The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

EC 1.2.1.38     
Accepted name: N-acetyl-γ-glutamyl-phosphate reductase
Reaction: N-acetyl-L-glutamate 5-semialdehyde + NADP+ + phosphate = N-acetyl-L-glutamyl 5-phosphate + NADPH + H+
For diagram of ornithine biosynthesis, click here
Other name(s): reductase, acetyl-γ-glutamyl phosphate; N-acetylglutamate 5-semialdehyde dehydrogenase; N-acetylglutamic γ-semialdehyde dehydrogenase; N-acetyl-L-glutamate γ-semialdehyde:NADP+ oxidoreductase (phosphorylating)
Systematic name: N-acetyl-L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase (phosphorylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37251-00-6
References:
1.  Baich, A. and Vogel, H.J. N-Acetyl-γ-glutamokinase and N-acetylglutamic γ-semialdehyde dehydrogenase: repressible enzymes of arginine synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 7 (1962) 491–496. [PMID: 13863980]
2.  Glansdorff, N. and Sand, G. Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12. Biochim. Biophys. Acta 108 (1965) 308–311. [PMID: 5325238]
[EC 1.2.1.38 created 1972]
 
 
EC 1.2.1.41     
Accepted name: glutamate-5-semialdehyde dehydrogenase
Reaction: L-glutamate 5-semialdehyde + phosphate + NADP+ = L-glutamyl 5-phosphate + NADPH + H+
For diagram of proline biosynthesis, click here
Other name(s): β-glutamylphosphate reductase; γ-glutamyl phosphate reductase; β-glutamylphosphate reductase; glutamate semialdehyde dehydrogenase; glutamate-γ-semialdehyde dehydrogenase
Systematic name: L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase (phosphorylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 54596-29-1
References:
1.  Baich, A. The biosynthesis of proline in Escherichia coli: phosphate-dependent glutamate-semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim. Biophys. Acta 244 (1971) 129–134. [DOI] [PMID: 4399189]
[EC 1.2.1.41 created 1976]
 
 
EC 1.2.1.71     
Accepted name: succinylglutamate-semialdehyde dehydrogenase
Reaction: N-succinyl-L-glutamate 5-semialdehyde + NAD+ + H2O = N-succinyl-L-glutamate + NADH + 2 H+
For diagram of arginine catabolism, click here
Other name(s): succinylglutamic semialdehyde dehydrogenase; N-succinylglutamate 5-semialdehyde dehydrogenase; SGSD; AruD; AstD
Systematic name: N-succinyl-L-glutamate 5-semialdehyde:NAD+ oxidoreductase
Comments: This is the fourth enzyme in the arginine succinyltransferase (AST) pathway for the catabolism of arginine [1]. This pathway converts the carbon skeleton of arginine into glutamate, with the concomitant production of ammonia and conversion of succinyl-CoA into succinate and CoA. The five enzymes involved in this pathway are EC 2.3.1.109 (arginine N-succinyltransferase), EC 3.5.3.23 (N-succinylarginine dihydrolase), EC 2.6.1.11 (acetylornithine transaminase), EC 1.2.1.71 (succinylglutamate-semialdehyde dehydrogenase) and EC 3.5.1.96 (succinylglutamate desuccinylase) [3,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vander Wauven, C., Jann, A., Haas, D., Leisinger, T. and Stalon, V. N2-succinylornithine in ornithine catabolism of Pseudomonas aeruginosa. Arch. Microbiol. 150 (1988) 400–404. [PMID: 3144259]
2.  Vander Wauven, C. and Stalon, V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol. 164 (1985) 882–886. [PMID: 2865249]
3.  Tricot, C., Vander Wauven, C., Wattiez, R., Falmagne, P. and Stalon, V. Purification and properties of a succinyltransferase from Pseudomonas aeruginosa specific for both arginine and ornithine. Eur. J. Biochem. 224 (1994) 853–861. [DOI] [PMID: 7523119]
4.  Itoh, Y. Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J. Bacteriol. 179 (1997) 7280–7290. [DOI] [PMID: 9393691]
5.  Schneider, B.L., Kiupakis, A.K. and Reitzer, L.J. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J. Bacteriol. 180 (1998) 4278–4286. [PMID: 9696779]
6.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50 (1986) 314–352. [PMID: 3534538]
7.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Erratum report: Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 51 (1987) 178. [PMID: 16350242]
[EC 1.2.1.71 created 2006]
 
