type (MGD2 and MGD3). MGD1 is the isoform responsible for the bulk of monogalactosyldiacylglycerol (MGDG) synthesis in Arabidopsis [4].
References:
1.  Veerkamp, J.H. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell-wall inhibition. VI. Biosynthesis of the galactosyldiglycerides. Biochim. Biophys. Acta 348 (1974) 23–34. [PMID: 4838219]
2.  Wenger, D.A., Petipas, J.W. and Pieringer, R.A. The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain. Biochemistry 7 (1968) 3700–3707. [PMID: 5681471]
3.  Miège, C., Maréchal, E., Shimojima, M., Awai, K., Block, M.A., Ohta, H., Takamiya, K., Douce, R. and Joyard, J. Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur. J. Biochem. 265 (1999) 990–1001. [PMID: 10518794]
4.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [PMID: 15590685]
[EC 2.4.1.46 created 1972, modified 2003, modified 2005]
 
 
EC 2.4.1.47     
Accepted name: N-acylsphingosine galactosyltransferase
Reaction: UDP-α-D-galactose + a ceramide = UDP + a β-D-galactosylceramide
Glossary: a ceramide = an N-acylsphingosine
Other name(s): UGT8 (gene name); CGT (gene name); UDP galactose-N-acylsphingosine galactosyltransferase; uridine diphosphogalactose-acylsphingosine galactosyltransferase; UDP-galactose:N-acylsphingosine D-galactosyltransferase; UDP-α-D-galactose:N-acylsphingosine D-galactosyltransferase; 2-hydroxyacylsphingosine 1-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acylsphingosine β-D-galactosyltransferase (configuration-inverting)
Comments: This membrane-bound, endoplasmic reticulum-located enzyme catalyses the last step in the synthesis of galactocerebrosides, which are abundant sphingolipids of the myelin membrane of the central nervous system and peripheral nervous system. It has a strong preference for ceramides that contain hydroxylated fatty acids.
References:
1.  Fujino, Y. and Nakano, M. Enzymic synthesis of cerebroside from ceramide and uridine diphosphate galactose. Biochem. J. 113 (1969) 573–575. [PMID: 5807218]
2.  Morell, P. and Radin, N.S. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8 (1969) 506–512. [PMID: 5793706]
3.  Morell, P., Costantino-Ceccarini, E. and Radin, N.S. The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids. Arch. Biochem. Biophys. 141 (1970) 738–748. [PMID: 5497154]
4.  Basu, S., Schultz, A., Basu, M. and Roseman, S. Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J. Biol. Chem. 243 (1971) 4272–4279. [PMID: 5090043]
5.  Akanuma, H. and Kishimoto, Y. Synthesis of ceramides and cerebrosides containing both α-hydroxy and nonhydroxy fatty acids from lignoceroyl-CoA by rat brain microsomes. J. Biol. Chem. 254 (1979) 1050–1060. [PMID: 762114]
6.  Koul, O. and Jungalwala, F.B. UDP-galactose:ceramide galactosyltransferase of rat central-nervous-system myelin. Biochem. J. 194 (1981) 633–637. [PMID: 7306007]
7.  Schulte, S. and Stoffel, W. Ceramide UDP-galactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc. Natl. Acad. Sci. USA 90 (1993) 10265–10269. [PMID: 7694285]
8.  Sprong, H., Kruithof, B., Leijendekker, R., Slot, J.W., van Meer, G. and van der Sluijs, P. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273 (1998) 25880–25888. [PMID: 9748263]
9.  Fewou, S.N., Bussow, H., Schaeren-Wiemers, N., Vanier, M.T., Macklin, W.B., Gieselmann, V. and Eckhardt, M. Reversal of non-hydroxy:α-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose:ceramide galactosyltransferase. J. Neurochem. 94 (2005) 469–481. [PMID: 15998297]
[EC 2.4.1.47 created 1972]
 
 
EC 2.4.1.50     
Accepted name: procollagen galactosyltransferase
Reaction: UDP-α-D-galactose + [procollagen]-(5R)-5-hydroxy-L-lysine = UDP + [procollagen]-(5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine
Other name(s): hydroxylysine galactosyltransferase; collagen galactosyltransferase; collagen hydroxylysyl galactosyltransferase; UDP galactose-collagen galactosyltransferase; uridine diphosphogalactose-collagen galactosyltransferase; UDPgalactose:5-hydroxylysine-collagen galactosyltransferase; UDP-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase; UDP-α-D-galactose:procollagen-5-hydroxy-L-lysine D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[procollagen]-(5R)-5-hydroxy-L-lysine 5-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of carbohydrate units in the complement system (cf. EC 2.4.1.66 procollagen glucosyltransferase).
References:
1.  Bosmann, H.B. and Eylar, E.H. Glycoprotein biosynthesis: the biosynthesis of the hydroxylysine-galactose linkage in collagen. Biochem. Biophys. Res. Commun. 33 (1968) 340–346. [PMID: 5722225]
2.  Kivirikko, K.I. and Myllyla, R. In: Hall, D.A. and Jackson, D.S. (Ed.), International Review of Connective Tissue Research, vol. 8, Academic Press, New York, 1979, p. 23.
3.  Schegg, B., Hulsmeier, A.J., Rutschmann, C., Maag, C. and Hennet, T. Core glycosylation of collagen is initiated by two β(1-O)galactosyltransferases. Mol. Cell Biol. 29 (2009) 943–952. [PMID: 19075007]
[EC 2.4.1.50 created 1972, modified 1983]
 
 
EC 2.4.1.51      
Deleted entry:  UDP-N-acetylglucosamine—glycoprotein N-acetylglucosaminyltransferase. Now listed as EC 2.4.1.101 (α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase), EC 2.4.1.143 (α-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase), EC 2.4.1.144 (β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase) and EC 2.4.1.145 (α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase)
[EC 2.4.1.51 created 1972, deleted 1984]
 
 
EC 2.4.1.52     
Accepted name: poly(glycerol-phosphate) α-glucosyltransferase
Reaction: n UDP-α-D-glucose + 4-O-{poly[(2R)-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-{poly[(2R)-2-α-D-glucosyl-1-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): UDP glucose-poly(glycerol-phosphate) α-glucosyltransferase; uridine diphosphoglucose-poly(glycerol-phosphate) α-glucosyltransferase; tagE (gene name); UDP-glucose:poly(glycerol-phosphate) α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:4-O-{poly[(2R)-glycerophospho]-(2R)-glycerophospho}-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol α-D-glucosyltransferase (configuration-retaining)
Comments: Involved in the biosynthesis of poly glycerol phosphate teichoic acids in bacterial cell walls. This enzyme, isolated from Bacillus subtilis 168, adds an α-D-glucose to the free OH groups of the glycerol units. The enzyme has a strong preference for UDP-α-glucose as the sugar donor. It has no activity with poly(ribitol phosphate).
References:
1.  Glaser, L. and Burger, M.M. The synthesis of teichoic acids. 3. Glucosylation of polyglycerophosphate. J. Biol. Chem. 239 (1964) 3187–3191. [PMID: 14245359]
2.  Allison, S.E., D'Elia, M.A., Arar, S., Monteiro, M.A. and Brown, E.D. Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. J. Biol. Chem. 286 (2011) 23708–23716. [PMID: 21558268]
[EC 2.4.1.52 created 1972, modified 2017]
 
 
EC 2.4.1.53     
Accepted name: poly(ribitol-phosphate) β-glucosyltransferase
Reaction: n UDP-α-D-glucose + 4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-[(2-β-D-glucosyl-1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarQ; UDP glucose-poly(ribitol-phosphate) β-glucosyltransferase; uridine diphosphoglucose-poly(ribitol-phosphate) β-glucosyltransferase; UDP-D-glucose polyribitol phosphate glucosyl transferase; UDP-D-glucose:polyribitol phosphate glucosyl transferase; UDP-glucose:poly(ribitol-phosphate) β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:4-O-[(1-D-ribitylphospho)n-(1-D-ribitylphospho)-(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly ribitol phosphate teichoic acids in the cell wall of the bacterium Bacillus subtilis W23. This enzyme adds a β-D-glucose to the hydroxyl group at the 2 position of the ribitol phosphate units.
References:
1.  Chin, T., Burger, M.M. and Glaser, L. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23. Arch. Biochem. Biophys. 116 (1966) 358–367. [PMID: 4960203]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109 (2012) 18909–18914. [PMID: 23027967]
[EC 2.4.1.53 created 1972, modified 2018]
 
 
EC 2.4.1.56     
Accepted name: lipopolysaccharide N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + lipopolysaccharide = UDP + N-acetyl-α-D-glucosaminyllipopolysaccharide
Other name(s): UDP-N-acetylglucosamine-lipopolysaccharide N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-lipopolysaccharide acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:lipopolysaccharide N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:lipopolysaccharide N-acetyl-D-glucosaminyltransferase
Comments: Transfers N-acetylglucosaminyl residues to a D-galactose residue in the partially completed lipopolysaccharide core [cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase), EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
References:
1.  Osborn, M.J. and D'Ari, L. Enzymatic incorporation of N-acetylglucosamine into cell wall lipopolysaccharide in a mutant strain of Salmonella typhimurium. Biochem. Biophys. Res. Commun. 16 (1964) 568–575. [PMID: 5332855]
[EC 2.4.1.56 created 1972]
 
 
EC 2.4.1.58     
Accepted name: lipopolysaccharide glucosyltransferase I
Reaction: UDP-glucose + lipopolysaccharide = UDP + D-glucosyl-lipopolysaccharide
Other name(s): UDP-glucose:lipopolysaccharide glucosyltransferase I; lipopolysaccharide glucosyltransferase; uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I; uridine diphosphoglucose-lipopolysaccharide glucosyltransferase
Systematic name: UDP-glucose:lipopolysaccharide glucosyltransferase
Comments: Transfers glucosyl residues to the backbone portion of lipopolysaccharide [cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase, EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase) and EC 2.4.1.73 (lipopolysaccharide glucosyltransferase II)].
References:
1.  Müller, E., Hinckley, A. and Rothfield, L. Studies of phospholipid-requiring bacterial enzymes. 3. Purification and properties of uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I. J. Biol. Chem. 247 (1972) 2614–2622. [PMID: 4553445]
2.  Rothfield, L., Osborn, M.J. and Horecker, B.L. Biosynthesis of bacterial lipopolysaccharide. II. Incorporation of glucose and galactose catalyzed by particulate and soluble enzymes in salmonella. J. Biol. Chem. 239 (1964) 2788–2795. [PMID: 14217875]
[EC 2.4.1.58 created 1972]
 
 
EC 2.4.1.59      
Deleted entry:  UDP-glucuronate—estradiol glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.59 created 1972, deleted 1984]
 
 
EC 2.4.1.61      
Deleted entry:  UDP-glucuronate—estriol 16α-glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.61 created 1972, deleted 1984]
 
 
EC 2.4.1.62     
Accepted name: ganglioside galactosyltransferase
Reaction: UDP-α-D-galactose + an N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + a β-D-galactosyl-(1→3)-N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Glossary: N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = ganglioside GM2
a β-D-galactosyl-(1→3)-N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = gangloside GM1a
Other name(s): UDP-galactose—ceramide galactosyltransferase; uridine diphosphogalactose-ceramide galactosyltransferase; UDP galactose-LAC Tet-ceramide α-galactosyltransferase; UDP-galactose-GM2 galactosyltransferase; uridine diphosphogalactose-GM2 galactosyltransferase; uridine diphosphate D-galactose:glycolipid galactosyltransferase; UDP-galactose:N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosyl-glucosyl-ceramide galactosyltransferase; UDP-galactose-GM2 ganglioside galactosyltransferase; GM1-synthase; UDP-galactose:N-acetyl-D-galactosaminyl-(N-acetylneuraminyl)-D-galactosyl-D-glucosyl-N-acylsphingosine β-1,3-D-galactosyltransferase; UDP-galactose:N-acetyl-D-galactosaminyl-(N-acetylneuraminyl)-D-galactosyl-(1→4)-β-D-glucosyl-N-acylsphingosine 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase
Comments: The substrate is also known as gangloside GM2, the product as gangloside GM1a
References:
1.  Basu, S., Kaufman, B. and Roseman, S. Conversion of Tay-Sachs ganglioside to monosialoganglioside by brain uridine diphosphate D-galactose: glycolipid galactosyltransferase. J. Biol. Chem. 240 (1965) 4115–4117. [PMID: 5842076]
2.  Yip, G.B. and Dain, J.A. The enzymic synthesis of ganglioside. II. UDP-galactose: N-acetylgalactosaminyl-(N-acetylneuraminyl)galactosyl-glucosyl-ceramide galactosyltransferase in rat brain. Biochim. Biophys. Acta 206 (1970) 252–260. [PMID: 4987145]
3.  Yip, M.C.M. and Dain, J.A. Frog brain uridine diphosphate galactose-N-acetylgalactosaminyl-N-acetylneuraminylgalactosylglucosylceramide galactosyltransferase. Biochem. J. 118 (1970) 247–252. [PMID: 5484669]
[EC 2.4.1.62 created 1972, modified 2013]
 
 
EC 2.4.1.63     
Accepted name: linamarin synthase
Reaction: UDP-glucose + 2-hydroxy-2-methylpropanenitrile = UDP + linamarin
Other name(s): uridine diphosphoglucose-ketone glucosyltransferase; uridine diphosphate-glucose-ketone cyanohydrin β-glucosyltransferase; UDP glucose ketone cyanohydrin glucosyltransferase; UDP-glucose:ketone cyanohydrin β-glucosyltransferase; uridine diphosphoglucose-ketone cyanohydrin glucosyltransferase
Systematic name: UDP-glucose:2-hydroxy-2-methylpropanenitrile β-D-glucosyltransferase
Comments: The enzyme glucosylates the cyanohydrins of butanone and pentan-3-one as well as that of acetone.
References:
1.  Hahlbrock, K. and Conn, E.E. The biosynthesis of cyanogenic glycosides in higher plants. I. Purification and properties of a uridine diphosphate-glucose-ketone cyanohydrin β-glucosyltransferase from Linum usitatissimum L. J. Biol. Chem. 245 (1970) 917–922. [PMID: 5417265]
[EC 2.4.1.63 created 1972]
 
 
EC 2.4.1.66     
Accepted name: procollagen glucosyltransferase
Reaction: UDP-α-D-glucose + [procollagen]-(5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine = UDP + [procollagen]-(5R)-5-O-[α-D-glucosyl-(1→2)-β-D-galactosyl]-5-hydroxy-L-lysine
Other name(s): galactosylhydroxylysine glucosyltransferase; collagen glucosyltransferase; collagen hydroxylysyl glucosyltransferase; galactosylhydroxylysyl glucosyltransferase; UDP-glucose-collagenglucosyltransferase; uridine diphosphoglucose-collagen glucosyltransferase; UDP-glucose:5-(D-galactosyloxy)-L-lysine-procollagen D-glucosyltransferase; UDP-glucose:(2S,5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine-[procollagen] D-glucosyltransferase
Systematic name: UDP-α-D-glucose:[procollagen]-(5R)-5-O-(β-D-galactosyl)-5-hydroxy-L-lysine 2-α-D-glucosyltransferase (configuration-retaining)
Comments: Involved in the synthesis of carbohydrate units in the complement system (cf. EC 2.4.1.50 procollagen galactosyltransferase).
References:
1.  Bosmann, H.B. and Eylar, E.H. Attachment of carbohydrate to collagen. Isolation, purification and properties of the glucosyl transferase. Biochem. Biophys. Res. Commun. 30 (1968) 89–94. [PMID: 5637038]
2.  Bosmann, H.B. and Eylar, E.H. Collagen-glucosyl transferase in fibriblasts transformed by oncogenic viruses. Nature 218 (1968) 582–583. [PMID: 4968368]
3.  Butler, W.T. and Cunningham, L.W. Evidence for the linkage of a disaccharide to hydroxylysine in tropocollagen. J. Biol. Chem. 241 (1966) 3882–3888. [PMID: 4288358]
4.  Kivirikko, K.I. and Myllyla, R. In: Hall, D.A. and Jackson, D.S. (Ed.), International Review of Connective Tissue Research, vol. 8, Academic Press, New York, 1979, p. 23.
5.  Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K.B. and Yamauchi, M. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286 (2011) 8846–8856. [PMID: 21220425]
[EC 2.4.1.66 created 1972]
 
 
EC 2.4.1.70     
Accepted name: poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-α-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarM; UDP acetylglucosamine-poly(ribitol phosphate) acetylglucosaminyltransferase (ambiguous); uridine diphosphoacetylglucosamine-poly(ribitol phosphate) acetylglucosaminyltransferase (ambiguous); UDP-N-acetyl-D-glucosamine:poly(ribitol-phosphate) N-acetyl-D-glucosaminyltransferase (ambiguous); UDP-N-acetyl-α-D-glucosamine:poly(ribitol-phosphate) N-acetyl-α-D-glucosaminyltransferase (ambiguous); poly(ribitol-phosphate) N-acetylglucosaminyltransferase (ambiguous)
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Comments: Involved in the biosynthesis of poly(ribitol phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-α-D-glucosamine to the hydroxyl group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.355 [poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase].
References:
1.  Nathenson, S.G., Ishimoto, N. and Strominger, J.L. UDP-N-acetylglucosamine:polyribitol phosphate N-acetylglucosaminyltransferases from Staphylococcus aureus. Methods Enzymol. 8 (1966) 426–429.
2.  Xia, G., Maier, L., Sanchez-Carballo, P., Li, M., Otto, M., Holst, O. and Peschel, A. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J. Biol. Chem. 285 (2010) 13405–13415. [PMID: 20185825]
3.  Sobhanifar, S., Worrall, L.J., Gruninger, R.J., Wasney, G.A., Blaukopf, M., Baumann, L., Lameignere, E., Solomonson, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. Proc. Natl. Acad. Sci. USA 112 (2015) E576–E585. [PMID: 25624472]
4.  Koc, C., Gerlach, D., Beck, S., Peschel, A., Xia, G. and Stehle, T. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid. J. Biol. Chem. 290 (2015) 9874–9885. [PMID: 25697358]
[EC 2.4.1.70 created 1972, modified 2018]
 
 
EC 2.4.1.71     
Accepted name: arylamine glucosyltransferase
Reaction: UDP-glucose + an arylamine = UDP + an N-D-glucosylarylamine
Other name(s): UDP glucose-arylamine glucosyltransferase; uridine diphosphoglucose-arylamine glucosyltransferase
Systematic name: UDP-glucose:arylamine N-D-glucosyltransferase
References:
1.  Frear, D.S. Herbicide metabolism in plants. I. Purification and properties of UDP-glucose:arylamine N-glucosyl-transferase from soybean. Phytochemistry 7 (1968) 381–390.
[EC 2.4.1.71 created 1972]
 
 
EC 2.4.1.73     
Accepted name: lipopolysaccharide glucosyltransferase II
Reaction: UDP-glucose + lipopolysaccharide = UDP + α-D-glucosyl-lipopolysaccharide
Other name(s): uridine diphosphoglucose-galactosylpolysaccharide glucosyltransferase
Systematic name: UDP-glucose:galactosyl-lipopolysaccharide α-D-glucosyltransferase
Comments: Transfers glucosyl residues to the D-galactosyl-D-glucosyl side-chains in the partially completed core of lipopolysaccharides. cf. EC 2.4.1.44 (lipopolysaccharide 3-α-galactosyltransferase), EC 2.4.1.56 (lipopolysaccharide N-acetylglucosaminyltransferase) and EC 2.4.1.58 (lipopolysaccharide glucosyltransferase I).
References:
1.  Edstrom, R.D. and Heath, E.C. The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. VI. Enzymatic transfer of galactose, glucose, N-acetylglucosamine, and colitose into the polymer. J. Biol. Chem. 242 (1967) 3581–3588. [PMID: 5341482]
[EC 2.4.1.73 created 1972]
 
 
EC 2.4.1.74     
Accepted name: glycosaminoglycan galactosyltransferase
Reaction: UDP-α-D-galactose + glycosaminoglycan = UDP + D-galactosylglycosaminoglycan
Other name(s): uridine diphosphogalactose-mucopolysaccharide galactosyltransferase; UDP-galactose:glycosaminoglycan D-galactosyltransferase
Systematic name: UDP-α-D-galactose:glycosaminoglycan D-galactosyltransferase
Comments: Involved in the biosynthesis of galactose-containing glycosaminoglycan of the ameboid protozoan Dictyostelium discoideum.
References:
1.  Sussman, M. and Osborn, M.J. UDP-glucose polysaccharide transferase in the cellular slime mold Dictyostelium discoideum: appearance and dissappearance of activity during cell differentiation. Proc. Natl. Acad. Sci. USA 52 (1964) 81–87. [PMID: 14192661]
[EC 2.4.1.74 created 1972, modified 1980]
 
 
EC 2.4.1.75      
Deleted entry: UDP-galacturonosyltransferase. Insufficient evidence to conclude that this is a different enzyme from EC 2.4.1.43, polygalacturonate 4-α-galacturonosyltransferase
[EC 2.4.1.75 created 1976, deleted 2005]
 
 
EC 2.4.1.76      
Deleted entry:  UDP-glucuronate—bilirubin glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.76 created 1976, deleted 1984]
 
 
EC 2.4.1.77      
Deleted entry:  UDP-glucuronate—bilirubin-glucuronoside glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.77 created 1976, deleted 1984]
 
 
EC 2.4.1.78     
Accepted name: phosphopolyprenol glucosyltransferase
Reaction: UDP-glucose + polyprenyl phosphate = UDP + polyprenylphosphate-glucose
Other name(s): uridine diphosphoglucose-polyprenol monophosphate glucosyltransferase; UDP-glucose:polyprenol monophosphate glucosyltransferase
Systematic name: UDP-glucose:phosphopolyprenol D-glucosyltransferase
Comments: Ficaprenyl phosphate is the best substrate; other polyprenols can also act as substrates, but more slowly.
References:
1.  Jankowski, W., Mankowski, T. and Chojnacki, T. Formation of polyprenol monophosphate glucose in Shigella flexneri. Biochim. Biophys. Acta 337 (1974) 153–162. [PMID: 4373050]
[EC 2.4.1.78 created 1976]
 
 
EC 2.4.1.79     
Accepted name: globotriaosylceramide 3-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + N-acetyl-β-D-galactosaminyl-(1→3)-α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Glossary: α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = globotriaosylceramide = Pk antigen
N-acetyl-β-D-galactosaminyl-(1→3)-α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = globotetraosylceramide = globoside = P antigen
Other name(s): uridine diphosphoacetylgalactosamine-galactosylgalactosylglucosylceramide acetylgalactosaminyltransferase; globoside synthetase; UDP-N-acetylgalactosamine:globotriaosylceramide β-3-N-acetylgalactosaminyltransferase; galactosylgalactosylglucosylceramide β-D-acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine:globotriaosylceramide β1,3-N-acetylgalactosaminyltransferase; globoside synthase; gUDP-N-acetyl-D-galactosamine:D-galactosyl-1,4-D-galactosyl-1,4-D-glucosylceramide β-N-acetyl-D-galactosaminyltransferase; β3GalNAc-T1; UDP-N-acetyl-D-galactosamine:α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosylceramide 3III-β-N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3III-β-N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide III3-β-N-acetyl-D-galactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide III3-β-N-acetyl-D-galactosaminyltransferase
Comments: Globoside is a neutral glycosphingolipid in human erythrocytes and has blood-group-P-antigen activity [4]. The enzyme requires a divalent cation for activity, with Mn2+ required for maximal activity [3]. UDP-GalNAc is the only sugar donor that is used efficiently by the enzyme: UDP-Gal and UDP-GlcNAc result in very low enzyme activity [3]. Lactosylceramide, globoside and gangliosides GM3 and GD3 are not substrates [4]. For explanation of the superscripted ’3′ in the systematic name, see GL-5.3.4.
References:
1.  Chien, J.-L., Williams, T. and Basu, S. Biosynthesis of a globoside-type glycosphingolipid by a β-N-acetylgalactosaminyltransferase from embryonic chicken brain. J. Biol. Chem. 248 (1973) 1778–1785. [PMID: 4632917]
2.  Ishibashi, T., Kijimoto, S. and Makita, A. Biosynthesis of globoside and Forssman hapten from trihexosylceramide and properties of β-N-acetyl-galactosaminyltransferase of guinea pig kidney. Biochim. Biophys. Acta 337 (1974) 92–106. [PMID: 4433547]
3.  Taniguchi, N. and Makita, A. Purification and characterization of UDP-N-acetylgalactosamine: globotriaosylceramide β-3-N-acetylgalactosaminyltransferase, a synthase of human blood group P antigen, from canine spleen. J. Biol. Chem. 259 (1984) 5637–5642. [PMID: 6425294]
4.  Okajima, T., Nakamura, Y., Uchikawa, M., Haslam, D.B., Numata, S.I., Furukawa, K., Urano, T. and Furukawa, K. Expression cloning of human globoside synthase cDNAs. Identification of β3Gal-T3 as UDP-N-acetylgalactosamine:globotriaosylceramide β1,3-N-acetylgalactosaminyltransferase. J. Biol. Chem. 275 (2000) 40498–40503. [PMID: 10993897]
[EC 2.4.1.79 created 1976, modified 2006]
 
 
EC 2.4.1.80     
Accepted name: ceramide glucosyltransferase
Reaction: UDP-α-D-glucose + an N-acylsphingosine = UDP + a β-D-glucosyl-N-acylsphingosine
Other name(s): UDP-glucose:ceramide glucosyltransferase; ceramide:UDP-Glc glucosyltransferase; uridine diphosphoglucose-ceramide glucosyltransferase; ceramide:UDP-glucose glucosyltransferase; glucosylceramide synthase; UDP-glucose:N-acylsphingosine D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acylsphingosine β-D-glucosyltransferase (configuration-inverting)
Comments: Sphingosine and dihydrosphingosine can also act as acceptors; CDP-glucose can act as donor.
References:
1.  Basu, S., Kaufman, B. and Roseman, S. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J. Biol. Chem. 248 (1973) 1388–1394. [PMID: 4631392]
[EC 2.4.1.80 created 1976]
 
 
EC 2.4.1.81     
Accepted name: flavone 7-O-β-glucosyltransferase
Reaction: UDP-glucose + 5,7,3′,4′-tetrahydroxyflavone = UDP + 7-O-β-D-glucosyl-5,7,3′,4′-tetrahydroxyflavone
Other name(s): UDP-glucose-apigenin β-glucosyltransferase; UDP-glucose-luteolin β-D-glucosyltransferase; uridine diphosphoglucose-luteolin glucosyltransferase; uridine diphosphoglucose-apigenin 7-O-glucosyltransferase; UDP-glucosyltransferase (ambiguous)
Systematic name: UDP-glucose:5,7,3′,4′-tetrahydroxyflavone 7-O-β-D-glucosyltransferase
Comments: A number of flavones, flavanones and flavonols can function as acceptors. Different from EC 2.4.1.91 (flavonol 3-O-glucosyltransferase).
References:
1.  Sutter, A., Ortmann, R. and Grisebach, H. Purification and properties of an enzyme from cell suspension cultures of parsley catalyzing the transfer of D-glucose from UDP-D-glucose to flavonoids. Biochim. Biophys. Acta 258 (1972) 71–87. [PMID: 5058406]
[EC 2.4.1.81 created 1976]
 
 
EC 2.4.1.84      
Deleted entry:  UDP-glucuronate—1,2-diacylglycerol glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.84 created 1976, deleted 1984]
 
 
EC 2.4.1.85     
Accepted name: cyanohydrin β-glucosyltransferase
Reaction: UDP-α-D-glucose + (S)-4-hydroxymandelonitrile = UDP + (S)-4-hydroxymandelonitrile β-D-glucoside
Glossary: dhurrin = (S)-4-hydroxymandelonitrile β-D-glucoside
Other name(s): uridine diphosphoglucose-p-hydroxymandelonitrile glucosyltransferase; UDP-glucose-p-hydroxymandelonitrile glucosyltransferase; uridine diphosphoglucose-cyanohydrin glucosyltransferase; uridine diphosphoglucose:aldehyde cyanohydrin β-glucosyltransferase; UDP-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase; UGT85B1; UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase; UDP-D-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(S)-4-hydroxymandelonitrile β-D-glucosyltransferase (configuration-inverting)
Comments: Acts on a wide range of substrates in vitro, including cyanohydrins, terpenoids, phenolics, hexanol derivatives and plant hormones, in a regiospecific manner [3]. This enzyme is involved in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum, along with EC 1.14.14.36, tyrosine N-monooxygenase and EC 1.14.14.37, 4-hydroxyphenylacetaldehyde oxime monooxygenase. This reaction prevents the disocciation and release of toxic hydrogen cyanide [3].
References:
1.  Reay, P.F. and Conn, E.E. The purification and properties of a uridine diphosphate glucose: aldehyde cyanohydrin β-glucosyltransferase from sorghum seedlings. J. Biol. Chem. 249 (1974) 5826–5830. [PMID: 4416442]
2.  Jones, P.R., Møller, B.L. and Hoj, P.B. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274 (1999) 35483–35491. [PMID: 10585420]
3.  Hansen, K.S., Kristensen, C., Tattersall, D.B., Jones, P.R., Olsen, C.E., Bak, S. and Møller, B.L. The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry 64 (2003) 143–151. [PMID: 12946413]
4.  Busk, P.K. and Møller, B.L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129 (2002) 1222–1231. [PMID: 12114576]
5.  Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102 (2005) 1779–1784. [PMID: 15665094]
[EC 2.4.1.85 created 1976, modified 2005]
 
 
EC 2.4.1.86     
Accepted name: N-acetyl-β-D-glucosaminide β-(1,3)-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-β-D-glucosaminyl-R = UDP + β-D-galactosyl-(1→3)-N-acetyl-β-D-glucosaminyl-R
Other name(s): B3GALT1 (gene name); uridine diphosphogalactose-acetyl-glucosaminylgalactosylglucosylceramide galactosyltransferase; GalT-4; UDP-galactose:N-acetyl-D-glucosaminyl-1,3-D-galactosyl-1,4-D-glucosylceramide β-D-galactosyltransferase; UDP-galactose:N-acetyl-D-glucosaminyl-(1→3)-D-galactosyl-(1→4)-D-glucosylceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosylceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl(1↔1)ceramide 3-β-D-galactosyltransferase; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase; glucosaminylgalactosylglucosylceramide β-galactosyltransferase; UDP-α-D-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-glucosaminyl-R 3-β-D-galactosyltransferase
Comments: The enzyme transfers galactose from UDP-α-D-galactose to the 3-position of substrates with a non-reducing terminal N-acetyl-β-D-glucosamine (β-GlcNAc) residue. It can act on both glycolipids and glycoproteins, generating a structure known as the type 1 histo-blood group antigen precursor.
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 247 (1972) 1489–1495. [PMID: 4335001]
2.  Basu, M., Presper, K.A., Basu, S., Hoffman, L.M. and Brooks, S.E. Differential activities of glycolipid glycosyltransferases in Tay-Sachs disease: studies in cultured cells from cerebrum. Proc. Natl. Acad. Sci. USA 76 (1979) 4270–4274. [PMID: 291963]
3.  Amado, M., Almeida, R., Carneiro, F., Levery, S.B., Holmes, E.H., Nomoto, M., Hollingsworth, M.A., Hassan, H., Schwientek, T., Nielsen, P.A., Bennett, E.P. and Clausen, H. A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β-nacetyl-galactosamine β-1,3-galactosyltransferase family. J. Biol. Chem. 273 (1998) 12770–12778. [PMID: 9582303]
4.  Amado, M., Almeida, R., Schwientek, T. and Clausen, H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim. Biophys. Acta 1473 (1999) 35–53. [PMID: 10580128]
5.  Bardoni, A., Valli, M. and Trinchera, M. Differential expression of β1,3galactosyltransferases in human colon cells derived from adenocarcinomas or normal mucosa. FEBS Lett. 451 (1999) 75–80. [PMID: 10356986]
[EC 2.4.1.86 created 1976, modified 2017]
 
 
EC 2.4.1.87     
Accepted name: N-acetyllactosaminide 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R = UDP + α-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-N-acetylglucosaminyl-R (where R can be OH, an oligosaccharide or a glycoconjugate)
Other name(s): α-galactosyltransferase; UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α(1,3)-galactosyltransferase; UDP-Gal:N-acetyllactosaminide α-1,3-D-galactosyltransferase; UDP-Gal:Galβ1→4GlcNAc-R α1→3-galactosyltransferase; UDP-galactose-acetyllactosamine α-D-galactosyltransferase; UDPgalactose:β-D-galactosyl-β-1,4-N-acetyl-D-glucosaminyl-glycopeptide α-1,3-D-galactosyltransferase; glucosaminylglycopeptide α-1,3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine α1→3-galactosyltransferase; uridine diphosphogalactose-acetyllactosamine galactosyltransferase; uridine diphosphogalactose-galactosylacetylglucosaminylgalactosylglucosylceramide galactosyltransferase; β-D-galactosyl-N-acetylglucosaminylglycopeptide α-1,3-galactosyltransferase; UDP-galactose:N-acetyllactosaminide 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-1,4-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-β-N-acetyl-D-glucosaminyl-R 3-α-D-galactosyltransferase
Comments: Acts on β-galactosyl-1,4-N-acetylglucosaminyl termini on asialo-α1-acid glycoprotein and N-acetyllactosamine (β-D-galactosyl-1,4-N-acetyl-β-D-glucosamine), but not on 2′-fucosylated-N-acetyllactosamine. The non-reducing terminal N-acetyllactosamine residues of glycoproteins can also act as acceptor. Now includes EC 2.4.1.124 and EC 2.4.1.151.
References:
1.  Basu, M. and Basu, S. Enzymatic synthesis of a blood group B-related pentaglycosylceramide by an α-galactosyltransferase from rabbit bone marrow. J. Biol. Chem. 248 (1973) 1700–1706. [PMID: 4632915]
2.  Blanken, W.M. and van den Eijnden, D.H. Biosynthesis of terminal Gal α 1→3Gal β 1→4GlcNAc-R oligosaccharide sequences on glycoconjugates. Purification and acceptor specificity of a UDP-Gal:N-acetyllactosaminide α 1→3-galactosyltransferase from calf thymus. J. Biol. Chem. 260 (1985) 12927–12934. [PMID: 3932335]
3.  Blake, D.A. and Goldstein, I.J. An α-D-galactosyltransferase activity in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide (α-D-galactose-(1→3)-N-acetyllactosamine). J. Biol. Chem. 256 (1981) 5387–5393. [PMID: 6787040]
[EC 2.4.1.87 created 1976, modified 1989, modified 2002 (EC 2.4.1.124 created 1984, incorporated 2002, EC 2.4.1.151 created 1984, incorporated 2002)]
 
 
EC 2.4.1.88     
Accepted name: globoside α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-β-D-galactosaminyl-(1→3)-α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + N-acetyl-α-D-galactosaminyl-(1→3)-N-acetyl-β-D-galactosaminyl-(1→3)-α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): uridine diphosphoacetylgalactosamine-globoside α-acetylgalactosaminyltransferase; Forssman synthase; globoside acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetyl-D-galactosaminyl-1,3-D-galactosyl-1,4-D-galactosyl-1,4-D-glucosylceramide α-N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetyl-D-galactosaminyl-(1→3)-D-galactosyl-(1→4)-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide α-N-acetyl-D-galactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-galactosaminyl-(1→3)-α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide α-N-acetyl-D-galactosaminyltransferase
References:
1.  Kijimoto, S., Ishibashi, T. and Makita, A. Biosynthesis of Forssman hapten from globoside by α-N-acetylgalactosaminyltransferase of guinea pig tissues. Biochem. Biophys. Res. Commun. 56 (1974) 177–184. [PMID: 4823436]
[EC 2.4.1.88 created 1976]
 
 
EC 2.4.1.90     
Accepted name: N-acetyllactosamine synthase
Reaction: UDP-α-D-galactose + N-acetyl-D-glucosamine = UDP + N-acetyllactosamine
Other name(s): UDP-galactose—N-acetylglucosamine β-D-galactosyltransferase; uridine diphosphogalactose-acetylglucosamine galactosyltransferase; β-1,4-galactosyltransferase; acetyllactosamine synthetase; lactosamine synthase; lactosamine synthetase; lactose synthetase A protein; N-acetyllactosamine synthetase; UDP-galactose N-acetylglucosamine β-4-galactosyltransferase; UDP-galactose-acetylglucosamine galactosyltransferase; UDP-galactose-N-acetylglucosamine β-1,4-galactosyltransferase; UDP-galactose-N-acetylglucosamine galactosyltransferase; β1-4-galactosyltransferase; UDP-Gal:N-acetylglucosamine β1-4-galactosyltransferase; β1-4GalT; NAL synthetase; UDP-β-1,4-galactosyltransferase; Gal-T; UDP-galactose:N-acetylglucosaminide β1-4-galactosyltransferase; UDPgalactose:N-acetylglucosaminyl(β1-4)galactosyltransferase; β-N-acetylglucosaminide β1-4-galactosyltransferase; UDP-galactose:N-acetyl-D-glucosamine 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-D-glucosamine 4-β-D-galactosyltransferase
Comments: The reaction is catalysed by a component of EC 2.4.1.22 (lactose synthase), which is identical with EC 2.4.1.38 (β-N-acetylglucosaminyl-glycopeptide β-1,4-galactosyltransferase), and by an enzyme from the Golgi apparatus of animal tissues. Formerly listed also as EC 2.4.1.98.
References:
1.  Deshmukh, D.S., Bear, W.D. and Soifer, D. Isolation and characterization of an enriched Golgi fraction from rat brain. Biochim. Biophys. Acta 542 (1978) 284–295. [PMID: 99178]
2.  Helting, T. and Erbing, B. Galactosyl transfer in mouse mastocytoma: purification and properties of N-acetyllactosamine synthetase. Biochim. Biophys. Acta 293 (1973) 94–104. [PMID: 4631039]
3.  Hill, R.L. and Brew, K. Lactose synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 43 (1975) 411–490. [PMID: 812340]
4.  Humphreys-Beher, M.G. Isolation and characterization of UDP-galactose:N-acetylglucosamine 4 β-galactosyltransferase activity induced in rat parotid glands treated with isoproterenol. J. Biol. Chem. 259 (1984) 5797–5802. [PMID: 6201486]
5.  Schachter, H., Jabbal, I., Hudgin, R.L., Pinteric, L., McGuire, E.J. and Roseman, S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J. Biol. Chem. 245 (1970) 1090–1100. [PMID: 4392041]
[EC 2.4.1.90 created 1976 (EC 2.4.1.98 created 1980, incorporated 1984)]
 
 
EC 2.4.1.91     
Accepted name: flavonol 3-O-glucosyltransferase
Reaction: UDP-glucose + a flavonol = UDP + a flavonol 3-O-β-D-glucoside
Other name(s): GTI; uridine diphosphoglucose-flavonol 3-O-glucosyltransferase; UDP-glucose:flavonol 3-O-glucosyltransferase; UDPG:flavonoid-3-O-glucosyltransferase
Systematic name: UDP-glucose:flavonol 3-O-D-glucosyltransferase
Comments: Acts on a variety of flavonols, including quercetin and quercetin 7-O-glucoside. Different from EC 2.4.1.81 (flavone 7-O-β-glucosyltransferase).
References:
1.  Kleinehollenhorst, G., Behrens, H., Pegels, G., Srunk, N. and Wiermann, R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv apeldoorn - characterization and activity of 3 different O-glycosyltransferases during anther development. Z. Natursforsch. C: Biosci. 37 (1982) 587–599.
2.  Sutter, A. and Grisebach, H. UDP-glucose: flavonol 3-O-glucosyltransferase from cell suspension cultures of parsley. Biochim. Biophys. Acta 309 (1973) 289–295. [PMID: 4731963]
[EC 2.4.1.91 created 1976]
 