 
EC 1.2.1.88     
Accepted name: L-glutamate γ-semialdehyde dehydrogenase
Reaction: L-glutamate 5-semialdehyde + NAD+ + H2O = L-glutamate + NADH + H+
For diagram of reaction, click here
Glossary: L-glutamate 5-semialdehyde = L-glutamate γ-semialdehyde = (S)-2-amino-5-oxopentanoate
Other name(s): 1-pyrroline-5-carboxylate dehydrogenase; Δ1-pyrroline-5-carboxylate dehydrogenase; 1-pyrroline dehydrogenase; pyrroline-5-carboxylate dehydrogenase; pyrroline-5-carboxylic acid dehydrogenase; L-pyrroline-5-carboxylate-NAD+ oxidoreductase; 1-pyrroline-5-carboxylate:NAD+ oxidoreductase; Δ1-pyrroline-5-carboxylic acid dehydrogenase
Systematic name: L-glutamate γ-semialdehyde:NAD+ oxidoreductase
Comments: This enzyme catalyses the irreversible oxidation of glutamate-γ-semialdehyde to glutamate as part of the proline degradation pathway. (S)-1-pyrroline-5-carboxylate, the product of the first enzyme of the pathway (EC 1.5.5.2, proline dehydrogenase) is in spontaneous equilibrium with its tautomer L-glutamate γ-semialdehyde. In many bacterial species, both activities are carried out by a single bifunctional enzyme [3,4].The enzyme can also oxidize other 1-pyrrolines, e.g. 3-hydroxy-1-pyrroline-5-carboxylate is converted into 4-hydroxyglutamate and (R)-1-pyrroline-5-carboxylate is converted into D-glutamate. NADP+ can also act as acceptor, but with lower activity [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-82-4
References:
1.  Adams, E. and Goldstone, A. Hydroxyproline metabolism. IV. Enzymatic synthesis of γ-hydroxyglutamate from Δ1-pyrroline-3-hydroxy-5-carboxylate. J. Biol. Chem. 235 (1960) 3504–3512. [PMID: 13681370]
2.  Strecker, H.J. The interconversion of glutamic acid and proline. III. Δ1-Pyrroline-5-carboxylic acid dehydrogenase. J. Biol. Chem. 235 (1960) 3218–3223.
3.  Forlani, G., Scainelli, D. and Nielsen, E. Δ1-Pyrroline-5-carboxylate dehydrogenase from cultured cells of potato (purification and properties). Plant Physiol. 113 (1997) 1413–1418. [PMID: 12223682]
4.  Brown, E.D. and Wood, J.M. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J. Biol. Chem. 267 (1992) 13086–13092. [PMID: 1618807]
5.  Inagaki, E., Ohshima, N., Sakamoto, K., Babayeva, N.D., Kato, H., Yokoyama, S. and Tahirov, T.H. New insights into the binding mode of coenzymes: structure of Thermus thermophilus Δ1-pyrroline-5-carboxylate dehydrogenase complexed with NADP+. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 (2007) 462–465. [DOI] [PMID: 17554163]
[EC 1.2.1.88 created 1972 as EC 1.5.1.12, modified 2008, transferred 2013 to EC 1.2.1.88]
 
 
EC 1.2.1.106     
Accepted name: [amino-group carrier protein]-5-phospho-L-glutamate reductase
Reaction: an [amino-group carrier protein]-C-terminal-γ-(L-glutamate 5-semialdehyde-2-yl)-L-glutamate + phosphate + NADP+ = an [amino-group carrier protein]-C-terminal-γ-(5-phospho-L-glutamyl)-L-glutamate + NADPH + H+
Other name(s): lysY (gene name)
Systematic name: [amino-group carrier protein]-C-terminal-γ-(L-glutamate 5-semialdehyde-2-yl)-L-glutamate:NADP+ 5-oxidoreductase (phosphorylating)
Comments: The enzyme participates in an L-arginine biosynthesis pathway in certain species of archaea and bacteria. In some organisms the enzyme is bifunctional and also catalyses the activity of EC 1.2.1.103, [amino-group carrier protein]-6-phospho-L-2-aminoadipate reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ouchi, T., Tomita, T., Horie, A., Yoshida, A., Takahashi, K., Nishida, H., Lassak, K., Taka, H., Mineki, R., Fujimura, T., Kosono, S., Nishiyama, C., Masui, R., Kuramitsu, S., Albers, S.V., Kuzuyama, T. and Nishiyama, M. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus. Nat. Chem. Biol. 9 (2013) 277–283. [DOI] [PMID: 23434852]
2.  Yoshida, A., Tomita, T., Atomi, H., Kuzuyama, T. and Nishiyama, M. Lysine biosynthesis of Thermococcus kodakarensis with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem. 291 (2016) 21630–21643. [DOI] [PMID: 27566549]
[EC 1.2.1.106 created 2021]
 
 
EC 1.14.20.7     
Accepted name: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)
Reaction: L-arginine + 2-oxoglutarate + O2 = L-glutamate 5-semialdehyde + guanidine + succinate + CO2 (overall reaction)
(1a) L-arginine + 2-oxoglutarate + O2 = 5-hydroxy-L-arginine + succinate + CO2
(1b) 5-hydroxy-L-arginine = L-glutamate 5-semialdehyde + guanidine
Other name(s): ethene-forming enzyme; ethylene-forming enzyme; EFE
Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (succinate-forming)
Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethene (ethylene) production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.13.12.19, 2-oxoglutarate dioxygenase (ethene-forming)] the enzyme catalyses the dioxygenation of 2-oxoglutarate forming ethene and three molecules of carbon dioxide.The enzyme catalyses two cycles of the ethene-forming reaction for each cycle of the succinate-forming reaction, so that the stoichiometry of the products ethene and succinate is 2:1. The product of the enzyme, L-glutamate 5-semialdehyde, exists in equilibrium with the cyclic form (S)-1-pyrroline-5-carboxylate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y. and Fukuda, H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J. Gen. Microbiol. 137 (1991) 2281–2286. [DOI] [PMID: 1770346]
2.  Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S. and Morino, Y. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem. Biophys. Res. Commun. 188 (1992) 483–489. [DOI] [PMID: 1445291]
3.  Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S. and Morino, Y. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem. Biophys. Res. Commun. 188 (1992) 826–832. [DOI] [PMID: 1445325]
4.  Martinez, S., Fellner, M., Herr, C.Q., Ritchie, A., Hu, J. and Hausinger, R.P. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme: substrate binding creates a twist. J. Am. Chem. Soc. 139 (2017) 11980–11988. [DOI] [PMID: 28780854]
[EC 1.14.20.7 created 2011 as EC 1.14.11.34, transferred 2018 to EC 1.14.20.7, modified 2023]
 
 
EC 2.3.1.271     
Accepted name: L-glutamate-5-semialdehyde N-acetyltransferase
Reaction: acetyl-CoA + L-glutamate 5-semialdehyde = CoA + N-acetyl-L-glutamate 5-semialdehyde
Other name(s): MPR1 (gene name); MPR2 (gene name)
Systematic name: acetyl-CoA:L-glutamate-5-semialdehyde N-acetyltransferase
Comments: The enzyme, characterized from the yeast Saccharomyces cerevisiae Σ1278b, N-acetylates L-glutamate 5-semialdehyde, an L-proline biosynthesis/utilization intermediate, into N-acetyl-L-glutamate 5-semialdehyde, an intermediate of L-arginine biosynthesis, under oxidative stress conditions. Its activity results in conversion of L-proline to L-arginine, and reduction in the concentration of L-glutamate 5-semialdehyde and its equilibrium partner, (S)-1-pyrroline-5-carboxylate, which has been linked to production of reactive oxygen species stress. The enzyme also acts on (S)-1-acetylazetidine-2-carboxylate, a toxic L-proline analog produced by some plants, resulting in its detoxification and conferring resistance on the yeast.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shichiri, M., Hoshikawa, C., Nakamori, S. and Takagi, H. A novel acetyltransferase found in Saccharomyces cerevisiae Σ1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J. Biol. Chem. 276 (2001) 41998–42002. [DOI] [PMID: 11555637]
2.  Nomura, M. and Takagi, H. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. USA 101 (2004) 12616–12621. [PMID: 15308773]
3.  Nishimura, A., Kotani, T., Sasano, Y. and Takagi, H. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res. 10 (2010) 687–698. [DOI] [PMID: 20550582]
4.  Nishimura, A., Nasuno, R. and Takagi, H. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett. 586 (2012) 2411–2416. [DOI] [PMID: 22698729]
5.  Nasuno, R., Hirano, Y., Itoh, T., Hakoshima, T., Hibi, T. and Takagi, H. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc. Natl. Acad. Sci. USA 110 (2013) 11821–11826. [DOI] [PMID: 23818613]
[EC 2.3.1.271 created 2018]
 