 
EC 2.4.1.92     
Accepted name: (N-acetylneuraminyl)-galactosylglucosylceramide N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl-(1↔1)-ceramide = UDP + O-2-(acetylamino)-2-deoxy-β-D-galactopyranosyl-(1→4)-O-[N-acetyl-α-neuraminyl-(2→3)]-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl-(1↔1)-ceramide
Glossary: ganglioside GM2 = 1-O-[O-2-(acetylamino)-2-deoxy-β-D-galactopyranosyl-(1→4)-O-[N-acetyl-α-neuraminyl-(2→3)]-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramideganglioside GM3 = 1-O-[O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramideganglioside GD3 = 1-O-[O-(N-acetyl-α-neuraminyl)-(2→8)-O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramide ganglioside GD2 = 1-O-[O-(N-acetyl-α-neuraminyl)-(2→8)-O-(N-acetyl-α-neuraminyl)-(2→3)-O-[2-(acetylamino)-2-deoxy-β-D-galactopyranosyl-(1→4)]-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramideganglioside SM3 = 1-O-[4-O-(3-O-sulfo-β-D-galactopyranosyl)-β-D-glucopyranosyl]-ceramideganglioside SM2 = 1-O-[O-2-(acetylamino)-2-deoxy-β-D-galactopyranosyl-(1→4)-O-3-O-sulfo-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramide
Other name(s): uridine diphosphoacetylgalactosamine-ganglioside GM3 acetylgalactosaminyltransferase; ganglioside GM2 synthase; ganglioside GM3 acetylgalactosaminyltransferase; GM2 synthase; UDP acetylgalactosamine-(N-acetylneuraminyl)-D-galactosyl-D-glucosylceramide acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:1-O-[O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramide 1,4-β-N-acetyl-D-galactosaminyltransferase acetylgalactosaminyltransferase; UDP-N-acetylgalactosamine GM3 N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-acetylneuraminylgalactosylglucosylceramide acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-hematoside acetylgalactosaminyltransferase; GM2/GD2-synthase; β-1,4N-acetylgalactosaminyltransferase; asialo-GM2 synthase; GalNAc-T; UDP-N-acetyl-D-galactosamine:(N-acetylneuraminyl)-D-galactosyl-D-glucosylceramide N-acetyl-D-galactosaminyltransferase; UDP-N-acetyl-D-galactosamine:1-O-[O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl]-ceramide 4-β-N-acetyl-D-galactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:O-(N-acetyl-α-neuraminyl)-(2→3)-O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl-(1↔1)-ceramide 4-β-N-acetyl-D-galactosaminyltransferase
Comments: This enzyme catalyses the formation of the gangliosides (i.e. sialic-acid-containing glycosphingolipids) GM2, GD2 and SM2 from GM3, GD3 and SM3, respectively. Asialo-GM3 [3] and lactosylceramide [2] are also substrates, but glycoproteins and oligosaccharides are not substrates.
References:
1.  Dicesare, J.L. and Dain, J.A. The enzymic synthesis of ganglioside. IV. UDP-N-acetylgalactosamine: (N-acetylneuraminyl)-galactosylglucosyl ceramide N-acetylgalactosaminyltransferase in rat brain. Biochim. Biophys. Acta 231 (1971) 385–393. [PMID: 5554906]
2.  Pohlentz, G., Klein, D., Schwarzmann, G., Schmitz, D. and Sandhoff, K. Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver. Proc. Natl. Acad. Sci. USA 85 (1988) 7044–7048. [PMID: 3140234]
3.  Kazuya, I.-P., Hidari, J.K., Ichikawa, S., Furukawa, K., Yamasaki, M. and Hirabayashi, Y. β1-4N-Acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a β1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem. J. 303 (1994) 957–965. [PMID: 7980468]
4.  Hashimoto, Y., Sekine, M., Iwasaki, K. and Suzuki, A. Purification and characterization of UDP-N-acetylgalactosamine GM3/GD3 N-acetylgalactosaminyltransferase from mouse liver. J. Biol. Chem. 268 (1993) 25857–25864. [PMID: 8245020]
5.  Nagai, K. and Ishizuka, I. Biosynthesis of monosulfogangliotriaosylceramide and GM2 by N-acetylgalactosaminyltransferase from rat brain. J. Biochem. (Tokyo) 101 (1987) 1115–1127. [PMID: 3115968]
6.  Furukawa, K., Takamiya, K. and Furukawa, K. β1,4-N-Acetylgalactosaminyltransferase—GM2/GD2 synthase: a key enzyme to control the synthesis of brain-enriched complex gangliosides. Biochim. Biophys. Acta 1573 (2002) 356–362. [PMID: 12417418]
7.  Yamashita, T., Wu, Y.P., Sandhoff, R., Werth, N., Mizukami, H., Ellis, J.M., Dupree, J.L., Geyer, R., Sandhoff, K. and Proia, R.L. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc. Natl. Acad. Sci. USA 102 (2005) 2725–2730. [PMID: 15710896]
[EC 2.4.1.92 created 1976, modified 2006]
 
 
EC 2.4.1.94     
Accepted name: protein N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + [protein]-L-asparagine = UDP + [protein]-N4-(N-acetyl-D-glucosaminyl)-L-asparagine
Other name(s): uridine diphosphoacetylglucosamine-protein acetylglucosaminyltransferase; uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase; N-acetylglucosaminyltransferase I
Systematic name: UDP-N-acetyl-D-glucosamine:[protein]-L-asparagine β-N-acetyl-D-glucosaminyl-transferase
Comments: The acceptor is the asparagine residue in a sequence of the form Asn-Xaa-Thr or Asn-Xaa-Ser.
References:
1.  Khalkhali, Z. and Marshall, R.D. Glycosylation of ribonuclease A catalysed by rabbit liver extracts. Biochem. J. 146 (1975) 299–307. [PMID: 1156375]
2.  Khalkhali, Z. and Marshall, R.D. UDP-N-acetyl-D-glucosamine-asparagine sequon N-acetyl-β-D-glucosaminyl-transferase-activity in human serum. Carbohydr. Res. 49 (1976) 455–473. [PMID: 986874]
3.  Khalkhali, Z., Marshall, R.D., Reuvers, F., Habets-Willems, C. and Boer, P. Glycosylation in vitro of an asparagine sequon catalysed by preparations of yeast cell membranes. Biochem. J. 160 (1976) 37–41. [PMID: 795426]
[EC 2.4.1.94 created 1978, modified 2010]
 
 
EC 2.4.1.96     
Accepted name: sn-glycerol-3-phosphate 1-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 1-O-α-D-galactosyl-sn-glycerol 3-phosphate
Other name(s): isofloridoside-phosphate synthase; UDP-Gal:sn-glycero-3-phosphoric acid 1-α-galactosyl-transferase; UDPgalactose:sn-glycerol-3-phosphate α-D-galactosyltransferase; uridine diphosphogalactose-glycerol phosphate galactosyltransferase; glycerol 3-phosphate 1α-galactosyltransferase; UDP-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 1-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to isofloridoside, which is involved in osmoregulation (cf. EC 2.4.1.137 sn-glycerol-3-phosphate 2-α-galactosyltransferase).
References:
1.  Kauss, H. and Quader, H. In vitro activation of a galactosyl transferase involved in the osmotic regulation of Ochromonas. Plant Physiol. 58 (1976) 295–298. [PMID: 16659666]
2.  Kauss, H. and Schubert, B. `First demonstration of UDP-gal:sn-glycero-3-phosphoric acid 1α-galactosyl-transferase and its possible role in osmoregulation. FEBS Lett. 19 (1971) 131–135. [PMID: 11946194]
[EC 2.4.1.96 created 1978]
 
 
EC 2.4.1.98      
Deleted entry:  UDP-galactose—N-acetylglucosamine β-D-galactosyl-transferase. Now included with EC 2.4.1.90, N-acetyllactosamine synthase
[EC 2.4.1.98 created 1980, deleted 1984]
 
 
EC 2.4.1.101     
Accepted name: α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Man5GlcNAc2-[protein] = UDP + Man5GlcNAc3-[protein]
Glossary: Man5GlcNAc2-[protein] = α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Man5GlcNAc3-[protein]= β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT1 (gene name); N-acetylglucosaminyltransferase I; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; uridine diphosphoacetylglucosamine-α-1,3-mannosylglycoprotein β-1,2-N-acetylglucosaminyltransferase; UDP-N-acetylglucosaminyl:α-1,3-D-mannoside-β-1,2-N-acetylglucosaminyltransferase I; UDP-N-acetylglucosaminyl:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I; α-1,3-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTI; GlcNAc-T I; UDP-N-acetyl-D-glucosamine:3-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its action is required before the other N-acetylglucosaminyltransferases involved in the process (GlcNAcT-II through VI) can act. While the natural substrate (produced by EC 3.2.1.113, mannosyl-oligosaccharide 1,2-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→3)-β-D-Man-R.
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L. and Hill, R.L. Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256 (1981) 799–804. [PMID: 6450208]
4.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
5.  Miyagi, T. and Tsuiki, S. Studies on UDP-N-acetylglucosamine : α-mannoside β-N-acetylglucosaminyltransferase of rat liver and hepatomas. Biochim. Biophys. Acta 661 (1981) 148–157. [PMID: 6170335]
6.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
7.  Vella, G.J., Paulsen, H. and Schachter, H. Control of glycoprotein synthesis. IX. A terminal Man alphal-3Man β1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: α-D-mannoside (GlcNAc to Man α1-3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 62 (1984) 409–417. [PMID: 6235906]
8.  Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J.M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19 (2000) 5269–5280. [PMID: 11032794]
[EC 2.4.1.101 created 1983, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.102     
Accepted name: β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-L-seryl/threonyl-[protein] = UDP + O3-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Glossary: core 1 = O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-L-seryl/threonyl-[protein]
core 2 = O3-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Other name(s): O-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; β6-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-mucin β-(1→6)-acetylglucosaminyltransferase; core 2 acetylglucosaminyltransferase; core 6-β-GlcNAc-transferase A; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosamine of β-D-galactosyl-1,3-N-acetyl-D-galactosaminyl-R) β-1,6-N-acetyl-D-glucosaminyltransferase; GCNT1; GCNT3; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosamine of β-D-galactosyl-(1→3)-N-acetyl-D-galactosaminyl-R) 6-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme catalyses the addition of N-acetyl-α-D-glucosamine to the core 1 structure of O-glycans forming core 2.
References:
1.  Brockhausen, I., Rachaman, E.S., Matta, K.L. and Schachter, H. The separation by liquid chromatography (under elevated pressure) of phenyl, benzyl, and O-nitrophenyl glycosides of oligosaccharides. Analysis of substrates and products for four N-acetyl-D-glucosaminyl-transferases involved in mucin synthesis. Carbohydr. Res. 120 (1983) 3–16. [PMID: 6226356]
2.  Williams, D., Longmore, G., Matta, K.L. and Schachter, H. Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Gal β1-3GalNAc(GlcNAc→GalNAc) β6-N-acetylglucosaminyltransferase. J. Biol. Chem. 255 (1980) 11253–11261. [PMID: 6449508]
3.  Williams, D. and Schachter, H. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J. Biol. Chem. 255 (1980) 11247–11252. [PMID: 6449507]
[EC 2.4.1.102 created 1983, modified 2018]
 
 
EC 2.4.1.103     
Accepted name: alizarin 2-β-glucosyltransferase
Reaction: UDP-glucose + 1,2-dihydroxy-9,10-anthraquinone = UDP + 1-hydroxy-2-(β-D-glucosyloxy)-9,10-anthraquinone
Glossary: alizarin = 1,2-dihydroxy-9,10-anthraquinone
Other name(s): uridine diphosphoglucose-alizarin glucosyltransferase
Systematic name: UDP-glucose:1,2-dihydroxy-9,10-anthraquinone 2-O-β-D-glucosyltransferase
Comments: Acts on other hydroxy- and dihydroxy-derivatives of 9,10-anthraquinone.
References:
1.  Mateju, J., Cudlin, J., Steinerova, N., Blumauerova, M. and Vanek, Z. Partial purification and properties of glucosyltransferase from Streptomyces aureofaciens. Folia Microbiol. 24 (1979) 205–210. [PMID: 38193]
[EC 2.4.1.103 created 1983]
 
 
EC 2.4.1.104     
Accepted name: o-dihydroxycoumarin 7-O-glucosyltransferase
Reaction: UDP-glucose + 7,8-dihydroxycoumarin = UDP + daphnin
Other name(s): uridine diphosphoglucose-o-dihydroxycoumarin 7-O-glucosyltransferase; UDP-glucose:o-dihydroxycoumarin glucosyltransferase
Systematic name: UDP-glucose:7,8-dihydroxycoumarin 7-O-β-D-glucosyltransferase
Comments: Converts the aglycone daphetin into daphnin and, more slowly, esculetin into cichoriin, umbelliferone into skimmin, hydrangetin into hydrangin and scopoletin into scopolin.
References:
1.  Ibrahim, R.K. and Boulay, B. Purification and some properties of UDP-glucose:o-hydroxycoumarin 7-O-glucosyltransferase from tobacco cell cultures. Plant Sci. Lett. 18 (1980) 177–184.
[EC 2.4.1.104 created 1983]
 
 
EC 2.4.1.105     
Accepted name: vitexin β-glucosyltransferase
Reaction: UDP-glucose + vitexin = UDP + vitexin 2′′-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-vitexin 2′′-glucosyltransferase
Systematic name: UDP-glucose:vitexin 2′′-O-β-D-glucosyltransferase
Comments: Vitexin is a flavonoid from Cannabis sativa (hemp) and some populations of Silene alba.
References:
1.  Heinsbroek, R., Van Brederode, J., Van Nigtevecht, G., Maas, J., Kamsteeg, J., Besson, E. and Chopin, J. The 2′′-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two dfferent enzymes. Phytochemistry 19 (1980) 1935–1937.
[EC 2.4.1.105 created 1983]
 
 
EC 2.4.1.106     
Accepted name: isovitexin β-glucosyltransferase
Reaction: UDP-glucose + isovitexin = UDP + isovitexin 2′′-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-isovitexin 2′′-glucosyltransferase
Systematic name: UDP-glucose:isovitexin 2′′-O-β-D-glucosyltransferase
Comments: Isovitexin is a flavonoid from petals of Silene alba.
References:
1.  Heinsbroek, R., Van Brederode, J., Van Nigtevecht, G., Maas, J., Kamsteeg, J., Besson, E. and Chopin, J. The 2′′-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two dfferent enzymes. Phytochemistry 19 (1980) 1935–1937.
[EC 2.4.1.106 created 1983]
 
 
EC 2.4.1.107      
Deleted entry:  UDP-glucuronate—testosterone glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.107 created 1983, deleted 1984]
 
 
EC 2.4.1.108      
Deleted entry:  UDP-glucuronate—phenol glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.108 created 1983, deleted 1984]
 
 
EC 2.4.1.111     
Accepted name: coniferyl-alcohol glucosyltransferase
Reaction: UDP-glucose + coniferyl alcohol = UDP + coniferin
Other name(s): uridine diphosphoglucose-coniferyl alcohol glucosyltransferase; UDP-glucose coniferyl alcohol glucosyltransferase
Systematic name: UDP-glucose:coniferyl-alcohol 4′-β-D-glucosyltransferase
Comments: Sinapyl alcohol can also act as acceptor.
References:
1.  Ibrahim, R.K. and Grisebach, H. Purification and properties of UDP-glucose: coniferyl alcohol glucosyltransferase from suspension cultures of Paul's scarlet rose. Arch. Biochem. Biophys. 176 (1976) 700–708. [PMID: 10853]
[EC 2.4.1.111 created 1984]
 
 
EC 2.4.1.112      
Deleted entry: α-1,4-glucan-protein synthase (UDP-forming). The protein referred to in this entry is now known to be glycogenin so the entry has been incorporated into EC 2.4.1.186, glycogenin glucosyltransferase
[EC 2.4.1.112 created 1984, deleted 2007]
 
 
EC 2.4.1.114     
Accepted name: 2-coumarate O-β-glucosyltransferase
Reaction: UDP-glucose + trans-2-hydroxycinnamate = UDP + trans-β-D-glucosyl-2-hydroxycinnamate
Other name(s): uridine diphosphoglucose-o-coumarate glucosyltransferase; UDPG:o-coumaric acid O-glucosyltransferase
Systematic name: UDP-glucose:trans-2-hydroxycinnamate O-β-D-glucosyltransferase
Comments: Coumarinate (cis-2-hydroxycinnamate) does not act as acceptor.
References:
1.  Kleinhofs, A., Haskins, F.A. and Gorz, H.J. trans-o-Hydroxylcinnamic acid glucosylation in cell-free extracts of Melilotus alba. Phytochemistry 6 (1967) 1313–1318.
2.  Poulton, J.E., McRee, B.E. and Conn, E.E. Intracellular localization of two enzymes involved in coumarin biosynthesis in Melilotus alba. Plant Physiol. 65 (1980) 171–175. [PMID: 16661155]
[EC 2.4.1.114 created 1984]
 
 
EC 2.4.1.115     
Accepted name: anthocyanidin 3-O-glucosyltransferase
Reaction: UDP-D-glucose + an anthocyanidin = UDP + an anthocyanidin-3-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-anthocyanidin 3-O-glucosyltransferase; UDP-glucose:anthocyanidin/flavonol 3-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-glucosyltransferase; UDP-glucose:anthocyanidin 3-O-D-glucosyltransferase; 3-GT
Systematic name: UDP-D-glucose:anthocyanidin 3-O-β-D-glucosyltransferase
Comments: The anthocyanidin compounds cyanidin, delphinidin, peonidin and to a lesser extent pelargonidin can act as substrates. The enzyme does not catalyse glucosylation of the 5-position of cyanidin and does not act on flavanols such as quercetin and kaempferol (cf. EC 2.4.1.91 flavonol 3-O-glucosyltransferase). In conjunction with EC 1.14.20.4, anthocyanidin oxygenase, it is involved in the conversion of leucoanthocyanidin into anthocyanidin 3-glucoside. It may act on the pseudobase precursor of the anthocyanidin rather than on the anthocyanidin itself [3].
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification and properties of UDP-glucose: cyanidin-3-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1045–1058. [PMID: 751640]
2.  Ford, C.M., Boss, P.K. and Høj, P.B. Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 273 (1998) 9224–9233. [PMID: 9535914]
3.  Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276 (2001) 25797–25803. [PMID: 11316805]
[EC 2.4.1.115 created 1984 (EC 2.4.1.233 created 2004, incorporated 2005), modified 2005]
 
 
EC 2.4.1.116     
Accepted name: cyanidin 3-O-rutinoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + cyanidin-3-O-rutinoside = UDP + cyanidin 3-O-rutinoside 5-O-β-D-glucoside
Glossary: cyanidin 3-O-rutinoside = cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): uridine diphosphoglucose-cyanidin 3-rhamnosylglucoside 5-O-glucosyltransferase; cyanidin-3-rhamnosylglucoside 5-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-D-rhamnosyl-1,6-D-glucoside 5-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside 5-O-β-D-glucosyltransferase
Comments: Isolated from the plants Silene dioica (red campion) [1], Iris ensata (Japanese iris) [2] and Iris hollandica (Dutch iris) [3]. Also acts on the 3-O-rutinosides of pelargonidin, delphinidin and malvidin, but not the corresponding glucosides or 6-acylglucosides. The enzyme does not catalyse the glucosylation of the 5-hydroxy group of cyanidin 3-glucoside.
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification, properties, and genetic control of UDP-glucose: cyanidin-3-rhamnosyl-(1→6)-glucoside-5-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1059–1071. [PMID: 751641]
2.  Yabuya, T., Yamaguchi, M., Imayama, T., Katoh, K. and Ino I. Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata. Plant Sci. 162 (2002) 779–784.
3.  Imayama, T., Yoshihara, Y., Fukuchi-Mizutani, M., Tanaka, Y., Ino, I. and Yabuya, T. Isolation and characterization of a cDNA clone of UDP-glucose:anthocyanin 5-O-glucosyltransferase in Iris hollandica. Plant Sci. 167 (2004) 1243–1248.
[EC 2.4.1.116 created 1984 (EC 2.4.1.235 created 2004, incorporated 2006), modified 2006, modified 2013]
 
 
EC 2.4.1.117     
Accepted name: dolichyl-phosphate β-glucosyltransferase
Reaction: UDP-α-D-glucose + dolichyl phosphate = UDP + dolichyl β-D-glucosyl phosphate
Other name(s): polyprenyl phosphate:UDP-D-glucose glucosyltransferase; UDP-glucose dolichyl-phosphate glucosyltransferase; uridine diphosphoglucose-dolichol glucosyltransferase; UDP-glucose:dolichol phosphate glucosyltransferase; UDP-glucose:dolicholphosphoryl glucosyltransferase; UDP-glucose:dolichyl monophosphate glucosyltransferase; UDP-glucose:dolichyl phosphate glucosyltransferase; UDP-glucose:dolichyl-phosphate β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:dolichyl-phosphate β-D-glucosyltransferase (configuration-inverting)
Comments: Solanesyl phosphate and ficaprenyl phosphate can act as acceptors, but more slowly.
References:
1.  Behrens, N.H. and Leloir, L.F. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc. Natl. Acad. Sci. USA 66 (1970) 153–159. [PMID: 5273893]
2.  Herscovics, A., Bugge, B. and Jeanloz, R.W. Glucosyltransferase activity in calf pancreas microsomes. Formation of dolichyl D[14C]glucosyl phosphate and 14C-labeled lipid-linked oligosaccharides from UDP-D-[14C]glucose. J. Biol. Chem. 252 (1977) 2271–2277. [PMID: 849929]
3.  Villemez, C.L. and Carlo, P.L. Properties of a soluble polyprenyl phosphate: UDP-D-glucose glucosyltransferase. J. Biol. Chem. 254 (1979) 4814–4819. [PMID: 438216]
[EC 2.4.1.117 created 1984]
 
 
EC 2.4.1.118     
Accepted name: cytokinin 7-β-glucosyltransferase
Reaction: UDP-glucose + an N6-alkylaminopurine = UDP + an N6-alkylaminopurine-7-β-D-glucoside
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Other name(s): uridine diphosphoglucose-zeatin 7-glucosyltransferase; cytokinin 7-glucosyltransferase; UDP-glucose:zeatin 7-glucosyltransferase
Systematic name: UDP-glucose:N6-alkylaminopurine 7-glucosyltransferase
Comments: Acts on a range of N6-substituted adenines, including zeatin and N6-benzylaminopurine, but not N6-benzyladenine. With some acceptors, 9-β-D-glucosides are also formed.
References:
1.  Entsch, B. and Letham, D.S. Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. Plant Sci. Lett. 14 (1979) 205–212.
2.  Entsch, B., Parker, C.W., Letham, D.S. and Summons, R.E. Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim. Biophys. Acta 570 (1979) 124–139. [PMID: 486500]
[EC 2.4.1.118 created 1984]
 
 
EC 2.4.1.120     
Accepted name: sinapate 1-glucosyltransferase
Reaction: UDP-α-D-glucose + sinapate = UDP + 1-O-sinapoyl-β-D-glucose
Glossary: sinapate = (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
Other name(s): uridine diphosphoglucose-sinapate glucosyltransferase; UDP-glucose:sinapic acid glucosyltransferase; uridine 5′-diphosphoglucose-hydroxycinnamic acid acylglucosyltransferase; UDP-glucose:sinapate D-glucosyltransferase
Systematic name: UDP-α-D-glucose:sinapate D-glucosyltransferase
Comments: Some other hydroxycinnamates, including 4-coumarate, ferulate and caffeate, can act as acceptors, but more slowly. Only glucose esters, not glucosides, are formed (cf. EC 2.4.1.126 hydroxycinnamate 4-β-glucosyltransferase).
References:
1.  Strack, D. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell free system from Raphanus sativus seedlings. Z. Naturforsch. C: Biosci. 35 (1980) 204–208.
[EC 2.4.1.120 created 1984]
 
 
EC 2.4.1.121     
Accepted name: indole-3-acetate β-glucosyltransferase
Reaction: UDP-glucose + (indol-3-yl)acetate = UDP + 1-O-(indol-3-yl)acetyl-β-D-glucose
Other name(s): uridine diphosphoglucose-indoleacetate glucosyltransferase; UDPG-indol-3-ylacetyl glucosyl transferase; UDP-glucose:indol-3-ylacetate glucosyltransferase; indol-3-ylacetylglucose synthase; UDP-glucose:indol-3-ylacetate glucosyl-transferase; IAGlu synthase; IAA-glucose synthase; UDP-glucose:indole-3-acetate β-D-glucosyltransferase
Systematic name: UDP-glucose:(indol-3-yl)acetate β-D-glucosyltransferase
References:
1.  Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207 (1982) 273–281. [PMID: 6218801]
[EC 2.4.1.121 created 1984]
 
 
EC 2.4.1.122     
Accepted name: N-acetylgalactosaminide β-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-galactosaminyl-R = UDP + β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl-R
Other name(s): glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase; uridine diphosphogalactose-mucin β-(1→3)-galactosyltransferase; UDP-galactose:glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase; UDP-Gal:α-D-GalNAc-1,3-α-D-GalNAc-diphosphoundecaprenol β-1,3-galactosyltransferase; wbnJ (gene name); wbiP (gene name); C1GALT1 (gene name); UDP-α-D-galactose:glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-galactosaminyl-R β-1,3-galactosyltransferase (configuration-inverting)
Comments: The eukaryotic enzyme can act on non-reducing O-serine-linked N-acetylgalactosamine residues in mucin glycoproteins, forming the T-antigen. The bacterial enzyme, found in some pathogenic strains, is involved in biosynthesis of the O-antigen repeating unit.
References:
1.  Hesford, F.J., Berger, E.G. and van den Eijnden, D.H. Identification of the product formed by human erythrocyte galactosyltransferase. Biochim. Biophys. Acta 659 (1981) 302–311. [PMID: 6789880]
2.  Mendicino, J., Sivakami, S., Davila, M. and Chandrasekaran, E.V. Purification and properties of UDP-gal:N-acetylgalactosaminide mucin:β1,3-galactosyltransferase from swine trachea mucosa. J. Biol. Chem. 257 (1982) 3987–3994. [PMID: 6801057]
3.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
4.  Ju, T., Brewer, K., D'Souza, A., Cummings, R.D. and Canfield, W.M. Cloning and expression of human core 1 β1,3-galactosyltransferase. J. Biol. Chem. 277 (2002) 178–186. [PMID: 11677243]
5.  Yi, W., Perali, R.S., Eguchi, H., Motari, E., Woodward, R. and Wang, P.G. Characterization of a bacterial β-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47 (2008) 1241–1248. [PMID: 18179256]
6.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [PMID: 20418877]
[EC 2.4.1.122 created 1984 (EC 2.4.1.307 created 2013, incorporated 2016), modified 2016]
 
 
EC 2.4.1.123     
Accepted name: inositol 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + myo-inositol = UDP + O-α-D-galactosyl-(1→3)-1D-myo-inositol
Glossary: O-α-D-galactosyl-(1→3)-1D-myo-inositol = galactinol
Other name(s): UDP-D-galactose:inositol galactosyltransferase; UDP-galactose:myo-inositol 1-α-D-galactosyltransferase; UDPgalactose:myo-inositol 1-α-D-galactosyltransferase; galactinol synthase; inositol 1-α-galactosyltransferase; uridine diphosphogalactose-inositol galactosyltransferase; GolS; UDP-galactose:myo-inositol 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:myo-inositol 3-α-D-galactosyltransferase
Comments: An enzyme from plants involved in the formation of raffinose and stachyose [cf. EC 2.4.1.67 (galactinol—raffinose galactosyltransferase) and EC 2.4.1.82 (galactinol—sucrose galactosyltransferase)].
References:
1.  Pharr, D.M., Sox, H.N., Locy, R.D. and Huber, S.C. Partial characterization of the galactinol forming enzyme from leaves of Cucumis sativus L. Plant Sci. Lett. 23 (1981) 25–33.
[EC 2.4.1.123 created 1984, modified 2003]
 
 
EC 2.4.1.126     
Accepted name: hydroxycinnamate 4-β-glucosyltransferase
Reaction: UDP-glucose + trans-4-hydroxycinnamate = UDP + 4-O-β-D-glucosyl-4-hydroxycinnamate
Other name(s): uridine diphosphoglucose-hydroxycinnamate glucosyltransferase; UDP-glucose-hydroxycinnamate glucosyltransferase; hydroxycinnamoyl glucosyltransferase
Systematic name: UDP-glucose:trans-4-hydroxycinnamate 4-O-β-D-glucosyltransferase
Comments: Acts on 4-coumarate, ferulate, caffeate and sinapate, forming a mixture of 4-glucosides and glucose esters (cf. EC 2.4.1.120 sinapate 1-glucosyltransferase).
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.126 created 1984]
 
 
EC 2.4.1.127     
Accepted name: monoterpenol β-glucosyltransferase
Reaction: UDP-glucose + (-)-menthol = UDP + (-)-menthyl O-β-D-glucoside
Other name(s): uridine diphosphoglucose-monoterpenol glucosyltransferase; UDPglucose:monoterpenol glucosyltransferase
Systematic name: UDP-glucose:(-)-menthol O-β-D-glucosyltransferase
Comments: (+)-Neomenthol can also act as acceptor.
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.127 created 1984]
 
 
EC 2.4.1.128     
Accepted name: scopoletin glucosyltransferase
Reaction: UDP-glucose + scopoletin = UDP + scopolin
Other name(s): uridine diphosphoglucose-scopoletin glucosyltransferase; UDP-glucose:scopoletin glucosyltransferase; SGTase
Systematic name: UDP-glucose:scopoletin O-β-D-glucosyltransferase
References:
1.  Hino, F., Okazaki, M. and Miura, Y. Effect of 2,4-dichlorophenoxyacetic acid on glucosylation of scopoletin to scopolin in tobacco tissue-culture. Plant Physiol. 69 (1982) 810–813. [PMID: 16662301]
[EC 2.4.1.128 created 1984]
 
 
EC 2.4.1.133     
Accepted name: xylosylprotein 4-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): UDP-D-galactose:D-xylose galactosyltransferase; UDP-D-galactose:xylose galactosyltransferase; galactosyltransferase I; uridine diphosphogalactose-xylose galactosyltransferase; UDP-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosyl-[protein] 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-xylosyl)-L-serine 4-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
References:
1.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
2.  Okajima, T., Yoshida, K., Kondo, T. and Furukawa, K. Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 274 (1999) 22915–22918. [PMID: 10438455]
[EC 2.4.1.133 created 1984, modified 2002]
 
 
EC 2.4.1.134     
Accepted name: galactosylxylosylprotein 3-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): galactosyltransferase II; uridine diphosphogalactose-galactosylxylose galactosyltransferase; UDP-galactose:4-β-D-galactosyl-O-β-D-xylosylprotein 3-β-D-galactosyltransferase; UDP-α-D-galactose:4-β-D-galactosyl-O-β-D-xylosylprotein 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
References:
1.  Robinson, J.A. and Robinson, H.C. Initiation of chondroitin sulphate synthesis by β-D-galactosides. Substrates for galactosyltransferase II. Biochem. J. 227 (1985) 805–814. [PMID: 3924029]
2.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
3.  Bai, X., Zhou, D., Brown, J.R., Crawford, B.E., Hennet, T. and Esko, J.D. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J. Biol. Chem. 276 (2001) 48189–48195. [PMID: 11551958]
[EC 2.4.1.134 created 1984, modified 2002]
 
 
EC 2.4.1.135     
Accepted name: galactosylgalactosylxylosylprotein 3-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + [protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): glucuronosyltransferase I; uridine diphosphate glucuronic acid:acceptor glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosyl-protein D-glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosylprotein D-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine D-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
References:
1.  Helting, J. and Roden, L. Biosynthesis of chondroitin sulfate. II. Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244 (1969) 2799–2805. [PMID: 5770003]
2.  Helting, T. Biosynthesis of heparin. Solubilization and partial purification of uridine diphosphate glucuronic acid: acceptor glucuronosyltransferase from mouse mastocytoma. J. Biol. Chem. 247 (1972) 4327–4332. [PMID: 4260846]
3.  Kitagawa, H., Tone, Y., Tamura, J., Neumann, K.W., Ogawa, T., Oka, S., Kawasaki, T. and Sugahara, K. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273 (1998) 6615–6618. [PMID: 9506957]
[EC 2.4.1.135 created 1984, modified 2002, modified 2016]
 
 
EC 2.4.1.136     
Accepted name: gallate 1-β-glucosyltransferase
Reaction: UDP-glucose + gallate = UDP + 1-galloyl-β-D-glucose
Other name(s): UDP-glucose—vanillate 1-glucosyltransferase; UDPglucose:vanillate 1-O-glucosyltransferase; UDPglucose:gallate glucosyltransferase
Systematic name: UDP-glucose:gallate β-D-glucosyltransferase
Comments: A number of substituted benzoic acids and, more slowly, cinnamic acids, can act as acceptors. Vanillin is the best acceptor investigated.
References:
1.  Gross, G.G. Synthesis of β-glucogallin from UDP-glucose and gallic acid by an enzyme preparation from oak leaves. FEBS Lett. 148 (1982) 67–70.
2.  Gross, G.G. Partial-purification and properties of UDP-glucose-vanillate 1-O-glucosyl transferase from oak leaves. Phytochemistry 22 (1983) 2179–2182.
[EC 2.4.1.136 created 1984]
 
 
EC 2.4.1.137     
Accepted name: sn-glycerol-3-phosphate 2-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 2-(α-D-galactosyl)-sn-glycerol 3-phosphate
Other name(s): floridoside-phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate-2-D-galactosyl transferase; FPS; UDP-galactose,sn-3-glycerol phosphate:1→2′ galactosyltransferase; floridoside phosphate synthetase; floridoside phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to floridoside (cf. EC 2.4.1.96 sn-glycerol-3-phosphate 1-galactosyltransferase).
References:
1.  Gray, N.C.C. and Strickland, K.P. The purification and characterization of a phospholipase A2 activity from the 106,000 x g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60 (1982) 108–117. [PMID: 7083039]
[EC 2.4.1.137 created 1984]
 
 
EC 2.4.1.138     
Accepted name: mannotetraose 2-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man = UDP + α-D-Man-(1→3)-[α-D-GlcNAc-(1→2)]-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man
Other name(s): α-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine mannoside α1→2-αcetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:mannotetraose α-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-D-mannose α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
References:
1.  Douglas, R.H. and Ballou, C.E. Purification of an α-N-acetylglucosaminyltransferase from the yeast Kluyveromyces lactis and a study of mutants defective in this enzyme activity. Biochemistry 21 (1982) 1561–1570. [PMID: 6211189]
[EC 2.4.1.138 created 1984]
 
 
EC 2.4.1.141     
Accepted name: N-acetylglucosaminyldiphosphodolichol N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + N-acetyl-α-D-glucosaminyl-diphosphodolichol = UDP + N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphosphodolichol
Glossary: N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphosphodolichol = N,N′-diacetylchitobiosyl-diphosphodolichol
Other name(s): UDP-GlcNAc:dolichyl-pyrophosphoryl-GlcNAc GlcNAc transferase; uridine diphosphoacetylglucosamine-dolichylacetylglucosamine pyrophosphate acetylglucosaminyltransferase; N,N′-diacetylchitobiosylpyrophosphoryldolichol synthase; UDP-N-acetyl-D-glucosamine:N-acetyl-D-glucosaminyl-diphosphodolichol N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-α-D-glucosaminyl-diphosphodolichol 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
References:
1.  Sharma, C.B., Lehle, L. and Tanner, W. Solubilization and characterization of the initial enzymes of the dolichol pathway from yeast. Eur. J. Biochem. 126 (1982) 319–325. [PMID: 6215245]
2.  Turco, S.J. and Heath, E.C. Glucuronosyl-N-acetylglucosaminyl pyrophosphoryldolichol. Formation in SV40-transformed human lung fibroblasts and biosynthesis in rat lung microsomal preparations. J. Biol. Chem. 252 (1977) 2918–2928. [PMID: 192724]
[EC 2.4.1.141 created 1984]
 
 
EC 2.4.1.143     
Accepted name: α-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT2 (gene name); N-acetylglucosaminyltransferase II; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase II; acetylglucosaminyltransferase II; uridine diphosphoacetylglucosamine-mannoside α1→6-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-1,6-mannosylglycoprotein β-1-2-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-D-mannoside β1-2-acetylglucosaminyltransferase; UDP-GlcNAc:mannoside α1-6 acetylglucosaminyltransferase; α-1,6-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTII; GlcNAc-T II; UDP-N-acetyl-D-glucosamine:6-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→6)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its activity initiates the synthesis of the second antenna of di-antennary complex N-glycans. While the natural substrate (produced by EC 3.2.1.114, mannosyl-oligosaccharide 1,3-1,6-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→6)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→3)]-β-D-Man-R.
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
4.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
5.  Bendiak, B. and Schachter, H. Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:α-D-mannoside β-1-2 N-acetylglucosaminyltransferase II from rat liver. J. Biol. Chem. 262 (1987) 5784–5790. [PMID: 2952645]
6.  Bendiak, B. and Schacter, H. Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:α-D-mannoside β1-2 N-acetylglucosaminyltransferase II from rat liver. J. Biol. Chem. 262 (1987) 5775–5783. [PMID: 2952644]
7.  Tan, J., D'Agostaro, A.F., Bendiak, B., Reck, F., Sarkar, M., Squire, J.A., Leong, P. and Schachter, H. The human UDP-N-acetylglucosamine: α-6-D-mannoside-β-1,2- N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. Eur. J. Biochem. 231 (1995) 317–328. [PMID: 7635144]
[EC 2.4.1.143 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.144     
Accepted name: β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-[β-D-GlcNAc-(1→4)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
Other name(s): N-acetylglucosaminyltransferase III; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase III; uridine diphosphoacetylglucosamine-glycopeptide β4-acetylglucosaminyltransferase III; β-1,4-mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTIII; GlcNAc-T III; MGAT3 (gene name); UDP-N-acetyl-D-glucosamine:β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. The residue added by the enzyme at position 4 of the β-linked mannose of the trimannosyl core of N-glycans is known as a bisecting GlcNAc. Unlike GlcNAc residues added to other positions, it is not extended or modified. In addition, its presence prevents the action of other branching enzymes involved in the process such as GlcNAc-T IV (EC 2.4.1.145) and GlcNAc-T V (EC 2.4.1.155), and thus increased activity of GlcNAc-T III leads to a decrease in highly branched N-glycan structures.
References:
1.  Narasimhan, S. Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide β4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in β1-4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J. Biol. Chem. 257 (1982) 10235–10242. [PMID: 6213618]
2.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
3.  Brockhausen, I., Carver, J.P. and Schachter, H. Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem. Cell Biol. 66 (1988) 1134–1151. [PMID: 2975180]
4.  Nishikawa, A., Ihara, Y., Hatakeyama, M., Kangawa, K. and Taniguchi, N. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine: β-D-mannoside β-1,4N-acetylglucosaminyltransferase III from rat kidney. J. Biol. Chem. 267 (1992) 18199–18204. [PMID: 1325461]
5.  Ihara, Y., Nishikawa, A., Tohma, T., Soejima, H., Niikawa, N. and Taniguchi, N. cDNA cloning, expression, and chromosomal localization of human N-acetylglucosaminyltransferase III (GnT-III). J. Biochem. 113 (1993) 692–698. [PMID: 8370666]
[EC 2.4.1.144 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.145     
Accepted name: α-1,3-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
Other name(s): N-acetylglucosaminyltransferase IV; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase IV; β-acetylglucosaminyltransferase IV; uridine diphosphoacetylglucosamine-glycopeptide β4-acetylglucosaminyltransferase IV; α-1,3-mannosylglycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTIV; UDP-N-acetyl-D-glucosamine:3-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mn2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. By adding a glucosaminyl residue to biantennary N-linked glycans, it enables the synthesis of tri- and tetra-antennary complexes.
References:
1.  Gleeson, P.A. and Schachter, H. Control of glycoprotein synthesis. J. Biol. Chem. 258 (1983) 6162–6173. [PMID: 6222042]
2.  Oguri, S., Minowa, M.T., Ihara, Y., Taniguchi, N., Ikenaga, H. and Takeuchi, M. Purification and characterization of UDP-N-acetylglucosamine: α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase-IV) from bovine small intestine. J. Biol. Chem. 272 (1997) 22721–22727. [PMID: 9278430]
3.  Minowa, M.T., Oguri, S., Yoshida, A., Hara, T., Iwamatsu, A., Ikenaga, H. and Takeuchi, M. cDNA cloning and expression of bovine UDP-N-acetylglucosamine: α1, 3-D-mannoside β1,4-N-acetylglucosaminyltransferase IV. J. Biol. Chem. 273 (1998) 11556–11562. [PMID: 9565571]
4.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: α1,3-d-mannoside β1, 4-N-acetylglucosaminyltransferase. Glycobiology 9 (1999) 303–310. [PMID: 10024668]
5.  Yoshida, A., Minowa, M.T., Takamatsu, S., Hara, T., Ikenaga, H. and Takeuchi, M. A novel second isoenzyme of the human UDP-N-acetylglucosamine:α1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconj. J. 15 (1998) 1115–1123. [PMID: 10372966]
6.  Takamatsu, S., Antonopoulos, A., Ohtsubo, K., Ditto, D., Chiba, Y., Le, D.T., Morris, H.R., Haslam, S.M., Dell, A., Marth, J.D. and Taniguchi, N. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice. Glycobiology 20 (2010) 485–497. [PMID: 20015870]
[EC 2.4.1.145 created 1984, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.146     
Accepted name: β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,3-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 3-O-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein] = UDP + 3-O-{N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Glossary: core 2 = 3-O-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Other name(s): O-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase II; uridine diphosphoacetylglucosamine-mucin β(1→3)-acetylglucosaminyltransferase (elongating); elongation 3β-GalNAc-transferase; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to β-D-galactose of β-D-galactosyl-1,3-(N-acetyl-D-glucosaminyl-1,6)-N-acetyl-D-galactosaminyl-R) β-1,3-N-acetyl-D-glucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-(1→3)-[N-acetyl-D-glucosaminyl-(1→6)]-N-acetyl-D-galactosaminyl-R 3-β-N-acetyl-D-glucosaminyltransferase; B3GNT3 (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine:3-O-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein] 3-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme catalyses the addition of N-acetyl-α-D-glucosamine to the core 2 structure of O-glycans.
References:
1.  Brockhausen, I., Rachaman, E.S., Matta, K.L. and Schachter, H. The separation by liquid chromatography (under elevated pressure) of phenyl, benzyl, and O-nitrophenyl glycosides of oligosaccharides. Analysis of substrates and products for four N-acetyl-D-glucosaminyl-transferases involved in mucin synthesis. Carbohydr. Res. 120 (1983) 3–16. [PMID: 6226356]
2.  Shiraishi, N., Natsume, A., Togayachi, A., Endo, T., Akashima, T., Yamada, Y., Imai, N., Nakagawa, S., Koizumi, S., Sekine, S., Narimatsu, H. and Sasaki, K. Identification and characterization of three novel β 1,3-N-acetylglucosaminyltransferases structurally related to the β 1,3-galactosyltransferase family. J. Biol. Chem. 276 (2001) 3498–3507. [PMID: 11042166]
[EC 2.4.1.146 created 1984, modified 2018]
 