 
EC 2.6.1.11     
Accepted name: acetylornithine transaminase
Reaction: N2-acetyl-L-ornithine + 2-oxoglutarate = N-acetyl-L-glutamate 5-semialdehyde + L-glutamate
For diagram of ornithine biosynthesis, click here
Other name(s): acetylornithine δ-transaminase; ACOAT; acetylornithine 5-aminotransferase; acetylornithine aminotransferase; N-acetylornithine aminotransferase; N-acetylornithine-δ-transaminase; N2-acetylornithine 5-transaminase; N2-acetyl-L-ornithine:2-oxoglutarate aminotransferase; succinylornithine aminotransferase; 2-N-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Systematic name: N2-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on L-ornithine and N2-succinyl-L-ornithine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-40-4
References:
1.  Albrecht, A. and Vogel, H.J. Acetylornithine δ-transaminase. Partial purification and repression behavior. J. Biol. Chem. 239 (1964) 1872–1876. [PMID: 14213368]
2.  Vogel, H.J. Path of ornithine synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 39 (1953) 578–583. [DOI] [PMID: 16589307]
3.  Vander Wauven, C. and Stalon, V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol. 164 (1985) 882–886. [PMID: 2865249]
4.  Voellmy, R. and Leisinger, T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J. Bacteriol. 122 (1975) 799–809. [PMID: 238949]
[EC 2.6.1.11 created 1961, modified 2004 (EC 2.6.1.69 created 1989, incorporated 2004)]
 
 
EC 2.6.1.13     
Accepted name: ornithine aminotransferase
Reaction: L-ornithine + a 2-oxo carboxylate = L-glutamate 5-semialdehyde + an L-amino acid
Other name(s): ornithine δ-transaminase; L-ornithine:α-ketoglutarate δ-aminotransferase; OAT; L-ornithine 5-aminotransferase; L-ornithine aminotransferase; ornithine 5-aminotransferase; ornithine transaminase; ornithine-α-ketoglutarate aminotransferase; ornithine-2-oxoacid aminotransferase; ornithine-keto acid aminotransferase; ornithine-keto acid transaminase; ornithine-ketoglutarate aminotransferase; ornithine-oxo acid aminotransferase; ornithine:α-oxoglutarate transaminase; ornithine—oxo-acid transaminase
Systematic name: L-ornithine:2-oxo-acid aminotransferase
Comments: A pyridoxal-phosphate protein.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-42-6
References:
1.  Fincham, J.R.S. Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochem. J. 53 (1953) 313–320. [PMID: 13032071]
2.  Katunuma, N., Matsuda, Y. and Tomino, I. Studies on ornithine-ketoacid transaminase. I. Purification and properties. J. Biochem. (Tokyo) 56 (1964) 499–503. [PMID: 14244051]
3.  Meister, A. Enzymatic transamination reactions involving arginine and ornithine. J. Biol. Chem. 206 (1954) 587–596. [PMID: 13143017]
4.  Peraino, C., Bunville, L.G. and Tahmisian, T.N. Chemical, physical, and morphological properties of ornithine aminotransferase from rat liver. J. Biol. Chem. 244 (1969) 2241–2249. [PMID: 5783831]
5.  Quastel, J.H. and Witty, R. Ornithine transaminase. Nature 167 (1951) 556. [PMID: 14826840]
6.  Strecker, H.J. Purification and properties of rat liver ornithine δ-transaminase. J. Biol. Chem. 240 (1965) 1225–1230. [PMID: 14284729]
[EC 2.6.1.13 created 1961]
 