 
EC 2.4.1.147     
Accepted name: acetylgalactosaminyl-O-glycosyl-glycoprotein β-1,3-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + O3-[N-acetyl-α-D-galactosaminyl]-L-threonyl/L-seryl-[protein] = UDP + O3-[N-acetyl-β-D-glucosaminyl-(1→3)-N-acetyl-α-D-galactosaminyl]-L-threonyl/L-seryl-[protein]
Other name(s): O-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase III; uridine diphosphoacetylglucosamine-mucin β(1→3)-acetylglucosaminyltransferase; mucin core 3 β3-GlcNAc-transferase; Core 3β-GlcNAc-transferase; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosaminyl-R) β-1,3-N-acetyl-D-glucosaminyltransferase; UDP-N-acetyl-D-glucosamine:N-acetyl-β-D-galactosaminyl-R 3-β-N-acetyl-D-glucosaminyltransferase (incorrect)
Systematic name: UDP-N-acetyl-α-D-glucosamine:O3-[N-acetyl-α-D-galactosaminyl]-L-threonyl/L-seryl-[protein] 3-β-N-acetyl-D-glucosaminyltransferase
Comments: The product of the enzyme is known as core 3, one of the eight core structures of mucin-type O-glycans. O-Linked glycans are polysaccharides or oligosaccharides that are linked to a protein via the oxygen atom in the side chain of an L-serine or L-threonine residue.
References:
1.  Brockhausen, I., Rachaman, E.S., Matta, K.L. and Schachter, H. The separation by liquid chromatography (under elevated pressure) of phenyl, benzyl, and O-nitrophenyl glycosides of oligosaccharides. Analysis of substrates and products for four N-acetyl-D-glucosaminyl-transferases involved in mucin synthesis. Carbohydr. Res. 120 (1983) 3–16. [PMID: 6226356]
2.  Brockhausen, I., Matta, K.L., Orr, J. and Schachter, H. Mucin synthesis. UDP-GlcNAc:GalNAc-R β 3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAc β 1-3GalNAc-R (GlcNAc to GalNAc) β 6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 24 (1985) 1866–1874. [PMID: 3160388]
3.  Vavasseur, F., Yang, J.M., Dole, K., Paulsen, H. and Brockhausen, I. Synthesis of O-glycan core 3: characterization of UDP-GlcNAc: GalNAc-R β 3-N-acetyl-glucosaminyltransferase activity from colonic mucosal tissues and lack of the activity in human cancer cell lines. Glycobiology 5 (1995) 351–357. [PMID: 7655172]
[EC 2.4.1.147 created 1984, modified 2015]
 
 
EC 2.4.1.148     
Accepted name: acetylgalactosaminyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + N-acetyl-β-D-glucosaminyl-(1→3)-N-acetyl-D-galactosaminyl-R = UDP + N-acetyl-β-D-glucosaminyl-(1→6)-[N-acetyl-β-D-glucosaminyl-(1→3)]-N-acetyl-D-galactosaminyl-R
Other name(s): O-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase IV; uridine diphosphoacetylglucosamine-mucin β(1→6)-acetylglucosaminyltransferase B; core 4 β6-GalNAc-transferase; core 6β-GalNAc-transferase B; UDP-N-acetyl-D-glucosamine:O-oligosaccharide-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosamine of N-acetyl-β-D-glucosaminyl-1,3-N-acetyl-D-galactosaminyl-R) β-1,6-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→3)-N-acetyl-D-galactosaminyl-R 6-β-N-acetyl-D-glucosaminyltransferase
Comments: cf. EC 2.4.1.102 (β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase), EC 2.4.1.146 (β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,3-N-acetylglucosaminyltransferase) and EC 2.4.1.147 (acetylgalactosaminyl-O-glycosyl-glycoprotein β-1,3-N-acetylglucosaminyltransferase).
References:
1.  Brockhausen, I., Rachaman, E.S., Matta, K.L. and Schachter, H. The separation by liquid chromatography (under elevated pressure) of phenyl, benzyl, and O-nitrophenyl glycosides of oligosaccharides. Analysis of substrates and products for four N-acetyl-D-glucosaminyl-transferases involved in mucin synthesis. Carbohydr. Res. 120 (1983) 3–16. [PMID: 6226356]
[EC 2.4.1.148 created 1984]
 
 
EC 2.4.1.149     
Accepted name: N-acetyllactosaminide β-1,3-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R = UDP + N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R
Other name(s): uridine diphosphoacetylglucosamine-acetyllactosaminide β1→3-acetylglucosaminyltransferase; poly-N-acetyllactosamine extension enzyme; Galβ1→4GlcNAc-R β1→3 N-acetylglucosaminyltransferase; UDP-GlcNAc:GalR β-D-3-N-acetylglucosaminyltransferase; N-acetyllactosamine β(1-3)N-acetylglucosaminyltransferase; UDP-GlcNAc:Galβ1→4GlcNAcβ-Rβ1→3-N-acetylglucosaminyltransferase; GnTE; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-1,4-N-acetyl-D-glucosamine β-1,3-acetyl-D-glucosaminyltransferase; β-galactosyl-N-acetylglucosaminylgalactosylglucosyl-ceramide β-1,3-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-(1→4)-N-acetyl-D-glucosamine 3-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-R 3-β N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Acts on β-galactosyl-1,4-N-acetylglucosaminyl termini on glycoproteins, glycolipids, and oligosaccharides.
References:
1.  Van den Eijnden, D.H., Winterwerp, H., Smeeman, P. and Schiphorst, W.E.C.M. Novikoff ascites tumor cells contain N-acetyllactosaminide β1→3 and β1→6 N-acetylglucosaminyltransferase activity. J. Biol. Chem. 258 (1983) 3435–3437. [PMID: 6219989]
2.  Basu, M. and Basu, S. Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by β 1-3- and β 1-6-N-acetylglucosaminyltransferases from mouse T-lymphoma. J. Biol. Chem. 259 (1984) 12557–12562. [PMID: 6238026]
3.  Takeya, A., Hosomi, O. and Kogure, T. The presence of N-acetyllactosamine and lactose: β (1-3)N-acetylglucosaminyltransferase activity in human urine. Jpn. J. Med. Sci. Biol. 38 (1985) 1–8. [PMID: 3160874]
[EC 2.4.1.149 created 1984 (EC 2.4.1.163 created 1989, incorporated 2016), modified 2016]
 
 
EC 2.4.1.150     
Accepted name: N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-GlcNAc-R = UDP + β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-β-D-GlcNAc-R
Glossary: β-D-galactosyl-(1→4)-N-acetyl-D-glucosaminyl-R = type 2 precursor disaccharide
Other name(s): GCNT2 (gene name); GCNT3 (gene name); IGnT; I-branching β1,6-N-acetylglucosaminyltransferase; N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-acetyllactosaminide β1→6-acetylglucosaminyltransferase; Galβ1→4GlcNAc-R β1→6 N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-1,4-N-acetyl-D-glucosaminide β-1,6-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminide 6-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: The enzyme acts on poly-N-acetyllactosamine [glycan chains of β-D-galactosyl-(1→4)-N-acetyl-D-glucosamine units connected by β(1,3) linkages] attached to proteins or lipids. It transfers a GlcNAc residue by β(1,6)-linkage to galactosyl residues close to non-reducing terminals, introducing a branching pattern known as I branching.
References:
1.  Van den Eijnden, D.H., Winterwerp, H., Smeeman, P. and Schiphorst, W.E.C.M. Novikoff ascites tumor cells contain N-acetyllactosaminide β1→3 and β1→6 N-acetylglucosaminyltransferase activity. J. Biol. Chem. 258 (1983) 3435–3437. [PMID: 6219989]
2.  Basu, M. and Basu, S. Biosynthesis in vitro of Ii core glycosphingolipids from neolactotetraosylceramide by β 1-3- and β 1-6-N-acetylglucosaminyltransferases from mouse T-lymphoma. J. Biol. Chem. 259 (1984) 12557–12562. [PMID: 6238026]
3.  Piller, F., Cartron, J.P., Maranduba, A., Veyrieres, A., Leroy, Y. and Fournet, B. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc β1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259 (1984) 13385–13390. [PMID: 6490658]
4.  Bierhuizen, M.F., Maemura, K., Kudo, S. and Fukuda, M. Genomic organization of core 2 and I branching β-1,6-N-acetylglucosaminyltransferases. Implication for evolution of the β-1,6-N-acetylglucosaminyltransferase gene family. Glycobiology 5 (1995) 417–425. [PMID: 7579796]
5.  Ujita, M., McAuliffe, J., Suzuki, M., Hindsgaul, O., Clausen, H., Fukuda, M.N. and Fukuda, M. Regulation of I-branched poly-N-acetyllactosamine synthesis. Concerted actions by I-extension enzyme, I-branching enzyme, and β1,4-galactosyltransferase I. J. Biol. Chem. 274 (1999) 9296–9304. [PMID: 10092606]
6.  Yeh, J.C., Ong, E. and Fukuda, M. Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274 (1999) 3215–3221. [PMID: 9915862]
[EC 2.4.1.150 created 1984 (EC 2.4.1.164 created 1989, incorporated 2016), modified 2017]
 
 
EC 2.4.1.153     
Accepted name: UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + dolichyl phosphate = UDP + dolichyl N-acetyl-α-D-glucosaminyl phosphate
Other name(s): aglK (gene name); dolichyl-phosphate α-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:dolichyl-phosphate α-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:dolichyl-phosphate α-N-acetyl-D-glucosaminyltransferase
Comments: The enzyme, characterized from the methanogenic archaeon Methanococcus voltae, initiates N-linked glycosylation in that organism. The enzyme differs from the eukaryotic enzyme, which leaves one additional phosphate group on the dolichyl product (cf. EC 2.7.8.15, UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase).
References:
1.  Larkin, A., Chang, M.M., Whitworth, G.E. and Imperiali, B. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nat. Chem. Biol. 9 (2013) 367–373. [PMID: 23624439]
[EC 2.4.1.153 created 1984, modified 2015]
 
 
EC 2.4.1.154      
Deleted entry: globotriosylceramide β-1,6-N-acetylgalactosaminyl-transferase. The enzyme is identical to EC 2.4.1.79, globotriaosylceramide 3-β-N-acetylgalactosaminyltransferase. The reference cited referred to a 1→3 linkage and not to a 1→6 linkage, as indicated in the enzyme entry
[EC 2.4.1.154 created 1986, deleted 2006]
 
 
EC 2.4.1.155     
Accepted name: α-1,6-mannosyl-glycoprotein 6-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT5 (gene name); N-acetylglucosaminyltransferase V; α-mannoside β-1,6-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-α-mannoside β1→6-acetylglucosaminyltransferase; UDP-N-acetylglucosamine:α-mannoside-β1,6 N-acetylglucosaminyltransferase; α-1,3(6)-mannosylglycoprotein β-1,6-N-acetylglucosaminyltransferase; GnTV; GlcNAc-T V; UDP-N-acetyl-D-glucosamine:6-[2-(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl]-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)-β-D-mannosyl-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires Mg2+. The enzyme, found in vertebrates, participates in the processing of N-glycans in the Golgi apparatus. It catalyses the addition of N-acetylglucosamine in β 1-6 linkage to the α-linked mannose of biantennary N-linked oligosaccharides, and thus enables the synthesis of tri- and tetra-antennary complexes.
References:
1.  Cummings, R.D., Trowbridge, I.S. and Kornfeld, S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: α-D-mannoside β1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257 (1982) 13421–13427. [PMID: 6216250]
2.  Hindsgaul, O., Tahir, S.H., Srivastava, O.P. and Pierce, M. The trisaccharide β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)-β-D-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V. Carbohydr. Res. 173 (1988) 263–272. [PMID: 2834054]
3.  Shoreibah, M.G., Hindsgaul, O. and Pierce, M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267 (1992) 2920–2927. [PMID: 1531335]
4.  Gu, J., Nishikawa, A., Tsuruoka, N., Ohno, M., Yamaguchi, N., Kangawa, K. and Taniguchi, N. Purification and characterization of UDP-N-acetylglucosamine: α-6-D-mannoside β 1-6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. J. Biochem. 113 (1993) 614–619. [PMID: 8393437]
5.  Park, C., Jin, U.H., Lee, Y.C., Cho, T.J. and Kim, C.H. Characterization of UDP-N-acetylglucosamine:α-6-D-mannoside β-1,6-N-acetylglucosaminyltransferase V from a human hepatoma cell line Hep3B. Arch. Biochem. Biophys. 367 (1999) 281–288. [PMID: 10395745]
6.  Saito, T., Miyoshi, E., Sasai, K., Nakano, N., Eguchi, H., Honke, K. and Taniguchi, N. A secreted type of β 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J. Biol. Chem. 277 (2002) 17002–17008. [PMID: 11872751]
[EC 2.4.1.155 created 1986, modified 2001, modified 2018]
 
 
EC 2.4.1.156     
Accepted name: indolylacetyl-myo-inositol galactosyltransferase
Reaction: UDP-α-D-galactose + (indol-3-yl)acetyl-myo-inositol = UDP + 5-O-(indol-3-yl)acetyl-myo-inositol D-galactoside
Other name(s): uridine diphosphogalactose-indolylacetylinositol galactosyltransferase; indol-3-ylacetyl-myo-inositol galactoside synthase; UDP-galactose:indol-3-ylacetyl-myo-inositol 5-O-D-galactosyltransferase; UDP-galactose:(indol-3-yl)acetyl-myo-inositol 5-O-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:(indol-3-yl)acetyl-myo-inositol 5-O-D-galactosyltransferase
References:
1.  Corcuera, L.J., Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of indol-3-ylacetyl-myo-inositol galactoside. Biochem. J. 207 (1982) 283–290. [PMID: 7159382]
[EC 2.4.1.156 created 1986]
 
 
EC 2.4.1.157      
Transferred entry: 1,2-diacylglycerol 3-glucosyltransferase. Now classified as EC 2.4.1.336, monoglucosyldiacylglycerol synthase, and EC 2.4.1.337, 1,2-diacylglycerol 3-α-glucosyltransferase
[EC 2.4.1.157 created 1986, deleted 2015]
 
 
EC 2.4.1.158     
Accepted name: 13-hydroxydocosanoate 13-β-glucosyltransferase
Reaction: UDP-glucose + 13-hydroxydocosanoate = UDP + 13-β-D-glucosyloxydocosanoate
Other name(s): 13-glucosyloxydocosanoate 2′-β-glucosyltransferase; UDP-glucose:13-hydroxydocosanoic acid glucosyltransferase; uridine diphosphoglucose-hydroxydocosanoate glucosyltransferase; UDP-glucose-13-hydroxydocosanoate glucosyltransferase
Systematic name: UDP-glucose:13-hydroxydocosanoate 13-β-D-glucosyltransferase
Comments: 13-β-D-Glucosyloxydocosanoate can also act as acceptor, leading to the formation by Candida bogoriensis of the extracellular glycolipid, hydroxydocosanoate sophoroside diacetate.
References:
1.  Breithaupt, T.B. and Light, R.J. Affinity chromatography and further characterization of the glucosyltransferases involved in hydroxydocosanoic acid sophoroside production in Candida bogoriensis. J. Biol. Chem. 257 (1982) 9622–9628. [PMID: 6213610]
[EC 2.4.1.158 created 1986]
 
 
EC 2.4.1.159     
Accepted name: flavonol-3-O-glucoside L-rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + a flavonol 3-O-β-D-glucoside = UDP + a flavonol 3-O-[α-L-rhamnosyl-(1→6)-β-D-glucoside]
Glossary: UDP-β-L-rhamnose = UDP-6-deoxy-β-L-mannose
Other name(s): uridine diphosphorhamnose-flavonol 3-O-glucoside rhamnosyltransferase; UDP-rhamnose:flavonol 3-O-glucoside rhamnosyltransferase; UDP-L-rhamnose:flavonol-3-O-D-glucoside 6′′-O-L-rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:flavonol-3-O-β-D-glucoside 6′′-O-L-rhamnosyltransferase (configuration-inverting)
Comments: A configuration-inverting rhamnosyltransferase that converts flavonol 3-O-glucosides to 3-O-rutinosides. Also acts, more slowly, on rutin, quercetin 3-O-galactoside and flavonol 3-O-rhamnosides.
References:
1.  Kleinehollenhorst, G., Behrens, H., Pegels, G., Srunk, N. and Wiermann, R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv apeldoorn - characterization and activity of 3 different O-glycosyltransferases during anther development. Z. Natursforsch. C: Biosci. 37 (1982) 587–599.
2.  Jones, P., Messner, B., Nakajima, J., Schaffner, A.R. and Saito, K. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278 (2003) 43910–43918. [PMID: 12900416]
[EC 2.4.1.159 created 1986, modified 2015]
 
 
EC 2.4.1.160     
Accepted name: pyridoxine 5′-O-β-D-glucosyltransferase
Reaction: UDP-glucose + pyridoxine = UDP + 5′-O-β-D-glucosylpyridoxine
Other name(s): UDP-glucose:pyridoxine 5′-O-β-glucosyltransferase; uridine diphosphoglucose-pyridoxine 5′-β-glucosyltransferase; UDP-glucose-pyridoxine glucosyltransferase
Systematic name: UDP-glucose:pyridoxine 5′-O-β-D-glucosyltransferase
Comments: 4′-Deoxypyridoxine and pyridoxamine can also act as acceptors, but more slowly.
References:
1.  Tadera, K., Fumio, Y. and Kobayashi, A. Specificity of a particulate glucosyltransferase in seedlings of Pisum sativum L. which catalyzes the formation of 5′-O-(β-D-glucopyranosyl)pyridoxine. J. Nutr. Sci. Vitaminol. 28 (1982) 359–366. [PMID: 6217302]
[EC 2.4.1.160 created 1986]
 
 
EC 2.4.1.163      
Transferred entry: β-galactosyl-N-acetylglucosaminylgalactosylglucosyl-ceramide β-1,3-acetylglucosaminyltransferase, now included in EC 2.4.1.149, N-acetyllactosaminide β-1,3-N-acetylglucosaminyltransferase
[EC 2.4.1.163 created 1989, deleted 2016]
 
 
EC 2.4.1.164      
Transferred entry: galactosyl-N-acetylglucosaminylgalactosylglucosyl-ceramide β-1,6-N-acetylglucosaminyltransferase, now included with EC 2.4.1.150, N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase
[EC 2.4.1.164 created 1989, deleted 2016]
 
 
EC 2.4.1.165     
Accepted name: N-acetylneuraminylgalactosylglucosylceramide β-1,4-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + N-acetyl-β-D-galactosaminyl-(1→4)-[α-N-acetylneuraminyl-(2→3)]-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): uridine diphosphoacetylgalactosamine-acetylneuraminyl(α2→3)galactosyl(β1→4)glucosyl β1→4-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetylneuraminyl-2,3-α-D-galactosyl-1,4-β-D-glucosylceramide β-1,4-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetylneuraminyl-(2→3)-α-D-galactosyl-(1→4)-β-D-glucosyl(1↔1)ceramide 4-β-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetylneuraminyl-(2→3)-α-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:α-N-acetylneuraminyl-(2→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 4-β-N-acetylgalactosaminyltransferase
Comments: Requires Mn2+. Only substances containing sialic acid residues can act as acceptors; bovine fetuin is the best acceptor tested.
References:
1.  Chien, J.-L., Williams, T. and Basu, S. Biosynthesis of a globoside-type glycosphingolipid by a β-N-acetylgalactosaminyltransferase from embryonic chicken brain. J. Biol. Chem. 248 (1973) 1778–1785. [PMID: 4632917]
2.  Piller, F., Blanchard, D., Huet, M. and Cartron, J.-P. Identification of a α-NeuAc-(2-3)-β-D-galactopyranosyl N-acetyl-β-D-galactosaminyltransferase in human kidney. Carbohydr. Res. 149 (1986) 171–184. [PMID: 2425965]
3.  Takeya, A., Hosomi, O. and Kogure, T. Identification and characterization of UDP-GalNAc: NeuAc α2-3Gal β1-4Glc(NAc) β1-4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human blood plasma. J. Biochem. (Tokyo) 101 (1987) 251–259. [PMID: 3106337]
[EC 2.4.1.165 created 1989]
 
 
EC 2.4.1.167     
Accepted name: sucrose 6F-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sucrose = UDP + 6F-α-D-galactosylsucrose
Other name(s): uridine diphosphogalactose-sucrose 6F-α-galactosyltransferase; UDPgalactose:sucrose 6fru-α-galactosyltransferase; sucrose 6F-α-galactotransferase; UDP-galactose:sucrose 6F-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sucrose 6F-α-D-galactosyltransferase
Comments: The enzyme is involved in the synthesis of the trisaccharide planteose and higher analogues in the seeds of Plantago and Sesamum species.
References:
1.  Hopf, H., Spanfelner, M. and Kandler, O. Planteose synthesis in seeds of Sesamum indicum L. Z. Pflanzenphysiol. 114 (1984) 485–492.
[EC 2.4.1.167 created 1989]
 
 
EC 2.4.1.168     
Accepted name: xyloglucan 4-glucosyltransferase
Reaction: Transfers a β-D-glucosyl residue from UDP-glucose on to a glucose residue in xyloglucan, forming a β-(1→4)-D-glucosyl-D-glucose linkage
Other name(s): uridine diphosphoglucose-xyloglucan 4β-glucosyltransferase; xyloglucan 4β-D-glucosyltransferase; xyloglucan glucosyltransferase; UDP-glucose:xyloglucan 1,4-β-D-glucosyltransferase
Systematic name: UDP-glucose:xyloglucan 4-β-D-glucosyltransferase
Comments: In association with EC 2.4.2.39 (xyloglucan 6-xylosyltransferase), this enzyme brings about the synthesis of xyloglucan; concurrent transfers of glucose and xylose are essential for this synthesis. Not identical with EC 2.4.1.12 cellulose synthase (UDP-forming).
References:
1.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells. Occurrence and some properties of xyloglucan 4-β-D-glucosyltransferase and 6-α-D-xylosyltransferase. J. Biol. Chem. 256 (1981) 11117–11122. [PMID: 6457048]
2.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells - synthesis of xyloglucan from UDP-glucose and UDP-xylose in the cell-free system. Plant Cell Physiol. 22 (1981) 517–523.
[EC 2.4.1.168 created 1989]
 
 
EC 2.4.1.170     
Accepted name: isoflavone 7-O-glucosyltransferase
Reaction: UDP-glucose + an isoflavone = UDP + an isoflavone 7-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-isoflavone 7-O-glucosyltransferase; UDPglucose-favonoid 7-O-glucosyltransferase; UDPglucose:isoflavone 7-O-glucosyltransferase
Systematic name: UDP-glucose:isoflavone 7-O-β-D-glucosyltransferase
Comments: The 4′-methoxy isoflavones biochanin A and formononetin and, more slowly, the 4′-hydroxyisoflavones genistein and daidzein, can act as acceptors. The enzyme does not act on isoflavanones, flavones, flavanones, flavanols or coumarins.
References:
1.  Köster, J. and Barz, W. UDP-glucose:isoflavone 7-O-glucosyltransferase from roots of chick pea (Cicer arietinum L.). Arch. Biochem. Biophys. 212 (1981) 98–104. [PMID: 6458246]
[EC 2.4.1.170 created 1989]
 
 
EC 2.4.1.171     
Accepted name: methyl-ONN-azoxymethanol β-D-glucosyltransferase
Reaction: UDP-glucose + methyl-ONN-azoxymethanol = UDP + cycasin
Glossary: methyl-ONN-azoxymethanol = CH3-N(O)=N-CH2OH
Other name(s): cycasin synthase; uridine diphosphoglucose-methylazoxymethanol glucosyltransferase; UDP-glucose-methylazoxymethanol glucosyltransferase
Systematic name: UDP-glucose:methyl-ONN-azoxymethanol β-D-glucosyltransferase
Comments: Brings about the biosynthesis of the toxic substance cycasin in the leaves of Japanese cycad, Cycas revoluta.
References:
1.  Tadera, K., Yagi, F., Arima, M. and Kobayashi, A. Formation of cycasin from methylazoxymethanol by UDP-glucosyltransferase from leaves of Japanese cycad. Agric. Biol. Chem. 49 (1985) 2827–2828.
[EC 2.4.1.171 created 1989]
 
 
EC 2.4.1.172     
Accepted name: salicyl-alcohol β-D-glucosyltransferase
Reaction: UDP-glucose + salicyl alcohol = UDP + salicin
Other name(s): uridine diphosphoglucose-salicyl alcohol 2-glucosyltransferase; UDPglucose:salicyl alcohol phenyl-glucosyltransferase
Systematic name: UDP-glucose:salicyl-alcohol β-D-glucosyltransferase
References:
1.  Mizukami, H., Terao, T. and Ohashi, H. Partial-purification and characterization of UDP-glucose-salicyl alcohol glucosyltransferase from Gardeni jasminoides cell-cultures. Planta Med. 1985 (1985) 104–107.
[EC 2.4.1.172 created 1989]
 
 
EC 2.4.1.173     
Accepted name: sterol 3β-glucosyltransferase
Reaction: UDP-glucose + a sterol = UDP + a sterol 3-β-D-glucoside
Other name(s): UDPG:sterol glucosyltransferase; UDP-glucose-sterol β-glucosyltransferase; sterol:UDPG glucosyltransferase; UDPG-SGTase; uridine diphosphoglucose-poriferasterol glucosyltransferase; uridine diphosphoglucose-sterol glucosyltransferase; sterol glucosyltransferase; sterol-β-D-glucosyltransferase; UDP-glucose-sterol glucosyltransferase
Systematic name: UDP-glucose:sterol 3-O-β-D-glucosyltransferase
Comments: Not identical with EC 2.4.1.192 (nuatigenin 3β-glucosyltransferase) or EC 2.4.1.193 (sarsapogenin 3β-glucosyltransferase).
References:
1.  Duperon, R. and Duperon, P. Intracellular-localization of UDP-glucose-sterol glucosyl transferase and UDP-galactose-sterol galactosyl transferase activities in the leaves of tomato (Solanum lycopersicon L, Solanaceae). C.R. Acad. Sci. Paris, Ser. 3 304 (1987) 235–238.
2.  Kalinowska, M. and Wojciechowski, Z.A. Enzymatic-synthesis of nuatigenin 3-β-D-glucoside in oat (Avena sativa) leaves. Phytochemistry 25 (1986) 2525–2529.
3.  Kalinowska, M. and Wojciechowski, Z.A. Subcellular-localization of UDPG-nuatigenin glucosyltransferase in oat leaves. Phytochemistry 26 (1987) 353–357.
4.  Murakami-Murofushi, K. and Ohta, J. Expression of UDP-glucose: poriferasterol glucosyltransferase in the process of differentiation of a true slime mold, Physarum polycephalum. Biochim. Biophys. Acta 992 (1989) 412–415. [PMID: 2528379]
5.  Wojciechowski, Z.A., Zimowski, J. and Tyski, S. Enzymatic synthesis of steryl 3β-D-monoglucosides in the slime mold Physarum polycephalum. Phytochemistry 16 (1977) 911–914.
[EC 2.4.1.173 created 1989]
 
 
EC 2.4.1.174     
Accepted name: glucuronylgalactosylproteoglycan 4-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): N-acetylgalactosaminyltransferase I; glucuronylgalactosylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-chondroitin acetylgalactosaminyltransferase I; UDP-N-acetyl-D-galactosamine:D-glucuronyl-1,3-β-D-galactosyl-proteoglycan β-1,4-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:D-glucuronyl-(1→3)-β-D-galactosyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-D-galactosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4-β-N-acetylgalactosaminyltransferase (configuration-inverting)
Comments: Requires Mn2+. Involved in the biosynthesis of chondroitin sulfate. Key enzyme activity for the initiation of chondroitin and dermatan sulfates, transferring GalNAc to the GlcA-Gal-Gal-Xyl-Ser core.
References:
1.  Rohrmann, K., Niemann, R. and Buddecke, E. Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulfate. Eur. J. Biochem. 148 (1985) 463–469. [PMID: 3922754]
2.  Uyama, T., Kitagawa, H., Tamura, J.-i. and Sugahara, K. Molecular cloning and expression of human chondroitin N-acetylgalactosaminyltransferase: the key enzyme for chain initiation and elongation of chondroitin/dermatan sulfate on the protein linkage region tetrasaccharide shared by heparin/heparan sulfate. J. Biol. Chem. 277 (2002) 8841–8846. [PMID: 11788602]
[EC 2.4.1.174 created 1989, modified 2002]
 
 
EC 2.4.1.175     
Accepted name: glucuronosyl-N-acetylgalactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Reaction: (1) UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-N-acetyl-α-D-galactosamine + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n+1-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
Other name(s): N-acetylgalactosaminyltransferase II; UDP-N-acetyl-D-galactosamine:D-glucuronyl-N-acetyl-1,3-β-D-galactosaminylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; chondroitin synthase; glucuronyl-N-acetylgalactosaminylproteoglycan β-1,4-N-acetylgalactosaminyltransferase; uridine diphosphoacetylgalactosamine-chondroitin acetylgalactosaminyltransferase II; UDP-N-acetyl-D-galactosamine:β-D-glucuronosyl-(1→3)-N-acetyl-β-D-galactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase; UDP-N-acetyl-α-D-galactosamine:β-D-glucuronosyl-(1→3)-N-acetyl-β-D-galactosaminyl-proteoglycan 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4-β-N-acetylgalactosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin sulfate. The human form of this enzyme is a bifunctional glycosyltransferase, which also has the 3-β-glucuronosyltransferase (EC 2.4.1.226, N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase) activity required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli.
References:
1.  Rohrmann, K., Niemann, R. and Buddecke, E. Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulfate. Eur. J. Biochem. 148 (1985) 463–469. [PMID: 3922754]
2.  Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721–38726. [PMID: 11514575]
3.  DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124–24129. [PMID: 10818104]
4.  Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567–21575. [PMID: 11943778]
[EC 2.4.1.175 created 1989, modified 2002]
 
 
EC 2.4.1.176     
Accepted name: gibberellin β-D-glucosyltransferase
Reaction: UDP-glucose + gibberellin = UDP + gibberellin 2-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-gibberellate 7-glucosyltransferase; uridine diphosphoglucose-gibberellate 3-O-glucosyltransferase
Systematic name: UDP-glucose:gibberellin 2-O-β-D-glucosyltransferase
Comments: Acts on the plant hormone gibberellin GA3 and related compounds.
References:
1.  Sembdner, G., Knoefel, H.D., Schwarzkopf, E. and Liebisch, H.W. In vitro glucosylation of gibberellins. Biol. Plant. 27 (1985) 231–236.
[EC 2.4.1.176 created 1989]
 
 
EC 2.4.1.177     
Accepted name: cinnamate β-D-glucosyltransferase
Reaction: UDP-glucose + trans-cinnamate = UDP + trans-cinnamoyl β-D-glucoside
Other name(s): uridine diphosphoglucose-cinnamate glucosyltransferase; UDPG:t-cinnamate glucosyltransferase
Systematic name: UDP-glucose:trans-cinnamate β-D-glucosyltransferase
Comments: 4-Coumarate, 2-coumarate, benzoate, feruloate and caffeate can also act as acceptors, but more slowly. Involved in the biosynthesis of chlorogenic acid in the root of the sweet potato, Ipomoea batatas.
References:
1.  Shimizu, T. and Kojima, M. Partial purification and characterization of UDPG:t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam. J. Biochem. (Tokyo) 95 (1984) 205–213. [PMID: 6231280]
[EC 2.4.1.177 created 1989]
 
 
EC 2.4.1.178     
Accepted name: hydroxymandelonitrile glucosyltransferase
Reaction: UDP-glucose + 4-hydroxymandelonitrile = UDP + taxiphyllin
Other name(s): cyanohydrin glucosyltransferase; uridine diphosphoglucose-cyanohydrin glucosyltransferase
Systematic name: UDP-glucose:4-hydroxymandelonitrile glucosyltransferase
Comments: 3,4-Dihydroxymandelonitrile can also act as acceptor.
References:
1.  Hösel, W. and Schiel, O. Biosynthesis of cyanogenic glucosides: in vitro analysis of the glucosylation step. Arch. Biochem. Biophys. 229 (1984) 177–186. [PMID: 6230992]
2.  Poulton, J.E. and Shin, S.-I. Prunasin biosynthesis by cell-free-extracts from black cherry (Prunus serotina Ehrh) fruits and leaves. Z. Naturforsch. C: Biosci. 38 (1983) 369–374.
[EC 2.4.1.178 created 1989]
 
 
EC 2.4.1.179     
Accepted name: lactosylceramide β-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-D-glucosyl-R = UDP + β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-R
Glossary: lactosylceramide = β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): uridine diphosphogalactose-lactosylceramide β1→3-galactosyltransferase; UDP-galactose:D-galactosyl-1,4-β-D-glucosyl-R β-1,3-galactosyltransferase; UDP-galactose:D-galactosyl-(1→4)-β-D-glucosyl-R 3-β-galactosyltransferase; UDP-α-D-galactose:D-galactosyl-(1→4)-β-D-glucosyl-R 3-β-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-β-D-glucosyl-R 3-β-galactosyltransferase
Comments: R may be an oligosaccharide or a glycolipid; lactose can also act as acceptor, but more slowly. Involved in the elongation of oligosaccharide chains, especially in glycolipids.
References:
1.  Bailly, P., Piller, F. and Cartron, J.-P. Characterization and specific assay for a galactoside β-3-galactosyltransferase of human kidney. Eur. J. Biochem. 173 (1988) 417–422. [PMID: 3129295]
[EC 2.4.1.179 created 1989]
 
 
EC 2.4.1.180     
Accepted name: lipopolysaccharide N-acetylmannosaminouronosyltransferase
Reaction: UDP-N-acetyl-α-D-mannosaminouronate + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + N-acetyl-β-D-mannosaminouronyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Glossary: N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = lipid I = GlcNAc-pyrophosphorylundecaprenol = ditrans,octacis-undecaprenyl-N-acetyl-α-D-glucosaminyl diphosphate
Other name(s): ManNAcA transferase; uridine diphosphoacetylmannosaminuronate-acetylglucosaminylpyrophosphorylundecaprenol acetylmannosaminuronosyltransferase; UDP-N-acetyl-β-D-mannosaminouronate:lipid I N-acetyl-β-D-mannosaminouronosyltransferase (incorrect)
Systematic name: UDP-N-acetyl-α-D-mannosaminouronate:lipid I N-acetyl-α-D-mannosaminouronosyltransferase
Comments: Involved in the biosynthesis of common antigen in Enterobacteriaceae.
References:
1.  Barr, K., Ward, S., Meier-Dieter, U., Mayer, H. and Rick, P.D. Characterization of an Escherichia coli rff mutant defective in transfer of N-acetylmannosaminuronic acid (ManNAcA) from UDP-ManNAcA to a lipid-linked intermediate involved in enterobacterial common antigen synthesis. J. Bacteriol. 170 (1988) 228–233. [PMID: 3275612]
[EC 2.4.1.180 created 1990, modified 2011]
 
 
EC 2.4.1.181     
Accepted name: hydroxyanthraquinone glucosyltransferase
Reaction: UDP-glucose + an hydroxyanthraquinone = UDP + a glucosyloxyanthraquinone
Other name(s): uridine diphosphoglucose-anthraquinone glucosyltransferase; anthraquinone-specific glucosyltransferase
Systematic name: UDP-glucose:hydroxyanthraquinone O-glucosyltransferase
Comments: A range of anthraquinones and some flavones can act as acceptors; best substrates are emodin, anthrapurpurin, quinizarin, 2,6-dihydroanthraquinone and 1,8-dihydroxyanthraquinone.
References:
1.  Khouri, H.E. and Ibrahim, R.K. Purification and some properties of five anthraquinone-specific glucosyltransferases from Cinchona succiruba cell suspension culture. Phytochemistry 26 (1987) 2531–2535.
[EC 2.4.1.181 created 1990]
 
 
EC 2.4.1.182     
Accepted name: lipid-A-disaccharide synthase
Reaction: a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine + a lipid X = UDP + a lipid A disaccharide
Glossary: a lipid X = 2-N-[(3R)-3-hydroxyacyl]-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine 1-phosphate =
2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine
a lipid A disaccharide = a 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): lpxB (gene name); UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine:2,3-bis-(3-hydroxytetradecanoyl)-β-D-glucosaminyl-1-phosphate 2,3-bis(3-hydroxytetradecanoyl)-glucosaminyltransferase (incorrect)
Systematic name: UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine:2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine 1-phosphate 2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosaminyltransferase
Comments: Involved with EC 2.3.1.129 (acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase) and EC 2.7.1.130 (tetraacyldisaccharide 4′-kinase) in the biosynthesis of the phosphorylated glycolipid, lipid A, in the outer membrane of Gram-negative bacteria.
References:
1.  Ray, B.L., Painter, G. and Raetz, C.R.H. The biosynthesis of gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli. J. Biol. Chem. 259 (1984) 4852–4859. [PMID: 6370995]
2.  Crowell, D.N., Reznikoff, W.S. and Raetz, C.R.H. Nucleotide sequence of the Escherichia coli gene for lipid A disaccharide synthase. J. Bacteriol. 169 (1987) 5727–5734. [PMID: 2824445]
3.  Metzger, L.E., 4th and Raetz, C.R. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry 48 (2009) 11559–11571. [PMID: 19883124]
4.  Bohl, T.E., Shi, K., Lee, J.K. and Aihara, H. Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli. Nat. Commun. 9:377 (2018). [PMID: 29371662]
[EC 2.4.1.182 created 1990, modified 2021]
 
 
EC 2.4.1.183     
Accepted name: α-1,3-glucan synthase
Reaction: UDP-glucose + [α-D-glucosyl-(1→3)]n = UDP + [α-D-glucosyl-(1→3)]n+1
Other name(s): uridine diphosphoglucose-1,3-α-glucan glucosyltransferase; 1,3-α-D-glucan synthase; UDP-glucose:α-D-(1-3)-glucan 3-α-D-glucosyltransferase
Systematic name: UDP-glucose:α-D-(1→3)-glucan 3-α-D-glucosyltransferase
Comments: A glucan primer is needed to begin the reaction, which brings about elongation of the glucan chains.
References:
1.  Andoh, M., Yamashita, Y., Shigeoka, T., Hanada, N. and Takehara, T. [Extension of the length of glucan chain by 1,3-α-D-glucansynthase from Streptococcus mutans serotype.] Koku Eisei Gakkai Zasshi 37 (1987) 516–517.
[EC 2.4.1.183 created 1990]
 
 
EC 2.4.1.184     
Accepted name: galactolipid galactosyltransferase
Reaction: 2 a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = a 1,2-diacyl-3-O-[β-D-galactosyl-(1→6)-β-D-galactosyl]-sn-glycerol + a 1,2-diacyl-sn-glycerol
Glossary: a 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = monogalactosyldiacylglycerol
Other name(s): galactolipid-galactolipid galactosyltransferase; galactolipid:galactolipid galactosyltransferase; interlipid galactosyltransferase; GGGT; DGDG synthase (ambiguous); digalactosyldiacylglycerol synthase (ambiguous); 3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol:mono-3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol β-D-galactosyltransferase; 3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol β-D-galactosyltransferase; SFR2 (gene name)
Systematic name: 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol:1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol β-D-galactosyltransferase
Comments: The enzyme converts monogalactosyldiacylglycerol to digalactosyldiacylglycerol, trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol. All residues are connected by β linkages. The activity is localized to chloroplast envelope membranes, but it does not contribute to net galactolipid synthesis in plants, which is performed by EC 2.4.1.46, monogalactosyldiacylglycerol synthase, and EC 2.4.1.241, digalactosyldiacylglycerol synthase. Note that the β,β-digalactosyldiacylglycerol formed by this enzyme is different from the more common α,β-digalactosyldiacylglycerol formed by EC 2.4.1.241. The enzyme provides an important mechanism for the stabilization of the chloroplast membranes during freezing and drought stress.
References:
1.  Dorne, A.-J., Block, M.A., Joyard, J. and Douce, R. The galactolipid-galactolipid galactosyltransferase is located on the outer surface of the outer-membrane of the chloroplast envelope. FEBS Lett. 145 (1982) 30–34.
2.  Heemskerk, J.W.M., Wintermans, J.F.G.M., Joyard, J., Block, M.A., Dorne, A.-J. and Douce, R. Localization of galactolipid:galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim. Biophys. Acta 877 (1986) 281–289.
3.  Heemskerk, J.W.M., Jacobs, F.H.H. and Wintermans, J.F.G.M. UDPgalactose-independent synthesis of monogalactosyldiacylglycerol. An enzymatic activity of the spinach chloroplast envelope. Biochim. Biophys. Acta 961 (1988) 38–47.
4.  Kelly, A.A., Froehlich, J.E. and Dörmann, P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15 (2003) 2694–2706. [PMID: 14600212]
5.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [PMID: 15590685]
6.  Fourrier, N., Bedard, J., Lopez-Juez, E., Barbrook, A., Bowyer, J., Jarvis, P., Warren, G. and Thorlby, G. A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. Plant J. 55 (2008) 734–745. [PMID: 18466306]
7.  Moellering, E.R., Muthan, B. and Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330 (2010) 226–228. [PMID: 20798281]
[EC 2.4.1.184 created 1990, modified 2005, modified 2015]
 
 
EC 2.4.1.185     
Accepted name: flavanone 7-O-β-glucosyltransferase
Reaction: UDP-glucose + a flavanone = UDP + a flavanone 7-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-flavanone 7-O-glucosyltransferase; naringenin 7-O-glucosyltransferase; hesperetin 7-O-glucosyl-transferase
Systematic name: UDP-glucose:flavanone 7-O-β-D-glucosyltransferase
Comments: Naringenin and hesperetin can act as acceptors. No action on flavones or flavonols.
References:
1.  McIntosh, C.A., Latchinian, L. and Mansell, R.L. Flavanone-specific 7-O-glucosyltransferase activity in Citrus paradisi seedlings: purification and characterization. Arch. Biochem. Biophys. 282 (1990) 50–57. [PMID: 2171434]
2.  McIntosh, C.A. and Mansell, R.L. Biosynthesis of naringin in Citrus paradisi - UDP-glucosyl-transferase activity in grapefruit seedlings. Phytochemistry 29 (1990) 1533–1538.
[EC 2.4.1.185 created 1992]
 
 
EC 2.4.1.186     
Accepted name: glycogenin glucosyltransferase
Reaction: UDP-α-D-glucose + glycogenin = UDP + α-D-glucosylglycogenin
Other name(s): glycogenin; priming glucosyltransferase; UDP-glucose:glycogenin glucosyltransferase
Systematic name: UDP-α-D-glucose:glycogenin α-D-glucosyltransferase
Comments: The first reaction of this enzyme is to catalyse its own glucosylation, normally at Tyr-194 of the protein if this group is free. When Tyr-194 is replaced by Thr or Phe, the enzyme’s Mn2+-dependent self-glucosylation activity is lost but its intermolecular transglucosylation ability remains [7]. It continues to glucosylate an existing glucosyl group until a length of about 5–13 residues has been formed. Further lengthening of the glycogen chain is then carried out by EC 2.4.1.11, glycogen (starch) synthase. The enzyme is not highly specific for the donor, using UDP-xylose in addition to UDP-glucose (although not glucosylating or xylosylating a xylosyl group so added). It can also use CDP-glucose and TDP-glucose, but not ADP-glucose or GDP-glucose. Similarly it is not highly specific for the acceptor, using water (i.e. hydrolysing UDP-glucose) among others. Various forms of the enzyme exist, and different forms predominate in different organs. Thus primate liver contains glycogenin-2, of molecular mass 66 kDa, whereas the more widespread form is glycogenin-1, with a molecular mass of 38 kDa.
References:
1.  Krisman, C.R. and Barengo, R. A precursor of glycogen biosynthesis: α-1,4-glucan-protein. Eur. J. Biochem. 52 (1975) 117–123. [PMID: 809265]
2.  Pitcher, J., Smythe, C., Campbell, D.G. and Cohen, P. Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur. J. Biochem. 169 (1987) 497–502. [PMID: 3121316]
3.  Pitcher, J., Smythe, C. and Cohen, P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur. J. Biochem. 176 (1988) 391–395. [PMID: 2970965]
4.  Kennedy, L.D., Kirkman, B.R., Lomako, J., Rodriguez, I.R. and Whelan, W.J. The biogenesis of rabbit-muscle glycogen. In: Berman, M.C. and Opie, L.A. (Ed.), Membranes and Muscle, ICSU Press/IRL Press, Oxford, 1985, pp. 65–84.
5.  Rodriguez, I.R. and Whelan, W.J. A novel glycosyl-amino acid linkage: rabbit-muscle glycogen is covalently linked to a protein via tyrosine. Biochem. Biophys. Res. Commun. 132 (1985) 829–836. [PMID: 4062948]
6.  Lomako, J., Lomako, W.M. and Whelan, W.J. A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J. 2 (1988) 3097–3103. [PMID: 2973423]
7.  Alonso, M.D., Lomako, J., Lomako, W.M. and Whelan, W.J. Catalytic activities of glycogenin additional to autocatalytic self-glucosylation. J. Biol. Chem. 270 (1995) 15315–15319. [PMID: 7797519]
8.  Alonso, M.D., Lomako, J., Lomako, W.M. and Whelan, W.J. A new look at the biogenesis of glycogen. FASEB J. 9 (1995) 1126–1137. [PMID: 7672505]
9.  Mu, J. and Roach, P.J. Characterization of human glycogenin-2, a self-glucosylating initiator of liver glycogen metabolism. J. Biol. Chem. 273 (1998) 34850–34856. [PMID: 9857012]
10.  Gibbons, B.J., Roach, P.J. and Hurley, T.D. Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J. Mol. Biol. 319 (2002) 463. [PMID: 12051921]
[EC 2.4.1.186 created 1992 (EC 2.4.1.112 created 1984, incorporated 2007)]
 
 
EC 2.4.1.187     
Accepted name: N-acetylglucosaminyldiphosphoundecaprenol N-acetyl-β-D-mannosaminyltransferase
Reaction: UDP-N-acetyl-α-D-mannosamine + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): uridine diphosphoacetyl-mannosamineacetylglucosaminylpyrophosphorylundecaprenol acetylmannosaminyltransferase; N-acetylmannosaminyltransferase; UDP-N-acetylmannosamine:N-acetylglucosaminyl diphosphorylundecaprenol N-acetylmannosaminyltransferase; UDP-N-acetyl-D-mannosamine:N-acetyl-β-D-glucosaminyldiphosphoundecaprenol β-1,4-N-acetylmannosaminyltransferase; UDP-N-acetyl-D-mannosamine:N-acetyl-β-D-glucosaminyldiphosphoundecaprenol 4-β-N-acetylmannosaminyltransferase; tagA (gene name); tarA (gene name); UDP-N-acetyl-α-D-mannosamine:N-acetyl-β-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 4-β-N-acetylmannosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-mannosamine:N-acetyl-α-D-glucosaminyldiphospho-ditrans,octacis-undecaprenol 4-β-N-acetylmannosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of teichoic acid linkage units in bacterial cell walls.
References:
1.  Murazumi, N., Kumita, K., Araki, Y. and Ito, E. Partial purification and properties of UDP-N-acetylmannosamine:N-acetylglucosaminyl pyrophosphorylundecaprenol N-acetylmannosaminyltransferase from Bacillus subtilis. J. Biochem. (Tokyo) 104 (1988) 980–984. [PMID: 2977387]
2.  Ginsberg, C., Zhang, Y.H., Yuan, Y. and Walker, S. In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem. Biol. 1 (2006) 25–28. [PMID: 17163636]
3.  Zhang, Y.H., Ginsberg, C., Yuan, Y. and Walker, S. Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 45 (2006) 10895–10904. [PMID: 16953575]
[EC 2.4.1.187 created 1992, modified 2016]
 
 
EC 2.4.1.188     
Accepted name: N-acetylglucosaminyldiphosphoundecaprenol glucosyltransferase
Reaction: UDP-α-D-glucose + N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-glucosyl-(1→4)-N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): UDP-D-glucose:N-acetylglucosaminyl pyrophosphorylundecaprenol glucosyltransferase; uridine diphosphoglucose-acetylglucosaminylpyrophosphorylundecaprenol glucosyltransferase; UDP-glucose:N-acetyl-D-glucosaminyldiphosphoundecaprenol 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acetyl-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 4-β-D-glucosyltransferase
References:
1.  Kumita, K., Murazumi, N., Arasaki, Y. and Ito, E. Solubilization and properties of UDP-D-glucose:N-acetylglucosaminyl pyrophosphorylundecaprenol glucosyltransferase from Bacillus coagulans AHU 1366 membranes. J. Biochem. (Tokyo) 104 (1988) 985–988. [PMID: 2977388]
[EC 2.4.1.188 created 1992]
 
 
EC 2.4.1.189     
Accepted name: luteolin 7-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + luteolin = UDP + luteolin 7-O-β-D-glucuronide
Other name(s): uridine diphosphoglucuronate-luteolin 7-O-glucuronosyltransferase; LGT; UDP-glucuronate:luteolin 7-O-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:luteolin 7-O-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme participates in the biosynthesis of luteolin triglucuronide, the major flavone found in the photosynthetically-active mesophyll of the primary leaves of Secale cereale (rye).
References:
1.  Schulz, M. and Weissenböck, G. 3 specific UDP-glucuronate-flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 27 (1988) 1261–1267.
[EC 2.4.1.189 created 1992]
 
 
EC 2.4.1.190     
Accepted name: luteolin-7-O-glucuronide 2′′-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + luteolin 7-O-β-D-glucuronide = UDP + luteolin 7-O-[β-D-glucuronosyl-(1→2)-β-D-glucuronide]
Other name(s): uridine diphosphoglucuronate-luteolin 7-O-glucuronide glucuronosyltransferase; LMT; UDP-glucuronate:luteolin 7-O-glucuronide-glucuronosyltransferase; UDP-glucuronate:luteolin-7-O-β-D-glucuronide 2′′-O-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:luteolin-7-O-β-D-glucuronide 2′′-O-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme participates in the biosynthesis of luteolin triglucuronide, the major flavone found in the photosynthetically-active mesophyll of the primary leaves of Secale cereale (rye).
References:
1.  Schulz, M. and Weissenböck, G. 3 specific UDP-glucuronate-flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 27 (1988) 1261–1267.
2.  Anhalt, S. and Weissenböck, G. Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll. Planta 187 (1992) 83–88. [PMID: 24177970]
[EC 2.4.1.190 created 1992]
 
 
EC 2.4.1.191     
Accepted name: luteolin-7-O-diglucuronide 4′-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + luteolin 7-O-[β-D-glucuronosyl-(1→2)-β-D-glucuronide] = UDP + luteolin 7-O-[β-D-glucuronosyl-(1→2)-β-D-glucuronide]-4′-O-β-D-glucuronide
Other name(s): uridine diphosphoglucuronate-luteolin 7-O-diglucuronide glucuronosyltransferase; UDP-glucuronate:luteolin 7-O-diglucuronide-glucuronosyltransferase; UDPglucuronate:luteolin 7-O-diglucuronide-4′-O-glucuronosyl-transferase; LDT; UDP-glucuronate:luteolin-7-O-β-D-diglucuronide 4′-O-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:luteolin-7-O-β-D-diglucuronide 4′-O-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme participates in the biosynthesis of luteolin triglucuronide, the major flavone found in the photosynthetically-active mesophyll of the primary leaves of Secale cereale (rye).
References:
1.  Schulz, M. and Weissenböck, G. 3 specific UDP-glucuronate-flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 27 (1988) 1261–1267.
[EC 2.4.1.191 created 1992, modified 2011]
 
 
EC 2.4.1.192     
Accepted name: nuatigenin 3β-glucosyltransferase
Reaction: UDP-glucose + (20S,22S,25S)-22,25-epoxyfurost-5-ene-3β,26-diol = UDP + (20S,22S,25S)-22,25-epoxyfurost-5-ene-3β,26-diol 3-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-nuatigenin glucosyltransferase
Systematic name: UDP-glucose:(20S,22S,25S)-22,25-epoxyfurost-5-ene-3β,26-diol 3-O-β-D-glucosyltransferase
Comments: Some other sapogenins can act as glucosyl acceptors. Involved in the biosynthesis of plant saponins. Not identical with EC 2.4.1.173 (sterol 3β-glucosyltransferase) or EC 2.4.1.193 (sarsapogenin 3β-glucosyltransferase).
References:
1.  Kalinowska, M. and Wojciechowski, Z.A. Enzymatic-synthesis of nuatigenin 3-β-D-glucoside in oat (Avena sativa) leaves. Phytochemistry 25 (1986) 2525–2529.
2.  Kalinowska, M. and Wojciechowski, Z.A. Subcellular-localization of UDPG-nuatigenin glucosyltransferase in oat leaves. Phytochemistry 26 (1987) 353–357.
[EC 2.4.1.192 created 1992]
 
 
EC 2.4.1.193     
Accepted name: sarsapogenin 3β-glucosyltransferase
Reaction: UDP-glucose + (25S)-5β-spirostan-3β-ol = UDP + (25S)-5β-spirostan-3β-ol 3-O-β-D-glucoside
Other name(s): uridine diphosphoglucose-sarsapogenin glucosyltransferase
Systematic name: UDP-glucose:(25S)-5β-spirostan-3β-ol 3-O-β-D-glucosyltransferase
Comments: Specific to 5β-spirostanols. Involved in the biosynthesis of plant saponins. Not identical with EC 2.4.1.173 (sterol 3β-glucosyltransferase) or EC 2.4.1.192 (nuatigenin 3β-glucosyltransferase).
References:
1.  Paczkowski, C. and Wojciechowski, Z.A. The occurrence of UDPG-dependent glucosyltransferase specific for sarsasapogenin in Asparagus officinalis. Phytochemistry 27 (1988) 2743–2747.
[EC 2.4.1.193 created 1992]
 
 
EC 2.4.1.194     
Accepted name: 4-hydroxybenzoate 4-O-β-D-glucosyltransferase
Reaction: UDP-glucose + 4-hydroxybenzoate = UDP + 4-(β-D-glucosyloxy)benzoate
Other name(s): uridine diphosphoglucose-4-hydroxybenzoate glucosyltransferase; UDP-glucose:4-(β-D-glucopyranosyloxy)benzoic acid glucosyltransferase; HBA glucosyltransferase; p-hydroxybenzoate glucosyltransferase; PHB glucosyltransferase; PHB-O-glucosyltransferase
Systematic name: UDP-glucose:4-hydroxybenzoate 4-O-β-D-glucosyltransferase
References:
1.  Katsumata, T., Shige, H. and Ejiri, S.-I. Biochemical-studies on pollen. 34. UDP glucose-4-(β-D-glucopyranosyloxy) benzoic-acid glucosyltransferase from the pollen of Pinus densiflora. Phytochemistry 28 (1989) 359–362.
[EC 2.4.1.194 created 1992]
 
 
EC 2.4.1.195     
Accepted name: N-hydroxythioamide S-β-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (Z)-2-phenyl-1-thioacetohydroximate = UDP + desulfoglucotropeolin
(2) UDP-α-D-glucose + an (E)-ω-(methylsulfanyl)alkyl-thiohydroximate = UDP + an aliphatic desulfoglucosinolate
(3) UDP-α-D-glucose + (E)-2-(1H-indol-3-yl)-1-thioacetohydroximate = UDP + desulfoglucobrassicin
Glossary: an aliphatic desulfoglucosinolate = an ω-(methylsulfanyl)alkylhydroximate S-glucoside
Other name(s): UGT74B1 (gene name); desulfoglucosinolate-uridine diphosphate glucosyltransferase; uridine diphosphoglucose-thiohydroximate glucosyltransferase; thiohydroximate β-D-glucosyltransferase; UDPG:thiohydroximate glucosyltransferase; thiohydroximate S-glucosyltransferase; thiohydroximate glucosyltransferase; UDP-glucose:thiohydroximate S-β-D-glucosyltransferase; UDP-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-hydroxy-2-phenylethanethioamide S-β-D-glucosyltransferase
Comments: The enzyme specifically glucosylates the thiohydroximate functional group. It is involved in the biosynthesis of glucosinolates in cruciferous plants, and acts on aliphatic, aromatic, and indolic substrates.
References:
1.  Jain, J.C., Reed, D.W., Groot Wassink, J.W.D. and Underhill, E.W. A radioassay of enzymes catalyzing the glucosylation and sulfation steps of glucosinolate biosynthesis in Brassica species. Anal. Biochem. 178 (1989) 137–140. [PMID: 2524977]
2.  Reed, D.W., Davin, L., Jain, J.C., Deluca, V., Nelson, L. and Underhill, E.W. Purification and properties of UDP-glucose:thiohydroximate glucosyltransferase from Brassica napus L. seedlings. Arch. Biochem. Biophys. 305 (1993) 526–532. [PMID: 8373190]
3.  Marillia, E.F., MacPherson, J.M., Tsang, E.W., Van Audenhove, K., Keller, W.A. and GrootWassink, J.W. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli. Physiol. Plant. 113 (2001) 176–184. [PMID: 12060294]
4.  Fahey, J.W., Zalcmann, A.T. and Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (2001) 5–51. [PMID: 11198818]
5.  Grubb, C.D., Zipp, B.J., Ludwig-Muller, J., Masuno, M.N., Molinski, T.F. and Abel, S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40 (2004) 893–908. [PMID: 15584955]
[EC 2.4.1.195 created 1992, modified 2006, modified 2018]
 
 
EC 2.4.1.196     
Accepted name: nicotinate glucosyltransferase
Reaction: UDP-glucose + nicotinate = UDP + N-glucosylnicotinate
Other name(s): uridine diphosphoglucose-nicotinate N-glucosyltransferase; UDP-glucose:nicotinic acid-N-glucosyltransferase
Systematic name: UDP-glucose:nicotinate N-glucosyltransferase
References:
1.  Upmeier, B., Thomzik, J.E. and Barz, W. Enzymatic studies on the reversible synthesis of nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures. Z. Naturforsch. C: Biosci. 43 (1988) 835–842.
[EC 2.4.1.196 created 1992]
 
 
EC 2.4.1.197     
Accepted name: high-mannose-oligosaccharide β-1,4-N-acetylglucosaminyltransferase
Reaction: Transfers an N-acetyl-D-glucosamine residue from UDP-N-acetyl-D-glucosamine to the 4-position of a mannose linked α-(1→6) to the core mannose of high-mannose oligosaccharides produced by Dictyostelium discoideum
Other name(s): uridine diphosphoacetylglucosamine-oligosaccharide acetylglucosaminyltransferase; acetylglucosamine-oligosaccharide acetylglucosaminyltransferase; UDP-GlcNAc:oligosaccharide β-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:high-mannose-oligosaccharide β-1,4-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:high-mannose-oligosaccharide 4-β-N-acetylglucosaminyltransferase
Comments: The activity of the intersecting mannose residue as acceptor is dependent on two other mannose residues attached by α-1,3 and α-1,6 links.
References:
1.  Sharkey, D.J. and Kornfeld, R. Identification of an N-acetylglucosaminyltransferase in Dictyostelium discoideum that transfers an "intersecting" N-acetylglucosamine residue to high mannose oligosaccharides. J. Biol. Chem. 264 (1989) 10411–10419. [PMID: 2525124]
[EC 2.4.1.197 created 1992]
 
 
EC 2.4.1.198     
Accepted name: phosphatidylinositol N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 1-phosphatidyl-1D-myo-inositol = UDP + 6-(N-acetyl-α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol
Glossary: 1-phosphatidyl-1D-myo-inositol = PtdIns
Other name(s): UDP-N-acetyl-D-glucosamine:phosphatidylinositol N-acetyl-D-glucosaminyltransferase; uridine diphosphoacetylglucosamine α1,6-acetyl-D-glucosaminyltransferase; UDP-N-acetyl-D-glucosamine:1-phosphatidyl-1D-myo-inositol 6-(N-acetyl-α-D-glucosaminyl)transferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:1-phosphatidyl-1D-myo-inositol 6-(N-acetyl-α-D-glucosaminyl)transferase (configuration-retaining)
Comments: Involved in the first step of glycosylphosphatidylinositol (GPI) anchor formation in all eukaryotes. In mammalian cells, the enzyme is composed of at least five subunits (PIG-A, PIG-H, PIG-C, GPI1 and PIG-P). PIG-A subunit is the catalytic subunit. In some species, the long-chain acyl groups of the phosphatidyl group are partly replaced by long-chain alkyl or alk-1-enyl groups.
References:
1.  Doering, T.L., Masteron, W.J., Englund, P.T. and Hart, G.W. Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J. Biol. Chem. 264 (1989) 11168–11173. [PMID: 2525555]
2.  Watanabe, R., Inoue, N., Westfall, B., Taron, C.H., Orlean, P., Takeda, J. and Kinoshita, T. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H , PIG-C and GPI1. EMBO J. 17 (1998) 877–885. [PMID: 9463366]
3.  Watanabe, R., Murakami, Y., Marmor, M.D., Inoue, N., Maeda, Y., Hino, J., Kangawa, K., Julius, M. and Kinoshita, T. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 19 (2000) 4402–4411. [PMID: 10944123]
[EC 2.4.1.198 created 1992, modified 2002]
 
 
EC 2.4.1.201     
Accepted name: α-1,6-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein] = UDP + β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-[β-D-GlcNAc-(1→4)]-[β-D-GlcNAc-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT4C (gene name); N-acetylglucosaminyltransferase VI; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase VI; uridine diphosphoacetylglucosamine-glycopeptide β-1→4-acetylglucosaminyltransferase VI; mannosyl-glycoprotein β-1,4-N-acetylglucosaminyltransferase; GnTVI; GlcNAc-T VI; UDP-N-acetyl-D-glucosamine:2,6-bis(N-acetyl-β-D-glucosaminyl)-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→6)-[N-acetyl-β-D-glucosaminyl-(1→2)]-α-D-mannosyl-glycoprotein 4-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Requires a high concentration of Mn2+ for maximal activity. The enzyme, characterized from hen oviduct membranes, participates in the processing of N-glycans in the Golgi apparatus. It transfers GlcNAc in β1-4 linkage to a D-mannose residue that already has GlcNAc residues attached at positions 2 and 6 by β linkages. No homologous enzyme appears to exist in mammals.
References:
1.  Brockhausen, I., Hull, E., Hindsgaul, O., Schachter, H., Shah, R.N., Michnick, S.W. and Carver, J.P. Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc β1-6 (GlcNAc β1-2)Man α-R (GlcNAc to Man) β-4-N-acetylglucosaminyltransferase VI. J. Biol. Chem. 264 (1989) 11211–11221. [PMID: 2525556]
2.  Taguchi, T., Ogawa, T., Inoue, S., Inoue, Y., Sakamoto, Y., Korekane, H. and Taniguchi, N. Purification and characterization of UDP-GlcNAc:GlcNAcβ1-6(GlcNAcβ1-2)Manα1-R [GlcNAc to Man]-β1,4-N-acetylglucosaminyltransferase VI from hen oviduct. J. Biol. Chem. 275 (2000) 32598–32602. [PMID: 10903319]
3.  Sakamoto, Y., Taguchi, T., Honke, K., Korekane, H., Watanabe, H., Tano, Y., Dohmae, N., Takio, K., Horii, A. and Taniguchi, N. Molecular cloning and expression of cDNA encoding chicken UDP-N-acetyl-D-glucosamine (GlcNAc): GlcNAcβ 1-6(GlcNAcβ 1-2)- manα 1-R[GlcNAc to man]β 1,4N-acetylglucosaminyltransferase VI. J. Biol. Chem. 275 (2000) 36029–36034. [PMID: 10962001]
[EC 2.4.1.201 created 1992, modified 2001, modified 2018]
 
 
EC 2.4.1.202     
Accepted name: 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-D-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
(2) UDP-α-D-glucose + 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = UDP + (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside
Glossary: 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one = DIBOA
2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one = DIMBOA
(2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIBOA β-D-glucoside
(2R)-4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside = DIMBOA β-D-glucoside
Other name(s): uridine diphosphoglucose-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-glucosyltransferase; BX8; BX9; benzoxazinoid glucosyltransferase; DIMBOA glucosyltransferase
Systematic name: UDP-α-D-glucose:2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-β-D-glucosyltransferase
Comments: The enzyme is involved in the detoxification of the benzoxazinoids DIBOA (2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one) and DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one) which are stored as the respective non-toxic glucosides in the vacuoles in some plants, most commonly from the family of Poaceae (grasses). Benzoxazinoids are known to exhibit antimicrobial, antifeedant, and antiinsecticidal effects and are involved in the interaction of plants with other plants, insects, or microorganisms.
References:
1.  Bailey, B.A. and Larson, R.L. Hydroxamic acid glucosyltransferases from maize seedlings. Plant Physiol. 90 (1989) 1071–1076. [PMID: 16666853]
2.  von Rad, U., Huttl, R., Lottspeich, F., Gierl, A. and Frey, M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J. 28 (2001) 633–642. [PMID: 11851909]
[EC 2.4.1.202 created 1992, modified 2012]
 
 
EC 2.4.1.203     
Accepted name: trans-zeatin O-β-D-glucosyltransferase
Reaction: UDP-glucose + trans-zeatin = UDP + O-β-D-glucosyl-trans-zeatin
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Other name(s): zeatin O-β-D-glucosyltransferase; uridine diphosphoglucose-zeatin O-glucosyltransferase; zeatin O-glucosyltransferase
Systematic name: UDP-glucose:trans-zeatin O-β-D-glucosyltransferase
Comments: Unlike EC 2.4.1.215, cis-zeatin O-β-D-glucosyltransferase, UDP-D-xylose can also act as donor (cf. EC 2.4.2.40, zeatin O-β-D-xylosyltransferase).
References:
1.  Dixon, S.C., Martin, R.C., Mok, R.C., Shaw, G. and Mok, D.W.S. Zeatin glycosylation enzymes in Phaseolus - isolation of O-glucosyltransferase from Phaseolus lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 90 (1989) 1316–1321. [PMID: 16666929]
[EC 2.4.1.203 created 1992, modified 2001]
 
 
EC 2.4.1.205     
Accepted name: galactogen 6β-galactosyltransferase
Reaction: UDP-α-D-galactose + galactogen = UDP + (1→6)-β-D-galactosylgalactogen
Other name(s): uridine diphosphogalactose-galactogen galactosyltransferase; 1,6-D-galactosyltransferase; β-(1-6)-D-galactosyltransferase; UDP-galactose:galactogen β-1,6-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:galactogen 6-β-D-galactosyltransferase
Comments: Galactogen from Helix pomatia is the most effective acceptor.
References:
1.  Goudsmit, E.M., Ketchum, P.A., Grossens, M.K. and Blake, D.A. Biosynthesis of galactogen: identification of a β-(1→6)-D-galactosyltransferase in Helix pomatia albumen glands. Biochim. Biophys. Acta 992 (1989) 289–297. [PMID: 2505854]
[EC 2.4.1.205 created 1992]
 
 
EC 2.4.1.206     
Accepted name: lactosylceramide 1,3-N-acetyl-β-D-glucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Glossary: lactosylceramide = β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
lactotriosylceramide = N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): LA2 synthase; β1→3-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-lactosylceramide β-acetylglucosaminyltransferase; lactosylceramide β-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:D-galactosyl-1,4-β-D-glucosylceramide β-1,3-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-(1→4)-β-D-glucosyl(1↔1)ceramide 3-β-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 3-β-N-acetylglucosaminyltransferase (configuration-inverting)
References:
1.  Gottfries, J., Percy, A.K., Maansson, J.-E., Fredman, P., Wilkstrand, C.J., Friedman, H.S., Bigner, D.D. and Svennerholm, L. Glycolipids and glycosyltransferases in permanent cell lines established from human medulloblastomas. Biochim. Biophys. Acta 1081 (1991) 253–261. [PMID: 1825612]
2.  Holmes, E.H., Hakomori, S. and Ostrander, G.K. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed β1→3N-acetylglucosaminyltransferase. J. Biol. Chem. 262 (1987) 15649–15658. [PMID: 2960671]
3.  Percy, A.K., Gottfries, J., Vilbergsson, G., Maansson, J.E. and Svennerholm, J. Glycosphingolipid glycosyltransferases in human fetal brain. J. Neurochem. 56 (1991) 1461–1465. [PMID: 1901591]
[EC 2.4.1.206 created 1992]
 
 
EC 2.4.1.208     
Accepted name: diglucosyl diacylglycerol synthase (1,2-linking)
Reaction: UDP-α-D-glucose + 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol = 1,2-diacyl-3-O-[α-D-glucopyranosyl-(1→2)-O-α-D-glucopyranosyl]-sn-glycerol + UDP
Other name(s): monoglucosyl diacylglycerol (1→2) glucosyltransferase; MGlcDAG (1→2) glucosyltransferase; DGlcDAG synthase (ambiguous); UDP-glucose:1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol (1→2) glucosyltransferase; diglucosyl diacylglycerol synthase
Systematic name: UDP-α-D-glucose:1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol 2-glucosyltransferase
Comments: The enzyme from Acholeplasma laidlawii requires Mg2+.
References:
1.  Karlsson, O.P., Rytomaa, M., Dahlqvist, A., Kinnunen, P.K., Wieslander, A. Correlation between bilayer lipid dynamics and activity of the diglucosyldiacylglycerol synthase from Acholeplasma laidlawii membranes. Biochemistry 35 (1996) 10094–10102. [PMID: 8756472]
[EC 2.4.1.208 created 1999, modified 2014]
 
 
EC 2.4.1.209     
Accepted name: cis-p-coumarate glucosyltransferase
Reaction: UDP-glucose + cis-p-coumarate = 4′-O-β-D-glucosyl-cis-p-coumarate + UDP
Systematic name: UDP-glucose:cis-p-coumarate β-D-glucosyltransferase
Comments: cis-Caffeic acid also serves as a glucosyl acceptor with the enzyme from Sphagnum fallax kinggr. The corresponding trans-isomers are not substrates.
References:
1.  Rasmussen, S. and Rudolph, H. Isolation, purification and characterization of UDP-glucose:cis-p-coumaric acid-β-D-glucosyltransferase from Sphagnum fallax. Phytochemistry 46 (1997) 449–453.
[EC 2.4.1.209 created 2000]
 
 
EC 2.4.1.210     
Accepted name: limonoid glucosyltransferase
Reaction: UDP-glucose + limonin = glucosyl-limonin + UDP
Other name(s): uridine diphosphoglucose-limonoid glucosyltransferase
Systematic name: UDP-glucose:limonin glucosyltransferase
Comments: The enzyme purified from navel orange albedo tissue also acts on the related tetranortriterpenoid nomilin.
References:
1.  Shin, H., Suhayda, C.G., Hsu, W.-J. and Robertson, G.H. Purification of limonoid glucosyltransferase from navel orange albedo tissue. Phytochemistry 46 (1997) 33–37.
[EC 2.4.1.210 created 2000]
 
 
EC 2.4.1.212     
Accepted name: hyaluronan synthase
Reaction: (1) UDP-N-acetyl-α-D-glucosamine + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] = UDP + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan]
(2) UDP-α-D-glucuronate + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan] = UDP + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan]
Glossary: GlcA = glucuronic acid
Other name(s): spHAS; seHAS; Alternating UDP-α-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase
Systematic name: Alternating UDP-N-acetyl-α-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme from Streptococcus Group A and Group C requires Mg2+. The enzyme adds GlcNAc to nascent hyaluronan when the non-reducing end is GlcA, but it adds GlcA when the non-reducing end is GlcNAc [3]. The enzyme is highly specific for UDP-GlcNAc and UDP-GlcA; no copolymerization is observed if either is replaced by UDP-Glc, UDP-Gal, UDP-GalNAc or UDP-GalA. Similar enzymes have been found in a variety of organisms.
References:
1.  DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. Molecular cloning, identification and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes. J. Biol. Chem. 268 (1993) 19181–19184. [PMID: 8366070]
2.  Jing, W. and DeAngelis, P.L. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 10 (2000) 883–889. [PMID: 10988250]
3.  DeAngelis, P.L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 274 (1999) 26557–26562. [PMID: 10473619]
4.  Tlapak-Simmons, V.L., Baron, C.A. and Weigel, P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43 (2004) 9234–9242. [PMID: 15248781]
[EC 2.4.1.212 created 2001, modified 2007]
 
 
EC 2.4.1.215     
Accepted name: cis-zeatin O-β-D-glucosyltransferase
Reaction: UDP-glucose + cis-zeatin = UDP + O-β-D-glucosyl-cis-zeatin
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Systematic name: UDP-glucose:cis-zeatin O-β-D-glucosyltransferase
Comments: The enzyme from maize can use cis-zeatin and UDP-glucose as substrates, but not cis-ribosylzeatin, trans-zeatin or trans-ribosylzeatin. Unlike EC 2.4.1.203, trans-zeatin O-β-D-glucosyltransferase, UDP-D-xylose cannot act as a donor.
References:
1.  Martin, R.C., Mok, M.C., Habben, J.E. and Mok, D.W.S. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 98 (2001) 5922–5926. [PMID: 11331778]
[EC 2.4.1.215 created 2001]
 
 
EC 2.4.1.218     
Accepted name: hydroquinone glucosyltransferase
Reaction: UDP-glucose + hydroquinone = UDP + hydroquinone-O-β-D-glucopyranoside
Other name(s): arbutin synthase; hydroquinone:O-glucosyltransferase
Systematic name: UDP-glucose:hydroquinone-O-β-D-glucosyltransferase
Comments: Hydroquinone is the most effective acceptor, but over 40 phenolic compounds are also glucosylated, but at lower rates.
References:
1.  Arend, J., Warzecha, H. and Stöckigt, J. Hydroquinone:O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences. Phytochemistry 53 (2000) 187–193. [PMID: 10680170]
2.  Arend, J., Warzecha, H., Hefner, T. and Stöckigt, J. Utilizing genetically engineered bacteria to produce plant specific glucosides. Biotechnol. Bioeng. 76 (2001) 126–131. [PMID: 11505382]
[EC 2.4.1.218 created 2002]
 
 
EC 2.4.1.219     
Accepted name: vomilenine glucosyltransferase
Reaction: UDP-glucose + vomilenine = UDP + raucaffricine
Other name(s): UDPG:vomilenine 21-β-D-glucosyltransferase
Systematic name: UDP-glucose:vomilenine 21-O-β-D-glucosyltransferase
Comments: The indole alkaloid raucaffricine accumulates during the culture of Rauvolfia cell suspensions.
References:
1.  Warzecha, H., Obitz, P. and Stöckigt, J. Purification, partial amino acid sequence and structure of the product of raucaffricine-O-β-D-glucosidase from plant cell cultures of Rauwolfia serpentina. Phytochemistry 50 (1999) 1099–1109. [PMID: 10234858]
2.  Warzecha, H., Gerasimenko, I., Kutchan, T.M. and Stöckigt, J. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54 (2000) 657–666. [PMID: 10975500]
3.  Ruyter, C.M. and Stöckigt, J. Enzymatic formation of raucaffricine, the major indole alkaloid of Rauwolfia serpentina cell-suspension cultures. Helv. Chim. Acta 74 (1991) 1707–1712.
[EC 2.4.1.219 created 2002]
 
 
EC 2.4.1.220     
Accepted name: indoxyl-UDPG glucosyltransferase
Reaction: UDP-glucose + indoxyl = UDP + indican
Glossary: indoxyl = indole-3-ol
Other name(s): indoxyl-UDPG-glucosyltransferase
Systematic name: UDP-glucose:indoxyl 3-O-β-D-glucosyltransferase
Comments: Also acts to a limited extent on 4-, 5-, 6- and 7-hydroxyindole. After enzymic or chemical hydrolysis, indican forms indoxyl, which, in turn, is converted in the presence of oxygen to the dye indigo.
References:
1.  Marcinek, H., Weyler, W., Deus-Neumann, B. and Zenk, M.H. Indoxyl-UDPG-glucosyltransferase from Baphicacanthus cusia. Phytochemistry 53 (2000) 201–207. [PMID: 10680172]
[EC 2.4.1.220 created 2002]
 
 
EC 2.4.1.222     
Accepted name: O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase
Reaction: transfers a β-D-GlcNAc residue from UDP-D-GlcNAc to the fucose residue of a fucosylated protein acceptor
Other name(s): O-fucosylpeptide β-1,3-N-acetylglucosaminyltransferase; fringe (ambiguous)
Systematic name: UDP-D-GlcNAc:O-L-fucosylpeptide 3-β-N-acetyl-D-glucosaminyltransferase
Comments: O-Fucosylpeptide 3-β-N-acetylglucosaminyltransferases are the products of fringe genes. O-linked fucose is an unusual form of glycosylation where the fucose is attached directly to proteins through the hydroxy groups of Ser or Thr residues.
References:
1.  Moloney, D.J., Panin, V.M., Johnston, S.H., Chen, J., Shao, L., Wilson, R., Wang, Y., Stanley, P., Irvine, K.D., Haltiwanger, R.S. and Vogt, T.F. Fringe is a glycosyltransferase that modifies Notch. Nature 406 (2000) 369–375. [PMID: 10935626]
[EC 2.4.1.222 created 2002]
 
 
EC 2.4.1.223     
Accepted name: glucuronosyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(α-D-GlcNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): α-N-acetylglucosaminyltransferase I; α1,4-N-acetylglucosaminyltransferase; glucuronosylgalactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl-proteoglycan 4IV-α-N-acetyl-D-glucosaminyltransferase; glucuronyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 4IV-α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Comments: Enzyme involved in the initiation of heparin and heparan sulfate synthesis, transferring GlcNAc to the (GlcA-Gal-Gal-Xyl-)Ser core. Apparently products of both the human EXTL2 and EXTL3 genes can catalyse this reaction. In Caenorhabditis elegans, the product of the rib-2 gene displays this activity as well as that of EC 2.4.1.224, glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase. For explanation of the use of a superscript in the systematic name, see 2-Carb-37.2.
References:
1.  Kitagawa, H., Shimakawa, H. and Sugahara, K. The tumor suppressor EXT-like gene EXTL2 encodes an α1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274 (1999) 13933–13937. [PMID: 10318803]
2.  Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834–4838. [PMID: 11121397]
[EC 2.4.1.223 created 2002, modified 2016]
 
 
EC 2.4.1.224     
Accepted name: glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-D-glucosamine + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan = UDP + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan
Other name(s): α-N-acetylglucosaminyltransferase II glucuronyl-N-acetylglucosaminylproteoglycan α-1,4-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the enzyme from human (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the 4-β-glucuronosyltransferase (EC 2.4.1.225, N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase) activity required for the synthesis of the heparan sulfate disaccharide repeats. Other human forms of this enzyme (e.g. the product of the EXTL1 gene) have only the 4-α-N-acetylglucosaminyltransferase activity. In Caenorhabditis elegans, the product of the rib-2 gene displays the activities of this enzyme as well as EC 2.4.1.223, glucuronosyl-galactosyl-proteoglycan 4-α-N-acetylglucosaminyltransferase.
References:
1.  Kim, B.T., Kitagawa, H., Tamura, J., Saito, T., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl. Acad. Sci. USA 98 (2001) 7176–7181. [PMID: 11390981]
2.  Kitagawa, H., Egusa, N., Tamura, J.I., Kusche-Gullberg, M., Lindahl, U. and Sugahara, K. rib-2, a Caenorhabditis elegans homolog of the human tumor suppressor EXT genes encodes a novel α1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. J. Biol. Chem. 276 (2001) 4834–4838. [PMID: 11121397]
3.  Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282–286. [PMID: 11256613]
4.  Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265–26268. [PMID: 9756849]
[EC 2.4.1.224 created 2002]
 
 
EC 2.4.1.225     
Accepted name: N-acetylglucosaminyl-proteoglycan 4-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan = UDP + β-D-glucuronosyl-(1→4)-N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan
Other name(s): N-acetylglucosaminylproteoglycan β-1,4-glucuronyltransferase; heparan glucuronyltransferase II
Systematic name: UDP-α-D-glucuronate:N-acetyl-α-D-glucosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 4-β-glucuronosyltransferase
Comments: Involved in the biosynthesis of heparin and heparan sulfate. Some forms of the human enzyme (particularly the enzyme complex encoded by the EXT1 and EXT2 genes) act as bifunctional glycosyltransferases, which also have the glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-α-N-acetylglucosaminyltransferase (EC 2.4.1.224) activity required for the synthesis of the heparan sulfate disaccharide repeats.
References:
1.  Senay, C., Lind, T., Muguruma, K., Tone, Y., Kitagawa, H., Sugahara, K., Lidholt, K., Lindahl, U. and Kusche-Gullberg, M. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1 (2000) 282–286. [PMID: 11256613]
2.  Lind, T., Tufaro, F., McCormick, C., Lindahl, U. and Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273 (1998) 26265–26268. [PMID: 9756849]
[EC 2.4.1.225 created 2002]
 
 
EC 2.4.1.226     
Accepted name: N-acetylgalactosaminyl-proteoglycan 3-β-glucuronosyltransferase
Reaction: (1) UDP-α-D-glucuronate + [protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
(2) UDP-α-D-glucuronate + [protein]-3-O-([β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-[β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)]n-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
Other name(s): chondroitin glucuronyltransferase II; α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase; UDP-α-D-glucuronate:N-acetyl-β-D-galactosaminyl-(1→4)-β-D-glucuronosyl-proteoglycan 3-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-GalNAc-(1→4)-β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine 3-β-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of chondroitin and dermatan sulfate. The human chondroitin synthetase is a bifunctional glycosyltransferase, which has the 3-β-glucuronosyltransferase and 4-β-N-acetylgalactosaminyltransferase (EC 2.4.1.175) activities required for the synthesis of the chondroitin sulfate disaccharide repeats. Similar chondroitin synthase ’co-polymerases’ can be found in Pasteurella multocida and Escherichia coli. There is also another human protein with apparently only the 3-β-glucuronosyltransferase activity.
References:
1.  Kitagawa, H., Uyama, T. and Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276 (2001) 38721–38726. [PMID: 11514575]
2.  DeAngelis, P.L. and Padgett-McCue, A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J. Biol. Chem. 275 (2000) 24124–24129. [PMID: 10818104]
3.  Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H. and Kimata, K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277 (2002) 21567–21575. [PMID: 11943778]
4.  Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K. and Narimatsu, H. Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase which transfers glucuronic acid to N-acetylgalactosamine. J. Biol. Chem. 277 (2002) 38179–38188. [PMID: 12145278]
[EC 2.4.1.226 created 2002, modified 2018]
 
 
EC 2.4.1.227     
Accepted name: undecaprenyldiphospho-muramoylpentapeptide β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = UDP + β-D-GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol
Other name(s): MurG transferase; UDP-N-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol β-1,4-N-acetylglucosaminlytransferase; UDP-N-acetyl-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-α-D-muramyl(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol 4-β-N-acetylglucosaminlytransferase (configuration-inverting)
Comments: The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, click here).
References:
1.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 2.4.1.227 created 2002]
 
 
EC 2.4.1.228     
Accepted name: lactosylceramide 4-α-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + α-D-galactosyl-(1→4)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Glossary: lactosylceramide = β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): Galβ1-4Glcβ1-Cer α1,4-galactosyltransferase; globotriaosylceramide/CD77 synthase; histo-blood group Pk UDP-galactose; UDP-galactose:lactosylceramide 4II-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-D-glucosyl(1↔1)ceramide 4II-α-D-galactosyltransferase; UDP-galactose:β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide 4II-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-galactosyl-(1→4)-D-glucosyl-(1↔1)-ceramide 4II-α-D-galactosyltransferase
Comments: For explanation of superscript II in systematic name, see 2-carb.37.
References:
1.  Bailly, P., Piller, F., Cartron, J.P., Leroy, Y. and Fournet, B. Identification of UDP-galactose: lactose (lactosylceramide) α-4 and β-3 galactosyltransferases in human kidney. Biochem. Biophys. Res. Commun. 141 (1986) 84–91. [PMID: 3099784]
2.  Steffensen, R., Carlier, K., Wiels, J., Levery, S.B., Stroud, M., Cedergren, B., Nilsson Sojka, B., Bennett, E.P., Jersild, C. and Clausen, H. Cloning and expression of the histo-blood group Pk UDP-galactose: Galβ1-4Glcβ1-Cer α1,4-galactosyltransferase. Molecular genetic basis of the p phenotype. J. Biol. Chem. 275 (2000) 16723–16729. [PMID: 10747952]
3.  Kojima, Y., Fukumoto, S., Furukawa, K., Okajima, T., Wiels, J., Yokoyama, K., Suzuki, Y., Urano, T., Ohta, M. and Furukawa, K. Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J. Biol. Chem. 275 (2000) 15152–15156. [PMID: 10748143]
[EC 2.4.1.228 created 2002]
 
 
EC 2.4.1.229     
Accepted name: [Skp1-protein]-hydroxyproline N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + [Skp1-protein]-trans-4-hydroxy-L-proline = UDP + [Skp1-protein]-O-(N-acetyl-α-D-glucosaminyl)-trans-4-hydroxy-L-proline
Other name(s): Skp1-HyPro GlcNAc-transferase; UDP-N-acetylglucosamine (GlcNAc):hydroxyproline polypeptide GlcNAc-transferase; UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase; UDP-GlcNAc:hydroxyproline polypeptide GlcNAc-transferase; UDP-N-acetyl-D-glucosamine:[Skp1-protein]-hydroxyproline N-acetyl-D-glucosaminyl-transferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:[Skp1-protein]-trans-4-hydroxy-L-proline N-acetyl-α-D-glucosaminyl-transferase
Comments: Skp1 is a cytoplasmic and nuclear protein required for the ubiquitination of cell cycle regulatory proteins and transcriptional factors. In Dictyostelium Skp1 is modified by the linear pentasaccharide Galα1-6Galα1-L-Fucα1-2Galβ1-3GlcNAc, which is attached to a hydroxyproline residue at position 143. This enzyme catalyses the first step in the building up of the pentasaccharide by attaching an N-acetylglucosaminyl group to the hydroxyproline residue. It requires dithiothreitol and a divalent cation for activity.
References:
1.  van der Wel, H., Morris, H.R., Panico, M., Paxton, T., Dell, A., Kaplan, L. and West, C.M. Molecular cloning and expression of a UDP-N-acetylglucosamine (GlcNAc):hydroxyproline polypeptide GlcNAc-transferase that modifies Skp1 in the cytoplasm of Dictyostelium. J. Biol. Chem. 277 (2002) 46328–46337. [PMID: 12244115]
2.  Teng-umnuay, P., van der Wel, H. and West, C.M. Identification of a UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase in the cytoplasm of Dictyostelium. J. Biol. Chem. 274 (1999) 36392–36402. [PMID: 10593934]
3.  West, C.M., van der Wel, H. and Gaucher, E.A. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology 12 (2002) 17. [PMID: 11886837]
[EC 2.4.1.229 created 2003, modified 2013]
 
 
EC 2.4.1.234     
Accepted name: kaempferol 3-O-galactosyltransferase
Reaction: UDP-α-D-galactose + kaempferol = UDP + kaempferol 3-O-β-D-galactoside
Other name(s): F3GalTase; UDP-galactose:kaempferol 3-O-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:kaempferol 3-O-β-D-galactosyltransferase
Comments: Acts on the endogenous flavonols kaempferol and quercetin, to a lesser extent on myricetin and fisetin, and weakly on galangin and isorhamnetin. The reaction can occur equally well in both directions.
References:
1.  Miller, K.D., Guyon, V., Evans, J.N., Shuttleworth, W.A. and Taylor, L.P. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J. Biol. Chem. 274 (1999) 34011–34019. [PMID: 10567367]
[EC 2.4.1.234 created 2004]
 
 
EC 2.4.1.235      
Deleted entry: cyanidin 3-O-rutinoside 5-O-glucosyltransferase. Enzyme is identical to EC 2.4.1.116, cyanidin 3-O-rutinoside 5-O-glucosyltransferase
[EC 2.4.1.235 created 2004, deleted 2006]
 
 
EC 2.4.1.236     
Accepted name: flavanone 7-O-glucoside 2′′-O-β-L-rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + a flavanone 7-O-β-D-glucoside = UDP + a flavanone 7-O-[α-L-rhamnosyl-(1→2)-β-D-glucoside]
Glossary: UDP-β-L-rhamnose = UDP-6-deoxy-β-L-mannose
Other name(s): UDP-rhamnose:flavanone-7-O-glucoside-2′′-O-rhamnosyltransferase; 1→2 UDP-rhamnosyltransferase; UDP-L-rhamnose:flavanone-7-O-glucoside 2′′-O-β-L-rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:flavanone-7-O-glucoside 2′′-O-α-L-rhamnosyltransferase
Comments: Acts on the 7-O-glucoside of naringenin and hesperetin, also the flavone 7-O-glucosides of luteolin and apigenin.
References:
1.  Bar-Peled, M., Lewinsohn, E., Fluhr, R. and Gressel, J. UDP-rhamnose:flavanone-7-O-glucoside-2′′-O-rhamnosyltransferase. Purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus. J. Biol. Chem. 266 (1991) 20953–20959. [PMID: 1939145]
[EC 2.4.1.236 created 2004]
 
 
EC 2.4.1.237     
Accepted name: flavonol 7-O-β-glucosyltransferase
Reaction: UDP-glucose + a flavonol = UDP + a flavonol 7-O-β-D-glucoside
Other name(s): UDP-glucose:flavonol 7-O-glucosyltransferase
Systematic name: UDP-glucose:flavonol 7-O-β-D-glucosyltransferase
Comments: Acts on the flavonols gossypetin (8-hydroxyquercetin) and to a lesser extent on quercetin, kaempferol and myricetin.
References:
1.  Stich, K., Halbwirth, H., Wurst, F. and Forkmann, G. UDP-glucose: flavonol 7-O-glucosyltransferase activity in flower extracts of Chrysanthemum segetum. Z. Naturforsch. C 52 (1997) 153–158. [PMID: 9167271]
[EC 2.4.1.237 created 2004]
 
 
EC 2.4.1.238     
Accepted name: delphinidin 3,5-di-O-glucoside 3′-O-glucosyltransferase
Reaction: UDP-α-D-glucose + delphinidin 3,5-di-O-β-D-glucoside = UDP + delphinidin 3,3′,5-tri-O-β-D-glucoside
Glossary: delphinidin = 3,3′,4′,5,5′,7-hexahydroxyflavylium
Other name(s): UDP-glucose:anthocyanin 3′-O-glucosyltransferase; 3’GT
Systematic name: UDP-α-D-glucose:delphinidin-3,5-di-O-β-D-glucoside 3′-O-glucosyltransferase
Comments: Isolated from the plant Gentiana triflora (clustered gentian).
References:
1.  Fukuchi-Mizutani, M., Okuhara, H., Fukui, Y., Nakao, M., Katsumoto, Y., Yonekura-Sakakibara, K., Kusumi, T., Hase, T. and Tanaka, Y. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 132 (2003) 1652–1663. [PMID: 12857844]
[EC 2.4.1.238 created 2004, modified 2013]
 
 
EC 2.4.1.239     
Accepted name: flavonol-3-O-glucoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside
Other name(s): UDP-glucose:flavonol-3-O-glucoside 2′′-O-β-D-glucosyltransferase
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucoside 2′′-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) that successively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91, flavonol 3-O-glucosyltransferase and EC 2.4.1.240, flavonol-3-O-glycoside glucosyltransferase). TDP-glucose can replace UDP-glucose as the glucose donor but the reaction proceeds more slowly.
References:
1.  Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434–443. [PMID: 6462109]
[EC 2.4.1.239 created 2004]
 
 
EC 2.4.1.240     
Accepted name: flavonol-3-O-glycoside glucosyltransferase
Reaction: UDP-glucose + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucoside = UDP + a flavonol 3-O-β-D-glucosyl-(1→2)-β-D-glucosyl-(1→2)-β-D-glucoside
Systematic name: UDP-glucose:flavonol-3-O-β-D-glucosyl-(1→2)-β-D-glucoside 2′′′-O-β-D-glucosyltransferase
Comments: One of three specific glucosyltransferases in pea (Pisum sativum) thatsuccessively add a β-D-glucosyl group first to O-3 of kaempferol, and then to O-2 of the previously added glucosyl group giving the 3-O-sophoroside and then the 3-O-sophorotrioside (see also EC 2.4.1.91 flavonol 3-O-glucosyltransferase, and EC 2.4.1.239 flavonol-3-O-glucoside glucosyltransferase).
References:
1.  Jourdan, P.S. and Mansell, R.L. Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch. Biochem. Biophys. 213 (1982) 434–443. [PMID: 6462109]
[EC 2.4.1.240 created 2004]
 
 
EC 2.4.1.241     
Accepted name: digalactosyldiacylglycerol synthase
Reaction: UDP-α-D-galactose + 1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol = UDP + 1,2-diacyl-3-O-[α-D-galactosyl-(1→6)-β-D-galactosyl]-sn-glycerol
Other name(s): DGD1; DGD2; DGDG synthase (ambiguous); UDP-galactose-dependent DGDG synthase; UDP-galactose-dependent digalactosyldiacylglycerol synthase; UDP-galactose:MGDG galactosyltransferase; UDP-galactose:3-(β-D-galactosyl)-1,2-diacyl-sn-glycerol 6-α-galactosyltransferase
Systematic name: UDP-α-D-galactose:1,2-diacyl-3-O-(β-D-galactosyl)-sn-glycerol 6-α-galactosyltransferase
Comments: Requires Mg2+. Diacylglycerol cannot serve as an acceptor molecule for galactosylation as in the reaction catalysed by EC 2.4.1.46, monogalactosyldiacylglyerol synthase. When phosphate is limiting, phospholipids in plant membranes are reduced but these are replaced, at least in part, by the glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol [3]. While both DGD1 and DGD2 are increased under phosphate-limiting conditions, DGD2 does not contribute significantly under optimal growth conditions. DGD2 is responsible for the synthesis of DGDG molecular species that are rich in C16 fatty acids at sn-1 of diacylglycerol whereas DGD1 leads to molecular species rich in C18 fatty acids [3]. The enzyme has been localized to the outer side of chloroplast envelope membranes.
References:
1.  Kelly, A.A. and Dörmann, P. DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277 (2002) 1166–1173. [PMID: 11696551]
2.  Härtel, H., Dörmann, P. and Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97 (2000) 10649–10654. [PMID: 10973486]
3.  Kelly, A.A., Froehlich, J.E. and Dörmann, P. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15 (2003) 2694–2706. [PMID: 14600212]
4.  Benning, C. and Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280 (2005) 2397–2400. [PMID: 15590685]
[EC 2.4.1.241 created 2005]
 
 
EC 2.4.1.242     
Accepted name: NDP-glucose—starch glucosyltransferase
Reaction: NDP-glucose + [(1→4)-α-D-glucosyl]n = NDP + [(1→4)-α-D-glucosyl]n+1
Other name(s): granule-bound starch synthase; starch synthase II (ambiguous); waxy protein; starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase; granule-bound starch synthase I; GBSSI; granule-bound starch synthase II; GBSSII; GBSS; NDPglucose-starch glucosyltransferase
Systematic name: NDP-glucose:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: Unlike EC 2.4.1.11, glycogen(starch) synthase and EC 2.4.1.21, starch synthase, which use UDP-glucose and ADP-glucose, respectively, this enzyme can use either UDP- or ADP-glucose. Mutants that lack the Wx (waxy) allele cannot produce this enzyme, which plays an important role in the normal synthesis of amylose. In such mutants, only amylopectin is produced in the endosperm [3] or pollen [5].
References:
1.  Tsai, C.-Y. The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11 (1974) 83–96. [PMID: 4824506]
2.  Nakamura, T., Vrinten, P., Hayakawa, K. and Ikeda, J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118 (1998) 451–459. [PMID: 9765530]
3.  Fujita, N. and Taira, T. A 56-kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layers, and embryos of immature seed in diploid wheat (Triticum monococcum L.). Planta 207 (1998) 125–132. [PMID: 9951718]
4.  Murai, J., Taira, T. and Ohta, D. Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234 (1999) 71–79. [PMID: 10393240]
5.  Nelson, O.E. The waxy locus in maize. II The location of the controlling element alleles. Genetics 60 (1968) 507–524. [PMID: 17248421]
[EC 2.4.1.242 created 2005]
 
 
EC 2.4.1.244     
Accepted name: N-acetyl-β-glucosaminyl-glycoprotein 4-β-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-β-D-glucosaminyl group = UDP + N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group
Glossary: N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosamine = N,N′-diacetyllactosediamine
Other name(s): β1,4-N-acetylgalactosaminyltransferase III; β4GalNAc-T3; β1,4-N-acetylgalactosaminyltransferase IV; β4GalNAc-T4; UDP-N-acetyl-D-galactosamine:N-acetyl-D-glucosaminyl-group β-1,4-N-acetylgalactosaminyltransferase; UDP-N-acetyl-D-galactosamine:N-acetyl-β-D-glucosaminyl-group 4-β-N-acetylgalactosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-glucosaminyl-group 4-β-N-acetylgalactosaminyltransferase
Comments: The enzyme from human can transfer N-acetyl-D-galactosamine (GalNAc) to N-glycan and O-glycan substrates that have N-acetyl-D-glucosamine (GlcNAc) but not D-glucuronic acid (GlcUA) at their non-reducing end. The N-acetyl-β-D-glucosaminyl group is normally on a core oligosaccharide although benzyl glycosides have been used in enzyme-characterization experiments. Some glycohormones, e.g. lutropin and thyrotropin contain the N-glycan structure containing the N-acetyl-β-D-galactosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl group.
References:
1.  Sato, T., Gotoh, M., Kiyohara, K., Kameyama, A., Kubota, T., Kikuchi, N., Ishizuka, Y., Iwasaki, H., Togayachi, A., Kudo, T., Ohkura, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of a novel human β1,4-N-acetylgalactosaminyltransferase, β4GalNAc-T3, responsible for the synthesis of N,N'-diacetyllactosediamine, GalNAc β1-4GlcNAc. J. Biol. Chem. 278 (2003) 47534–47544. [PMID: 12966086]
2.  Gotoh, M., Sato, T., Kiyohara, K., Kameyama, A., Kikuchi, N., Kwon, Y.D., Ishizuka, Y., Iwai, T., Nakanishi, H. and Narimatsu, H. Molecular cloning and characterization of β1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N'-diacetyllactosediamine. FEBS Lett. 562 (2004) 134–140. [PMID: 15044014]
[EC 2.4.1.244 created 2006]
 
 
EC 2.4.1.245     
Accepted name: α,α-trehalose synthase
Reaction: NDP-α-D-glucose + D-glucose = α,α-trehalose + NDP
Glossary: NDP = a nucleoside diphosphate
Other name(s): trehalose synthase; trehalose synthetase; UDP-glucose:glucose 1-glucosyltransferase; TreT; PhGT; ADP-glucose:D-glucose 1-α-D-glucosyltransferase
Systematic name: NDP-α-D-glucose:D-glucose 1-α-D-glucosyltransferase
Comments: Requires Mg2+ for maximal activity [1]. The enzyme-catalysed reaction is reversible [1]. In the reverse direction to that shown above, the enzyme is specific for α,α-trehalose as substrate, as it cannot use α- or β-paranitrophenyl glucosides, maltose, sucrose, lactose or cellobiose [1]. While the enzymes from the thermophilic bacterium Rubrobacter xylanophilus and the hyperthermophilic archaeon Pyrococcus horikoshii can use ADP-, UDP- and GDP-α-D-glucose to the same extent [2,3], that from the hyperthermophilic archaeon Thermococcus litoralis has a marked preference for ADP-α-D-glucose [1] and that from the hyperthermophilic archaeon Thermoproteus tenax has a marked preference for UDP-α-D-glucose [4].
References:
1.  Qu, Q., Lee, S.J. and Boos, W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 279 (2004) 47890–47897. [PMID: 15364950]
2.  Ryu, S.I., Park, C.S., Cha, J., Woo, E.J. and Lee, S.B. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329 (2005) 429–436. [PMID: 15737605]
3.  Nobre, A., Alarico, S., Fernandes, C., Empadinhas, N. and da Costa, M.S. A unique combination of genetic systems for the synthesis of trehalose in Rubrobacter xylanophilus: properties of a rare actinobacterial TreT. J. Bacteriol. 190 (2008) 7939–7946. [PMID: 18835983]
4.  Kouril, T., Zaparty, M., Marrero, J., Brinkmann, H. and Siebers, B. A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch. Microbiol. 190 (2008) 355–369. [PMID: 18483808]
[EC 2.4.1.245 created 2008, modified 2013]
 
 
EC 2.4.1.249     
Accepted name: delphinidin 3′,5′-O-glucosyltransferase
Reaction: 2 UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside = 2 UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside (overall reaction)
(1a) UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside = UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside
(1b) UDP-glucose + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside = UDP + delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside
Glossary: delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′,5′-di-O-β-D-glucoside = ternatin C5
Other name(s): UDP-glucose:anthocyanin 3′,5′-O-glucosyltransferase; UA3′5’GZ
Systematic name: UDP-glucose:delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside 3′-O-glucosyltransferase
Comments: Ternatins are a group of polyacetylated delphinidin glucosides that confer blue color to the petals of Clitoria ternatea (butterfly pea). This enzyme catalyses two reactions in the biosynthesis of ternatin C5: the conversion of delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside to delphinidin 3-O-(6′′-O-malonyl)-β-D-glucoside-3′-O-β-D-glucoside, followed by the conversion of the later to ternatin C5, by transferring two glucosyl groups in a stepwise manner [1].
References:
1.  Kogawa, K., Kato, N., Kazuma, K., Noda, N. and Suzuki, M. Purification and characterization of UDP-glucose: anthocyanin 3′,5′-O-glucosyltransferase from Clitoria ternatea. Planta 226 (2007) 1501–1509. [PMID: 17668234]
[EC 2.4.1.249 created 2009]
 
 
EC 2.4.1.250     
Accepted name: D-inositol-3-phosphate glycosyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 1D-myo-inositol 3-phosphate = 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol 3-phosphate + UDP
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): mycothiol glycosyltransferases; MshA; UDP-N-acetyl-D-glucosamine:1D-myo-inositol 3-phosphate α-D-glycosyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:1D-myo-inositol 3-phosphate α-D-glycosyltransferase (configuration-retaining)
Comments: The enzyme, which belongs to the GT-B fold superfamily, catalyses the first dedicated reaction in the biosynthesis of mycothiol [1]. The substrate was initially believed to be inositol, but eventually shown to be D-myo-inositol 3-phosphate [2]. A substantial conformational change occurs upon UDP binding, which generates the binding site for D-myo-inositol 3-phosphate [3].
References:
1.  Newton, G.L., Koledin, T., Gorovitz, B., Rawat, M., Fahey, R.C. and Av-Gay, Y. The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J. Bacteriol. 185 (2003) 3476–3479. [PMID: 12754249]
2.  Newton, G.L., Ta, P., Bzymek, K.P. and Fahey, R.C. Biochemistry of the initial steps of mycothiol biosynthesis. J. Biol. Chem. 281 (2006) 33910–33920. [PMID: 16940050]
3.  Vetting, M.W., Frantom, P.A. and Blanchard, J.S. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J. Biol. Chem. 283 (2008) 15834–15844. [PMID: 18390549]
[EC 2.4.1.250 created 2010]
 
 
EC 2.4.1.253     
Accepted name: baicalein 7-O-glucuronosyltransferase
Reaction: UDP-D-glucuronate + baicalein = UDP + baicalin
Glossary: baicalin = 5,6,7-trihydroxyflavone-7-O-β-D-glucuronate = 5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl β-D-glucupyranosiduronic acid
baicalein = 5,6,7-trihydroxyflavone = 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one
wogonin = 5,7-dihydroxy-8-methoxyflavone = 5,7-dihydroxy-8-methoxy-2-phenyl-4H-chromen-4-one
scutellarein = 4,5,6,7-tetrahydroxyflavone-7-O-β-D-glucoronate = 5,6,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one
Other name(s): UBGAT
Systematic name: UDP-D-glucuronate:5,6,7-trihydroxyflavone 7-O-glucuronosyltransferase
Comments: The enzyme is specific for UDP-D-glucuronate as a sugar donor and flavones with substitution ortho- to the 7-OH group such as baicalein (6-OH), scutellarein (6-OH) and wogonin (8-OMe).
References:
1.  Nagashima, S., Hirotani, M. and Yoshikawa, T. Purification and characterization of UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from Scutellaria baicalensis Georgi. cell suspension cultures. Phytochemistry 53 (2000) 533–538. [PMID: 10724177]
[EC 2.4.1.253 created 2011]
 
 
EC 2.4.1.254     
Accepted name: cyanidin-3-O-glucoside 2′′-O-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + cyanidin 3-O-β-D-glucoside = UDP + cyanidin 3-O-(2-O-β-D-glucuronosyl)-β-D-glucoside
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): BpUGT94B1; UDP-glucuronic acid:anthocyanin glucuronosyltransferase; UDP-glucuronic acid:anthocyanidin 3-glucoside 2′-O-β-glucuronosyltransferase; BpUGAT; UDP-D-glucuronate:cyanidin-3-O-β-glucoside 2-O-β-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:cyanidin-3-O-β-D-glucoside 2-O-β-D-glucuronosyltransferase
Comments: The enzyme is highly specific for cyanidin 3-O-glucosides and UDP-α-D-glucuronate. Involved in the production of glucuronosylated anthocyanins that are the origin of the red coloration of flowers of Bellis perennis [1].
References:
1.  Sawada, S., Suzuki, H., Ichimaida, F., Yamaguchi, M.A., Iwashita, T., Fukui, Y., Hemmi, H., Nishino, T. and Nakayama, T. UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J. Biol. Chem. 280 (2005) 899–906. [PMID: 15509561]
2.  Osmani, S.A., Bak, S., Imberty, A., Olsen, C.E. and Møller, B.L. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol. 148 (2008) 1295–1308. [PMID: 18829982]
[EC 2.4.1.254 created 2011]
 
 
EC 2.4.1.255     
Accepted name: protein O-GlcNAc transferase
Reaction: (1) UDP-N-acetyl-α-D-glucosamine + [protein]-L-serine = UDP + [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-serine
(2) UDP-N-acetyl-α-D-glucosamine + [protein]-L-threonine = UDP + [protein]-3-O-(N-acetyl-β-D-glucosaminyl)-L-threonine
Other name(s): O-GlcNAc transferase; OGTase; O-linked N-acetylglucosaminyltransferase; uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase; protein O-linked β-N-acetylglucosamine transferase
Systematic name: UDP-N-α-acetyl-D-glucosamine:[protein]-3-O-N-acetyl-β-D-glucosaminyl transferase
Comments: Within higher eukaryotes post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. EC 2.4.1.255 (protein O-GlcNAc transferase) transfers GlcNAc onto substrate proteins and EC 3.2.1.169 (protein O-GlcNAcase) cleaves GlcNAc from the modified proteins.
References:
1.  Banerjee, S., Robbins, P.W. and Samuelson, J. Molecular characterization of nucleocytosolic O-GlcNAc transferases of Giardia lamblia and Cryptosporidium parvum. Glycobiology 19 (2009) 331–336. [PMID: 18948359]
2.  Clarke, A.J., Hurtado-Guerrero, R., Pathak, S., Schuttelkopf, A.W., Borodkin, V., Shepherd, S.M., Ibrahim, A.F. and van Aalten, D.M. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27 (2008) 2780–2788. [PMID: 18818698]
3.  Rao, F.V., Dorfmueller, H.C., Villa, F., Allwood, M., Eggleston, I.M. and van Aalten, D.M. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 25 (2006) 1569–1578. [PMID: 16541109]
4.  Haltiwanger, R.S., Blomberg, M.A. and Hart, G.W. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 267 (1992) 9005–9013. [PMID: 1533623]
5.  Lubas, W.A., Frank, D.W., Krause, M. and Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272 (1997) 9316–9324. [PMID: 9083068]
6.  Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. and Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469 (2011) 564–567. [PMID: 21240259]
[EC 2.4.1.255 created 2011]
 
 
EC 2.4.1.262     
Accepted name: soyasapogenol glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + soyasapogenol B = UDP + soyasapogenol B 3-O-β-D-glucuronide
Other name(s): UGASGT; UDP-D-glucuronate:soyasapogenol 3-O-D-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:soyasapogenol 3-O-D-glucuronosyltransferase (configuration-inverting)
Comments: Requires a divalent ion, Mg2+ better than Mn2+, better than Ca2+. Also acts on soysapogenol A and E.
References:
1.  Kurosawa, Y., Takahara, H. and Shiraiwa, M. UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds. Planta 215 (2002) 620–629. [PMID: 12172845]
[EC 2.4.1.262 created 2011]
 
 
EC 2.4.1.263     
Accepted name: abscisate β-glucosyltransferase
Reaction: UDP-α-D-glucose + abscisate = UDP + β-D-glucopyranosyl abscisate
Other name(s): ABA-glucosyltransferase; ABA-GTase; AOG; UDP-D-glucose:abscisate β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:abscisate β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme acts better on (S)-2-trans-abscisate than the natural (S)-2-cis isomer, abscisate, or its enantiomer, the (R)-2-cis isomer.
References:
1.  Xu, Z.J., Nakajima, M., Suzuki, Y. and Yamaguchi, I. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol. 129 (2002) 1285–1295. [PMID: 12114582]
[EC 2.4.1.263 created 2011]
 
 
EC 2.4.1.264     
Accepted name: D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-GlcA-(1→2)-α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol
Other name(s): GumK; UDP-glucuronate:D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronyltransferase; D-Man-α-(1→3)-D-Glc-β-(1→4)-D-Glc-α-1-diphosphoundecaprenol 2-β-glucuronyltransferase
Systematic name: UDP-α-D-glucuronate:α-D-Man-(1→3)-β-D-Glc-(1→4)-α-D-Glc-1-diphospho-ditrans,octacis-undecaprenol β-1,2-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the biosynthesis of the exopolysaccharides xanthan (in the bacterium Xanthomonas campestris) and acetan (in the bacterium Gluconacetobacter xylinus).
References:
1.  Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A. and Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180 (1998) 1607–1617. [PMID: 9537354]
2.  Ielpi, L., Couso, R.O. and Dankert, M.A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175 (1993) 2490–2500. [PMID: 7683019]
3.  Kim, S.Y., Kim, J.G., Lee, B.M. and Cho, J.Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol. Lett. 31 (2009) 265–270. [PMID: 18854951]
4.  Barreras, M., Bianchet, M.A. and Ielpi, L. Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 880–883. [PMID: 16946469]
5.  Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. and Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283 (2008) 25027–25035. [PMID: 18596046]
6.  Vojnov, A.A., Bassi, D.E., Daniels, M.J. and Dankert, M.A. Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris. Carbohydr. Res. 337 (2002) 315–326. [PMID: 11841812]
7.  Barreras, M., Abdian, P.L. and Ielpi, L. Functional characterization of GumK, a membrane-associated β-glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis. Glycobiology 14 (2004) 233–241. [PMID: 14736729]
[EC 2.4.1.264 created 2011, modified 2016]
 
 
EC 2.4.1.266     
Accepted name: glucosyl-3-phosphoglycerate synthase
Reaction: NDP-glucose + 3-phospho-D-glycerate = NDP + 2-O-(α-D-glucopyranosyl)-3-phospho-D-glycerate
Other name(s): GpgS protein; GPG synthase; glucosylphosphoglycerate synthase
Systematic name: NDP-glucose:3-phospho-D-glycerate 2-α-D-glucosyltransferase
Comments: The enzyme is involved in biosynthesis of 2-O-(α-D-glucopyranosyl)-D-glycerate via the two-step pathway in which glucosyl-3-phosphoglycerate synthase catalyses the conversion of GDP-glucose and 3-phospho-D-glycerate into 2-O-(α-D-glucopyranosyl)-3-phospho-D-glycerate, which is then converted to 2-O-(α-D-glucopyranosyl)-D-glycerate by EC 3.1.3.85 glucosyl-3-phosphoglycerate phosphatase. The activity is dependent on divalent cations (Mn2+, Co2+, or Mg2+). The enzyme from Persephonella marina shows moderate flexibility on the sugar donor concerning the nucleotide moiety (UDP-glucose, ADP-glucose, GDP-glucose) but is strictly specific for glucose. The enzyme is also strictly specific for 3-phospho-D-glycerate as acceptor [1]. The enzyme from Methanococcoides burtonii is strictly specific for GDP-glucose and 3-phospho-D-glycerate [2]. This enzyme catalyses the first glucosylation step in methylglucose lipopolysaccharide biosynthesis in mycobacteria [4,5].
References:
1.  Costa, J., Empadinhas, N. and da Costa, M.S. Glucosylglycerate biosynthesis in the deepest lineage of the bacteria: characterization of the thermophilic proteins GpgS and GpgP from Persephonella marina. J. Bacteriol. 189 (2007) 1648–1654. [PMID: 17189358]
2.  Costa, J., Empadinhas, N., Goncalves, L., Lamosa, P., Santos, H. and da Costa, M.S. Characterization of the biosynthetic pathway of glucosylglycerate in the archaeon Methanococcoides burtonii. J. Bacteriol. 188 (2006) 1022–1030. [PMID: 16428406]
3.  Empadinhas, N., Albuquerque, L., Mendes, V., Macedo-Ribeiro, S. and da Costa, M.S. Identification of the mycobacterial glucosyl-3-phosphoglycerate synthase. FEMS Microbiol. Lett. 280 (2008) 195–202. [PMID: 18221489]
4.  Pereira, P.J., Empadinhas, N., Albuquerque, L., Sa-Moura, B., da Costa, M.S. and Macedo-Ribeiro, S. Mycobacterium tuberculosis glucosyl-3-phosphoglycerate synthase: structure of a key enzyme in methylglucose lipopolysaccharide biosynthesis. PLoS One 3:e3748 (2008). [PMID: 19015727]
5.  Gest, P., Kaur, D., Pham, H.T., van der Woerd, M., Hansen, E., Brennan, P.J., Jackson, M. and Guerin, M.E. Preliminary crystallographic analysis of GpgS, a key glucosyltransferase involved in methylglucose lipopolysaccharide biosynthesis in Mycobacterium tuberculosis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 1121–1124. [PMID: 19052364]
6.  Kaur, D., Pham, H., Larrouy-Maumus, G., Riviere, M., Vissa, V., Guerin, M.E., Puzo, G., Brennan, P.J. and Jackson, M. Initiation of methylglucose lipopolysaccharide biosynthesis in mycobacteria. PLoS One 4:e544 (2009). [PMID: 19421329]
[EC 2.4.1.266 created 2011]
 
 
EC 2.4.1.271     
Accepted name: crocetin glucosyltransferase
Reaction: (1) UDP-α-D-glucose + crocetin = UDP + β-D-glucosyl crocetin
(2) UDP-α-D-glucose + β-D-glucosyl crocetin = UDP + bis(β-D-glucosyl) crocetin
(3) UDP-α-D-glucose + β-D-gentiobiosyl crocetin = UDP + β-D-gentiobiosyl β-D-glucosyl crocetin
Other name(s): crocetin GTase; UGTCs2; UGT75L6; UDP-glucose:crocetin glucosyltransferase; UDP-glucose:crocetin 8-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:crocetin 8-O-D-glucosyltransferase
Comments: In the plants Crocus sativus and Gardenia jasminoides this enzyme esterifies a free carboxyl group of crocetin and some crocetin glycosyl esters. The enzyme from Gardenia can also form glucosyl esters with 4-coumarate, caffeate and ferulate [3].
References:
1.  Côté, F., Cormier, F., Dufresne, C. and Willemot, C. Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci. 153 (2000) 55–63.
2.  Moraga, A.R., Nohales, P.F., Perez, J.A. and Gomez-Gomez, L. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219 (2004) 955–966. [PMID: 15605174]
3.  Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A. and Mizukami, H. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett. 586 (2012) 1055–1061. [PMID: 22569263]
[EC 2.4.1.271 created 2011]
 
 
EC 2.4.1.272     
Accepted name: soyasapogenol B glucuronide galactosyltransferase
Reaction: UDP-α-D-galactose + soyasapogenol B 3-O-β-D-glucuronide = UDP + soyasaponin III
Glossary: soyasaponin III = 3β-(2-O-β-D-galactopyranosyl-β-D-glucopyranosyloxyuronic acid)olean-12-ene-22β,24-diol
Other name(s): UDP-galactose:SBMG-galactosyltransferase; UGT73P2; GmSGT2 (gene name); UDP-galactose:soyasapogenol B 3-O-glucuronide β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:soyasapogenol B 3-O-glucuronide β-D-galactosyltransferase
Comments: Part of the biosynthetic pathway for soyasaponins.
References:
1.  Shibuya, M., Nishimura, K., Yasuyama, N. and Ebizuka, Y. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett. 584 (2010) 2258–2264. [PMID: 20350545]
[EC 2.4.1.272 created 2011]
 
 
EC 2.4.1.273     
Accepted name: soyasaponin III rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + soyasaponin III = UDP + soyasaponin I
Glossary: UDP-β-L-rhamnose = UDP-6-deoxy-β-L-mannose
Other name(s): UGT91H4; GmSGT3 (gene name); UDP-rhamnose:soyasaponin III rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:soyasaponin III rhamnosyltransferase
Comments: Part of the biosynthetic pathway for soyasaponins.
References:
1.  Shibuya, M., Nishimura, K., Yasuyama, N. and Ebizuka, Y. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett. 584 (2010) 2258–2264. [PMID: 20350545]
[EC 2.4.1.273 created 2011]
 
 
EC 2.4.1.274     
Accepted name: glucosylceramide β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + β-D-glucosyl-(1↔1)-ceramide = UDP + β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Other name(s): lactosylceramide synthase; uridine diphosphate-galactose:glucosyl ceramide β 1-4 galactosyltransferase; UDP-Gal:glucosylceramide β1→4galactosyltransferase; GalT-2 (misleading); UDP-galactose:β-D-glucosyl-(1↔1)-ceramide β-1,4-galactosyltransferase
Systematic name: UDP-α-D-galactose:β-D-glucosyl-(1↔1)-ceramide 4-β-D-galactosyltransferase
Comments: Involved in the synthesis of several different major classes of glycosphingolipids.
References:
1.  Chatterjee, S. and Castiglione, E. UDPgalactose:glucosylceramide β1→4-galactosyltransferase activity in human proximal tubular cells from normal and familial hypercholesterolemic homozygotes. Biochim. Biophys. Acta 923 (1987) 136–142. [PMID: 3099851]
2.  Trinchera, M., Fiorilli, A. and Ghidoni, R. Localization in the Golgi apparatus of rat liver UDP-Gal:glucosylceramide β1→4galactosyltransferase. Biochemistry 30 (1991) 2719–2724. [PMID: 1900430]
3.  Chatterjee, S., Ghosh, N. and Khurana, S. Purification of uridine diphosphate-galactose:glucosyl ceramide, β 1-4 galactosyltransferase from human kidney. J. Biol. Chem. 267 (1992) 7148–7153. [PMID: 1551920]
4.  Nomura, T., Takizawa, M., Aoki, J., Arai, H., Inoue, K., Wakisaka, E., Yoshizuka, N., Imokawa, G., Dohmae, N., Takio, K., Hattori, M. and Matsuo, N. Purification, cDNA cloning, and expression of UDP-Gal: glucosylceramide β-1,4-galactosyltransferase from rat brain. J. Biol. Chem. 273 (1998) 13570–13577. [PMID: 9593693]
5.  Takizawa, M., Nomura, T., Wakisaka, E., Yoshizuka, N., Aoki, J., Arai, H., Inoue, K., Hattori, M. and Matsuo, N. cDNA cloning and expression of human lactosylceramide synthase. Biochim. Biophys. Acta 1438 (1999) 301–304. [PMID: 10320813]
[EC 2.4.1.274 created 2011]
 
 
EC 2.4.1.275     
Accepted name: neolactotriaosylceramide β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = UDP + β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide
Glossary: N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide = neolactotriaosylceramide
Other name(s): β4Gal-T4; UDP-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide β-1,4-galactosyltransferase; lactotriaosylceramide β-1,4-galactosyltransferase (incorrect)
Systematic name: UDP-α-D-galactose:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-β-D-glucosyl-(1↔1)-ceramide 4-β-D-galactosyltransferase
References:
1.  Schwientek, T., Almeida, R., Levery, S.B., Holmes, E.H., Bennett, E. and Clausen, H. Cloning of a novel member of the UDP-galactose:β-N-acetylglucosamine β1,4-galactosyltransferase family, β4Gal-T4, involved in glycosphingolipid biosynthesis. J. Biol. Chem. 273 (1998) 29331–29340. [PMID: 9792633]
[EC 2.4.1.275 created 2011, modified 2013]
 
 
EC 2.4.1.276     
Accepted name: zeaxanthin glucosyltransferase
Reaction: 2 UDP-glucose + zeaxanthin = 2 UDP + zeaxanthin bis(β-D-glucoside)
Other name(s): crtX (gene name)
Systematic name: UDP-glucose:zeaxanthin β-D-glucosyltransferase
Comments: The reaction proceeds in two steps with the monoglucoside as an intermediate.
References:
1.  Hundle, B.S., O'Brien, D.A., Alberti, M., Beyer, P. and Hearst, J.E. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc. Natl. Acad. Sci. USA 89 (1992) 9321–9325. [PMID: 1409639]
[EC 2.4.1.276 created 2011]
 
 
EC 2.4.1.283     
Accepted name: 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 2-deoxystreptamine = UDP + 2′-N-acetylparomamine
Other name(s): btrM (gene name); neoD (gene name); kanF (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine:2-deoxystreptamine N-acetyl-D-glucosaminyltransferase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Unlike the enzyme from the bacterium Streptomyces kanamyceticus, which can also accept UDP-D-glucose [2] (cf. EC 2.4.1.284, 2-deoxystreptamine glucosyltransferase), the enzyme from Bacillus circulans can only accept UDP-N-acetyl-α-D-glucosamine [1].
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem 9 (2008) 865–869. [PMID: 18311744]
2.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.4.1.283 created 2012]
 
 
EC 2.4.1.284     
Accepted name: 2-deoxystreptamine glucosyltransferase
Reaction: UDP-α-D-glucose + 2-deoxystreptamine = UDP + 2′-deamino-2′-hydroxyparomamine
Glossary: 2′-deamino-2′-hydroxyparomamine = 4-O-α-D-glucopyranosyl-2-deoxy-D-streptamine
Other name(s): kanF (gene name)
Systematic name: UDP-α-D-glucose:2-deoxystreptamine 6-α-D-glucosyltransferase
Comments: Involved in the biosynthesis of kanamycin B and kanamycin C. Also catalyses EC 2.4.1.283, 2-deoxystreptamine N-acetyl-D-glucosaminyltransferase, but activity is only one fifth of that with UDP-α-D-glucose.
References:
1.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.4.1.284 created 2012]
 
 
EC 2.4.1.285     
Accepted name: UDP-GlcNAc:ribostamycin N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + ribostamycin = UDP + 2′′′-acetyl-6′′′-hydroxyneomycin C
Other name(s): neoK (gene name)
Systematic name: UDP-N-acetyl-α-D-glucosamine:ribostamycin N-acetylglucosaminyltransferase
Comments: Involved in biosynthesis of the aminoglycoside antibiotic neomycin. Requires a divalent metal ion, optimally Mg2+, Mn2+ or Co2+.
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem 9 (2008) 865–869. [PMID: 18311744]
[EC 2.4.1.285 created 2012]
 
 
EC 2.4.1.286     
Accepted name: chalcone 4′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + naringenin chalcone = UDP + 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside
(2) UDP-α-D-glucose + 2′,3,4,4′,6′-pentahydroxychalcone = UDP + 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside
Glossary: naringenin chalcone = 2′,4,4′,6′-tetrahydroxychalcone = 3-(4-hydroxyphemyl)-1-(2,4,6-trihydroxyphenyl)prop-2-en-1-one
Other name(s): 4′CGT
Systematic name: UDP-α-D-glucose:2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucosyltransferase
Comments: Isolated from the plant Antirrhinum majus (snapdragon). Involved in the biosynthesis of aurones, plant flavonoids that provide yellow color to the flowers.
References:
1.  Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, T., Kusumi, T. and Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103 (2006) 11075–11080. [PMID: 16832053]
[EC 2.4.1.286 created 2012]
 
 
EC 2.4.1.287     
Accepted name: rhamnopyranosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,4/1,5-galactofuranosyltransferase
Reaction: 2 UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 2 UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol (overall reaction)
(1a) UDP-α-D-galactofuranose + α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
(1b) UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol = UDP + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans-octacis-decaprenol
Other name(s): arabinogalactan galactofuranosyl transferase 1; GlfT1
Systematic name: UDP-α-D-galactofuranose:α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/4-β-galactofuranosyltransferase (configuration-inverting)
Comments: Isolated from the bacteria Mycobacterium tuberculosis and M. smegmatis, the enzyme has dual β-(1→4) and β-(1→5) transferase action. Involved in the formation of the cell wall in mycobacteria.
References:
1.  Mikusová, K., Belánová, M., Korduláková, J., Honda, K., McNeil, M.R., Mahapatra, S., Crick, D.C. and Brennan, P.J. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J. Bacteriol. 188 (2006) 6592–6598. [PMID: 16952951]
2.  Belánová, M., Dianisková, P., Brennan, P.J., Completo, G.C., Rose, N.L., Lowary, T.L. and Mikusová, K. Galactosyl transferases in mycobacterial cell wall synthesis. J. Bacteriol. 190 (2008) 1141–1145. [PMID: 18055597]
[EC 2.4.1.287 created 2012, modified 2017]
 
 
EC 2.4.1.288     
Accepted name: galactofuranosylgalactofuranosylrhamnosyl-N-acetylglucosaminyl-diphospho-decaprenol β-1,5/1,6-galactofuranosyltransferase
Reaction: 28 UDP-α-D-galactofuranose + β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol = 28 UDP + [β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→6)]14-β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
Other name(s): GlfT2
Systematic name: UDP-α-D-galactofuranose:β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol 4-β/5-β-D-galactofuranosyltransferase
Comments: Isolated from Mycobacterium tuberculosis. The enzyme adds approximately twenty-eight galactofuranosyl residues with alternating 1→5 and 1→6 links forming a galactan domain with approximately thirty galactofuranosyl residues. Involved in the formation of the cell wall in mycobacteria.
References:
1.  Rose, N.L., Zheng, R.B., Pearcey, J., Zhou, R., Completo, G.C. and Lowary, T.L. Development of a coupled spectrophotometric assay for GlfT2, a bifunctional mycobacterial galactofuranosyltransferase. Carbohydr. Res. 343 (2008) 2130–2139. [PMID: 18423586]
2.  May, J.F., Splain, R.A., Brotschi, C. and Kiessling, L.L. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc. Natl. Acad. Sci. USA 106 (2009) 11851–11856. [PMID: 19571009]
3.  Wheatley, R.W., Zheng, R.B., Richards, M.R., Lowary, T.L. and Ng, K.K. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan. J. Biol. Chem. 287 (2012) 28132–28143. [PMID: 22707726]
[EC 2.4.1.288 created 2012]
 
 
EC 2.4.1.290     
Accepted name: N,N′-diacetylbacillosaminyl-diphospho-undecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglA
Systematic name: UDP-N-acetyl-α-D-galactosamine:N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
[EC 2.4.1.290 created 2012]
 
 
EC 2.4.1.291     
Accepted name: N-acetylgalactosamine-N,N′-diacetylbacillosaminyl-diphospho-undecaprenol 4-α-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol = UDP + N-acetyl-D-galactosaminyl-α-(1→4)-N-acetyl-D-galactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol
Glossary: N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglJ
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetylgalactosaminyl-α-(1→3)-N,N′-diacetyl-α-D-bacillosaminyl-diphospho-tritrans,heptacis-undecaprenol 3-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Chen, M.M., Weerapana, E., Ciepichal, E., Stupak, J., Reid, C.W., Swiezewska, E. and Imperiali, B. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 46 (2007) 14342–14348. [PMID: 18034500]
[EC 2.4.1.291 created 2012]
 
 
EC 2.4.1.292     
Accepted name: GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-undecaprenol α-1,4-N-acetyl-D-galactosaminyltransferase
Reaction: 3 UDP-N-acetyl-α-D-galactosamine + GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol = 3 UDP + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglH
Systematic name: UDP-N-acetyl-α-D-galactosamine:GalNAc-α-(1→4)-GalNAc-α-(1→3)-diNAcBac-PP-tritrans,heptacis-undecaprenol 4-α-N-acetyl-D-galactosaminyltransferase
Comments: Isolated from Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Troutman, J.M. and Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48 (2009) 2807–2816. [PMID: 19159314]
3.  Borud, B., Viburiene, R., Hartley, M.D., Paulsen, B.S., Egge-Jacobsen, W., Imperiali, B. and Koomey, M. Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl. Acad. Sci. USA 108 (2011) 9643–9648. [PMID: 21606362]
[EC 2.4.1.292 created 2012]
 
 
EC 2.4.1.293     
Accepted name: GalNAc5-diNAcBac-PP-undecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + [GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol = UDP + [GalNAc-α-(1→4)]2-[Glc-β-(1→3)]-[GalNAc-α-(1→4)]2-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol
Glossary: diNAcBac = N,N′-diacetyl-D-bacillosamine = 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose
Other name(s): PglI
Systematic name: UDP-α-D-glucose:[GalNAc-α-(1→4)]4-GalNAc-α-(1→3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol 3-β-D-glucosyltransferase
Comments: Isolated from the bacterium Campylobacter jejuni. Part of a bacterial N-linked glycosylation pathway.
References:
1.  Glover, K.J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. USA 102 (2005) 14255–14259. [PMID: 16186480]
2.  Kelly, J., Jarrell, H., Millar, L., Tessier, L., Fiori, L.M., Lau, P.C., Allan, B. and Szymanski, C.M. Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188 (2006) 2427–2434. [PMID: 16547029]
[EC 2.4.1.293 created 2012]
 
 
EC 2.4.1.294     
Accepted name: cyanidin 3-O-galactosyltransferase
Reaction: UDP-α-D-galactose + cyanidin = UDP + cyanidin 3-O-β-D-galactoside
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): UDP-galactose:cyanidin galactosyltransferase
Systematic name: UDP-α-D-galactose:cyanidin 3-O-galactosyltransferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot).
References:
1.  Rose, A., Glassgen, W.E., Hopp, W. and Seitz, H.U. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198 (1996) 397–403. [PMID: 8717136]
[EC 2.4.1.294 created 2013]
 
 
EC 2.4.1.295     
Accepted name: anthocyanin 3-O-sambubioside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-sambubioside = UDP + an anthocyanidin 5-O-β-D-glucoside 3-O-β-D-sambubioside
Glossary: anthocyanidin 3-O-β-D-sambubioside = anthocyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-glucoside)
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-β-D-sambubioside 5-O-glucosyltransferase
Comments: Isolated from the plant Matthiola incana (stock). No activity with anthocyanidin 3-O-glucosides.
References:
1.  Teusch, M., Forkmann, G. and Seyffert, W. Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br. Planta 168 (1986) 586–591. [PMID: 24232337]
[EC 2.4.1.295 created 2013]
 
 
EC 2.4.1.296     
Accepted name: anthocyanidin 3-O-coumaroylrutinoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-[2-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] = UDP + an anthocyanidin 3-O-[2-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] 5-O-β-D-glucoside
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-[3-O-(4-coumaroyl)-α-L-rhamnosyl-(1→6)-β-D-glucoside] 5-O-β-D-glucosyltransferase
Comments: Isolated from the plant Petunia hybrida. It does not act on an anthocyanidin 3-O-rutinoside
References:
1.  Jonsson, L.M.V., Aarsman, M.E.G., van Diepen, J., de Vlaming, P., Smit, N. and Schram, A.W. Properties and genetic control of anthocyanin 5-O-glucosyltransferase in flowers of Petunia hybrida. Planta 160 (1984) 341–347. [PMID: 24258583]
[EC 2.4.1.296 created 2013]
 
 
EC 2.4.1.297     
Accepted name: anthocyanidin 3-O-glucoside 2′′-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3-O-sophoroside
Glossary: anthocyanidin 3-O-sophoroside = anthocyanidin 3-O-(β-D-glucosyl(1→2)-β-D-glucoside)
Other name(s): 3GGT
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-glucoside 2′′-O-glucosyltransferase
Comments: Isolated from Ipomoea nil (Japanese morning glory).
References:
1.  Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2′′-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J. 42 (2005) 353–363. [PMID: 15842621]
[EC 2.4.1.297 created 2013]
 
 
EC 2.4.1.298     
Accepted name: anthocyanidin 3-O-glucoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3,5-di-O-β-D-glucoside
Other name(s): UDP-glucose:anthocyanin 5-O-glucosyltransferase
Systematic name: UDP-α-D-glucose:anthocyanidin-3-O-β-D-glucoside 5-O-glucosyltransferase
Comments: Isolated from the plants Perilla frutescens var. crispa, Verbena hybrida [1], Dahlia variabilis [2] and Gentiana triflora (clustered gentian) [3]. It will also act on anthocyanidin 3-O-(6-O-malonylglucoside) [2] and is much less active with hydroxycinnamoylglucose derivatives [3]. There is no activity in the absence of the 3-O-glucoside group.
References:
1.  Yamazaki, M., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T. and Saito, K. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J. Biol. Chem. 274 (1999) 7405–7411. [PMID: 10066805]
2.  Ogata, J., Sakamoto, T., Yamaguchi, M., Kawanobu, S., Yoshitama, K. Isolation and characterization of anthocyanin 5-O-glucosyltransferase from flowers of Dahlia variabilis. J. Plant Physiol. 158 (2001) 709–714.
3.  Nakatsuka, T., Sato, K., Takahashi, H., Yamamura, S. and Nishihara, M. Cloning and characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J. Exp. Bot. 59 (2008) 1241–1252. [PMID: 18375606]
[EC 2.4.1.298 created 2013]
 
 
EC 2.4.1.301     
Accepted name: 2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Reaction: (1) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyneamine = UDP + kanamycin A
(2) UDP-α-D-kanosamine + neamine = UDP + kanamycin B
(3) UDP-α-D-kanosamine + paromamine = UDP + kanamycin C
(4) UDP-α-D-kanosamine + 2′-deamino-2′-hydroxyparomamine = UDP + kanamycin X
Glossary: neamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
paromamine = (1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
UDP-α-D-kanosamine = uridine 5′-[3-(3-amino-3-deoxy-α-D-glucopyranosyl) diphosphate]
kanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-(6-amino-6-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
kanamycin B = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2,6-diamino-2,6-dideoxy-α-D-glucopyranoside
kanamycin C = (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2-amino-2-deoxy-α-D-glucopyranoside
kanamycin X = (1S,2R,3R,4S,6R)-4,6-diamino-3-(α-D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
Other name(s): kanE (gene name); kanM2 (gene name)
Systematic name: UDP-α-D-kanosamine:2′-deamino-2′-hydroxyneamine 1-α-D-kanosaminyltransferase
Comments: Involved in the biosynthetic pathway of kanamycins. The enzyme characterized from the bacterium Streptomyces kanamyceticus can also accept UDP-α-D-glucose with lower efficiency [2].
References:
1.  Kudo, F., Sucipto, H. and Eguchi, T. Enzymatic activity of a glycosyltransferase KanM2 encoded in the kanamycin biosynthetic gene cluster. J. Antibiot. (Tokyo) 62 (2009) 707–710. [PMID: 19911031]
2.  Park, J.W., Park, S.R., Nepal, K.K., Han, A.R., Ban, Y.H., Yoo, Y.J., Kim, E.J., Kim, E.M., Kim, D., Sohng, J.K. and Yoon, Y.J. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat. Chem. Biol. 7 (2011) 843–852. [PMID: 21983602]
[EC 2.4.1.301 created 2013]
 
 
EC 2.4.1.303     
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-Gal-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbbD; WbbD β3Gal-transferase; UDP-Gal:GlcNAc-R β1,3-galactosyltransferase; UDP-Gal:GlcNAcα-pyrophosphate-R β1,3-galactosyltransferase; UDP-Gal:GlcNAc-R galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-β-galactosyltransferase (configuration-inverting)
Comments: The enzyme is involved in the the biosynthesis of the O-antigen repeating unit of Escherichia coli O7:K1 (VW187). Requires Mn2+. cf. EC 2.4.1.343, UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol α-1,3-galactosyltransferase.
References:
1.  Riley, J.G., Menggad, M., Montoya-Peleaz, P.J., Szarek, W.A., Marolda, C.L., Valvano, M.A., Schutzbach, J.S. and Brockhausen, I. The wbbD gene of E. coli strain VW187 (O7:K1) encodes a UDP-Gal: GlcNAcα-pyrophosphate-R β1,3-galactosyltransferase involved in the biosynthesis of O7-specific lipopolysaccharide. Glycobiology 15 (2005) 605–613. [PMID: 15625181]
2.  Brockhausen, I., Riley, J.G., Joynt, M., Yang, X. and Szarek, W.A. Acceptor substrate specificity of UDP-Gal: GlcNAc-R β1,3-galactosyltransferase (WbbD) from Escherichia coli O7:K1. Glycoconj. J. 25 (2008) 663–673. [PMID: 18536883]
[EC 2.4.1.303 created 2013, modified 2017]
 
 
EC 2.4.1.304     
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,4-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-Gal-(1→4)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WfeD; UDP-Gal:GlcNAc-R 1,4-Gal-transferase; UDP-Gal:GlcNAc-pyrophosphate-lipid β-1,4-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-1,4-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Shigella boydii B14. The activity is stimulated by Mn2+ or to a lesser extent by Mg2+, Ca2+, Ni2+ or Pb2+.
References:
1.  Xu, C., Liu, B., Hu, B., Han, Y., Feng, L., Allingham, J.S., Szarek, W.A., Wang, L. and Brockhausen, I. Biochemical characterization of UDP-Gal:GlcNAc-pyrophosphate-lipid β-1,4-Galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J. Bacteriol. 193 (2011) 449–459. [PMID: 21057010]
[EC 2.4.1.304 created 2013]
 
 
EC 2.4.1.305     
Accepted name: UDP-Glc:α-D-GlcNAc-glucosaminyl-diphosphoundecaprenol β-1,3-glucosyltransferase
Reaction: UDP-α-D-glucose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + β-D-Glc-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WfaP; WfgD; UDP-Glc:GlcNAc-pyrophosphate-lipid β-1,3-glucosyltransferase; UDP-Glc:GlcNAc-diphosphate-lipid β-1,3-glucosyltransferase
Systematic name: UDP-α-D-glucose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-1,3-glucosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O56 and serotype O152.
References:
1.  Brockhausen, I., Hu, B., Liu, B., Lau, K., Szarek, W.A., Wang, L. and Feng, L. Characterization of two β-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152. J. Bacteriol. 190 (2008) 4922–4932. [PMID: 18487334]
[EC 2.4.1.305 created 2013]
 
 
EC 2.4.1.306     
Accepted name: UDP-GalNAc:α-D-GalNAc-diphosphoundecaprenol α-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnH
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-α-D-galactosaminyl-diphospho-ditrans,octacis-undecaprenol α-1,3-N-acetyl-D-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of Escherichia coli serotype O86.
References:
1.  Yi, W., Yao, Q., Zhang, Y., Motari, E., Lin, S. and Wang, P.G. The wbnH gene of Escherichia coli O86:H2 encodes an α-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis. Biochem. Biophys. Res. Commun. 344 (2006) 631–639. [PMID: 16630548]
[EC 2.4.1.306 created 2013]
 
 
EC 2.4.1.307      
Deleted entry: UDP-Gal:α-D-GalNAc-1,3-α-D-GalNAc-diphosphoundecaprenol β-1,3-galactosyltransferase. Now included in EC 2.4.1.122, glycoprotein-N-acetylgalactosamine β-1,3-galactosyltransferase
[EC 2.4.1.307 created 2013, deleted 2016]
 
 
EC 2.4.1.309     
Accepted name: UDP-Gal:α-L-Fuc-1,2-β-Gal-1,3-α-GalNAc-1,3-α-GalNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-(α-L-Fuc-(1→2))-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnI
Systematic name: UDP-α-D-galactose:α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol α-1,3-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O86.
References:
1.  Yi, W., Shao, J., Zhu, L., Li, M., Singh, M., Lu, Y., Lin, S., Li, H., Ryu, K., Shen, J., Guo, H., Yao, Q., Bush, C.A. and Wang, P.G. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127 (2005) 2040–2041. [PMID: 15713070]
2.  Yi, W., Zhu, L., Guo, H., Li, M., Li, J. and Wang, P.G. Formation of a new O-polysaccharide in Escherichia coli O86 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr. Res. 341 (2006) 2254–2260. [PMID: 16839526]
3.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [PMID: 20418877]
[EC 2.4.1.309 created 2013]
 
 
EC 2.4.1.310     
Accepted name: vancomycin aglycone glucosyltransferase
Reaction: UDP-α-D-glucose + vancomycin aglycone = UDP + devancosaminyl-vancomycin
Glossary: devancosaminyl-vancomycin = vancomycin pseudoaglycone
Other name(s): GtfB (ambiguous)
Systematic name: UDP-α-D-glucose:vancomycin aglycone 48-O-β-glucosyltransferase
Comments: The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of the glycopeptide antibiotic chloroeremomycin.
References:
1.  Losey, H.C., Peczuh, M.W., Chen, Z., Eggert, U.S., Dong, S.D., Pelczer, I., Kahne, D. and Walsh, C.T. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40 (2001) 4745–4755. [PMID: 11294642]
2.  Mulichak, A.M., Losey, H.C., Walsh, C.T. and Garavito, R.M. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure 9 (2001) 547–557. [PMID: 11470430]
[EC 2.4.1.310 created 2013]
 
 
EC 2.4.1.312     
Accepted name: protein O-mannose β-1,4-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + 3-O-(α-D-mannosyl)-L-threonyl-[protein] = UDP + 3-O-[N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein]
Other name(s): GTDC2 (gene name); POMGNT2
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-threonyl-[protein] 4-β-N-acetyl-D-glucosaminyltransferase
Comments: The human protein is involved in the formation of a phosphorylated trisaccharide on a threonine residue of α-dystroglycan, an extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains.
References:
1.  Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F., Lee, H., Nelson, S.F., Yu, L. and Campbell, K.P. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341 (2013) 896–899. [PMID: 23929950]
[EC 2.4.1.312 created 2013]
 
 
EC 2.4.1.313     
Accepted name: protein O-mannose β-1,3-N-acetylgalactosaminyltransferase
Reaction: UDP-N-acetyl-α-D-galactosamine + 3-O-[N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein] = UDP + 3-O-[N-acetyl-β-D-galactosaminyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl]-L-threonyl-[protein]
Other name(s): B3GALNT2
Systematic name: UDP-N-acetyl-α-D-galactosamine:N-acetyl-β-D-glucosaminyl-(1→4)-α-D-mannosyl-threonyl-[protein] 3-β-N-acetyl-D-galactosaminyltransferase
Comments: The human protein is specific for UDP-N-acetyl-α-D-galactosamine as donor [1]. The enzyme is involved in the formation of a phosphorylated trisaccharide on a threonine residue of α-dystroglycan, an extracellular peripheral glycoprotein that acts as a receptor for extracellular matrix proteins containing laminin-G domains.
References:
1.  Hiruma, T., Togayachi, A., Okamura, K., Sato, T., Kikuchi, N., Kwon, Y.D., Nakamura, A., Fujimura, K., Gotoh, M., Tachibana, K., Ishizuka, Y., Noce, T., Nakanishi, H. and Narimatsu, H. A novel human β1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcβ1-3GlcNAc. J. Biol. Chem. 279 (2004) 14087–14095. [PMID: 14724282]
2.  Yoshida-Moriguchi, T., Willer, T., Anderson, M.E., Venzke, D., Whyte, T., Muntoni, F., Lee, H., Nelson, S.F., Yu, L. and Campbell, K.P. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341 (2013) 896–899. [PMID: 23929950]
[EC 2.4.1.313 created 2013]
 
 
EC 2.4.1.314     
Accepted name: ginsenoside Rd glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside Rd = UDP + ginsenoside Rb1
Glossary: ginsenoside Rd = 20-(β-D-glucopyranosyl)oxy-3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
ginsenoside Rb1 = 3β-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyloxy]-20-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyloxy]dammar-24-en-12β-ol
Other name(s): UDPG:ginsenoside Rd glucosyltransferase; UDP-glucose:ginsenoside Rd glucosyltransferase; UGRdGT
Systematic name: UDP-glucose:ginsenoside-Rd β-1,6-glucosyltransferase
Comments: The glucosyl group forms a 1→6 bond to the glucosyloxy moiety at C-20 of ginsenoside Rd. Isolated from sanchi ginseng (Panax notoginseng).
References:
1.  Yue, C.-J. and Zhong J.-J. Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem. 40 (2005) 3742–3748.
[EC 2.4.1.314 created 2013]
 
 
EC 2.4.1.315     
Accepted name: diglucosyl diacylglycerol synthase (1,6-linking)
Reaction: (1) UDP-α-D-glucose + 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
(2) UDP-α-D-glucose + 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol = 1,2-diacyl-3-O-[β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]-sn-glycerol + UDP
Other name(s): monoglucosyl diacylglycerol (1→6) glucosyltransferase; MGlcDAG (1→6) glucosyltransferase; DGlcDAG synthase (ambiguous); UGT106B1; ypfP (gene name)
Systematic name: UDP-α-D-glucose:1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol 6-glucosyltransferase
Comments: The enzyme is found in several bacterial species. The enzyme from Bacillus subtilis is specific for glucose [1]. The enzyme from Mycoplasma genitalium can incoporate galactose with similar efficiency, but forms mainly 1,2-diacyl-diglucopyranosyl-sn-glycerol in vivo [3]. The enzyme from Staphylococcus aureus can also form glucosyl-glycero-3-phospho-(1′-sn-glycerol) [2].
References:
1.  Jorasch, P., Wolter, F.P., Zahringer, U. and Heinz, E. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29 (1998) 419–430. [PMID: 9720862]
2.  Jorasch, P., Warnecke, D.C., Lindner, B., Zahringer, U. and Heinz, E. Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur. J. Biochem. 267 (2000) 3770–3783. [PMID: 10848996]
3.  Andres, E., Martinez, N. and Planas, A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J. Biol. Chem. 286 (2011) 35367–35379. [PMID: 21835921]
[EC 2.4.1.315 created 2014]
 
 
EC 2.4.1.323     
Accepted name: 7-deoxyloganetic acid glucosyltransferase
Reaction: UDP-α-D-glucose + 7-deoxyloganetate = UDP + 7-deoxyloganate
Other name(s): UGT8
Systematic name: UDP-α-D-glucose:7-deoxyloganetate O-D-glucosyltransferase
Comments: Isolated from the plant Catharanthus roseus (Madagascar periwinkle). Involved in loganin and secologanin biosynthesis. Does not react with 7-deoxyloganetin. cf. EC 2.4.1.324 7-deoxyloganetin glucosyltransferase.
References:
1.  Asada, K., Salim, V., Masada-Atsumi, S., Edmunds, E., Nagatoshi, M., Terasaka, K., Mizukami, H. and De Luca, V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in madagascar periwinkle. Plant Cell 25 (2013) 4123–4134. [PMID: 24104568]
[EC 2.4.1.323 created 2014]
 
 
EC 2.4.1.324     
Accepted name: 7-deoxyloganetin glucosyltransferase
Reaction: UDP-α-D-glucose + 7-deoxyloganetin = UDP + 7-deoxyloganin
Other name(s): UDPglucose:iridoid glucosyltransferase; UGT6; UGT85A24
Systematic name: UDP-α-D-glucose:7-deoxyloganetin O-D-glucosyltransferase
Comments: Isolated from the plants Catharanthus roseus (Madagascar periwinkle) and Gardenia jasminoides (cape jasmine). With Gardenia it also acts on genipin. Involved in loganin and secologanin biosynthesis. Does not react with 7-deoxyloganetate. cf. EC 2.4.1.323 7-deoxyloganetic acid glucosyltransferase.
References:
1.  Nagatoshi, M., Terasaka, K., Nagatsu, A. and Mizukami, H. Iridoid-specific glucosyltransferase from Gardenia jasminoides. J. Biol. Chem. 286 (2011) 32866–32874. [PMID: 21799001]
2.  Asada, K., Salim, V., Masada-Atsumi, S., Edmunds, E., Nagatoshi, M., Terasaka, K., Mizukami, H. and De Luca, V. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in madagascar periwinkle. Plant Cell 25 (2013) 4123–4134. [PMID: 24104568]
[EC 2.4.1.324 created 2014]
 
 
EC 2.4.1.330     
Accepted name: β-D-glucosyl crocetin β-1,6-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + β-D-glucosyl crocetin = UDP + β-D-gentiobiosyl crocetin
(2) UDP-α-D-glucose + bis(β-D-glucosyl) crocetin = UDP + β-D-gentiobiosyl β-D-glucosyl crocetin
(3) UDP-α-D-glucose + β-D-gentiobiosyl β-D-glucosyl crocetin = UDP + crocin
Glossary: crocin = bis(β-D-gentiobiosyl) crocetin
crocetin = (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate
Other name(s): UGT94E5; UDP-glucose:crocetin glucosyl ester glucosyltransferasee
Systematic name: UDP-α-D-glucose:β-D-glucosyl crocetin β-1,6-glucosyltransferase
Comments: The enzyme, characterized from the plant Gardenia jasminoides, adds a glucose to several crocetin glycosyl esters, but not to crocetin (cf. EC 2.4.1.271, crocetin glucosyltransferase).
References:
1.  Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A. and Mizukami, H. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett. 586 (2012) 1055–1061. [PMID: 22569263]
[EC 2.4.1.330 created 2014]
 
 
EC 2.4.1.335     
Accepted name: dolichyl N-acetyl-α-D-glucosaminyl phosphate 3-β-D-2,3-diacetamido-2,3-dideoxy-β-D-glucuronosyltransferase
Reaction: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate + an archaeal dolichyl N-acetyl-α-D-glucosaminyl phosphate = UDP + an archaeal dolichyl 3-O-(2,3-diacetamido-2,3-dideoxy-β-D-glucuronsyl)-N-acetyl-α-D-glucosaminyl phosphate
Other name(s): AglC; UDP-Glc-2,3-diNAcA glycosyltransferase
Systematic name: UDP-2,3-diacetamido-2,3-dideoxy-α-D-glucuronate:dolichyl N-acetyl-α-D-glucosaminyl-phosphate 3-β-D-2,3-diacetamido-2,3-dideoxy-β-D-glucuronosyltransferase
Comments: The enzyme, characterized from the methanogenic archaeon Methanococcus voltae, participates in the N-glycosylation of proteins. Dolichol used by archaea is different from that used by eukaryotes. It is much shorter (C55-C60), it is α,ω-saturated and it may have additional unsaturated positions in the chain.
References:
1.  Larkin, A., Chang, M.M., Whitworth, G.E. and Imperiali, B. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nat. Chem. Biol. 9 (2013) 367–373. [PMID: 23624439]
[EC 2.4.1.335 created 2015]
 
 
EC 2.4.1.336     
Accepted name: monoglucosyldiacylglycerol synthase
Reaction: UDP-α-D-glucose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol
Glossary: a 1,2-diacyl-3-O-(β-D-glucopyranosyl)-sn-glycerol = a β-monoglucosyldiacylglycerol = a GlcDG
Other name(s): mgdA (gene name)
Systematic name: UDP-α-D-glucose:1,2-diacyl-sn-glycerol 3-β-D-glucosyltransferase
Comments: The enzymes from cyanobacteria are involved in the biosynthesis of galactolipids found in their photosynthetic membranes. The enzyme belongs to the GT2 family of configuration-inverting glycosyltranferases [2]. cf. EC 2.4.1.337, 1,2-diacylglycerol 3-α-glucosyltransferase.
References:
1.  Sato, N. and Murata, N. Lipid biosynthesis in the blue-green-alga (cyanobacterium), Anabaena variabilis. 3. UDP-glucose-diacylglycerol glucosyltransferase activity in vitro. Plant Cell Physiol. 23 (1982) 1115–1120.
2.  Awai, K., Kakimoto, T., Awai, C., Kaneko, T., Nakamura, Y., Takamiya, K., Wada, H. and Ohta, H. Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol. 141 (2006) 1120–1127. [PMID: 16714404]
3.  Yuzawa, Y., Shimojima, M., Sato, R., Mizusawa, N., Ikeda, K., Suzuki, M., Iwai, M., Hori, K., Wada, H., Masuda, S. and Ohta, H. Cyanobacterial monogalactosyldiacylglycerol-synthesis pathway is involved in normal unsaturation of galactolipids and low-temperature adaptation of Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1841 (2014) 475–483. [PMID: 24370445]
[EC 2.4.1.336 created 2015]
 
 
EC 2.4.1.337     
Accepted name: 1,2-diacylglycerol 3-α-glucosyltransferase
Reaction: UDP-α-D-glucose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol
Other name(s): mgs (gene name); UDP-glucose:diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol glucosyltransferase; uridine diphosphoglucose-diacylglycerol glucosyltransferase; UDP-glucose-diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol 3-D-glucosyltransferase; UDP-glucose:1,2-diacyl-sn-glycerol 3-D-glucosyltransferase; 1,2-diacylglycerol 3-glucosyltransferase (ambiguous)
Systematic name: UDP-α-D-glucose:1,2-diacyl-sn-glycerol 3-α-D-glucosyltransferase
Comments: The enzyme from the bacterium Acholeplasma laidlawii, which lacks a cell wall, produces the major non-bilayer lipid in the organism. The enzyme from the bacterium Agrobacterium tumefaciens acts under phosphate deprivation, generating glycolipids as surrogates for phospholipids. The enzyme belongs to the GT4 family of configuration-retaining glycosyltransferases. Many diacylglycerols with long-chain acyl groups can act as acceptors. cf. EC 2.4.1.336, monoglucosyldiacylglycerol synthase.
References:
1.  Karlsson, O.P., Dahlqvist, A., Vikstrom, S. and Wieslander, A. Lipid dependence and basic kinetics of the purified 1,2-diacylglycerol 3-glucosyltransferase from membranes of Acholeplasma laidlawii. J. Biol. Chem. 272 (1997) 929–936. [PMID: 8995384]
2.  Li, L., Storm, P., Karlsson, O.P., Berg, S. and Wieslander, A. Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry 42 (2003) 9677–9686. [PMID: 12911309]
3.  Berg, S., Edman, M., Li, L., Wikstrom, M. and Wieslander, A. Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J. Biol. Chem. 276 (2001) 22056–22063. [PMID: 11294844]
4.  Semeniuk, A., Sohlenkamp, C., Duda, K. and Holzl, G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J. Biol. Chem. 289 (2014) 10104–10114. [PMID: 24558041]
[EC 2.4.1.337 created 2015]
 
 
EC 2.4.1.338     
Accepted name: validoxylamine A glucosyltransferase
Reaction: UDP-α-D-glucose + validoxylamine A = UDP + validamycin A
Glossary: validoxylamine A = (1S,2S,3R,6S)-4-(hydroxymethyl)-6-{[(1S,2S,3S,4R,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]amino}cyclohex-4-ene-1,2,3-triol
Other name(s): vldK (gene name); valG (gene name)
Systematic name: UDP-α-D-glucose:validoxylamine-A 4′-O-glucosyltransferase
Comments: The enzyme, characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus, catalyses the ultimate step in the biosynthesis of the antifungal agent validamycin A.
References:
1.  Bai, L., Li, L., Xu, H., Minagawa, K., Yu, Y., Zhang, Y., Zhou, X., Floss, H.G., Mahmud, T. and Deng, Z. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem. Biol. 13 (2006) 387–397. [PMID: 16632251]
2.  Xu, H., Minagawa, K., Bai, L., Deng, Z. and Mahmud, T. Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4′′-epi-validamycin A. J Nat Prod 71 (2008) 1233–1236. [PMID: 18563934]
[EC 2.4.1.338 created 2016]
 
 
EC 2.4.1.342     
Accepted name: α-maltose-1-phosphate synthase
Reaction: ADP-α-D-glucose + α-D-glucose-1-phosphate = ADP + α-maltose-1-phosphate
Glossary: maltose = α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): glgM (gene name)
Systematic name: ADP-α-D-glucose:α-D-glucose-1-phosphate 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, found in Mycobacteria, can also use UDP-α-D-glucose with much lower catalytic efficiency.
References:
1.  Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., Ioerger, T.R., Jacobs, W.R., Jr., Geurtsen, J., Bornemann, S. and Kalscheuer, R. Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog. 12 (2016) e1005768. [PMID: 27513637]
[EC 2.4.1.342 created 2016]
 
 
EC 2.4.1.343     
Accepted name: UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-α-D-GlcNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): wclR (gene name)
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol 3-α-galactosyltransferase (configuration-retaining)
Comments: The enzyme is involved in the the biosynthesis of the O-antigen repeating unit of Escherichia coli O3. Requires a divalent metal ion (Mn2+, Mg2+ or Fe2+). cf. EC 2.4.1.303, UDP-Gal:α-D-GlcNAc-diphosphoundecaprenol β-1,3-galactosyltransferase.
References:
1.  Chen, C., Liu, B., Xu, Y., Utkina, N., Zhou, D., Danilov, L., Torgov, V., Veselovsky, V. and Feng, L. Biochemical characterization of the novel α-1, 3-galactosyltransferase WclR from Escherichia coli O3. Carbohydr. Res. 430 (2016) 36–43. [PMID: 27196310]
[EC 2.4.1.343 created 2017]
 
 
EC 2.4.1.347     
Accepted name: α,α-trehalose-phosphate synthase (ADP-forming)
Reaction: ADP-α-D-glucose + D-glucose 6-phosphate = ADP + α,α-trehalose 6-phosphate
Other name(s): otsA (gene name); ADP-glucose—glucose-phosphate glucosyltransferase
Systematic name: ADP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been reported from the yeast Saccharomyces cerevisiae and from mycobacteria. The enzyme from Mycobacterium tuberculosis can also use UDP-α-D-glucose, but the activity with ADP-α-D-glucose, which is considered the main substrate in vivo, is higher.
References:
1.  Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C. and Panek, A.D. Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335 (1997) 40–50. [PMID: 9133641]
2.  Pan, Y.T., Carroll, J.D. and Elbein, A.D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269 (2002) 6091–6100. [PMID: 12473104]
3.  Asencion Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S. and Iglesias, A.A. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850 (2015) 13–21. [PMID: 25277548]
[EC 2.4.1.347 created 2017]
 
 
EC 2.4.1.350     
Accepted name: mogroside IE synthase
Reaction: UDP-α-D-glucose + mogrol = mogroside IE + UDP
Glossary: mogrol = (23R)-cucurbit-5-ene-3β,11α,23,25-tetraol
Other name(s): UGT74AC1; mogrol C-3 hydroxyl glycosyltransferase
Systematic name: UDP-α-D-glucose:mogrol 3-O-glucosyltransferase
Comments: Isolated from the plant Siraitia grosvenorii (monk fruit).
References:
1.  Dai, L., Liu, C., Zhu, Y., Zhang, J., Men, Y., Zeng, Y. and Sun, Y. Functional characterization of cucurbitadienol synthase and triterpene glycosyltransferase involved in biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 56 (2015) 1172–1182. [PMID: 25759326]
[EC 2.4.1.350 created 2017]
 
 
EC 2.4.1.351     
Accepted name: rhamnogalacturonan I rhamnosyltransferase
Reaction: UDP-β-L-rhamnose + α-D-galacturonosyl-[(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n = UDP + [(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n+1
Other name(s): RRT; RG I rhamnosyltransferase
Systematic name: UDP-β-L-rhamnose:rhamnogalacturonan I 4-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Vigna angularis (azuki beans), participates in the biosynthesis of rhamnogalacturonan type I. It does not require any metal ions, and prefers substrates with a degree of polymerization larger than 7.
References:
1.  Uehara, Y., Tamura, S., Maki, Y., Yagyu, K., Mizoguchi, T., Tamiaki, H., Imai, T., Ishii, T., Ohashi, T., Fujiyama, K. and Ishimizu, T. Biochemical characterization of rhamnosyltransferase involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall. Biochem. Biophys. Res. Commun. 486 (2017) 130–136. [PMID: 28283389]
[EC 2.4.1.351 created 2018]
 
 
EC 2.4.1.354     
Accepted name: (R)-mandelonitrile β-glucosyltransferase
Reaction: UDP-α-D-glucose + (R)-mandelonitrile = UDP + (R)-prunasin
Glossary: (R)-mandelonitrile = (2R)-hydroxy(phenyl)acetonitrile
(R)-prunasin = (2R)-(β-D-glucosyloxy)(phenyl)acetonitrile
Other name(s): UGT85A19 (gene name)
Systematic name: UDP-α-D-glucose:(R)-mandelonitrile β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from Prunus dulcis (almond), is involved in the biosynthesis of the cyanogenic glycosides (R)-prunasin and (R)-amygdalin.
References:
1.  Franks, T. K., Yadollahi, A., Wirthensohn, M. G., Guerin, J. R., Kaiser, B. N., Sedgley, M. and Ford, C. M. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Funct. Plant Biol. 35 (2008) 236–246.
[EC 2.4.1.354 created 2018]
 
 
EC 2.4.1.355     
Accepted name: poly(ribitol-phosphate) β-N-acetylglucosaminyltransferase
Reaction: n UDP-N-acetyl-α-D-glucosamine + 4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol = n UDP + 4-O-(2-N-acetyl-β-D-glucosaminyl-D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): TarS
Systematic name: UDP-N-acetyl-α-D-glucosamine:4-O-(D-ribitylphospho)n-di[(2R)-1-glycerophospho]-N-acetyl-β-D-mannosaminyl-(1→4)-N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of poly(ribitol-phosphate) teichoic acids in the cell wall of the bacterium Staphylococcus aureus. This enzyme adds an N-acetyl-β-D-glucosamine to the OH group at the 2 position of the ribitol phosphate units. cf. EC 2.4.1.70 [poly(ribitol-phosphate) α-N-acetylglucosaminyltransferase].
References:
1.  Nathenson, S. G., Strominger, J. L. Enzymatic synthesis of N-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen. J. Biol. Chem. 238 (1963) 3161–3169. [PMID: 14085356]
2.  Brown, S., Xia, G., Luhachack, L.G., Campbell, J., Meredith, T.C., Chen, C., Winstel, V., Gekeler, C., Irazoqui, J.E., Peschel, A. and Walker, S. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109 (2012) 18909–18914. [PMID: 23027967]
3.  Sobhanifar, S., Worrall, L.J., King, D.T., Wasney, G.A., Baumann, L., Gale, R.T., Nosella, M., Brown, E.D., Withers, S.G. and Strynadka, N.C. Structure and mechanism of Staphylococcus aureus TarS, the wall teichoic acid β-glycosyltransferase involved in methicillin resistance. PLoS Pathog. 12:e1006067 (2016). [PMID: 27973583]
[EC 2.4.1.355 created 2018]
 
 
EC 2.4.1.356     
Accepted name: glucosyl-dolichyl phosphate glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + an archaeal dolichyl α-D-glucosyl phosphate = UDP + an archaeal dolichyl β-D-glucuronosyl-(1→4)-α-D-glucosyl phosphate
Other name(s): aglG (gene name)
Systematic name: UDP-α-D-glucuronate:dolichyl phosphate glucuronosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the halophilic archaeon Haloferax volcanii, participates in the protein N-glycosylation pathway. Dolichol used by archaea is different from that used by eukaryotes. It is much shorter (C55-C60) and is α,ω-saturated. However, in vitro the enzyme was also able to act on a substrate with an unsaturated end.
References:
1.  Yurist-Doutsch, S., Abu-Qarn, M., Battaglia, F., Morris, H.R., Hitchen, P.G., Dell, A. and Eichler, J. aglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol. Microbiol. 69 (2008) 1234–1245. [PMID: 18631242]
2.  Elharar, Y., Podilapu, A.R., Guan, Z., Kulkarni, S.S. and Eichler, J. Assembling glycan-charged dolichol phosphates: chemoenzymatic synthesis of a Haloferax volcanii N-glycosylation pathway intermediate. Bioconjugate Chem. 28 (2017) 2461–2470. [PMID: 28809486]
[EC 2.4.1.356 created 2018]
 
 
EC 2.4.1.357     
Accepted name: phlorizin synthase
Reaction: UDP-α-D-glucose + phloretin = UDP + phlorizin
Glossary: phloretin = 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorizin = 3-(4-hydroxyphenyl)-1-[2-(β-D-glucopyranosyloxy)-4,6-dihydroxyphenyl]propan-1-one
Other name(s): MdPGT1: P2’GT
Systematic name: UDP-α-D-glucose:phloretin 2′-O-D-glucosyltransferase
Comments: Isolated from Malus X domestica (apple). Phlorizin inhibits sodium-linked glucose transporters. It gives the characteristic flavour of apples and cider.
References:
1.  Jugdé, H., Nguy, D., Moller, I., Cooney, J.M. and Atkinson, R.G. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J. 275 (2008) 3804–3814. [PMID: 18573104]
2.  Yahyaa, M., Davidovich-Rikanati, R., Eyal, Y., Sheachter, A., Marzouk, S., Lewinsohn, E. and Ibdah, M. Identification and characterization of UDP-glucose:Phloretin 4′-O-glycosyltransferase from Malus x domestica Borkh. Phytochemistry 130 (2016) 47–55. [PMID: 27316677]
[EC 2.4.1.357 created 2018]
 
 
EC 2.4.1.358     
Accepted name: acylphloroglucinol glucosyltransferase
Reaction: UDP-α-D-glucose + 2-acylphloroglucinol = UDP + 2-acylphloroglucinol 1-O-β-D-glucoside
Glossary: phlorisobutyrophenone = 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one
phlorisovalerophenone = 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one
Other name(s): UGT71K3
Systematic name: UDP-α-D-glucose:2-acylphloroglucinol 1-O-β-glucosyltransferase
Comments: Isolated from strawberries (Fragaria X ananassa). Acts best on phloroisovalerophenone and phlorobutyrophenone but will also glycosylate many other phenolic compounds. A minor product of the reaction is the 5-O-β-D-glucoside.
References:
1.  Song, C., Zhao, S., Hong, X., Liu, J., Schulenburg, K. and Schwab, W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria x ananassa). Plant J. 85 (2016) 730–742. [PMID: 26859691]
[EC 2.4.1.358 created 2018]
 
 
EC 2.4.1.360     
Accepted name: 2-hydroxyflavanone C-glucosyltransferase
Reaction: UDP-α-D-glucose + a 2′-hydroxy-β-oxodihydrochalcone = UDP + a 3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone
Glossary: 2′-hydroxy-β-oxodihydrochalcone = 1-(2-hydroxyphenyl)-3-phenypropan-1,3-dione
3′-(β-D-glucopyranosyl)-2′-hydroxy-β-oxodihydrochalcone = 1-(3-(β-D-glucopyranosyl)-2-hydroxyphenyl)-3-phenylpropan-1,3-dione
Other name(s): OsCGT
Systematic name: UDP-α-D-glucose:2′-hydroxy-β-oxodihydrochalcone C6/8-β-D-glucosyltransferase
Comments: The enzyme has been characterized in Oryza sativa (rice), various Citrus spp., Glycine max (soybean), and Fagopyrum esculentum (buckwheat). Flavanone substrates require a 2-hydroxy group. The meta-stable flavanone substrates such as 2-hydroxynaringenin exist in an equilibrium with open forms such as 1-(4-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propane-1,3-dione, which are the actual substrates for the glucosyl-transfer reaction (see EC 1.14.14.162, flavanone 2-hydroxylase). The enzyme can also act on dihydrochalcones. The enzymes from citrus plants can catalyse a second C-glycosylation reaction at position 5.
References:
1.  Brazier-Hicks, M., Evans, K.M., Gershater, M.C., Puschmann, H., Steel, P.G. and Edwards, R. The C-glycosylation of flavonoids in cereals. J. Biol. Chem. 284 (2009) 17926–17934. [PMID: 19411659]
2.  Nagatomo, Y., Usui, S., Ito, T., Kato, A., Shimosaka, M. and Taguchi, G. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J. 80 (2014) 437–448. [PMID: 25142187]
3.  Hirade, Y., Kotoku, N., Terasaka, K., Saijo-Hamano, Y., Fukumoto, A. and Mizukami, H. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Lett. 589 (2015) 1778–1786. [PMID: 25979175]
4.  Ito, T., Fujimoto, S., Suito, F., Shimosaka, M. and Taguchi, G. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. Plant J. 91 (2017) 187–198. [PMID: 28370711]
[EC 2.4.1.360 created 2018]
 
 
EC 2.4.1.363     
Accepted name: ginsenoside 20-O-glucosyltransferase
Reaction: UDP-α-D-glucose + (20S)-protopanaxadiol = UDP + ginsenoside C-K
Glossary: (20S)-protopanaxadiol = (3β,12β)-dammar-24-ene-3,12,20-triol
ginsenoside C-K = (3β,12β)-3,12-dihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGT71A27 (gene name)
Systematic name: UDP-α-D-glucose:(20S)-protopanaxadiol 20-O-glucosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the free C20(S)-OH group of dammarane derivative substrates, including protopanaxatriol, dammarenediol II, (20S)-ginsenoside Rh2, and (20S)-ginsenoside Rg3. It does not act on the 20R epimer of protopanaxadiol, or on ginsenosides that are glucosylated at the C-6 position, such as ginsenoside Rh1 or ginsenoside Rg2.
References:
1.  Yan, X., Fan, Y., Wei, W., Wang, P., Liu, Q., Wei, Y., Zhang, L., Zhao, G., Yue, J. and Zhou, Z. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res. 24 (2014) 770–773. [PMID: 24603359]
2.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.363 created 2019]
 
 
EC 2.4.1.364     
Accepted name: protopanaxadiol-type ginsenoside 3-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-protopanaxadiol = UDP + (20S)-ginsenoside Rh2
(2) UDP-α-D-glucose + ginsenoside C-K = UDP + ginsenoside F2
Glossary: (20S)-protopanaxadiol = (3β,12β)-dammar-24-ene-3,12,20-triol
ginsenoside C-K = (3β,12β)-3,12-dihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGT74AE2 (gene name)
Systematic name: UDP-α-D-glucose:protopanaxadiol-type ginsenoside 3-O-glucosyltransferase (configuration-retaining)
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the free C-3-OH group of (20S)-protopanaxadiol and ginsenoside C-K.
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.364 created 2019]
 
 
EC 2.4.1.365     
Accepted name: protopanaxadiol-type ginsenoside-3-O-glucoside 2′′-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + (20S)-ginsenoside Rh2 = UDP + (20S)-ginsenoside Rg3
(2) UDP-α-D-glucose + ginsenoside F2 = UDP + ginsenoside Rd
Glossary: (20S)-ginsenoside Rh2 = (3β,12β)-12,20-dihydroxydammar-24-en-3-yl β-D-glucopyranoside
ginsenoside F2 = (3β,12β)-20-(β-D-glucopyranosyloxy)-12-hydroxydammar-24-en-3-yl β-D-glucopyranoside
Other name(s): UGT94Q2 (gene name)
Systematic name: UDP-α-D-glucose:3-O-glucosyl-protopanaxadiol-type ginsenoside 2′′-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, transfers a glucosyl moiety to the 2′′ position of the glucose moiety in the protopanaxadiol-type ginsenoside-3-O-glucosides (20S)-ginsenoside Rh2 and ginsenoside F2.
References:
1.  Jung, S.C., Kim, W., Park, S.C., Jeong, J., Park, M.K., Lim, S., Lee, Y., Im, W.T., Lee, J.H., Choi, G. and Kim, S.C. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol. 55 (2014) 2177–2188. [PMID: 25320211]
[EC 2.4.1.365 created 2019]
 
 
EC 2.4.1.366     
Accepted name: ginsenoside F1 6-O-glucosyltransferase
Reaction: UDP-α-D-glucose + ginsenoside F1 = UDP + (20S)-ginsenoside Rg1
Glossary: ginsenoside F1 = 3β,6α,12β-trihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGTPg101 (gene name)
Systematic name: UDP-α-D-glucose:ginsenoside F1 6-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, glucosylates the C-6 position of ginsenoside F1. The enzyme also glucosylates the C-20 position of protopanaxatriol, which forms ginsenoside F1 (cf. EC 2.4.1.363, ginsenoside 20-O-glucosyltransferase). However, unlike EC 2.4.1.367, ginsenoside 6-O-glucosyltransferase, it is not able to glucosylate the C-6 position of protopanaxatriol when position C-20 is not glucosylated.
References:
1.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.366 created 2019]
 
 
EC 2.4.1.367     
Accepted name: ginsenoside 6-O-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + protopanaxatriol = UDP + ginsenoside Rh1
(2) UDP-α-D-glucose + ginsenoside F1 = UDP + (20S)-ginsenoside Rg1
Glossary: protopanaxatriol = (3β,6α,12β)-dammar-24-ene-3,6,12,20-tetrol
ginsenoside F1 = (3β,6α,12β)-trihydroxydammar-24-en-20-yl β-D-glucopyranoside
Other name(s): UGTPg100 (gene name)
Systematic name: UDP-α-D-glucose:ginsenoside 6-O-glucosyltransferase
Comments: The enzyme, characterized from the plant Panax ginseng, glucosylates the C-6 position of protopanaxatriol and ginsenoside F1.
References:
1.  Wei, W., Wang, P., Wei, Y., Liu, Q., Yang, C., Zhao, G., Yue, J., Yan, X. and Zhou, Z. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol. Plant 8 (2015) 1412–1424. [PMID: 26032089]
[EC 2.4.1.367 created 2019]
 
 
EC 2.4.1.368     
Accepted name: oleanolate 3-O-glucosyltransferase
Reaction: UDP-α-D-glucose + oleanolate = UDP + oleanolate 3-O-β-D-glucoside
Glossary: oleanolate = 3β-hydroxyolean-12-en-28-oate
Other name(s): UGT73C10 (gene name); UGT73C11 (gene name)
Systematic name: UDP-α-D-glucose:oleanolate 3-O-glucosyltransferase
Comments: The enzyme has been characterized from the saponin-producing crucifer plant Barbarea vulgaris.
References:
1.  Augustin, J.M., Drok, S., Shinoda, T., Sanmiya, K., Nielsen, J.K., Khakimov, B., Olsen, C.E., Hansen, E.H., Kuzina, V., Ekstrom, C.T., Hauser, T. and Bak, S. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 160 (2012) 1881–1895. [PMID: 23027665]
[EC 2.4.1.368 created 2019]
 
 
EC 2.4.1.369     
Accepted name: enterobactin C-glucosyltransferase
Reaction: (1) UDP-α-D-glucose + enterobactin = UDP + monoglucosyl-enterobactin
(2) UDP-α-D-glucose + monoglucosyl-enterobactin = UDP + diglucosyl-enterobactin
(3) UDP-α-D-glucose + diglucosyl-enterobactin = UDP + triglucosyl-enterobactin
Glossary: enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone
monoglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-3→1(3)-lactone = mono-C-glucosyl-enterobactin = salmochelin MGE
diglucosyl-enterobactin = N-(2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = salmochelin S4 = di-C-glucosyl-enterobactin
triglucosyl-enterobactin = N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-O-[N-(5-β-D-glucopyranosyl-2,3-dihydroxybenzoyl)-L-seryl]-L-seryl]-L-serine-(3→1(3))-lactone = tri-C-glucosyl-enterobactin = salmochelin TGE
Other name(s): iroB (gene name)
Systematic name: UDP-α-D-glucose:enterobactin 5′-C-β-D-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in pathogenic strains of the bacteria Escherichia coli and Salmonella enterica, catalyses the transfer of glucosyl groups to C-5 of one, two, or three of the 2,3-hydroxybenzoyl units of the siderophore enterobactin, forming C-glucosylated derivatives known as salmochelins.
References:
1.  Fischbach, M.A., Lin, H., Liu, D.R. and Walsh, C.T. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. USA 102 (2005) 571–576. [PMID: 15598734]
[EC 2.4.1.369 created 2019]
 
 
EC 2.4.1.375     
Accepted name: rhamnogalacturonan I galactosyltransferase
Reaction: Transfer of a β-galactosyl residue in a β-(1→4) linkage from UDP-α-D-galactose to rhamnosyl residues within the rhamnogalacturonan I backbone.
Glossary: rhamnogalacturonan I backbone = [(1→2)-α-L-rhamnosyl-(1→4)-α-D-galacturonosyl]n
Systematic name: UDP-α-D-galactose:[rhamnogalacturonan I]-α-L-rhamnosyl β-1,4-galactosyltransferase (configuration-inverting)
Comments: The enzyme, characterized from the plant Vigna angularis (azuki beans), participates in the biosynthesis of rhamnogalacturonan I, one of the components of pectin in plant cell wall. It does not require any metal ions, and prefers substrates with a degree of polymerization larger than 9.
References:
1.  Matsumoto, N., Takenaka, Y., Wachananawat, B., Kajiura, H., Imai, T. and Ishimizu, T. Rhamnogalacturonan I galactosyltransferase: Detection of enzyme activity and its hyperactivation. Plant Physiol. Biochem. 142 (2019) 173–178. [PMID: 31299599]
[EC 2.4.1.375 created 2020]
 
 
EC 2.4.1.376     
Accepted name: EGF-domain serine glucosyltransferase
Reaction: UDP-α-D-glucose + [protein with EGF-like domain]-L-serine = UDP + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine
Other name(s): POGLUT1 (gene name) (ambiguous); rumi (gene name) (ambiguous)
Systematic name: UDP-α-D-glucose:[protein with EGF-like domain]-L-serine O-β-glucosyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. Glycosylation takes place at the serine in the C-X-S-X-P-C motif. The enzyme is bifunctional also being active with UDP-α-xylose as donor (EC 2.4.2.63, EGF-domain serine xylosyltransferase). When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
References:
1.  Li, Z., Fischer, M., Satkunarajah, M., Zhou, D., Withers, S.G. and Rini, J.M. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun. 8:185 (2017). [PMID: 28775322]
[EC 2.4.1.376 created 2020]
 
 
EC 2.4.1.384     
Accepted name: NDP-glycosyltransferase
Reaction: an NDP-glycose + an acceptor = a glycosylated acceptor + NDP
Other name(s): yjiC (gene name)
Systematic name: NDP-glycose:acceptor glycosyltransferase
Comments: The enzyme, characterized from the bacterium Bacillus licheniformis DSM-13, is an extremely promiscuous glycosyltransferase. It can accept ADP-, GDP-, CDP-, TDP-, or UDP-activated glycose molecules as donors, and can glycosylate a large number of substrates, catalysing O-, N-, or S-glycosylation. While D-glucose is the primarily reported sugar being transferred, the enzyme has been shown to transfer D-galactose, 2-deoxy-D-glucose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, L-fucose, L-rhamnose, D-glucuronate, and D-viosamine.
References:
1.  Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W. and Sohng, J.K. Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79 (2013) 6833–6838. [PMID: 23974133]
2.  Pandey, R.P., Gurung, R.B., Parajuli, P., Koirala, N., Tuoi le, T. and Sohng, J.K. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393 (2014) 26–31. [PMID: 24893262]
3.  Pandey, R.P., Parajuli, P., Shin, J.Y., Lee, J., Lee, S., Hong, Y.S., Park, Y.I., Kim, J.S. and Sohng, J.K. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80 (2014) 7235–7243. [PMID: 25239890]
4.  Parajuli, P., Pandey, R.P., Koirala, N., Yoon, Y.J., Kim, B.G. and Sohng, J.K. Enzymatic synthesis of epothilone A glycosides. AMB Express 4:31 (2014). [PMID: 24949266]
5.  Pandey, R.P., Parajuli, P., Gurung, R.B. and Sohng, J.K. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Enzyme Microb. Technol. 91 (2016) 26–33. [PMID: 27444326]
6.  Bashyal, P., Thapa, S.B., Kim, T.S., Pandey, R.P. and Sohng, J.K. Exploring the nucleophilic N- and S-glycosylation capacity of Bacillus licheniformis YjiC enzyme. J. Microbiol. Biotechnol. 30 (2020) 1092–1096. [PMID: 32238768]
[EC 2.4.1.384 created 2021]
 
 
EC 2.4.1.385     
Accepted name: sterol 27-β-glucosyltransferase
Reaction: UDP-α-D-glucose + a 27-hydroxysteroid = UDP + a sterol 27-β-D-glucoside
Systematic name: UDP-α-D-glucose:sterol 27-O-β-D-glucosyltransferase
Comments: The enzyme, isolated from the plant Withania somnifera (ashwagandha), transfers D-glucose to a β-hydroxyl group present at the C-27 position in sterols/withanolides, provided the substrate possesses a 17α-OH group. Natural substrates are 17α-hydroxywithaferin A, 27β-hydroxywithanone, and 5α,6β,17α,27β-tetrahydroxywithanolide. The enzyme's activity with withanolide A and withanolide U, which lack a 17α-hydroxyl group, suggests it may also be able to glucosylate the C-20 β-OH position, although this has not been verified yet. The enzyme does not glucosylate sterols at the C-3 position.
References:
1.  Madina, B.R., Sharma, L.K., Chaturvedi, P., Sangwan, R.S. and Tuli, R. Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim. Biophys. Acta 1774 (2007) 1199–1207. [PMID: 17704015]
[EC 2.4.1.385 created 2021]
 
 
EC 2.4.1.386     
Accepted name: GlcNAc-β-1,3-Gal β-1,6-N-acetylglucosaminyltransferase (distally acting)
Reaction: UDP-N-acetyl-α-D-glucosamine + β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-GlcNAc-R = UDP + β-D-GlcNAc-(1→3)-[β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-β-D-GlcNAc-R
Other name(s): UDP-GlcNAc:GlcNAcβ1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase; dIGnT; C2GnT2 (misleading)
Systematic name: UDP-N-acetyl-α-D-glucosamine:N-acetyl-β-D-glucosaminyl-(1→3)-β-D-galactosyl-(1→4)-N-acetyl-β-D-glucosaminide 6-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Involved in the production of milk oligosaccharides in the lacto-N-triose (LNT) series. Cf. EC 2.4.1.150 (N-acetyllactosaminide β-1,6-N-acetylglucosaminyltransferase; cIGnT) and EC 2.4.1.148 (acetylgalactosaminyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase).
References:
1.  Piller, F., Cartron, J.P., Maranduba, A., Veyrieres, A., Leroy, Y. and Fournet, B. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc β1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259 (1984) 13385–13390. [PMID: 6490658]
2.  Yeh, J.C., Ong, E. and Fukuda, M. Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274 (1999) 3215–3221. [PMID: 9915862]
[EC 2.4.1.386 created 2021]
 
 
EC 2.4.2.24     
Accepted name: 1,4-β-D-xylan synthase
Reaction: UDP-D-xylose + [(1→4)-β-D-xylan]n = UDP + [(1→4)-β-D-xylan]n+1
Other name(s): uridine diphosphoxylose-1,4-β-xylan xylosyltransferase; 1,4-β-xylan synthase; xylan synthase; xylan synthetase; UDP-D-xylose:1,4-β-D-xylan 4-β-D-xylosyltransferase
Systematic name: UDP-D-xylose:(1→4)-β-D-xylan 4-β-D-xylosyltransferase
References:
1.  Bailey, R.W. and Hassid, W.Z. Xylan synthesis from uridine-diphosphate-D-xylose by particulate preparations from immature corncobs. Proc. Natl. Acad. Sci. USA 56 (1966) 1586–1593. [PMID: 16591393]
[EC 2.4.2.24 created 1972 as EC 2.4.1.72, transferred 1976 to EC 2.4.2.24]
 
 
EC 2.4.2.25     
Accepted name: flavone apiosyltransferase
Reaction: UDP-α-D-apiose + apigenin 7-O-β-D-glucoside = UDP + apigenin 7-O-[β-D-apiosyl-(1→2)-β-D-glucoside]
Glossary: apigenin = 4′,5,7-trihydroxyflavone
β-D-apiose = (2R,3R,4R)-4-(hydroxymethyl)tetrahydrofuran-2,3,4-triol
Other name(s): uridine diphosphoapiose-flavone apiosyltransferase; UDP-apiose:7-O-(β-D-glucosyl)-flavone apiosyltransferase
Systematic name: UDP-apiose:5,4′-dihydroxyflavone 7-O-β-D-glucoside 2′′-O-β-D-apiofuranosyltransferase
Comments: 7-O-β-D-Glucosides of a number of flavonoids and of 4-substituted phenols can act as acceptors.
References:
1.  Ortmann, R., Sutter, A. and Grisebach, H. Purification and properties of UDPapiose: 7-O-(β-D-glucosyl)-flavone apiosyltransferase from cell suspension cultures of parsley. Biochim. Biophys. Acta 289 (1972) 293–302. [PMID: 4650134]
[EC 2.4.2.25 created 1976]
 
 
EC 2.4.2.26     
Accepted name: protein xylosyltransferase
Reaction: UDP-α-D-xylose + [protein]-L-serine = UDP + [protein]-3-O-(β-D-xylosyl)-L-serine
Other name(s): UDP-D-xylose:core protein β-D-xylosyltransferase; UDP-D-xylose:core protein xylosyltransferase; UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase; UDP-xylose-core protein β-D-xylosyltransferase; uridine diphosphoxylose-core protein β-xylosyltransferase; uridine diphosphoxylose-protein xylosyltransferase; UDP-D-xylose:protein β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:protein β-D-xylosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates).
References:
1.  Stoolmiller, A.C., Horwitz, A.L. and Dorfman, A. Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J. Biol. Chem. 247 (1972) 3525–3532. [PMID: 5030630]
2.  Götting, C., Kuhn, J., Zahn, R., Brinkmann, T. and Kleesiek, K. Molecular cloning and expression of human UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 304 (2000) 517–528. [PMID: 11099377]
[EC 2.4.2.26 created 1976, modified 2002, modified 2016]
 
 
EC 2.4.2.32     
Accepted name: dolichyl-phosphate D-xylosyltransferase
Reaction: UDP-D-xylose + dolichyl phosphate = UDP + dolichyl D-xylosyl phosphate
Glossary: dolichol
Systematic name: UDP-D-xylose:dolichyl-phosphate D-xylosyltransferase
References:
1.  Waechter, C.J., Lucas, J.J. and Lennarz, W.J. Evidence for xylosyl lipids as intermediates in xylosyl transfers in hen oviduct membranes. Biochem. Biophys. Res. Commun. 56 (1974) 343–350. [PMID: 4823870]
[EC 2.4.2.32 created 1984, modified 2003]
 
 
EC 2.4.2.34     
Accepted name: indolylacetylinositol arabinosyltransferase
Reaction: UDP-L-arabinose + (indol-3-yl)acetyl-1D-myo-inositol = UDP + (indol-3-yl)acetyl-myo-inositol 3-L-arabinoside
Other name(s): arabinosylindolylacetylinositol synthase; UDP-L-arabinose:indol-3-ylacetyl-myo-inositol L-arabinosyltransferase; UDP-L-arabinose:(indol-3-yl)acetyl-myo-inositol L-arabinosyltransferase
Systematic name: UDP-L-arabinose:(indol-3-yl)acetyl-1D-myo-inositol L-arabinosyltransferase
Comments: The position of acylation is indeterminate because of the ease of acyl transfer between hydroxy groups. For a diagram showing the biosynthesis of UDP-L-arabinose, UDPAra.html">click here.
References:
1.  Corcuera, L.J. and Bandurski, R.S. Biosynthesis of indol-3-yl-acetyl-myo-inositol arabinoside in kernels of Zea mays L. Plant Physiol. 70 (1982) 1664–1666. [PMID: 16662740]
[EC 2.4.2.34 created 1986, modified 2003]
 
 
EC 2.4.2.35     
Accepted name: flavonol-3-O-glycoside xylosyltransferase
Reaction: UDP-α-D-xylose + a flavonol 3-O-glycoside = UDP + a flavonol 3-[β-D-xylosyl-(1→2)-β-D-glycoside]
Other name(s): UDP-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Comments: Flavonol 3-O-glucoside, flavonol 3-O-galactoside and, more slowly, rutin, can act as acceptors.
References:
1.  Kleinehollenhorst, G., Behrens, H., Pegels, G., Srunk, N. and Wiermann, R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv apeldoorn - characterization and activity of 3 different O-glycosyltransferases during anther development. Z. Natursforsch. C: Biosci. 37 (1982) 587–599.
[EC 2.4.2.35 created 1986, modified 2014]
 
 
EC 2.4.2.38     
Accepted name: glycoprotein 2-β-D-xylosyltransferase
Reaction: UDP-α-D-xylose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = UDP + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-[β-D-Xyl-(1→2)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
Other name(s): β1,2-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:N4-{β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→3)-[β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 2-β-D-xylosyltransferase (configuration-inverting)
Comments: Specific for N-linked oligosaccharides (N-glycans).
References:
1.  Zeng, Y., Bannon, G., Thomas, V.H., Rice, K., Drake, R. and Elbein, A. Purification and specificity of β1,2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J. Biol. Chem. 272 (1997) 31340–31347. [PMID: 9395463]
2.  Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glössl, J. and Steinkellner, H. Molecular cloning and functional expression of β1,2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472 (2000) 105–108. [PMID: 10781814]
[EC 2.4.2.38 created 2001]
 
 
EC 2.4.2.39     
Accepted name: xyloglucan 6-xylosyltransferase
Reaction: Transfers an α-D-xylosyl residue from UDP-D-xylose to a glucose residue in xyloglucan, forming an α-(1→6)-D-xylosyl-D-glucose linkage
Other name(s): uridine diphosphoxylose-xyloglucan 6α-xylosyltransferase; xyloglucan 6-α-D-xylosyltransferase; UDP-D-xylose:xyloglucan 1,6-α-D-xylosyltransferase
Systematic name: UDP-D-xylose:xyloglucan 6-α-D-xylosyltransferase
Comments: In association with EC 2.4.1.168 (xyloglucan 4-glucosyltransferase), this enzyme brings about the synthesis of xyloglucan; concurrent transfers of glucose and xylose are necessary for this synthesis.
References:
1.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells. Occurrence and some properties of xyloglucan 4-β-D-glucosyltransferase and 6-α-D-xylosyltransferase. J. Biol. Chem. 256 (1981) 11117–11122. [PMID: 6457048]
2.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells - synthesis of xyloglucan from UDP-glucose and UDP-xylose in the cell-free system. Plant Cell Physiol. 22 (1981) 517–523.
[EC 2.4.2.39 created 1989 as EC 2.4.1.169, transferred 2003 to EC 2.4.2.39]
 
 
EC 2.4.2.40     
Accepted name: zeatin O-β-D-xylosyltransferase
Reaction: UDP-D-xylose + zeatin = UDP + O-β-D-xylosylzeatin
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Other name(s): uridine diphosphoxylose-zeatin xylosyltransferase; zeatin O-xylosyltransferase
Systematic name: UDP-D-xylose:zeatin O-β-D-xylosyltransferase
Comments: Does not act on UDP-glucose (cf. EC 2.4.1.103 alizarin 2-β-glucosyltransferase).
References:
1.  Turner, J.E., Mok, D.W.S., Mok, M.C. and Shaw, G. Isolation and partial-purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc. Natl. Acad. Sci. USA 84 (1987) 3714–3717. [PMID: 16593839]
[EC 2.4.2.40 created 1992 as EC 2.4.1.204, transferred 2003 to EC 2.4.2.40]
 
 
EC 2.4.2.41     
Accepted name: xylogalacturonan β-1,3-xylosyltransferase
Reaction: Transfers a xylosyl residue from UDP-D-xylose to a D-galactose residue in xylogalacturonan, forming a β-1,3-D-xylosyl-D-galactose linkage.
Other name(s): xylogalacturonan xylosyltransferase; XGA xylosyltransferase
Systematic name: UDP-D-xylose:xylogalacturonan 3-β-D-xylosyltransferase
Comments: Involved in plant cell wall synthesis. The enzyme from Arabidopsis thaliana also transfers D-xylose from UDP-D-xylose onto oligogalacturonide acceptors. The enzyme did not show significant activity with UDP-glucose, UDP-galactose, or UDP-N-acetyl-D-glucosamine as sugar donors.
References:
1.  Jensen, J.K., Sorensen, S.O., Harholt, J., Geshi, N., Sakuragi, Y., Moller, I., Zandleven, J., Bernal, A.J., Jensen, N.B., Sorensen, C., Pauly, M., Beldman, G., Willats, W.G. and Scheller, H.V. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20 (2008) 1289–1302. [PMID: 18460606]
[EC 2.4.2.41 created 2009]
 
 
EC 2.4.2.42     
Accepted name: UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): β-glucoside α-1,3-xylosyltransferase; UDP-α-D-xylose:β-D-glucoside 3-α-D-xylosyltransferase; GXYLT1 (gene name); GXYLT2 (gene name)
Systematic name: UDP-α-D-xylose:[protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains [2,3]. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
References:
1.  Omichi, K., Aoki, K., Minamida, S. and Hase, S. Presence of UDP-D-xylose: β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α 1-3Glc β-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur. J. Biochem. 245 (1997) 143–146. [PMID: 9128735]
2.  Ishimizu, T., Sano, K., Uchida, T., Teshima, H., Omichi, K., Hojo, H., Nakahara, Y. and Hase, S. Purification and substrate specificity of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α1-3Xyl α1-3Glc β1-O-Ser on epidermal growth factor-like domains. J. Biochem. 141 (2007) 593–600. [PMID: 17317689]
3.  Sethi, M.K., Buettner, F.F., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285 (2010) 1582–1586. [PMID: 19940119]
[EC 2.4.2.42 created 2010, modified 2020]
 
 
EC 2.4.2.50     
Accepted name: cyanidin 3-O-galactoside 2′′-O-xylosyltransferase
Reaction: UDP-α-D-xylose + cyanidin 3-O-β-D-galactoside = UDP + cyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-galactoside)
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): CGXT
Systematic name: UDP-α-D-xylose:cyanidin-3-O-β-D-galactoside 2′′-O-xylosyltransferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot).
References:
1.  Rose, A., Glassgen, W.E., Hopp, W. and Seitz, H.U. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198 (1996) 397–403. [PMID: 8717136]
[EC 2.4.2.50 created 2013]
 
 
EC 2.4.2.51     
Accepted name: anthocyanidin 3-O-glucoside 2′′′-O-xylosyltransferase
Reaction: UDP-α-D-xylose + an anthocyanidin 3-O-β-D-glucoside = UDP + an anthocyanidin 3-O-β-D-sambubioside
Glossary: anthocyanidin 3-O-β-D-sambubioside = anthocyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-glucoside)
Other name(s): uridine 5′-diphosphate-xylose:anthocyanidin 3-O-glucose-xylosyltransferase; UGT79B1
Systematic name: UDP-α-D-xylose:anthocyanidin-3-O-β-D-glucoside 2′′′-O-xylosyltransferase
Comments: Isolated from the plants Matthiola incana (stock) [1] and Arabidopsis thaliana (mouse-eared cress) [2]. The enzyme has similar activity with the 3-glucosides of pelargonidin, cyanidin, delphinidin, quercetin and kaempferol as well as with cyanidin 3-O-rhamnosyl-(1→6)-glucoside and cyanidin 3-O-(6-acylglucoside). There is no activity with other UDP-sugars or with cyanidin 3,5-diglucoside.
References:
1.  Teusch, M. Uridine 5′-diphosphate-xylose:anthocyanidin 3-O-glucose-xylosyltransferase from petals of Matthiola incana R.Br. Planta 169 (1986) 559–563. [PMID: 24232765]
2.  Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., Wangwattana, B., Yamazaki, M. and Saito, K. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J. 69 (2012) 154–167. [PMID: 21899608]
[EC 2.4.2.51 created 2013]
 
 
EC 2.4.2.53     
Accepted name: undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase
Reaction: UDP-4-deoxy-4-formamido-β-L-arabinopyranose + ditrans,octacis-undecaprenyl phosphate = UDP + 4-deoxy-4-formamido-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate
Other name(s): undecaprenyl-phosphate Ara4FN transferase; Ara4FN transferase; polymyxin resistance protein PmrF; UDP-4-amino-4-deoxy-α-L-arabinose:ditrans,polycis-undecaprenyl phosphate 4-amino-4-deoxy-α-L-arabinosyltransferase
Systematic name: UDP-4-amino-4-deoxy-α-L-arabinose:ditrans,octacis-undecaprenyl phosphate 4-amino-4-deoxy-α-L-arabinosyltransferase
Comments: The enzyme shows no activity with UDP-4-amino-4-deoxy-β-L-arabinose.
References:
1.  Breazeale, S.D., Ribeiro, A.A. and Raetz, C.R. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. J. Biol. Chem. 277 (2002) 2886–2896. [PMID: 11706007]
2.  Breazeale, S.D., Ribeiro, A.A., McClerren, A.L. and Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 280 (2005) 14154–14167. [PMID: 15695810]
[EC 2.4.2.53 created 2010 as EC 2.7.8.30, modified 2011, transferred 2013 to EC 2.4.2.53]
 
 
EC 2.4.2.56     
Accepted name: kaempferol 3-O-xylosyltransferase
Reaction: UDP-α-D-xylose + kaempferol = UDP + kaempferol 3-O-β-D-xyloside
Other name(s): F3XT; UDP-D-xylose:flavonol 3-O-xylosyltransferase; flavonol 3-O-xylosyltransferase
Systematic name: UDP-α-D-xylose:kaempferol 3-O-D-xylosyltransferase
Comments: The enzyme from the plant Euonymus alatus also catalyses the 3-O-D-xylosylation of other flavonols (e.g. quercetin, isorhamnetin, rhamnetin, myricetin, fisetin) with lower activity.
References:
1.  Ishikura, N. and Yang, Z.Q. UDP-D-xylose: flavonol 3-O-xylosyltransferase from young leaves of Euonymus alatus f. ciliato-dentatus. Z. Naturforsch. C: Biosci. 46 (1991) 1003–1010.
[EC 2.4.2.56 created 2013]
 
 
EC 2.4.2.58     
Accepted name: hydroxyproline O-arabinosyltransferase
Reaction: UDP-β-L-arabinofuranose + [protein]-trans-4-hydroxy-L-proline = UDP + [protein]-trans-4-(β-L-arabinofuranosyl)oxy-L-proline
Glossary: trans-4-hydroxy-L-proline = (2S,4R)-4-hydroxyproline = (4R)-4-hydroxy-L-proline
Other name(s): HPAT
Systematic name: UDP-β-L-arabinofuranose:[protein]-trans-4-hydroxy-L-proline L-arabinofuranosyl transferase (configuration-retaining)
Comments: The enzyme, found in plants and mosses, catalyses the O-arabinosylation of hydroxyprolines in hydroxyproline-rich glycoproteins. The enzyme acts on the first hydroxyproline in the motif Val-hydroxyPro-hydroxyPro-Ser.
References:
1.  Ogawa-Ohnishi, M., Matsushita, W. and Matsubayashi, Y. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat. Chem. Biol. 9 (2013) 726–730. [PMID: 24036508]
[EC 2.4.2.58 created 2016]
 
 
EC 2.4.2.61     
Accepted name: α-dystroglycan β1,4-xylosyltransferase
Reaction: UDP-α-D-xylose + 3-O-[Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein] = UDP + 3-O-[β-D-Xyl-(1→4)-Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein]
Other name(s): TMEM5 (gene name)
Systematic name: UDP-α-D-xylose:3-O-[Rib-ol-P-Rib-ol-P-3-β-D-GalNAc-(1→3)-β-D-GlcNAc-(1→4)-O-6-P-α-D-Man]-Ser/Thr-[protein] xylosyltransferase
Comments: This eukaryotic enzyme catalyses a step in the biosynthesis of the glycan moiety of the membrane protein α-dystroglycan. It is specific for the second ribitol 5-phosphate in the nascent glycan chain as acceptor.
References:
1.  Vuillaumier-Barrot, S., Bouchet-Seraphin, C., Chelbi, M., Devisme, L., Quentin, S., Gazal, S., Laquerriere, A., Fallet-Bianco, C., Loget, P., Odent, S., Carles, D., Bazin, A., Aziza, J., Clemenson, A., Guimiot, F., Bonniere, M., Monnot, S., Bole-Feysot, C., Bernard, J.P., Loeuillet, L., Gonzales, M., Socha, K., Grandchamp, B., Attie-Bitach, T., Encha-Razavi, F. and Seta, N. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am. J. Hum. Genet. 91 (2012) 1135–1143. [PMID: 23217329]
2.  Manya, H., Yamaguchi, Y., Kanagawa, M., Kobayashi, K., Tajiri, M., Akasaka-Manya, K., Kawakami, H., Mizuno, M., Wada, Y., Toda, T. and Endo, T. The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J. Biol. Chem. 291 (2016) 24618–24627. [PMID: 27733679]
[EC 2.4.2.61 created 2018]
 
 
EC 2.4.2.62     
Accepted name: xylosyl α-1,3-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): XXYLT1 (gene name)
Systematic name: UDP-α-D-xylose:[EGF-like domain protein]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
References:
1.  Minamida, S., Aoki, K., Natsuka, S., Omichi, K., Fukase, K., Kusumoto, S. and Hase, S. Detection of UDP-D-xylose: α-D-xyloside α 1-→3xylosyltransferase activity in human hepatoma cell line HepG2. J. Biochem. 120 (1996) 1002–1006. [PMID: 8982869]
2.  Sethi, M.K., Buettner, F.F., Ashikov, A., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287 (2012) 2739–2748. [PMID: 22117070]
3.  Yu, H., Takeuchi, M., LeBarron, J., Kantharia, J., London, E., Bakker, H., Haltiwanger, R.S., Li, H. and Takeuchi, H. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nat. Chem. Biol. 11 (2015) 847–854. [PMID: 26414444]
[EC 2.4.2.62 created 2020]
 
 
EC 2.4.2.63     
Accepted name: EGF-domain serine xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-L-serine = UDP + [protein with EGF-like domain]-3-O-(β-D-xylosyl)-L-serine
Other name(s): POGLUT1 (gene name) (ambiguous); rumi (gene name) (ambiguous)
Systematic name: UDP-α-D-xylose:[protein with EGF-like domain]-L-serine O-β-xylosyltransferase (configuration-inverting)
Comments: The enzyme, found in animals and insects, xylosylates at the serine in the C-X-S-X-P-C motif of epidermal growth factor-like (EGF-like) domains. The enzyme is bifunctional also being active with UDP-α-glucose as donor (EC 2.4.1.376, EGF-domain serine glucosyltransferase).
References:
1.  Li, Z., Fischer, M., Satkunarajah, M., Zhou, D., Withers, S.G. and Rini, J.M. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun. 8:185 (2017). [PMID: 28775322]
[EC 2.4.2.63 created 2020]
 
 
EC 2.5.1.7     
Accepted name: UDP-N-acetylglucosamine 1-carboxyvinyltransferase
Reaction: phosphoenolpyruvate + UDP-N-acetyl-α-D-glucosamine = phosphate + UDP-N-acetyl-3-O-(1-carboxyvinyl)-α-D-glucosamine
Other name(s): MurA transferase; UDP-N-acetylglucosamine 1-carboxyvinyl-transferase; UDP-N-acetylglucosamine enoylpyruvyltransferase; enoylpyruvate transferase; phosphoenolpyruvate-UDP-acetylglucosamine-3-enolpyruvyltransferase; phosphoenolpyruvate:UDP-2-acetamido-2-deoxy-D-glucose 2-enoyl-1-carboxyethyltransferase; phosphoenolpyruvate:uridine diphosphate N-acetylglucosamine enolpyruvyltransferase; phosphoenolpyruvate:uridine-5′-diphospho-N-acetyl-2-amino-2-deoxyglucose 3-enolpyruvyltransferase; phosphopyruvate-uridine diphosphoacetylglucosamine pyruvatetransferase; pyruvate-UDP-acetylglucosamine transferase; pyruvate-uridine diphospho-N-acetylglucosamine transferase; pyruvate-uridine diphospho-N-acetyl-glucosamine transferase; pyruvic-uridine diphospho-N-acetylglucosaminyltransferase; phosphoenolpyruvate:UDP-N-acetyl-D-glucosamine 1-carboxyvinyltransferase
Systematic name: phosphoenolpyruvate:UDP-N-acetyl-α-D-glucosamine 1-carboxyvinyltransferase
References:
1.  Gunetileke, K.G. and Anwar, R.A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. II. Purification and properties of pyruvate-uridine diphospho-N-acetylglucosamine transferase and characterization of uridine diphospho-N-acetylenopyruvylglucosamine. J. Biol. Chem. 243 (1968) 5770–5778. [PMID: 5699062]
2.  Zemell, R.I. and Anwar, R.A. Pyruvate-uridine diphospho-N-acetylglucosamine transferase. Purification to homogeneity and feedback inhibition. J. Biol. Chem. 250 (1975) 3185–3192. [PMID: 1123336]
3.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 2.5.1.7 created 1972, modified 1983, modified 2002]
 
 
EC 2.5.1.101     
Accepted name: N,N′-diacetyllegionaminate synthase
Reaction: 2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose + phosphoenolpyruvate + H2O = N,N′-diacetyllegionaminate + phosphate
Glossary: legionaminate = 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonate
Other name(s): neuB (gene name); legI (gene name)
Systematic name: phosphoenolpyruvate:2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose 1-(2-carboxy-2-oxoethyl)transferase
Comments: Requires a divalent metal such as Mn2+. Isolated from the bacteria Legionella pneumophila and Campylobacter jejuni, where it is involved in the biosynthesis of legionaminic acid, a virulence-associated, cell surface sialic acid-like derivative.
References:
1.  Glaze, P.A., Watson, D.C., Young, N.M. and Tanner, M.E. Biosynthesis of CMP-N,N′-diacetyllegionaminic acid from UDP-N,N′-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47 (2008) 3272–3282. [PMID: 18275154]
2.  Schoenhofen, I.C., Vinogradov, E., Whitfield, D.M., Brisson, J.R. and Logan, S.M. The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19 (2009) 715–725. [PMID: 19282391]
[EC 2.5.1.101 created 2012]
 
 
EC 2.6.1.16     
Accepted name: glutamine—fructose-6-phosphate transaminase (isomerizing)
Reaction: L-glutamine + D-fructose 6-phosphate = L-glutamate + D-glucosamine 6-phosphate
Other name(s): hexosephosphate aminotransferase; glucosamine-6-phosphate isomerase (glutamine-forming); glutamine-fructose-6-phosphate transaminase (isomerizing); D-fructose-6-phosphate amidotransferase; glucosaminephosphate isomerase; glucosamine 6-phosphate synthase; GlcN6P synthase
Systematic name: L-glutamine:D-fructose-6-phosphate isomerase (deaminating)
Comments: Although the overall reaction is that of a transferase, the mechanism involves the formation of ketimine between fructose 6-phosphate and a 6-amino group from a lysine residue at the active site, which is subsequently displaced by ammonia (transamidination).
References:
1.  Ghosh, S., Blumenthal, H.J., Davidson, E. and Roseman, S. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J. Biol. Chem. 235 (1960) 1265–1273. [PMID: 13827775]
2.  Gryder, R.M. and Pogell, B.M. Further studies on glucosamine 6-phosphate synthesis by rat liver enzymes. J. Biol. Chem. 235 (1960) 558–562. [PMID: 13829889]
3.  Leloir, L.F. and Cardini, C.E. The biosynthesis of glucosamine. Biochim. Biophys. Acta 12 (1953) 15–22. [PMID: 13115409]
4.  Teplyakov, A., Obmolova, G., Badet-Denisot, M.A. and Badet, B. The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Sci. 8 (1999) 596–602. [PMID: 10091662]
[EC 2.6.1.16 created 1961, deleted 1972, reinstated 1984, modified 2000 (EC 5.3.1.19 created 1972, incorporated 1984)]
 
 
EC 2.6.1.34     
Accepted name: UDP-N-acetylbacillosamine transaminase
Reaction: UDP-N-acetylbacillosamine + 2-oxoglutarate = UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose + L-glutamate
Glossary: UDP-N-acetylbacillosamine = UDP-2-acetamido-4-amino-2,4,6-trideoxy-α-D-glucose = UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine
Other name(s): uridine diphospho-4-amino-2-acetamido-2,4,6-trideoxyglucose aminotransferase; UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine transaminase; UDP-2-acetamido-4-amino-2,4,6-trideoxyglucose transaminase; pglE (gene name); UDP-2-acetamido-4-amino-2,4,6-trideoxyglucose:2-oxoglutarate aminotransferase
Systematic name: UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine:2-oxoglutarate aminotransferase
Comments: A pyridoxal-phosphate protein. The enzyme is involved in biosynthesis of UDP-N,N′-diacetylbacillosamine, an intermediate in protein glycosylation pathways in several bacterial species, including N-linked glycosylation of certain L-asparagine residues in Campylobacter species [2-4] and O-linked glycosylation of certain L-serine residues in Neisseria species [5].
References:
1.  Distler, J., Kaufman, B. and Roseman, S. Enzymic synthesis of a diamino sugar nucleotide by extracts of type XIV Diplococcus pneumoniae. Arch. Biochem. Biophys. 116 (1966) 466–478. [PMID: 4381351]
2.  Olivier, N.B., Chen, M.M., Behr, J.R. and Imperiali, B. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45 (2006) 13659–13669. [PMID: 17087520]
3.  Schoenhofen, I.C., McNally, D.J., Vinogradov, E., Whitfield, D., Young, N.M., Dick, S., Wakarchuk, W.W., Brisson, J.R. and Logan, S.M. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281 (2006) 723–732. [PMID: 16286454]
4.  Rangarajan, E.S., Ruane, K.M., Sulea, T., Watson, D.C., Proteau, A., Leclerc, S., Cygler, M., Matte, A. and Young, N.M. Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni. Biochemistry 47 (2008) 1827–1836. [PMID: 18198901]
5.  Hartley, M.D., Morrison, M.J., Aas, F.E., Borud, B., Koomey, M. and Imperiali, B. Biochemical characterization of the O-linked glycosylation pathway in Neisseria gonorrhoeae responsible for biosynthesis of protein glycans containing N,N′-diacetylbacillosamine. Biochemistry 50 (2011) 4936–4948. [PMID: 21542610]
[EC 2.6.1.34 created 1972, modified 2013]
 
 
EC 2.6.1.87     
Accepted name: UDP-4-amino-4-deoxy-L-arabinose aminotransferase
Reaction: UDP-4-amino-4-deoxy-β-L-arabinopyranose + 2-oxoglutarate = UDP-β-L-threo-pentapyranos-4-ulose + L-glutamate
Other name(s): UDP-(β-L-threo-pentapyranosyl-4′′-ulose diphosphate) aminotransferase; UDP-4-amino-4-deoxy-L-arabinose—oxoglutarate aminotransferase; UDP-Ara4O aminotransferase; UDP-L-Ara4N transaminase
Systematic name: UDP-4-amino-4-deoxy-β-L-arabinose:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate enzyme.
References:
1.  Breazeale, S.D., Ribeiro, A.A. and Raetz, C.R. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J. Biol. Chem. 278 (2003) 24731–24739. [PMID: 12704196]
2.  Noland, B.W., Newman, J.M., Hendle, J., Badger, J., Christopher, J.A., Tresser, J., Buchanan, M.D., Wright, T.A., Rutter, M.E., Sanderson, W.E., Muller-Dieckmann, H.J., Gajiwala, K.S. and Buchanan, S.G. Structural studies of Salmonella typhimurium ArnB (PmrH) aminotransferase: a 4-amino-4-deoxy-L-arabinose lipopolysaccharide-modifying enzyme. Structure 10 (2002) 1569–1580. [PMID: 12429098]
[EC 2.6.1.87 created 2010]
 
 
EC 2.6.1.91      
Deleted entry: UDP-4-amino-4,6-dideoxy-N-acetyl-α-D-glucosamine transaminase. Identical to EC 2.6.1.34, UDP-N-acetylbacillosamine transaminase.
[EC 2.6.1.91 created 2011, deleted 2013]
 
 
EC 2.6.1.92     
Accepted name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine transaminase
Reaction: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine + 2-oxoglutarate = UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose + L-glutamate
Other name(s): PseC; UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine:2-oxoglutarate aminotransferase; UDP-β-L-threo-pentapyranos-4-ulose transaminase; UDP-4-dehydro-6-deoxy-D-glucose transaminase
Systematic name: UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine:2-oxoglutarate transaminase
Comments: A pyridoxal 5′-phosphate protein. The enzyme transfers the primary amino group of L-glutamate to C-4′′ of UDP-4-dehydro sugars, forming a C-N bond in a stereo configuration opposite to that of UDP. The enzyme from the bacterium Bacillus cereus has been shown to act on UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, UDP-β-L-threo-pentapyranos-4-ulose, UDP-4-dehydro-6-deoxy-D-glucose, and UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose. cf. EC 2.6.1.34, UDP-N-acetylbacillosamine transaminase, which catalyses a similar reaction, but forms the C-N bond in the same stereo configuration as that of UDP.
References:
1.  Schoenhofen, I.C., McNally, D.J., Vinogradov, E., Whitfield, D., Young, N.M., Dick, S., Wakarchuk, W.W., Brisson, J.R. and Logan, S.M. Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281 (2006) 723–732. [PMID: 16286454]
2.  Schoenhofen, I.C., Lunin, V.V., Julien, J.P., Li, Y., Ajamian, E., Matte, A., Cygler, M., Brisson, J.R., Aubry, A., Logan, S.M., Bhatia, S., Wakarchuk, W.W. and Young, N.M. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J. Biol. Chem. 281 (2006) 8907–8916. [PMID: 16421095]
3.  Mostafavi, A.Z. and Troutman, J.M. Biosynthetic assembly of the Bacteroides fragilis capsular polysaccharide A precursor bactoprenyl diphosphate-linked acetamido-4-amino-6-deoxygalactopyranose. Biochemistry 52 (2013) 1939–1949. [PMID: 23458065]
4.  Hwang, S., Li, Z., Bar-Peled, Y., Aronov, A., Ericson, J. and Bar-Peled, M. The biosynthesis of UDP-D-FucNAc-4N-(2)-oxoglutarate (UDP-Yelosamine) in Bacillus cereus ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J. Biol. Chem. 289 (2014) 35620–35632. [PMID: 25368324]
[EC 2.6.1.92 created 2011, modified 2018]
 
 
EC 2.6.1.98     
Accepted name: UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate + 2-oxoglutarate = UDP-2-acetamido-2-deoxy-α-D-ribo-hex-3-uluronate + L-glutamate
Other name(s): WbpE; WlbC
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucuronate:2-oxoglutarate aminotransferase
Comments: A pyridoxal 5′-phosphate protein. This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccharide. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a complex with the previous enzyme in the pathway, EC 1.1.1.335 (UDP-N-acetyl-2-amino-2-deoxyglucuronate oxidase).
References:
1.  Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A. and Lam, J.S. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284 (2009) 11854–11862. [PMID: 19282284]
2.  Larkin, A. and Imperiali, B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in Pseudomonas aeruginosa PAO1. Biochemistry 48 (2009) 5446–5455. [PMID: 19348502]
3.  Larkin, A., Olivier, N.B. and Imperiali, B. Structural analysis of WbpE from Pseudomonas aeruginosa PAO1: a nucleotide sugar aminotransferase involved in O-antigen assembly. Biochemistry 49 (2010) 7227–7237. [PMID: 20604544]
[EC 2.6.1.98 created 2012]
 
 
EC 2.6.1.122     
Accepted name: UDP-N-acetyl-3-dehydro-α-D-glucosamine 3-aminotranferase
Reaction: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose + 2-oxoglutarate = UDP-N-acetyl-3-dehydro-α-D-glucosamine + L-glutamate
Other name(s): gnnB (gene name)
Systematic name: UDP-2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose:2-oxoglutarate aminotransferase
Comments: This bacterial enzyme participates, together with EC 1.1.1.374, UDP-N-acetylglucosamine 3-dehydrogenase, in the synthesis of 2,3-diamino-2,3-dideoxy-D-glucopyranose, a component of lipid A in some species.
References:
1.  Sweet, C.R., Ribeiro, A.A. and Raetz, C.R. Oxidation and transamination of the 3"-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid a molecules with four amide-linked acyl chains. J. Biol. Chem. 279 (2004) 25400–25410. [PMID: 15044494]
[EC 2.6.1.122 created 2021]
 
 
EC 2.7.1.37      
Transferred entry: protein kinase. Now divided into EC 2.7.11.1 (non-specific serine/threonine protein kinase), EC 2.7.11.8 (Fas-activated serine/threonine kinase), EC 2.7.11.9 (Goodpasture-antigen-binding protein kinase), EC 2.7.11.10 (IκB kinase), EC 2.7.11.11 (cAMP-dependent protein kinase), EC 2.7.11.12 (cGMP-dependent protein kinase), EC 2.7.11.13 (protein kinase C), EC 2.7.11.21 (polo kinase), EC 2.7.11.22 (cyclin-dependent kinase), EC 2.7.11.24 (mitogen-activated protein kinase), EC 2.7.11.25 (mitogen-activated protein kinase kinase kinase), EC 2.7.11.30 (receptor protein serine/threonine kinase) and EC 2.7.12.1 (dual-specificity kinase)
[EC 2.7.1.37 created 1961 (EC 2.7.1.70 incorporated 2004), deleted 2005]
 
 
EC 2.7.1.46     
Accepted name: L-arabinokinase
Reaction: ATP + L-arabinose = ADP + β-L-arabinose 1-phosphate
Other name(s): L-arabinokinase (phosphorylating)
Systematic name: ATP:L-arabinose 1-phosphotransferase
References:
1.  Neufeld, E.F., Feingold, D.S. and Hassid, W.Z. Phosphorylation of D-galactose and L-arabinose by extracts from Phaseolus aureus seedlings. J. Biol. Chem. 235 (1960) 906–909. [PMID: 14426659]
[EC 2.7.1.46 created 1965]
 
 
EC 2.7.1.130     
Accepted name: tetraacyldisaccharide 4′-kinase
Reaction: ATP + a lipid A disaccharide = ADP + a lipid IVA
Glossary: a lipid A disaccharide = a dephospho-lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
a lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose
Other name(s): lpxK (gene name); lipid-A 4′-kinase; ATP:2,2′,3,3′-tetrakis[(3R)-3-hydroxytetradecanoyl]-β-D-glucosaminyl-(1→6)-α-D-glucosaminyl-phosphate 4′-O-phosphotransferase
Systematic name: ATP:2-deoxy-2-{[(3R)-3-hydroxyacyl]amino}-3-O-[(3R)-3-hydroxyacyl]-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxyacyl]-2-{[(3R)-3-hydroxyacyl]amino}-1-O-phospho-α-D-glucopyranose 4′-O-phosphotransferase
Comments: Involved with EC 2.3.1.129 (acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase) and EC 2.4.1.182 (lipid-A-disaccharide synthase) in the biosynthesis of the phosphorylated glycolipid, lipid A, in the outer membrane of Gram-negative bacteria.
References:
1.  Ray, B.L. and Raetz, C.R.H. The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4′-phosphate of lipid A. J. Biol. Chem. 262 (1987) 1122–1128. [PMID: 3027079]
2.  Emptage, R.P., Daughtry, K.D., Pemble, C.W., 4th and Raetz, C.R. Crystal structure of LpxK, the 4′-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc. Natl. Acad. Sci. USA 109 (2012) 12956–12961. [PMID: 22826246]
3.  Emptage, R.P., Pemble, C.W., 4th, York, J.D., Raetz, C.R. and Zhou, P. Mechanistic characterization of the tetraacyldisaccharide-1-phosphate 4′-kinase LpxK involved in lipid A biosynthesis. Biochemistry 52 (2013) 2280–2290. [PMID: 23464738]
4.  Emptage, R.P., Tonthat, N.K., York, J.D., Schumacher, M.A. and Zhou, P. Structural basis of lipid binding for the membrane-embedded tetraacyldisaccharide-1-phosphate 4′-kinase LpxK. J. Biol. Chem. 289 (2014) 24059–24068. [PMID: 25023290]
[EC 2.7.1.130 created 1990, modified 2021]
 
 
EC 2.7.1.176     
Accepted name: UDP-N-acetylglucosamine kinase
Reaction: ATP + UDP-N-acetyl-α-D-glucosamine = ADP + UDP-N-acetyl-α-D-glucosamine 3′-phosphate
Other name(s): UNAG kinase; ζ toxin; toxin PezT; ATP:UDP-N-acetyl-D-glucosamine 3′-phosphotransferase
Systematic name: ATP:UDP-N-acetyl-α-D-glucosamine 3′-phosphotransferase
Comments: Toxic component of a toxin-antitoxin (TA) module. The phosphorylation of UDP-N-acetyl-D-glucosamine results in the inhibition of EC 2.5.1.7, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, the first committed step in cell wall synthesis, which is then blocked. The activity of this enzyme is inhibited when the enzyme binds to the cognate ε antitoxin.
References:
1.  Khoo, S.K., Loll, B., Chan, W.T., Shoeman, R.L., Ngoo, L., Yeo, C.C. and Meinhart, A. Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae. J. Biol. Chem. 282 (2007) 19606–19618. [PMID: 17488720]
2.  Mutschler, H., Gebhardt, M., Shoeman, R.L. and Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9:e1001033 (2011). [PMID: 21445328]
[EC 2.7.1.176 created 2012]
 
 
EC 2.7.3.8     
Accepted name: ammonia kinase
Reaction: ATP + NH3 = ADP + phosphoramide
Other name(s): phosphoramidate-adenosine diphosphate phosphotransferase; phosphoramidate-ADP-phosphotransferase
Systematic name: ATP:ammonia phosphotransferase
Comments: Has a wide specificity. In the reverse direction, N-phosphoglycine and N-phosphohistidine can also act as phosphate donors, and ADP, dADP, GDP, CDP, dTDP, dCDP, IDP and UDP can act as phosphate acceptors (in decreasing order of activity).
References:
1.  Dowler, M.J. and Nakada, H.I. Yeast phosphoramidate-adenosine diphosphate phosphotransferase. J. Biol. Chem. 243 (1968) 1434–1440. [PMID: 5647264]
[EC 2.7.3.8 created 1972]
 
 
EC 2.7.4.6     
Accepted name: nucleoside-diphosphate kinase
Reaction: ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Other name(s): nucleoside 5′-diphosphate kinase; nucleoside diphosphate (UDP) kinase; nucleoside diphosphokinase; nucleotide phosphate kinase; UDP kinase; uridine diphosphate kinase
Systematic name: ATP:nucleoside-diphosphate phosphotransferase
Comments: Many nucleoside diphosphates can act as acceptors, while many ribo- and deoxyribonucleoside triphosphates can act as donors.
References:
1.  Berg, P. and Joklik, W.K. Enzymatic phosphorylation of nucleoside diphosphates. J. Biol. Chem. 210 (1954) 657–672. [PMID: 13211603]
2.  Gibson, D.M., Ayengar, P. and Sanadi, D.R. Transphosphorylations between nucleoside phosphates. Biochim. Biophys. Acta 21 (1956) 86–91. [PMID: 13363863]
3.  Kirkland, R.J.A. and Turner, J.F. Nucleoside diphosphokinase of pea seeds. Biochem. J. 72 (1959) 716–720. [PMID: 14409347]
4.  Krebs, H.A. and Hems, R. Some reactions of adenosine and inosine phosphates in animal tissues. Biochim. Biophys. Acta 12 (1953) 172–180. [PMID: 13115426]
5.  Nakamura, H. and Sugino, Y. Metabolism of deoxyribonucleotides. 3. Purification and some properties of nucleoside diphosphokinase of calf thymus. J. Biol. Chem. 241 (1966) 4917–4922. [PMID: 5925862]
6.  Ratliff, R.L., Weaver, R.H., Lardy, H.A. and Kuby, S.A. Nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). I. Isolation of the crystalline enzyme from brewers' yeast. J. Biol. Chem. 239 (1964) 301–309. [PMID: 14114857]
[EC 2.7.4.6 created 1961]
 
 
EC 2.7.4.14     
Accepted name: UMP/CMP kinase
Reaction: (1) ATP + (d)CMP = ADP + (d)CDP
(2) ATP + UMP = ADP + UDP
Other name(s): cytidylate kinase (misleading); deoxycytidylate kinase (misleading); CTP:CMP phosphotransferase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading); UMP-CMP kinase; ATP:UMP-CMP phosphotransferase; pyrimidine nucleoside monophosphate kinase; uridine monophosphate-cytidine monophosphate phosphotransferase
Systematic name: ATP:(d)CMP/UMP phosphotransferase
Comments: This eukaryotic enzyme is a bifunctional enzyme that catalyses the phosphorylation of both CMP and UMP with similar efficiency. dCMP can also act as acceptor. Different from the monofunctional prokaryotic enzymes EC 2.7.4.25, (d)CMP kinase and EC 2.7.4.22, UMP kinase.
References:
1.  Hurwitz, J. The enzymatic incorporation of ribonucleotides into polydeoxynucleotide material. J. Biol. Chem. 234 (1959) 2351–2358. [PMID: 14405566]
2.  Ruffner, B.W., Jr. and Anderson, E.P. Adenosine triphosphate: uridine monophosphate-cytidine monophosphate phosphotransferase from Tetrahymena pyriformis. J. Biol. Chem. 244 (1969) 5994–6002. [PMID: 5350952]
3.  Scheffzek, K., Kliche, W., Wiesmuller, L. and Reinstein, J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5′-adenosyl) P5-(5′-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 Å: implications for water-mediated specificity. Biochemistry 35 (1996) 9716–9727. [PMID: 8703943]
4.  Zhou, L., Lacroute, F. and Thornburg, R. Cloning, expression in Escherichia coli, and characterization of Arabidopsis thaliana UMP/CMP kinase. Plant Physiol. 117 (1998) 245–254. [PMID: 9576794]
5.  Van Rompay, A.R., Johansson, M. and Karlsson, A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol. Pharmacol. 56 (1999) 562–569. [PMID: 10462544]
[EC 2.7.4.14 created 1961 as EC 2.7.4.5, transferred 1972 to EC 2.7.4.14, modified 1980, modified 2011]
 
 
EC 2.7.4.22     
Accepted name: UMP kinase
Reaction: ATP + UMP = ADP + UDP
Other name(s): uridylate kinase; UMPK; uridine monophosphate kinase; PyrH; UMP-kinase; SmbA
Systematic name: ATP:UMP phosphotransferase
Comments: This enzyme is strictly specific for UMP as substrate and is used by prokaryotes in the de novo synthesis of pyrimidines, in contrast to eukaryotes, which use the dual-specificity enzyme UMP/CMP kinase (EC 2.7.4.14) for the same purpose [2]. This enzyme is the subject of feedback regulation, being inhibited by UTP and activated by GTP [1].
References:
1.  Serina, L., Blondin, C., Krin, E., Sismeiro, O., Danchin, A., Sakamoto, H., Gilles, A.M. and Bârzu, O. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Biochemistry 34 (1995) 5066–5074. [PMID: 7711027]
2.  Marco-Marín, C., Gil-Ortiz, F. and Rubio, V. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J. Mol. Biol. 352 (2005) 438–454. [PMID: 16095620]
[EC 2.7.4.22 created 2006]
 
 
EC 2.7.4.25     
Accepted name: (d)CMP kinase
Reaction: ATP + (d)CMP = ADP + (d)CDP
Glossary: CMP = cytidine monophosphate
dCMP = deoxycytidine monophosphate
CDP = cytidine diphosphate
dCDP = deoxycytidine diphosphate
UMP = uridine monophosphate
UDP = uridine diphosphate
Other name(s): cmk (gene name); prokaryotic cytidylate kinase; deoxycytidylate kinase (misleading); dCMP kinase (misleading); deoxycytidine monophosphokinase (misleading)
Systematic name: ATP:(d)CMP phosphotransferase
Comments: The prokaryotic cytidine monophosphate kinase specifically phosphorylates CMP (or dCMP), using ATP as the preferred phosphoryl donor. Unlike EC 2.7.4.14, a eukaryotic enzyme that phosphorylates UMP and CMP with similar efficiency, the prokaryotic enzyme phosphorylates UMP with very low rates, and this function is catalysed in prokaryotes by EC 2.7.4.22, UMP kinase. The enzyme phosphorylates dCMP nearly as well as it does CMP [1].
References:
1.  Bertrand, T., Briozzo, P., Assairi, L., Ofiteru, A., Bucurenci, N., Munier-Lehmann, H., Golinelli-Pimpaneau, B., Barzu, O. and Gilles, A.M. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J. Mol. Biol. 315 (2002) 1099–1110. [PMID: 11827479]
2.  Thum, C., Schneider, C.Z., Palma, M.S., Santos, D.S. and Basso, L.A. The Rv1712 Locus from Mycobacterium tuberculosis H37Rv codes for a functional CMP kinase that preferentially phosphorylates dCMP. J. Bacteriol. 191 (2009) 2884–2887. [PMID: 19181797]
[EC 2.7.4.25 created 2011]
 
 
EC 2.7.7.8     
Accepted name: polyribonucleotide nucleotidyltransferase
Reaction: RNAn+1 + phosphate = RNAn + a nucleoside diphosphate
Other name(s): polynucleotide phosphorylase; PNPase (ambiguous); nucleoside diphosphate:polynucleotidyl transferase; polyribonucleotide phosphorylase
Systematic name: polyribonucleotide:phosphate nucleotidyltransferase
Comments: ADP, IDP, GDP, UDP and CDP can act as donors.
References:
1.  Hakim, A.A. Synthetic activity of polynucleotide phosphorylase from sperm. Nature 183 (1959) 334. [PMID: 13632712]
2.  Littauer, U.Z. and Kornberg, A. Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J. Biol. Chem. 226 (1957) 1077–1092. [PMID: 13438894]
3.  Ochoa, S. and Mii, S. Enzymatic synthesis of polynucleotides. IV. Purification and properties of polynucleotide phosphorylase from Azotobacter vinelandii. J. Biol. Chem. 236 (1961) 3303–3311. [PMID: 14481058]
[EC 2.7.7.8 created 1961]
 
 
EC 2.7.7.9     
Accepted name: UTP—glucose-1-phosphate uridylyltransferase
Reaction: UTP + α-D-glucose 1-phosphate = diphosphate + UDP-glucose
Other name(s): UDP glucose pyrophosphorylase; glucose-1-phosphate uridylyltransferase; UDPG phosphorylase; UDPG pyrophosphorylase; uridine 5′-diphosphoglucose pyrophosphorylase; uridine diphosphoglucose pyrophosphorylase; uridine diphosphate-D-glucose pyrophosphorylase; uridine-diphosphate glucose pyrophosphorylase
Systematic name: UTP:α-D-glucose-1-phosphate uridylyltransferase
References:
1.  Kalckar, H.M. The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. Biophys. Acta 12 (1953) 250–264. [PMID: 13115434]
2.  Kamogawa, A. and Kurahashi, K. Purification and properties of uridinediphosphate glucose pyrophosphorylase from Escherichia coli K12. J. Biochem. (Tokyo) 57 (1965) 758–765. [PMID: 4284510]
3.  Lobelle-Rich, P.A. and Reeves, R.E. Separation and characterization of two UTP-utilizing hexose phosphate uridylyltransferases from Entamoeba histolytica. Mol. Biochem. Parasitol. 7 (1983) 173–182. [PMID: 6304512]
4.  Smith, E.E.B. and Mills, G.T. The uridyl transferase of mammary gland. Biochim. Biophys. Acta 18 (1955) 152. [PMID: 13260264]
5.  Turnquist, R.L., Gillett, T.A. and Hansen, R.G. Uridine diphosphate glucose pyrophosphorylase. Crystallization and properties of the enzyme from rabbit liver and species comparisons. J. Biol. Chem. 249 (1974) 7695–7700. [PMID: 4436332]
[EC 2.7.7.9 created 1961]
 
 
EC 2.7.7.10     
Accepted name: UTP—hexose-1-phosphate uridylyltransferase
Reaction: UTP + α-D-galactose 1-phosphate = diphosphate + UDP-α-D-galactose
Other name(s): galactose-1-phosphate uridylyltransferase; galactose 1-phosphate uridylyltransferase; α-D-galactose 1-phosphate uridylyltransferase; galactose 1-phosphate uridyltransferase; UDPgalactose pyrophosphorylase; uridine diphosphate galactose pyrophosphorylase; uridine diphosphogalactose pyrophosphorylase
Systematic name: UTP:α-D-hexose-1-phosphate uridylyltransferase
Comments: α-D-Glucose 1-phosphate can also act as acceptor, but more slowly.
References:
1.  Isselbacher, K.J. A mammalian uridinediphosphate galactose pyrophosphorylase. J. Biol. Chem. 232 (1958) 429–444. [PMID: 13549431]
2.  Kalckar, H.M. The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. Biophys. Acta 12 (1953) 250–264. [PMID: 13115434]
3.  Lee, L., Kimura, A. and Tochikura, T. Purification and properties of UDP-glucose (UDP-galactose) pyrophosphorylase from Bifidobacterium bifidum. J. Biochem. (Tokyo) 86 (1979) 923–928. [PMID: 500588]
4.  Lobelle-Rich, P.A. and Reeves, R.E. Separation and characterization of two UTP-utilizing hexose phosphate uridylyltransferases from Entamoeba histolytica. Mol. Biochem. Parasitol. 7 (1983) 173–182. [PMID: 6304512]
[EC 2.7.7.10 created 1961]
 
 
EC 2.7.7.11     
Accepted name: UTP—xylose-1-phosphate uridylyltransferase
Reaction: UTP + α-D-xylose 1-phosphate = diphosphate + UDP-xylose
Other name(s): xylose-1-phosphate uridylyltransferase; uridylyltransferase, xylose 1-phosphate; UDP-xylose pyrophosphorylase; uridine diphosphoxylose pyrophosphorylase; xylose 1-phosphate uridylyltransferase
Systematic name: UTP:α-D-xylose-1-phosphate uridylyltransferase
References:
1.  Ginsburg, V., Neufeld, E.F. and Hassid, W.Z. Enzymatic synthesis of uridine diphosphate xylose and uridine diphosphate arabinose. Proc. Natl. Acad. Sci. USA 42 (1956) 333–335. [PMID: 16578456]
[EC 2.7.7.11 created 1961]
 
 
EC 2.7.7.12     
Accepted name: UDP-glucose—hexose-1-phosphate uridylyltransferase
Reaction: UDP-α-D-glucose + α-D-galactose 1-phosphate = α-D-glucose 1-phosphate + UDP-α-D-galactose
Other name(s): uridyl transferase; hexose-1-phosphate uridylyltransferase; uridyltransferase; hexose 1-phosphate uridyltransferase; UDP-glucose:α-D-galactose-1-phosphate uridylyltransferase
Systematic name: UDP-α-D-glucose:α-D-galactose-1-phosphate uridylyltransferase
References:
1.  Kalckar, H.M., Braganca, B. and Munch-Petersen, A. Uridyl transferases and the formation of uridinediphosphogalactose. Nature 172 (1953) 1038. [PMID: 13111247]
2.  Kurahashi, K. and Sugimura, A. Purification and properties of galactose 1-phosphate uridyl transferase from Escherichia coli. J. Biol. Chem. 235 (1960) 940–946. [PMID: 14412847]
3.  Mayes, J.S. and Hansen, R.G. Galactose 1-phosphate uridyl transferase. Methods Enzymol. 9 (1966) 708–713.
4.  Saito, S., Ozutsumi, M. and Kurahashi, K. Galactose 1-phosphate uridylyltransferase of Escherichia coli. II. Further purification and characterization. J. Biol. Chem. 242 (1967) 2362–2368. [PMID: 5338129]
5.  Smith, E.E.B. and Mills, G.T. The uridyl transferase of mammary gland. Biochim. Biophys. Acta 18 (1955) 152. [PMID: 13260264]
[EC 2.7.7.12 created 1961]
 
 
EC 2.7.7.23     
Accepted name: UDP-N-acetylglucosamine diphosphorylase
Reaction: UTP + N-acetyl-α-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-α-D-glucosamine
Other name(s): UDP-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine pyrophosphorylase; UTP:2-acetamido-2-deoxy-α-D-glucose-1-phosphate uridylyltransferase; UDP-GlcNAc pyrophosphorylase; GlmU uridylyltransferase; Acetylglucosamine 1-phosphate uridylyltransferase; UDP-acetylglucosamine pyrophosphorylase; uridine diphosphate-N-acetylglucosamine pyrophosphorylase; uridine diphosphoacetylglucosamine phosphorylase; acetylglucosamine 1-phosphate uridylyltransferase
Systematic name: UTP:N-acetyl-α-D-glucosamine-1-phosphate uridylyltransferase
Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme from several bacteria (e.g., Escherichia coli, Bacillus subtilis and Haemophilus influenzae) has been shown to be bifunctional and also to possess the activity of EC 2.3.1.157, glucosamine-1-phosphate N-acetyltransferase [3,4,6]. The enzyme from plants and animals is also active toward N-acetyl-α-D-galactosamine 1-phosphate (cf. EC 2.7.7.83, UDP-N-acetylgalactosamine diphosphorylase) [5,7], while the bacterial enzyme shows low activity toward that substrate [4].
References:
1.  Pattabiramin, T.N. and Bachhawat, B.K. Purification of uridine diphosphoacetylglucosamine pyrophosphorylase from sheep brain. Biochim. Biophys. Acta 50 (1961) 129–134. [PMID: 13733356]
2.  Strominger, J.L. and Smith, M.S. Uridine diphosphoacetylglucosamine pyrophosphorylase. J. Biol. Chem. 234 (1959) 1822–1827. [PMID: 13672971]
3.  Mengin-Lecreulx, D. and van Heijenoort, J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol. 176 (1994) 5788–5795. [PMID: 8083170]
4.  Gehring, A.M., Lees, W.J., Mindiola, D.J., Walsh, C.T. and Brown, E.D. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35 (1996) 579–585. [PMID: 8555230]
5.  Wang-Gillam, A., Pastuszak, I. and Elbein, A.D. A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc. J. Biol. Chem. 273 (1998) 27055–27057. [PMID: 9765219]
6.  Olsen, L.R. and Roderick, S.L. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 40 (2001) 1913–1921. [PMID: 11329257]
7.  Peneff, C., Ferrari, P., Charrier, V., Taburet, Y., Monnier, C., Zamboni, V., Winter, J., Harnois, M., Fassy, F. and Bourne, Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J. 20 (2001) 6191–6202. [PMID: 11707391]
[EC 2.7.7.23 created 1965, modified 2012]
 
 
EC 2.7.7.37     
Accepted name: aldose-1-phosphate nucleotidyltransferase
Reaction: NDP + α-D-aldose 1-phosphate = phosphate + NDP-aldose
Other name(s): sugar-1-phosphate nucleotidyltransferase; NDPaldose phosphorylase; glucose 1-phosphate inosityltransferase; NDP sugar phosphorylase; nucleoside diphosphosugar phosphorylase; sugar phosphate nucleotidyltransferase; nucleoside diphosphate sugar:orthophosphate nucleotidyltransferase; sugar nucleotide phosphorylase; NDP:aldose-1-phosphate nucleotidyltransferase
Systematic name: NDP:α-D-aldose-1-phosphate nucleotidyltransferase
Comments: The enzyme works on a variety of α-D-aldose 1-phosphates and β-L-aldose 1-phosphates (which have the same anomeric configuration as the former; see 2-Carb-6.2).
References:
1.  Cabib, E., Carminatti, H. and Woyskovsky, N.M. Phosphorolysis of the pyrophosphate bond of sugar nucleotides. II. Purification and properties of the enzyme. J. Biol. Chem. 240 (1965) 2114–2121. [PMID: 14299635]
[EC 2.7.7.37 created 1972, modified 1986]
 
 
EC 2.7.7.44     
Accepted name: glucuronate-1-phosphate uridylyltransferase
Reaction: UTP + 1-phospho-α-D-glucuronate = diphosphate + UDP-α-D-glucuronate
Other name(s): UDP-glucuronate pyrophosphorylase; UDP-D-glucuronic acid pyrophosphorylase; UDP-glucuronic acid pyrophosphorylase; uridine diphosphoglucuronic pyrophosphorylase
Systematic name: UTP:1-phospho-α-D-glucuronate uridylyltransferase
Comments: Also acts slowly with CTP.
References:
1.  Roberts, R.M. The formation of uridine diphosphate-glucuronic acid in plants. Uridine diphosphate-glucuronic acid pyrophosphorylase from barley seedlings. J. Biol. Chem. 246 (1971) 4995–5002. [PMID: 5570433]
[EC 2.7.7.44 created 1976]
 
 
EC 2.7.7.59     
Accepted name: [protein-PII] uridylyltransferase
Reaction: UTP + [protein-PII] = diphosphate + uridylyl-[protein-PII]
Other name(s): PII uridylyl-transferase; uridyl removing enzyme
Systematic name: UTP:[protein-PII] uridylyltransferase
Comments: The enzyme uridylylates and de-uridylylates the small trimeric protein PII. The enzymes from Escherichia coli and Salmonella typhimurium have been wrongly identified, in some databases, as EC 2.7.7.12 (UDP-glucose—hexose-1-phosphate uridylyltransferase), from which it differs greatly in both reaction catalysed and sequence.
References:
1.  Garcia, E., Rhee, S.G. Cascade control of Escherichia coli glutamate synthetase. Purification and properties of PII uridylyltransferase and uridylyl-removing enzyme. J. Biol. Chem. 258 (1983) 2246–2253. [PMID: 6130097]
2.  Van Heeswijk, W., Rabenberg, M., Westerhoff, H., Kahn, D. The genes of the glutamate synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol. Microbiol. 9 (1993) 443–457. [PMID: 8412694]
[EC 2.7.7.59 created 1999]
 
 
EC 2.7.7.64     
Accepted name: UTP-monosaccharide-1-phosphate uridylyltransferase
Reaction: UTP + a monosaccharide 1-phosphate = diphosphate + UDP-monosaccharide
Glossary: UDP-Xyl = UDP-α-D-xylose
UDP-L-Ara = UDP-β-L-arabinopyranose
Other name(s): UDP-sugar pyrophosphorylase; PsUSP
Comments: Requires Mg2+ or Mn2+ for maximal activity. The reaction can occur in either direction and it has been postulated that MgUTP and Mg-diphosphate are the actual substrates [1,2]. The enzyme catalyses the formation of UDP-Glc, UDP-Gal, UDP-GlcA, UDP-L-Ara and UDP-Xyl, showing broad substrate specificity towards monosaccharide 1-phosphates. Mannose 1-phosphate, L-Fucose 1-phosphate and glucose 6-phosphate are not substrates and UTP cannot be replaced by other nucleotide triphosphates [1].
References:
1.  Kotake, T., Yamaguchi, D., Ohzono, H., Hojo, S., Kaneko, S., Ishida, H.K. and Tsumuraya, Y. UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem. 279 (2004) 45728–45736. [PMID: 15326166]
2.  Rudick, V.L. and Weisman, R.A. Uridine diphosphate glucose pyrophosphorylase of Acanthamoeba castellanii. Purification, kinetic, and developmental studies. J. Biol. Chem. 249 (1974) 7832–7840. [PMID: 4430676]
[EC 2.7.7.64 created 2006]
 
 
EC 2.7.7.65     
Accepted&