 
EC 2.6.1.81     
Accepted name: succinylornithine transaminase
Reaction: N2-succinyl-L-ornithine + 2-oxoglutarate = N-succinyl-L-glutamate 5-semialdehyde + L-glutamate
For diagram of arginine catabolism, click here
Other name(s): succinylornithine aminotransferase; N2-succinylornithine 5-aminotransferase; AstC; SOAT; 2-N-succinyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Systematic name: N2-succinyl-L-ornithine:2-oxoglutarate 5-aminotransferase
Comments: A pyridoxal-phosphate protein. Also acts on N2-acetyl-L-ornithine and L-ornithine, but more slowly [3]. In Pseudomonas aeruginosa, the arginine-inducible succinylornithine transaminase, acetylornithine transaminase (EC 2.6.1.11) and ornithine aminotransferase (EC 2.6.1.13) activities are catalysed by the same enzyme, but this is not the case in all species [5]. This is the third enzyme in the arginine succinyltransferase (AST) pathway for the catabolism of arginine [1]. This pathway converts the carbon skeleton of arginine into glutamate, with the concomitant production of ammonia and conversion of succinyl-CoA into succinate and CoA. The five enzymes involved in this pathway are EC 2.3.1.109 (arginine N-succinyltransferase), EC 3.5.3.23 (N-succinylarginine dihydrolase), EC 2.6.1.81 (succinylornithine transaminase), EC 1.2.1.71 (succinylglutamate-semialdehyde dehydrogenase) and EC 3.5.1.96 (succinylglutamate desuccinylase) [3,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Vander Wauven, C. and Stalon, V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J. Bacteriol. 164 (1985) 882–886. [PMID: 2865249]
2.  Schneider, B.L., Kiupakis, A.K. and Reitzer, L.J. Arginine catabolism and the arginine succinyltransferase pathway in Escherichia coli. J. Bacteriol. 180 (1998) 4278–4286. [PMID: 9696779]
3.  Cunin, R., Glansdorff, N., Pierard, A. and Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50 (1986) 314–352. [PMID: 3534538]
4.  Itoh, Y. Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J. Bacteriol. 179 (1997) 7280–7290. [DOI] [PMID: 9393691]
5.  Stalon, V., Vander Wauven, C., Momin, P. and Legrain, C. Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria. J. Gen. Microbiol. 133 (1987) 2487–2495. [DOI] [PMID: 3129535]
[EC 2.6.1.81 created 2006]
 
 
EC 2.6.1.124     
Accepted name: [amino-group carrier protein]-γ-(L-ornithyl)-L-glutamate aminotransferase
Reaction: an [amino-group carrier protein]-C-terminal-[γ-(L-ornithyl)-L-glutamate] + 2-oxoglutarate = an [amino-group carrier protein]-C-terminal-[γ-(L-glutamate 5-semialdehyde-2-yl)-L-glutamate] + L-glutamate
Other name(s): lysJ (gene name)
Systematic name: 2-oxoglutarate:[amino-group carrier protein]-C-terminal-[γ-(L-ornithyl)-L-glutamate] aminotransferase
Comments: The enzyme participates in an L-arginine biosynthetic pathway that operates in certain species of archaea. In some cases the enzyme also catalyses the activity of EC 2.6.1.118, [amino-group carrier protein]-γ-(L-lysyl)-L-glutamate aminotransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yoshida, A., Tomita, T., Atomi, H., Kuzuyama, T. and Nishiyama, M. Lysine biosynthesis of Thermococcus kodakarensis with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem. 291 (2016) 21630–21643. [DOI] [PMID: 27566549]
[EC 2.6.1.124 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald