The Enzyme Database

Displaying entries 51-100 of 485.

<< Previous | Next >>    printer_iconPrintable version

EC 1.5.8.1     
Accepted name: dimethylamine dehydrogenase
Reaction: dimethylamine + H2O + electron-transfer flavoprotein = methylamine + formaldehyde + reduced electron-transfer flavoprotein
Systematic name: dimethylamine:electron-transfer flavoprotein oxidoreductase
Comments: Contains FAD and a [4Fe-4S] cluster.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 68247-64-3
References:
1.  Yang, C.C., Packman, L.C. and Scrutton, N.S. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur. J. Biochem. 232 (1995) 264–271. [DOI] [PMID: 7556160]
[EC 1.5.8.1 created 1999 as EC 1.5.99.10, transferred 2002 to EC 1.5.8.1]
 
 
EC 1.6.1.3     
Accepted name: NAD(P)+ transhydrogenase
Reaction: NADPH + NAD+ = NADP+ + NADH
Other name(s): soluble transhydrogenase; pyridine nucleotide transhydrogenase; transhydrogenase (ambiguous); nicotinamide adenine dinucleotide (phosphate) transhydrogenase (ambiguous); NAD+ transhydrogenase (ambiguous); NADH transhydrogenase (misleading); nicotinamide nucleotide transhydrogenase (ambiguous); NADPH-NAD+ transhydrogenase (ambiguous); pyridine nucleotide transferase (ambiguous); NADPH-NAD+ oxidoreductase (ambiguous); NADH-NADP+-transhydrogenase (ambiguous); NADPH:NAD+ transhydrogenase; H+-Thase (ambiguous); non-energy-linked transhydrogenase (ambiguous); sthA (gene name)
Systematic name: NADPH:NAD+ oxidoreductase
Comments: A flavoprotein (FAD). The main function of the enzyme is to oxidize excess of NADPH, forming NADH that supplies electrons to the respiratory chain. cf. EC 7.1.1.1, proton-translocating NAD(P)+ transhydrogenase. This entry stands for enzymes whose stereo-specificity with respect to NADPH is not known. [cf. EC 1.6.1.1, NAD(P)+ transhydrogenase (Si-specific)].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc
References:
1.  Keister D.L., San Pietro A., Stolzenbach F.E. Pyridine nucleotide transhydrogenase from spinach. I. Purification and properties. J. Biol. Chem. 235 (1960) 2989–2996. [DOI] [PMID: 13752224]
2.  Sauer, U., Canonaco, F., Heri, S., Perrenoud, A. and Fischer, E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279 (2004) 6613–6619. [DOI] [PMID: 14660605]
3.  Zhao, H., Wang, P., Huang, E., Ge, Y. and Zhu, G. Physiologic roles of soluble pyridine nucleotide transhydrogenase in Escherichia coli as determined by homologous recombination. Ann Microbiol 58 (2008) 275–280. [DOI]
4.  Cao, Z., Song, P., Xu, Q., Su, R. and Zhu, G. Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiol. Lett. 320 (2011) 9–14. [DOI] [PMID: 21545646]
5.  Partipilo, M., Yang, G., Mascotti, M.L., Wijma, H.J., Slotboom, D.J. and Fraaije, M.W. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J. Biol. Chem. 298:102304 (2022). [DOI] [PMID: 35933012]
[EC 1.6.1.3 created 2013]
 
 
EC 1.6.3.3     
Accepted name: NADH oxidase (H2O2-forming)
Reaction: NADH + H+ + O2 = NAD+ + H2O2
Other name(s): NOX-1; H2O2-forming NADH oxidase
Systematic name: NADH:oxygen oxidoreductase (H2O2-forming)
Comments: A flavoprotein (FAD). The bacterium Streptococcus mutans contains two distinct NADH oxidases, a H2O2-forming enzyme and a H2O-forming enzyme (cf. EC 1.6.3.4, NADH oxidase (H2O-forming)) [1]. The enzymes from the anaerobic archaea Methanocaldococcus jannaschii [6] and Pyrococcus furiosus [3] also produce low amounts of H2O. Unlike EC 1.6.3.1 (NAD(P)H oxidase) it has no activity towards NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Higuchi, M., Shimada, M., Yamamoto, Y., Hayashi, T., Koga, T. and Kamio, Y. Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. J. Gen. Microbiol. 139 (1993) 2343–2351. [DOI] [PMID: 8254304]
2.  Ward, D.E., Donnelly, C.J., Mullendore, M.E., van der Oost, J., de Vos, W.M. and Crane, E.J., 3rd. The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur. J. Biochem. 268 (2001) 5816–5823. [DOI] [PMID: 11722568]
3.  Kengen, S.W., van der Oost, J. and de Vos, W.M. Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur. J. Biochem. 270 (2003) 2885–2894. [DOI] [PMID: 12823559]
4.  Yang, X. and Ma, K. Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 189 (2007) 3312–3317. [DOI] [PMID: 17293421]
5.  Hirano, J., Miyamoto, K. and Ohta, H. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl. Microbiol. Biotechnol. 80 (2008) 71–78. [DOI] [PMID: 18521590]
6.  Case, C.L., Rodriguez, J.R. and Mukhopadhyay, B. Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii. Microbiology 155 (2009) 69–79. [DOI] [PMID: 19118348]
[EC 1.6.3.3 created 2013]
 
 
EC 1.6.5.3      
Transferred entry: NADH:ubiquinone reductase (H+-translocating). Now EC 7.1.1.2, NADH:ubiquinone reductase (H+-translocating)
[EC 1.6.5.3 created 1961, deleted 1965, reinstated 1983, modified 2011, modified 2013, deleted 2018]
 
 
EC 1.7.1.7     
Accepted name: GMP reductase
Reaction: IMP + NH3 + NADP+ = GMP + NADPH + H+
Glossary: IMP = inosine 5′-phosphate
GMP = guanosine 5′-phosphate
Other name(s): guanosine 5′-monophosphate reductase; NADPH:GMP oxidoreductase (deaminating); guanosine monophosphate reductase; guanylate reductase; NADPH2:guanosine-5′-phosphate oxidoreductase (deaminating); guanosine 5′-phosphate reductase
Systematic name: inosine-5′-phosphate:NADP+ oxidoreductase (aminating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-32-7
References:
1.  MacKenzie, J.J. and Sorensen, L.B. Guanosine 5′-phosphate reductase of human erythrocytes. Biochim. Biophys. Acta 327 (1973) 282–294. [DOI] [PMID: 4149840]
2.  Mager, J. and Magasanik, B. Guanosine 5′-phosphate reductase and its role in the interconversion of purine nucleotides. J. Biol. Chem. 235 (1960) 1474–1478. [PMID: 14419794]
[EC 1.7.1.7 created 1965 as EC 1.6.6.8, transferred 2002 to EC 1.7.1.7]
 
 
EC 1.7.1.14     
Accepted name: nitric oxide reductase [NAD(P)+, nitrous oxide-forming]
Reaction: N2O + NAD(P)+ + H2O = 2 NO + NAD(P)H + H+
Other name(s): fungal nitric oxide reductase; cytochrome P450nor; NOR (ambiguous)
Systematic name: nitrous oxide:NAD(P) oxidoreductase
Comments: A heme-thiolate protein (P-450). The enzyme from Fusarium oxysporum utilizes only NADH, but the isozyme from Trichosporon cutaneum utilizes both NADH and NADPH. The electron transfer from NAD(P)H to heme occurs directly, not requiring flavin or other redox cofactors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shoun, H. and Tanimoto, T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J. Biol. Chem. 266 (1991) 11078–11082. [PMID: 2040619]
2.  Shiro, Y., Fujii, M., Iizuka, T., Adachi, S., Tsukamoto, K., Nakahara, K. and Shoun, H. Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide. Implication for its nitric oxide reduction mechanism. J. Biol. Chem. 270 (1995) 1617–1623. [DOI] [PMID: 7829493]
3.  Zhang, L., Kudo, T., Takaya, N. and Shoun, H. The B′ helix determines cytochrome P450nor specificity for the electron donors NADH and NADPH. J. Biol. Chem. 277 (2002) 33842–33847. [DOI] [PMID: 12105197]
4.  Oshima, R., Fushinobu, S., Su, F., Zhang, L., Takaya, N. and Shoun, H. Structural evidence for direct hydride transfer from NADH to cytochrome P450nor. J. Mol. Biol. 342 (2004) 207–217. [DOI] [PMID: 15313618]
[EC 1.7.1.14 created 2011]
 
 
EC 1.7.2.1     
Accepted name: nitrite reductase (NO-forming)
Reaction: nitric oxide + H2O + ferricytochrome c = nitrite + ferrocytochrome c + 2 H+
Glossary: nitric oxide = NO = nitrogen(II) oxide
Other name(s): cd-cytochrome nitrite reductase; [nitrite reductase (cytochrome)] [misleading, see comments.]; cytochrome c-551:O2, NO2+ oxidoreductase; cytochrome cd; cytochrome cd1; hydroxylamine (acceptor) reductase; methyl viologen-nitrite reductase; nitrite reductase (cytochrome; NO-forming)
Systematic name: nitric-oxide:ferricytochrome-c oxidoreductase
Comments: The reaction is catalysed by two types of enzymes, found in the perimplasm of denitrifying bacteria. One type comprises proteins containing multiple copper centres, the other a heme protein, cytochrome cd1. Acceptors include c-type cytochromes such as cytochrome c-550 or cytochrome c-551 from Paracoccus denitrificans or Pseudomonas aeruginosa, and small blue copper proteins such as azurin and pseudoazurin. Cytochrome cd1 also has oxidase and hydroxylamine reductase activities. May also catalyse the reaction of hydroxylamine reductase (EC 1.7.99.1) since this is a well-known activity of cytochrome cd1.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9080-03-9
References:
1.  Miyata, M. and Mori, T. Studies on denitrification. X. The "denitrifying enzyme" as a nitrite reductase and the electron donating system for denitrification. J. Biochem. (Tokyo) 66 (1969) 463–471. [PMID: 5354021]
2.  Chung, C.W. and Najjar, V.A. Cofactor requirements for enzymatic denitrification. I. Nitrite reductase. J. Biol. Chem. 218 (1956) 617–625. [PMID: 13295215]
3.  Walker, G.C. and Nicholas, D.J.D. Nitrite reductase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 49 (1961) 350–360. [DOI] [PMID: 13782716]
4.  Singh, J. Cytochrome oxidase from Pseudomonas aeruginosa. III. Reduction of hydroxylamine. Biochim. Biophys. Acta 333 (1974) 28–36. [PMID: 19396990]
5.  Michalski, W.P. and Nicholas, D.J.D. Molecular characterization of a copper-containing nitrite reductase from Rhodopseudomonas sphaeriodes forma sp. Denitrificans. Biochim. Biophys. Acta 828 (1985) 130–137.
6.  Godden, J.W., Turley, S., Teller, D.C., Adman, E.T., Liu, M.Y., Payne, W.J. and Legall, J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253 (1991) 438–442. [DOI] [PMID: 1862344]
7.  Williams, P.A., Fulop, V., Leung, Y.C., Chan, C., Moir, J.W.B., Howlett, G., Ferguson, S.J., Radford, S.E. and Hajdu, J. Pseudospecific docking surfaces on electron transfer proteins as illustrated by pseudoazurin, cytochrome c-550 and cytochrome cd1 nitrite reductase. Nat. Struct. Biol. 2 (1995) 975–982. [PMID: 7583671]
8.  Hole, U.H., Vollack, K.U., Zumft, W.G., Eisenmann, E., Siddiqui, R.A., Friedrich, B. and Kroneck, P.M.H. Characterization of the membranous denitrification enzymes nitrite reductase (cytochrome cd1) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans. Arch. Microbiol. 165 (1996) 55–61. [PMID: 8639023]
9.  Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61 (1997) 533–616. [PMID: 9409151]
10.  Ferguson, S.J. Nitrogen cycle enzymology. Curr. Opin. Chem. Biol. 2 (1998) 182–193. [DOI] [PMID: 9667932]
11.  Vijgenboom, E., Busch, J.E. and Canters, G.W. In vitro studies disprove the obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under the control of RpoS and ANR. Microbiology 143 (1997) 2853–2863. [DOI] [PMID: 9308169]
[EC 1.7.2.1 created 1961, modified 1976, modified 2001, modified 2002 (EC 1.7.99.3 created 1961 as EC 1.6.6.5, transferred 1964 to EC 1.7.99.3, modified 1976, incorporated 2002, EC 1.9.3.2 created 1965, incorporated 2002)]
 
 
EC 1.7.2.3     
Accepted name: trimethylamine-N-oxide reductase
Reaction: trimethylamine + 2 (ferricytochrome c)-subunit + H2O = trimethylamine N-oxide + 2 (ferrocytochrome c)-subunit + 2 H+
For diagram of dimethyl sulfide catabolism, click here
Other name(s): TMAO reductase; TOR; torA (gene name); torZ (gene name); bisZ (gene name); trimethylamine-N-oxide reductase (cytochrome c)
Systematic name: trimethylamine:cytochrome c oxidoreductase
Comments: Contains bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The reductant is a membrane-bound multiheme cytochrome c. Also reduces dimethyl sulfoxide to dimethyl sulfide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37256-34-1
References:
1.  Arata, H., Shimizu, M. and Takamiya, K. Purification and properties of trimethylamine N-oxide reductase from aerobic photosynthetic bacterium Roseobacter denitrificans. J. Biochem. (Tokyo) 112 (1992) 470–475. [PMID: 1337081]
2.  Knablein, J., Dobbek, H., Ehlert, S. and Schneider, F. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide trimethylamine N-oxide reductase from Rhodobacter capsulatus. Biol. Chem. 378 (1997) 293–302. [PMID: 9165084]
3.  Czjzek, M., Dos Santos, J.P., Pommier, J., Giordano, G., Méjean, V. and Haser, R. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J. Mol. Biol. 284 (1998) 435–447. [DOI] [PMID: 9813128]
4.  Gon, S., Giudici-Orticoni, M.T., Mejean, V. and Iobbi-Nivol, C. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J. Biol. Chem. 276 (2001) 11545–11551. [DOI] [PMID: 11056172]
5.  Zhang, L., Nelson, K.J., Rajagopalan, K.V. and George, G.N. Structure of the molybdenum site of Escherichia coli trimethylamine N-oxide reductase. Inorg. Chem. 47 (2008) 1074–1078. [PMID: 18163615]
6.  Yin, Q.J., Zhang, W.J., Qi, X.Q., Zhang, S.D., Jiang, T., Li, X.G., Chen, Y., Santini, C.L., Zhou, H., Chou, I.M. and Wu, L.F. High hydrostatic pressure inducible trimethylamine N-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis. Front. Microbiol. 8:2646 (2017). [PMID: 29375513]
[EC 1.7.2.3 created 2002, modified 2018]
 
 
EC 1.8.1.18     
Accepted name: NAD(P)H sulfur oxidoreductase (CoA-dependent)
Reaction: hydrogen sulfide + NAD(P)+ = sulfur + NAD(P)H + H+
Other name(s): NADPH NSR; S0 reductase; coenzyme A-dependent NADPH sulfur oxidoreductase
Systematic name: hydrogen sulfide:NAD(P)+ oxidoreductase (CoA-dependent)
Comments: This FAD-dependent enzyme, characterized from the archaeon Pyrococcus furiosus, is responsible for NAD(P)H-linked sulfur reduction. The activity with NADH is about half of that with NADPH. The reaction is dependent on CoA, although the nature of this dependency is not well understood.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schut, G.J., Bridger, S.L. and Adams, M.W. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol. 189 (2007) 4431–4441. [DOI] [PMID: 17449625]
2.  Bridger, S.L., Clarkson, S.M., Stirrett, K., DeBarry, M.B., Lipscomb, G.L., Schut, G.J., Westpheling, J., Scott, R.A. and Adams, M.W. Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. J. Bacteriol. 193 (2011) 6498–6504. [DOI] [PMID: 21965560]
3.  Harris, D.R., Ward, D.E., Feasel, J.M., Lancaster, K.M., Murphy, R.D., Mallet, T.C. and Crane, E.J., 3rd. Discovery and characterization of a coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles. FEBS J. 272 (2005) 1189–1200. [DOI] [PMID: 15720393]
[EC 1.8.1.18 created 2013]
 
 
EC 1.8.3.5     
Accepted name: prenylcysteine oxidase
Reaction: an S-prenyl-L-cysteine + O2 + H2O = a prenal + L-cysteine + H2O2
Other name(s): prenylcysteine lyase
Systematic name: S-prenyl-L-cysteine:oxygen oxidoreductase
Comments: A flavoprotein (FAD). Cleaves the thioether bond of S-prenyl-L-cysteines, such as S-farnesylcysteine and S-geranylgeranylcysteine. N-Acetyl-prenylcysteine and prenylcysteinyl peptides are not substrates. May represent the final step in the degradation of prenylated proteins in mammalian tissues. Originally thought to be a simple lyase so it had been classified as EC 4.4.1.18.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 196717-99-4
References:
1.  Zhang, L., Tschantz, W.R. and Casey, P.J. Isolation and characterization of a prenylcysteine lyase from bovine brain. J. Biol. Chem. 272 (1997) 23354–23359. [DOI] [PMID: 9287348]
2.  Tschantz, W.R., Digits, J.A., Pyun, H.J., Coates, R.M. and Casey, P.J. Lysosomal prenylcysteine lyase is a FAD-dependent thioether oxidase. J. Biol. Chem. 276 (2001) 2321–2324. [DOI] [PMID: 11078725]
[EC 1.8.3.5 created 2000 as EC 4.4.1.18, transferred 2002 to EC 1.8.3.5]
 
 
EC 1.8.5.4     
Accepted name: bacterial sulfide:quinone reductase
Reaction: n HS- + n quinone = polysulfide + n quinol
Other name(s): sqr (gene name); sulfide:quinone reductase (ambiguous); sulfide:quinone oxidoreductase
Systematic name: sulfide:quinone oxidoreductase (polysulfide-producing)
Comments: Contains FAD. Ubiquinone, plastoquinone or menaquinone can act as acceptor in different species. In some organisms the enzyme catalyses the formation of sulfur globules. It repeats the catalytic cycle without releasing the product, producing a polysulfide of up to 10 sulfur atoms. The reaction stops when the maximum length of the polysulfide that can be accommodated in the sulfide oxidation pocket is achieved. The enzyme also plays an important role in anoxygenic bacterial photosynthesis. cf. EC 1.8.5.8, sulfide quinone oxidoreductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Arieli, B., Shahak, Y., Taglicht, D., Hauska, G. and Padan, E. Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J. Biol. Chem. 269 (1994) 5705–5711. [PMID: 8119908]
2.  Reinartz, M., Tschape, J., Bruser, T., Truper, H.G. and Dahl, C. Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch. Microbiol. 170 (1998) 59–68. [PMID: 9639604]
3.  Nubel, T., Klughammer, C., Huber, R., Hauska, G. and Schutz, M. Sulfide:quinone oxidoreductase in membranes of the hyperthermophilic bacterium Aquifex aeolicus (VF5). Arch. Microbiol. 173 (2000) 233–244. [PMID: 10816041]
4.  Brito, J.A., Sousa, F.L., Stelter, M., Bandeiras, T.M., Vonrhein, C., Teixeira, M., Pereira, M.M. and Archer, M. Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry 48 (2009) 5613–5622. [DOI] [PMID: 19438211]
5.  Cherney, M.M., Zhang, Y., Solomonson, M., Weiner, J.H. and James, M.N. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification. J. Mol. Biol. 398 (2010) 292–305. [DOI] [PMID: 20303979]
6.  Marcia, M., Langer, J.D., Parcej, D., Vogel, V., Peng, G. and Michel, H. Characterizing a monotopic membrane enzyme. Biochemical, enzymatic and crystallization studies on Aquifex aeolicus sulfide:quinone oxidoreductase. Biochim. Biophys. Acta 1798 (2010) 2114–2123. [DOI] [PMID: 20691146]
7.  Xin, Y., Liu, H., Cui, F., Liu, H. and Xun, L. Recombinant Escherichia coli with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ. Microbiol. 18 (2016) 5123–5136. [PMID: 27573649]
[EC 1.8.5.4 created 2011, modified 2017, modified 2019]
 
 
EC 1.9.3.1      
Transferred entry: cytochrome-c oxidase. Now EC 7.1.1.9, cytochrome-c oxidase
[EC 1.9.3.1 created 1961, modified 2000, deleted 2019]
 
 
EC 1.11.1.6     
Accepted name: catalase
Reaction: 2 H2O2 = O2 + 2 H2O
Other name(s): equilase; caperase; optidase; catalase-peroxidase; CAT
Systematic name: hydrogen-peroxide:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. A manganese protein containing MnIII in the resting state, which also belongs here, is often called pseudocatalase. The enzymes from some organisms, such as Penicillium simplicissimum, can also act as a peroxidase (EC 1.11.1.7) for which several organic substances, especially ethanol, can act as a hydrogen donor. Enzymes that exhibit both catalase and peroxidase activity belong under EC 1.11.1.21, catalase-peroxidase.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-05-2
References:
1.  Herbert, D. and Pinsent, J. Crystalline bacterial catalase. Biochem. J. 43 (1948) 193–202. [PMID: 16748386]
2.  Herbert, D. and Pinsent, J. Crystalline human erythrocyte catalase. Biochem. J. 43 (1948) 203–205. [PMID: 16748387]
3.  Keilin, D. and Hartree, E.F. Coupled oxidation of alcohol. Proc. R. Soc. Lond. B Biol. Sci. 119 (1936) 141–159.
4.  Kono, Y. and Fridovich, I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J. Biol. Chem. 258 (1983) 6015–6019. [PMID: 6853475]
5.  Nicholls, P. and Schonbaum, G.R. Catalases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 147–225.
[EC 1.11.1.6 created 1961, modified 1986, modified 1999, modified 2013]
 
 
EC 1.11.1.7     
Accepted name: peroxidase
Reaction: 2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O
Other name(s): lactoperoxidase; guaiacol peroxidase; plant peroxidase; Japanese radish peroxidase; horseradish peroxidase (HRP); soybean peroxidase (SBP); extensin peroxidase; heme peroxidase; oxyperoxidase; protoheme peroxidase; pyrocatechol peroxidase; scopoletin peroxidase; Coprinus cinereus peroxidase; Arthromyces ramosus peroxidase
Systematic name: phenolic donor:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also peroxidize non-phenolic substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB) and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize bromide, iodide and thiocyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9003-99-0
References:
1.  Kenten, R.H. and Mann, P.J.G. Simple method for the preparation of horseradish peroxidase. Biochem. J. 57 (1954) 347–348. [PMID: 13172193]
2.  Morrison, M., Hamilton, H.B. and Stotz, E. The isolation and purification of lactoperoxidase by ion exchange chromatography. J. Biol. Chem. 228 (1957) 767–776. [PMID: 13475358]
3.  Paul, K.G. Peroxidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 227–274.
4.  Tagawa, K., Shin, M. and Okunuki, K. Peroxidases from wheat germ. Nature (Lond.) 183 (1959) 111. [PMID: 13622706]
5.  Theorell, H. The preparation and some properties of crystalline horse-radish peroxidase. Ark. Kemi Mineral. Geol. 16A No. 2 (1943) 1–11.
6.  Farhangrazi, Z.S., Copeland, B.R., Nakayama, T., Amachi, T., Yamazaki, I. and Powers, L.S. Oxidation-reduction properties of compounds I and II of Arthromyces ramosus peroxidase. Biochemistry 33 (1994) 5647–5652. [PMID: 8180190]
7.  Aitken, M.D. and Heck, P.E. Turnover capacity of coprinus cinereus peroxidase for phenol and monosubstituted phenol. Biotechnol. Prog. 14 (1998) 487–492. [DOI] [PMID: 9622531]
8.  Dunford, H.B. Heme peroxidases, Wiley-VCH, New York, 1999, pp. 33–218.
9.  Torres, E and Ayala, M. Biocatalysis based on heme peroxidases, Springer, Berlin, 2010, pp. 7–110.
[EC 1.11.1.7 created 1961, modified 2011]
 
 
EC 1.11.1.21     
Accepted name: catalase-peroxidase
Reaction: (1) donor + H2O2 = oxidized donor + 2 H2O
(2) 2 H2O2 = O2 + 2 H2O
Other name(s): katG (gene name)
Systematic name: donor:hydrogen-peroxide oxidoreductase
Comments: Differs from EC 1.11.1.7, peroxidase in having a relatively high catalase (EC 1.11.1.6) activity with H2O2 as donor, releasing O2; both activities use the same heme active site. In Mycobacterium tuberculosis it is responsible for activation of the commonly used antitubercular drug, isoniazid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Loewen, P.C., Triggs, B.L., George, C.S. and Hrabarchuk, B.E. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. J. Bacteriol. 162 (1985) 661–667. [PMID: 3886630]
2.  Hochman, A. and Goldberg, I. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta 1077 (1991) 299–307. [DOI] [PMID: 2029529]
3.  Fraaije, M.W., Roubroeks, H.P., van Berkel, W.H.J. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur. J. Biochem. 235 (1996) 192–198. [PMID: 8631329]
4.  Bertrand, T., Eady, N.A., Jones, J.N., Jesmin, Nagy, J.M., Jamart-Gregoire, B., Raven, E.L. and Brown, K.A. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem. 279 (2004) 38991–38999. [DOI] [PMID: 15231843]
5.  Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmuller, P.G. and Obinger, C. Mechanisms of catalase activity of heme peroxidases. Arch. Biochem. Biophys. 500 (2010) 74–81. [DOI] [PMID: 20434429]
[EC 1.11.1.21 created 2011]
 
 
EC 1.13.11.12     
Accepted name: linoleate 13S-lipoxygenase
Reaction: (1) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
(2) α-linolenate + O2 = (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
α-linolenate = (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
Other name(s): 13-lipoxidase; carotene oxidase; 13-lipoperoxidase; fat oxidase; 13-lipoxydase; lionoleate:O2 13-oxidoreductase
Systematic name: linoleate:oxygen 13-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C-13 position with (S)-configuration. This enzyme produces precursors for several important compounds, including the plant hormone jasmonic acid. EC 1.13.11.58, linoleate 9S-lipoxygenase, catalyses a similar reaction at the second available position of these fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-60-1
References:
1.  Christopher, J., Pistorius, E. and Axelrod, B. Isolation of an enzyme of soybean lipoxidase. Biochim. Biophys. Acta 198 (1970) 12–19. [DOI] [PMID: 5461103]
2.  Theorell, H., Holman, R.T. and Åkesson, Å. Crystalline lipoxidase. Acta Chem. Scand. 1 (1947) 571–576. [PMID: 18907700]
3.  Zimmerman, D.C. Specificity of flaxseed lipoxidase. Lipids 5 (1970) 392–397. [DOI] [PMID: 5447012]
4.  Royo, J., Vancanneyt, G., Perez, A.G., Sanz, C., Stormann, K., Rosahl, S. and Sanchez-Serrano, J.J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J. Biol. Chem. 271 (1996) 21012–21019. [DOI] [PMID: 8702864]
5.  Bachmann, A., Hause, B., Maucher, H., Garbe, E., Voros, K., Weichert, H., Wasternack, C. and Feussner, I. Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol. Chem. 383 (2002) 1645–1657. [DOI] [PMID: 12452441]
[EC 1.13.11.12 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, transferred 1972 to EC 1.13.11.12, modified 2011, modified 2012]
 
 
EC 1.13.11.24     
Accepted name: quercetin 2,3-dioxygenase
Reaction: quercetin + O2 = 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoate + CO + H+
For diagram of reaction, click here
Other name(s): quercetinase; flavonol 2,4-oxygenase; quercetin:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: quercetin:oxygen 2,3-oxidoreductase (ring-opening)
Comments: The enzyme from Aspergillus sp. is a copper protein whereas that from Bacillus subtilis contains iron. Quercetin is a flavonol (5,7,3′,4′-tetrahydroxyflavonol).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-67-6
References:
1.  Oka, T. and Simpson, F.J. Quercetinase, a dioxygenase containing copper. Biochem. Biophys. Res. Commun. 43 (1971) 1–5. [DOI] [PMID: 5579942]
2.  Steiner, R.A., Kalk, K.H. and Dijkstra, B.W. Anaerobic enzyme·substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA 99 (2002) 16625–16630. [DOI] [PMID: 12486225]
3.  Bowater, L., Fairhurst, S.A., Just, V.J. and Bornemann, S. Bacillus subtilis YxaG is a novel Fe-containing quercetin 2,3-dioxygenase. FEBS Lett. 557 (2004) 45–48. [DOI] [PMID: 14741339]
[EC 1.13.11.24 created 1972]
 
 
EC 1.13.11.37     
Accepted name: hydroxyquinol 1,2-dioxygenase
Reaction: hydroxyquinol + O2 = maleylacetate
For diagram of 4-nitrophenol metabolism, click here
Glossary: hydroxyquinol = 1,2,4-trihydroxybenzene
maleylacetate = (2Z)-4-oxohex-2-enedioate
Other name(s): hydroxyquinol dioxygenase; benzene-1,2,4-triol:oxygen 1,2-oxidoreductase (decyclizing); benzene-1,2,4-triol:oxygen 1,2-oxidoreductase (ring-opening)
Systematic name: hydroxyquinol:oxygen 1,2-oxidoreductase (ring-opening)
Comments: An iron protein. Highly specific; catechol and pyrogallol are acted on at less than 1% of the rate at which hydroxyquinol is oxidized.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 91847-14-2
References:
1.  Sze, I.S.-Y. and Dagley, S. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. J. Bacteriol. 159 (1984) 353–359. [PMID: 6539772]
2.  Ferraroni, M., Seifert, J., Travkin, V.M., Thiel, M., Kaschabek, S., Scozzafava, A., Golovleva, L., Schlomann, M. and Briganti, F. Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J. Biol. Chem. 280 (2005) 21144–21154. [DOI] [PMID: 15772073]
3.  Hatta, T., Nakano, O., Imai, N., Takizawa, N. and Kiyohara, H. Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. J. Biosci. Bioeng. 87 (1999) 267–272. [DOI] [PMID: 16232466]
[EC 1.13.11.37 created 1989, modified 2013]
 
 
EC 1.13.11.59     
Accepted name: torulene dioxygenase
Reaction: torulene + O2 = 4′-apo-β,ψ-caroten-4′-al + 3-methylbut-2-enal
Glossary: torulene = 3′,4′-didehydro-β,ψ-carotene
Other name(s): CAO-2; CarT
Systematic name: torulene:oxygen oxidoreductase
Comments: It is assumed that 3-methylbut-2-enal is formed. The enzyme cannot cleave the saturated 3′,4′-bond of γ-carotene which implies that a 3′,4′-double bond is neccessary for this reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Prado-Cabrero, A., Estrada, A.F., Al-Babili, S. and Avalos, J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol. Microbiol. 64 (2007) 448–460. [DOI] [PMID: 17493127]
2.  Saelices, L., Youssar, L., Holdermann, I., Al-Babili, S. and Avalos, J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol. Genet. Genomics 278 (2007) 527–537. [DOI] [PMID: 17610084]
3.  Estrada, A.F., Maier, D., Scherzinger, D., Avalos, J. and Al-Babili, S. Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet. Biol. 45 (2008) 1497–1505. [DOI] [PMID: 18812228]
[EC 1.13.11.59 created 2011]
 
 
EC 1.13.11.84     
Accepted name: crocetin dialdehyde synthase
Reaction: zeaxanthin + 2 O2 = crocetin dialdehyde + 2 3β-hydroxy-β-cyclocitral (overall reaction)
(1a) zeaxanthin + O2 = 3β-hydroxy-8′-apo-β-carotenal + 3β-hydroxy-β-cyclocitral
(1b) 3β-hydroxy-8′-apo-β-carotenal + O2 = crocetin dialdehyde + 3β-hydroxy-β-cyclocitral
Glossary: crocetin dialdehyde = 8,8′-diapocarotene-8,8′-dial
zeaxanthin = (3R,3′R)-β,β-carotene-3,3′-diol
3β-hydroxy-β-cyclocitral = (4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-carboxaldehyde
Other name(s): CCD2; zeaxanthin 7,8-dioxygenase
Systematic name: zeaxanthin:oxygen 7′,8′-oxidoreductase (bond-cleaving)
Comments: The enzyme, characterized from the plant Crocus sativus (saffron), acts twice, cleaving 3β-hydroxy-β-cyclocitral off each 3-hydroxy end group. It is part of the zeaxanthin degradation pathway in that plant, leading to the different compounds that impart the color, flavor and aroma of the saffron spice. The enzyme can similarly cleave the 7-8 double bond of other carotenoids with a 3-hydroxy-β-carotenoid end group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., Rubio-Moraga, A., Beyer, P., Gomez-Gomez, L., Al-Babili, S. and Giuliano, G. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc. Natl. Acad. Sci. USA 111 (2014) 12246–12251. [DOI] [PMID: 25097262]
2.  Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C. and Gomez-Gomez, L. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytol. 209 (2016) 650–663. [DOI] [PMID: 26377696]
3.  Ahrazem, O., Diretto, G., Argandona, J., Rubio-Moraga, A., Julve, J.M., Orzaez, D., Granell, A. and Gomez-Gomez, L. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. J. Exp. Bot. 68 (2017) 4663–4677. [DOI] [PMID: 28981773]
[EC 1.13.11.84 created 2011 as EC 1.14.99.42, modified 2014, transferred 2017 to EC 1.13.11.84]
 
 
EC 1.13.12.9     
Accepted name: phenylalanine 2-monooxygenase
Reaction: L-phenylalanine + O2 = 2-phenylacetamide + CO2 + H2O
Other name(s): L-phenylalanine oxidase (deaminating and decarboxylating); phenylalanine (deaminating, decarboxylating)oxidase
Systematic name: L-phenylalanine:oxygen 2-oxidoreductase (decarboxylating)
Comments: The reaction shown above is about 80% of the reaction catalysed; the remaining 20% is:

    L-phenylalanine + O2 + H2O = 3-phenylpyruvic acid + ammonia + H2O2

a reaction similar to that of EC 1.4.3.2, L-amino-acid oxidase.

Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 190396-37-3
References:
1.  Koyama, H. Purification and characterization of a novel L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501. J. Biochem. (Tokyo) 92 (1982) 1235–1240. [PMID: 7174643]
2.  Koyama, H. Oxidation and oxygenation of L-amino acids catalyzed by a L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501. J. Biochem. (Tokyo) 96 (1984) 421–427. [PMID: 6501250]
3.  Koyama, H. A simple and rapid enzymatic determination of L-phenylalanine with a novel L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501. Clin. Chim. Acta 1361 (1984) 131–136. [DOI] [PMID: 6692570]
4.  Koyama, H. and Suzuki, H. Spectral and kinetic studies on Pseudomonas L-phenylalanine oxidase (deaminating and decarboxylating). J. Biochem. (Tokyo) 100 (1986) 859–866. [PMID: 3818566]
[EC 1.13.12.9 created 1986, modified 2003]
 
 
EC 1.13.12.13     
Accepted name: Oplophorus-luciferin 2-monooxygenase
Reaction: Oplophorus luciferin + O2 = oxidized Oplophorus luciferin + CO2 +
For diagram of reaction, click here
Glossary: Oplophorus luciferin = 8-benzyl-2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3(7H)-one
Other name(s): Oplophorus luciferase
Systematic name: Oplophorus-luciferin:oxygen 2-oxidoreductase (decarboxylating)
Comments: The luciferase from the deep sea shrimp Oplophorus gracilirostris is a complex composed of more than one protein. The enzyme’s specificity is quite broad, with both coelenterazine and bisdeoxycoelenterazine being good substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Shimomura, O., Masugi, T., Johnson, F.H. and Haneda, Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17 (1978) 994–998. [PMID: 629957]
2.  Inouye, S., Watanabe, K., Nakamura, H., Shimomura, O. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 481 (2000) 19–25. [DOI] [PMID: 10984608]
[EC 1.13.12.13 created 2004]
 
 
EC 1.13.12.22     
Accepted name: deoxynogalonate monooxygenase
Reaction: deoxynogalonate + O2 = nogalonate + H2O
For diagram of nogalamycin biosynthesis, click here
Glossary: deoxynogalonate = [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate
nogalonate = [4,5-dihydroxy-9,10-dioxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate
Other name(s): SnoaB (gene name); 12-deoxynogalonic acid oxidoreductase; [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate oxidase; [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate monooxygenase; deoxynogalonate oxidoreductase
Systematic name: deoxynogalonate:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Streptomyces nogalater, is involved in the biosynthesis of the aromatic polyketide nogalamycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Koskiniemi, H., Grocholski, T., Schneider, G. and Niemi, J. Expression, purification and crystallization of the cofactor-independent monooxygenase SnoaB from the nogalamycin biosynthetic pathway. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 256–259. [DOI] [PMID: 19255477]
2.  Grocholski, T., Koskiniemi, H., Lindqvist, Y., Mantsala, P., Niemi, J. and Schneider, G. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 49 (2010) 934–944. [DOI] [PMID: 20052967]
[EC 1.13.12.22 created 2015]
 
 
EC 1.14.11.26     
Accepted name: deacetoxycephalosporin-C hydroxylase
Reaction: deacetoxycephalosporin C + 2-oxoglutarate + O2 = deacetylcephalosporin C + succinate + CO2
For diagram of cephalosporin biosynthesis, click here
Other name(s): deacetylcephalosporin C synthase; 3′-methylcephem hydroxylase; DACS; DAOC hydroxylase; deacetoxycephalosporin C hydroxylase
Systematic name: deacetoxycephalosporin-C,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II). The enzyme can also use 3-exomethylenecephalosporin C as a substrate to form deacetoxycephalosporin C, although more slowly [2]. In Acremonium chrysogenum, the enzyme forms part of a bifunctional protein along with EC 1.14.20.1, deactoxycephalosporin-C synthase. It is a separate enzyme in Streptomyces clavuligerus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 69772-89-0
References:
1.  Dotzlaf, J.E. and Yeh, W.K. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169 (1987) 1611–1618. [DOI] [PMID: 3558321]
2.  Baker, B.J., Dotzlaf, J.E. and Yeh, W.K. Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J. Biol. Chem. 266 (1991) 5087–5093. [PMID: 2002049]
3.  Coque, J.J., Enguita, F.J., Cardoza, R.E., Martin, J.F. and Liras, P. Characterization of the cefF gene of Nocardia lactamdurans encoding a 3′-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl. Microbiol. Biotechnol. 44 (1996) 605–609. [PMID: 8703431]
4.  Ghag, S.K., Brems, D.N., Hassell, T.C. and Yeh, W.K. Refolding and purification of Cephalosporium acremonium deacetoxycephalosporin C synthetase/hydroxylase from granules of recombinant Escherichia coli. Biotechnol. Appl. Biochem. 24 (1996) 109–119. [PMID: 8865604]
5.  Lloyd, M.D., Lipscomb, S.J., Hewitson, K.S., Hensgens, C.M., Baldwin, J.E. and Schofield, C.J. Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase. J. Biol. Chem. 279 (2004) 15420–15426. [DOI] [PMID: 14734549]
6.  Wu, X.B., Fan, K.Q., Wang, Q.H. and Yang, K.Q. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. FEMS Microbiol. Lett. 246 (2005) 103–110. [DOI] [PMID: 15869968]
7.  Martín, J.F., Gutiérrez, S., Fernández, F.J., Velasco, J., Fierro, F., Marcos, A.T. and Kosalkova, K. Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins. Antonie Van Leeuwenhoek 65 (1994) 227–243. [PMID: 7847890]
[EC 1.14.11.26 created 2005]
 
 
EC 1.14.11.29     
Accepted name: hypoxia-inducible factor-proline dioxygenase
Reaction: hypoxia-inducible factor-L-proline + 2-oxoglutarate + O2 = hypoxia-inducible factor-trans-4-hydroxy-L-proline + succinate + CO2
Other name(s): HIF hydroxylase
Systematic name: hypoxia-inducible factor-L-proline, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Contains iron, and requires ascorbate. Specifically hydroxylates a proline residue in HIF-α, the α subunit of the transcriptional regulator HIF (hypoxia-inducible factor), which targets HIF for proteasomal destruction. The requirement of oxygen for the hydroxylation reaction enables animals to respond to hypoxia.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim Av, Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292 (2001) 468–472. [DOI] [PMID: 11292861]
2.  Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin , W.G., Jr. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292 (2001) 464–468. [DOI] [PMID: 11292862]
3.  Bruick, R.K. and McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294 (2001) 1337–1340. [DOI] [PMID: 11598268]
4.  Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J. and Ratcliffe, P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107 (2001) 43–54. [DOI] [PMID: 11595184]
5.  Oehme, F., Ellinghaus, P., Kolkhof, P., Smith, T.J., Ramakrishnan, S., Hutter, J., Schramm, M. and Flamme, I. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem. Biophys. Res. Commun. 296 (2002) 343–349. [DOI] [PMID: 12163023]
6.  McNeill, L.A., Hewitson, K.S., Gleadle, J.M., Horsfall, L.E., Oldham, N.J., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J. and Schofield, C.J. The use of dioxygen by HIF prolyl hydroxylase (PHD1). Bioorg. Med. Chem. Lett. 12 (2002) 1547–1550. [DOI] [PMID: 12039559]
[EC 1.14.11.29 created 2010]
 
 
EC 1.14.11.50      
Transferred entry: (–)-deoxypodophyllotoxin synthase. Now EC 1.14.20.8, (–)-deoxypodophyllotoxin synthase
[EC 1.14.11.50 created 2016, deleted 2018]
 
 
EC 1.14.11.53     
Accepted name: mRNA N6-methyladenine demethylase
Reaction: N6-methyladenine in mRNA + 2-oxoglutarate + O2 = adenine in mRNA + formaldehyde + succinate + CO2
Other name(s): ALKBH5; FTO
Systematic name: mRNA-N6-methyladenosine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron(II). Catalyses oxidative demethylation of mRNA N6-methyladenine. The FTO enzyme from human can also demethylate N3-methylthymine from single stranded DNA and N3-methyluridine from single stranded RNA [1,2] with low activity [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jia, G., Yang, C.G., Yang, S., Jian, X., Yi, C., Zhou, Z. and He, C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582 (2008) 3313–3319. [DOI] [PMID: 18775698]
2.  Han, Z., Niu, T., Chang, J., Lei, X., Zhao, M., Wang, Q., Cheng, W., Wang, J., Feng, Y. and Chai, J. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464 (2010) 1205–1209. [DOI] [PMID: 20376003]
3.  Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G. and He, C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 (2011) 885–887. [DOI] [PMID: 22002720]
4.  Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vagbo, C.B., Shi, Y., Wang, W.L., Song, S.H., Lu, Z., Bosmans, R.P., Dai, Q., Hao, Y.J., Yang, X., Zhao, W.M., Tong, W.M., Wang, X.J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan, H.E., Klungland, A., Yang, Y.G. and He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49 (2013) 18–29. [DOI] [PMID: 23177736]
5.  Feng, C., Liu, Y., Wang, G., Deng, Z., Zhang, Q., Wu, W., Tong, Y., Cheng, C. and Chen, Z. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 289 (2014) 11571–11583. [DOI] [PMID: 24616105]
6.  Xu, C., Liu, K., Tempel, W., Demetriades, M., Aik, W., Schofield, C.J. and Min, J. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J. Biol. Chem. 289 (2014) 17299–17311. [DOI] [PMID: 24778178]
7.  Aik, W., Scotti, J.S., Choi, H., Gong, L., Demetriades, M., Schofield, C.J. and McDonough, M.A. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 42 (2014) 4741–4754. [DOI] [PMID: 24489119]
[EC 1.14.11.53 created 2016]
 
 
EC 1.14.11.80     
Accepted name: methylcytosine dioxygenase
Reaction: (1) 5-methylcytosine in DNA + 2-oxoglutarate + O2 = 5-hydroxymethylcytosine in DNA + succinate + CO2
(2) 5-hydroxymethylcytosine in DNA + 2-oxoglutarate + O2 = 5-formylcytosine in DNA + succinate + CO2 + H2O
(3) 5-formylcytosine in DNA + 2-oxoglutarate + O2 = 5-carboxycytosine in DNA + succinate + CO2
Other name(s): TET1 (gene name); TET2 (gene name); TET3 (gene name)
Systematic name: 5-methylcytosine in DNA,2-oxoglutarate:oxygen oxidoreductase
Comments: The TET proteins mediate iterative oxidation of 5-methylcytosine in DNA (5mc) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are recognized by EC 3.2.2.29, thymine-DNA glycosylase (TDG), which excises them, leaving an apyrimidinic site. Coupled with the base excision repair (BER) pathway, these activities result in a cytosine demethylation pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ito, S., D'Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C. and Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 (2010) 1129–1133. [DOI] [PMID: 20639862]
2.  Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. and Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333 (2011) 1300–1303. [DOI] [PMID: 21778364]
3.  He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C.X., Zhang, K., He, C. and Xu, G.L. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 (2011) 1303–1307. [DOI] [PMID: 21817016]
4.  Maiti, A. and Drohat, A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286 (2011) 35334–35338. [DOI] [PMID: 21862836]
5.  Zhang, L., Lu, X., Lu, J., Liang, H., Dai, Q., Xu, G.L., Luo, C., Jiang, H. and He, C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 8 (2012) 328–330. [DOI] [PMID: 22327402]
[EC 1.14.11.80 created 2022]
 
 
EC 1.14.13.95      
Transferred entry: 7α-hydroxycholest-4-en-3-one 12α-hydroxylase. Now included with EC 1.14.14.139, 5β-cholestane-3α,7α-diol 12α-hydroxylase
[EC 1.14.13.95 created 2005, deleted 2015]
 
 
EC 1.14.13.111     
Accepted name: methanesulfonate monooxygenase (NADH)
Reaction: methanesulfonate + NADH + H+ + O2 = formaldehyde + NAD+ + sulfite + H2O
Glossary: methanesulfonate = CH3-SO3-
formaldehyde = H-CHO
Other name(s): mesylate monooxygenase; mesylate,reduced-FMN:oxygen oxidoreductase; MsmABC; methanesulfonic acid monooxygenase; MSA monooxygenase; MSAMO
Systematic name: methanesulfonate,NADH:oxygen oxidoreductase
Comments: A flavoprotein. Methanesulfonate is the simplest of the sulfonates and is a substrate for the growth of certain methylotrophic microorganisms. Compared with EC 1.14.14.5, alkanesulfonate monooxygenase, this enzyme has a restricted substrate range that includes only the short-chain aliphatic sulfonates (methanesulfonate to butanesulfonate) and excludes all larger molecules, such as arylsulfonates [1]. The enzyme from the bacterium Methylosulfonomonas methylovora is a multicomponent system comprising a hydroxylase, a reductase (MsmD) and a ferredoxin (MsmC). The hydroxylase has both large (MsmA) and small (MsmB) subunits, with each large subunit containing a Rieske-type [2Fe-2S] cluster. cf. EC 1.14.14.34, methanesulfonate monooxygenase (FMNH2).
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB
References:
1.  de Marco, P., Moradas-Ferreira, P., Higgins, T.P., McDonald, I., Kenna, E.M. and Murrell, J.C. Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 181 (1999) 2244–2251. [PMID: 10094704]
2.  Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P. and Murrell, J.C. Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142 (1996) 251–260. [DOI] [PMID: 8932698]
[EC 1.14.13.111 created 2009 as EC 1.14.14.6, transferred 2010 to EC 1.14.13.111, modified 2016]
 
 
EC 1.14.13.168     
Accepted name: indole-3-pyruvate monooxygenase
Reaction: (indol-3-yl)pyruvate + NADPH + H+ + O2 = (indol-3-yl)acetate + NADP+ + H2O + CO2
For diagram of indoleacetic acid biosynthesis, click here
Glossary: (indol-3-yl)pyruvate = 3-(1H-indol-3-yl)-2-oxopropanoate, (indol-3-yl)acetate = 2-(1H-indol-3-yl)acetate = indole-3-acetate
Other name(s): YUC2 (gene name); spi1 (gene name)
Systematic name: indole-3-pyruvate,NADPH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: This plant enzyme, along with EC 2.6.1.99 L-tryptophan—pyruvate aminotransferase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [DOI] [PMID: 22025724]
2.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [DOI] [PMID: 22155950]
[EC 1.14.13.168 created 2012]
 
 
EC 1.14.13.213      
Transferred entry: bursehernin 5-monooxygenase. Now EC 1.14.14.131, bursehernin 5-monooxygenase
[EC 1.14.13.213 created 2016, deleted 2018]
 
 
EC 1.14.13.240     
Accepted name: 2-polyprenylphenol 6-hydroxylase
Reaction: 2-(all-trans-polyprenyl)phenol + NADPH + H+ + O2 = 3-(all-trans-polyprenyl)benzene-1,2-diol + NADP+ + H2O
For diagram of ubiquinol biosynthesis, click here
Other name(s): ubiI (gene name); ubiM (gene name)
Systematic name: 2-(all-trans-polyprenyl)phenol,NADPH:oxygen oxidoreductase (6-hydroxylating)
Comments: Contains FAD. The enzyme from the bacterium Escherichia coli (UbiI) catalyses the first hydroxylation during the aerobic biosynthesis of ubiquinone. The enzyme from the bacterium Neisseria meningitidis (UbiM) can also catalyse the two additional hydroxylations that occur in the pathway (cf. EC 1.14.99.60, 3-demethoxyubiquinol 3-hydroxylase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hajj Chehade, M., Loiseau, L., Lombard, M., Pecqueur, L., Ismail, A., Smadja, M., Golinelli-Pimpaneau, B., Mellot-Draznieks, C., Hamelin, O., Aussel, L., Kieffer-Jaquinod, S., Labessan, N., Barras, F., Fontecave, M. and Pierrel, F. ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J. Biol. Chem. 288 (2013) 20085–20092. [PMID: 23709220]
2.  Pelosi, L., Ducluzeau, A.L., Loiseau, L., Barras, F., Schneider, D., Junier, I. and Pierrel, F. Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions. mSystems 1 (2016) . [PMID: 27822549]
[EC 1.14.13.240 created 2018]
 
 
EC 1.14.13.242     
Accepted name: 3-hydroxy-2-methylpyridine-5-carboxylate monooxygenase
Reaction: 3-hydroxy-2-methylpyridine-5-carboxylate + NAD(P)H + H+ + O2 = 2-(acetamidomethylidene)succinate + NAD(P)+
For diagram of pyridoxal catabolism, click here
Other name(s): MHPCO; 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (decyclizing); methylhydroxypyridinecarboxylate oxidase (misleading); 2-methyl-3-hydroxypyridine 5-carboxylic acid dioxygenase (incorrect); methylhydroxypyridine carboxylate dioxygenase (incorrect); 3-hydroxy-3-methylpyridinecarboxylate dioxygenase [incorrect]; 3-hydroxy-2-methylpyridinecarboxylate dioxygenase (incorrect)
Systematic name: 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (ring-opening)
Comments: Contains FAD. The enzyme, characterized from the bacteria Pseudomonas sp. MA-1 and Mesorhizobium loti, participates in the degradation of pyridoxine (vitamin B6). Although the enzyme was initially thought to be a dioxygenase, oxygen-tracer experiments have shown that it is a monooxygenase, incorporating only one oxygen atom from molecular oxygen. The second oxygen atom that is incorporated into the product originates from a water molecule, which is regenerated during the reaction and thus does not show up in the reaction equation.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-69-2
References:
1.  Sparrow, L.G., Ho, P.P.K., Sundaram, T.K., Zach, D., Nyns, E.J. and Snell, E.E. The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring. J. Biol. Chem. 244 (1969) 2590–2600. [PMID: 4306031]
2.  Chaiyen, P., Ballou, D.P. and Massey, V. Gene cloning, sequence analysis, and expression of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Proc. Natl. Acad. Sci. USA 94 (1997) 7233–7238. [PMID: 9207074]
3.  Oonanant, W., Sucharitakul, J., Yuvaniyama, J. and Chaiyen, P. Crystallization and preliminary X-ray crystallographic analysis of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase from Pseudomonas sp. MA-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 312–314. [PMID: 16511028]
4.  Yuan, B., Yokochi, N., Yoshikane, Y., Ohnishi, K. and Yagi, T. Molecular cloning, identification and characterization of 2-methyl-3-hydroxypyridine-5-carboxylic-acid-dioxygenase-coding gene from the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. J. Biosci. Bioeng. 102 (2006) 504–510. [PMID: 17270714]
5.  McCulloch, K.M., Mukherjee, T., Begley, T.P. and Ealick, S.E. Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications. Biochemistry 48 (2009) 4139–4149. [DOI] [PMID: 19317437]
6.  Tian, B., Tu, Y., Strid, A. and Eriksson, L.A. Hydroxylation and ring-opening mechanism of an unusual flavoprotein monooxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: a theoretical study. Chemistry 16 (2010) 2557–2566. [DOI] [PMID: 20066695]
7.  Tian, B., Strid, A. and Eriksson, L.A. Catalytic roles of active-site residues in 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: an ONIOM/DFT study. J. Phys. Chem. B 115 (2011) 1918–1926. [DOI] [PMID: 21291225]
[EC 1.14.13.242 created 2018 (EC 1.14.12.4 created 1972, incorporated 2018)]
 
 
EC 1.14.14.19     
Accepted name: steroid 17α-monooxygenase
Reaction: a C21-steroid + [reduced NADPH—hemoprotein reductase] + O2 = a 17α-hydroxy-C21-steroid + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): steroid 17α-hydroxylase; cytochrome P-450 17α; cytochrome P-450 (P-450 17α,lyase); 17α-hydroxylase-C17,20 lyase; CYP17; CYP17A1 (gene name)
Systematic name: steroid,NADPH—hemoprotein reductase:oxygen oxidoreductase (17α-hydroxylating)
Comments: Requires NADPH and EC 1.6.2.4, NADPH—hemoprotein reductase. A microsomal hemeprotein that catalyses two independent reactions at the same active site - the 17α-hydroxylation of pregnenolone and progesterone, which is part of glucocorticoid hormones biosynthesis, and the conversion of the 17α-hydroxylated products via a 17,20-lyase reaction to form androstenedione and dehydroepiandrosterone, leading to sex hormone biosynthesis (EC 1.14.14.32, 17α-hydroxyprogesterone deacetylase). The ratio of the 17α-hydroxylase and 17,20-lyase activities is an important factor in determining the directions of steroid hormone biosynthesis towards biosynthesis of glucocorticoid or sex hormones.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-67-8
References:
1.  Lynn, W.S. and Brown, R.H. The conversion of progesterone to androgens by testes. J. Biol. Chem. 232 (1958) 1015–1030. [PMID: 13549484]
2.  Yoshida, K.-I., Oshima, H. and Troen, P. Studies of the human testis. XIII. Properties of nicotinamide adenine dinucleotide (reduced form)-linked 17α-hydroxylation. J. Clin. Endocrinol. Metab. 50 (1980) 895–899. [DOI] [PMID: 6966286]
3.  Gilep, A.A., Estabrook, R.W. and Usanov, S.A. Molecular cloning and heterologous expression in E. coli of cytochrome P45017α. Comparison of structural and functional properties of substrate-specific cytochromes P450 from different species. Biochemistry (Mosc.) 68 (2003) 86–98. [PMID: 12693981]
4.  Kolar, N.W., Swart, A.C., Mason, J.I. and Swart, P. Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris. J. Biotechnol. 129 (2007) 635–644. [DOI] [PMID: 17386955]
5.  Pechurskaya, T.A., Lukashevich, O.P., Gilep, A.A. and Usanov, S.A. Engineering, expression, and purification of "soluble" human cytochrome P45017α and its functional characterization. Biochemistry (Mosc.) 73 (2008) 806–811. [PMID: 18707589]
[EC 1.14.14.19 created 1961 as EC 1.99.1.9, transferred 1965 to EC 1.14.1.7, transferred 1972 to EC 1.14.99.9, modified 2013, transferred 2015 to EC 1.14.14.19]
 
 
EC 1.14.14.20     
Accepted name: phenol 2-monooxygenase (FADH2)
Reaction: phenol + FADH2 + O2 = catechol + FAD + H2O
Other name(s): pheA1 (gene name)
Systematic name: phenol,FADH2:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme catalyses the ortho-hydroxylation of simple phenols into the corresponding catechols. It accepts 4-methylphenol, 4-chlorophenol, and 4-fluorophenol [1] as well as 4-nitrophenol, 3-nitrophenol, and resorcinol [3]. The enzyme is part of a two-component system that also includes an NADH-dependent flavin reductase. It is strictly dependent on FADH2 and does not accept FMNH2 [1,3]. cf. EC 1.14.13.7, phenol 2-monooxygenase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kirchner, U., Westphal, A.H., Muller, R. and van Berkel, W.J. Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J. Biol. Chem. 278 (2003) 47545–47553. [DOI] [PMID: 12968028]
2.  van den Heuvel, R.H., Westphal, A.H., Heck, A.J., Walsh, M.A., Rovida, S., van Berkel, W.J. and Mattevi, A. Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action. J. Biol. Chem. 279 (2004) 12860–12867. [DOI] [PMID: 14703520]
3.  Saa, L., Jaureguibeitia, A., Largo, E., Llama, M.J. and Serra, J.L. Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl. Microbiol. Biotechnol. 86 (2010) 201–211. [DOI] [PMID: 19787347]
[EC 1.14.14.20 created 2016]
 
 
EC 1.14.14.54     
Accepted name: phenylacetate 2-hydroxylase
Reaction: phenylacetate + [reduced NADPH—hemoprotein reductase] + O2 = (2-hydroxyphenyl)acetate + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP504; phaA (gene name)
Systematic name: phenylacetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in Aspergillus nidulans, is involved in the degradation of phenylacetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mingot, J.M., Penalva, M.A. and Fernandez-Canon, J.M. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J. Biol. Chem. 274 (1999) 14545–14550. [DOI] [PMID: 10329644]
2.  Rodriguez-Saiz, M., Barredo, J.L., Moreno, M.A., Fernandez-Canon, J.M., Penalva, M.A. and Diez, B. Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J. Bacteriol. 183 (2001) 5465–5471. [DOI] [PMID: 11544206]
[EC 1.14.14.54 created 2017]
 
 
EC 1.14.14.131     
Accepted name: bursehernin 5′-monooxygenase
Reaction: (–)-bursehernin + [reduced NADPH—hemoprotein reductase] + O2 = (–)-5′-demethylyatein + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of podophyllotoxin biosynthesis, click here
Glossary: (–)-bursehernin = (3R,4R)-4-(2H-1,3-benzodioxol-5-ylmethyl)-3-[(3,4-dimethoxyphenyl)methyl]oxolan-2-one
(–)-5′-demethylyatein = (3R,4R)-4-(2H-1,3-benzodioxol-5-ylmethyl)-3-[(3-hydroxy-4,5-dimethoxyphenyl)methyl]oxolan-2-one
(–)-yaetin = (3R,4R)-4-(2H-1,3-benzodioxol-5-ylmethyl)-3-[(3,4,5-trimethoxyphenyl)methyl]oxolan-2-one
Other name(s): CYP71CU1 (gene name); bursehernin 5′-hydroxylase
Systematic name: (–)-bursehernin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (5′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein characterized from the plant Sinopodophyllum hexandrum. The enzyme is involved in the biosynthetic pathway of podophyllotoxin, a non-alkaloid toxin lignan whose derivatives are important anticancer drugs.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lau, W. and Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349 (2015) 1224–1228. [DOI] [PMID: 26359402]
[EC 1.14.14.131 created 2016 as EC 1.14.13.213, transferred 2018 to EC 1.14.14.131]
 
 
EC 1.14.14.177     
Accepted name: ultra-long-chain fatty acid ω-hydroxylase
Reaction: an ultra-long-chain fatty acid + [reduced NADPH—hemoprotein reductase] + O2 = an ultra-long-chain ω-hydroxy fatty acid + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP4F22 (gene name)
Systematic name: ultra-long-chain fatty acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-hydroxylating)
Comments: The enzyme, which is expressed in the epidermis of mammals, catalyses the ω-hydroxylation of ultra-long-chain fatty acids (C28 to C36). The products are incorporated into acylceramides, epidermis-specific ceramide species that are very important for skin barrier formation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ohno, Y., Nakamichi, S., Ohkuni, A., Kamiyama, N., Naoe, A., Tsujimura, H., Yokose, U., Sugiura, K., Ishikawa, J., Akiyama, M. and Kihara, A. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl. Acad. Sci. USA 112 (2015) 7707–7712. [DOI] [PMID: 26056268]
[EC 1.14.14.177 created 2021]
 
 
EC 1.14.15.6     
Accepted name: cholesterol monooxygenase (side-chain-cleaving)
Reaction: cholesterol + 6 reduced adrenodoxin + 3 O2 + 6 H+ = pregnenolone + 4-methylpentanal + 6 oxidized adrenodoxin + 4 H2O (overall reaction)
(1a) cholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = (22R)-22-hydroxycholesterol + 2 oxidized adrenodoxin + H2O
(1b) (22R)-22-hydroxycholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = (20R,22R)-20,22-dihydroxycholesterol + 2 oxidized adrenodoxin + H2O
(1c) (20R,22R)-20,22-dihydroxy-cholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = pregnenolone + 4-methylpentanal + 2 oxidized adrenodoxin + 2 H2O
Other name(s): cholesterol desmolase; cytochrome P-450scc; C27-side chain cleavage enzyme; cholesterol 20-22-desmolase; cholesterol C20-22 desmolase; cholesterol side-chain cleavage enzyme; cholesterol side-chain-cleaving enzyme; steroid 20-22 desmolase; steroid 20-22-lyase; CYP11A1 (gene name)
Systematic name: cholesterol,reduced-adrenodoxin:oxygen oxidoreductase (side-chain-cleaving)
Comments: A heme-thiolate protein (cytochrome P-450). The reaction proceeds in three stages, with two hydroxylations at C-22 and C-20 preceding scission of the side-chain between carbons 20 and 22. The initial source of the electrons is NADPH, which transfers the electrons to the adrenodoxin via EC 1.18.1.6, adrenodoxin-NADP+ reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37292-81-2, 440354-98-3
References:
1.  Burstein, S., Middleditch, B.S. and Gut, M. Mass spectrometric study of the enzymatic conversion of cholesterol to (22R)-22-hydroxycholesterol, (20R,22R)-20,22-dihydroxycholesterol, and pregnenolone, and of (22R)-22-hydroxycholesterol to the lgycol and pregnenolone in bovine adrenocortical preparations. Mode of oxygen incorporation. J. Biol. Chem. 250 (1975) 9028–9037. [PMID: 1238395]
2.  Hanukoglu, I., Spitsberg, V., Bumpus, J.A., Dus, K.M. and Jefcoate, C.R. Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover. J. Biol. Chem. 256 (1981) 4321–4328. [PMID: 7217084]
3.  Hanukoglu, I. and Hanukoglu, Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur. J. Biochem. 157 (1986) 27–31. [DOI] [PMID: 3011431]
4.  Strushkevich, N., MacKenzie, F., Cherkesova, T., Grabovec, I., Usanov, S. and Park, H.W. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc. Natl. Acad. Sci. USA 108 (2011) 10139–10143. [DOI] [PMID: 21636783]
5.  Mast, N., Annalora, A.J., Lodowski, D.T., Palczewski, K., Stout, C.D. and Pikuleva, I.A. Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J. Biol. Chem. 286 (2011) 5607–5613. [DOI] [PMID: 21159775]
[EC 1.14.15.6 created 1983, modified 2013, modified 2014]
 
 
EC 1.14.16.2     
Accepted name: tyrosine 3-monooxygenase
Reaction: L-tyrosine + a 5,6,7,8-tetrahydropteridine + O2 = L-dopa + a 4a-hydroxy-5,6,7,8-tetrahydropteridine
For diagram of dopa biosynthesis, click here and for diagram of biopterin biosynthesis, click here
Glossary: L-dopa = 3,4-dihydroxy-L-phenylalanine
Other name(s): L-tyrosine hydroxylase; tyrosine 3-hydroxylase; tyrosine hydroxylase
Systematic name: L-tyrosine,tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating)
Comments: The active centre contains mononuclear iron(II). The enzyme is activated by phosphorylation, catalysed by EC 2.7.11.27, [acetyl-CoA carboxylase] kinase. The 4a-hydroxytetrahydropteridine formed can dehydrate to 6,7-dihydropteridine, both spontaneously and by the action of EC 4.2.1.96, 4a-hydroxytetrahydrobiopterin dehydratase. The 6,7-dihydropteridine must be enzymically reduced back to tetrahydropteridine, by EC 1.5.1.34, 6,7-dihydropteridine reductase, before it slowly rearranges into the more stable but inactive compound 7,8-dihydropteridine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9036-22-0
References:
1.  El Mestikawy, S., Glowinski, J. and Hamon, M. Tyrosine hydroxylase activation in depolarized dopaminergic terminals -involvement of Ca2+-dependent phosphorylation. Nature (Lond.) 302 (1983) 830–832. [PMID: 6133218]
2.  Ikeda, M., Levitt, M. and Udenfriend, S. Phenylalanine as substrate and inhibitor of tyrosine hydroxylase. Arch. Biochem. Biophys. 120 (1967) 420–427. [DOI] [PMID: 6033458]
3.  Nagatsu, T., Levitt, M. and Udenfriend, S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 239 (1964) 2910–2917. [PMID: 14216443]
4.  Pigeon, D., Drissi-Daoudi, R., Gros, F. and Thibault, J. Copurification of tyrosine hydroxylase from rat pheochromocytoma by protein kinase. C. R. Acad. Sci. III 302 (1986) 435–438. [PMID: 2872947]
5.  Goodwill, K.E., Sabatier, C., Marks, C., Raag, R., Fitzpatrick, P.F. and Stevens, R.C. Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases. Nat. Struct. Biol. 4 (1997) 578–585. [PMID: 9228951]
[EC 1.14.16.2 created 1972, modified 2003, modified 2019]
 
 
EC 1.14.16.4     
Accepted name: tryptophan 5-monooxygenase
Reaction: L-tryptophan + a 5,6,7,8-tetrahydropteridine + O2 = 5-hydroxy-L-tryptophan + a 4a-hydroxy-5,6,7,8-tetrahydropteridine
For diagram of biopterin biosynthesis, click here
Other name(s): L-tryptophan hydroxylase; indoleacetic acid-5-hydroxylase; tryptophan 5-hydroxylase; tryptophan hydroxylase
Systematic name: L-tryptophan,tetrahydropteridine:oxygen oxidoreductase (5-hydroxylating)
Comments: The active centre contains mononuclear iron(II). The enzyme is activated by phosphorylation, catalysed by a Ca2+-activated protein kinase. The 4a-hydroxytetrahydropteridine formed can dehydrate to 6,7-dihydropteridine, both spontaneously and by the action of EC 4.2.1.96, 4a-hydroxytetrahydrobiopterin dehydratase. The 6,7-dihydropteridine must be enzymically reduced back to tetrahydropteridine, by EC 1.5.1.34, 6,7-dihydropteridine reductase, before it slowly rearranges into the more stable but inactive compound 7,8-dihydropteridine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-21-2
References:
1.  Friedman, P.A., Kappelman, A.H. and Kaufman, S. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J. Biol. Chem. 247 (1972) 4165–4173. [PMID: 4402511]
2.  Hamon, M., Bourgoin, S., Artaud, F. and Glowinski, J. The role of intraneuronal 5-HT and of tryptophan hydroxylase activation in the control of 5-HT synthesis in rat brain slices incubated in K+-enriched medium. J. Neurochem. 33 (1979) 1031–1042. [DOI] [PMID: 315449]
3.  Ichiyama, A., Nakamura, S., Nishizuka, Y. and Hayaishi, O. Enzymic studies on the biosynthesis of serotonin in mammalian brain. J. Biol. Chem. 245 (1970) 1699–1709. [PMID: 5309585]
4.  Jequier, E., Robinson, B.S., Lovenberg, W. and Sjoerdsma, A. Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem. Pharmacol. 18 (1969) 1071–1081. [DOI] [PMID: 5789774]
5.  Wang, L., Erlandsen, H., Haavik, J., Knappskog, P.M. and Stevens, R.C. Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. Biochemistry 41 (2002) 12569–12574. [DOI] [PMID: 12379098]
[EC 1.14.16.4 created 1972, modified 2003, modified 2019]
 
 
EC 1.14.17.1     
Accepted name: dopamine β-monooxygenase
Reaction: dopamine + 2 ascorbate + O2 = noradrenaline + 2 monodehydroascorbate + H2O
For diagram of dopa biosynthesis, click here
Glossary: dopamine = 4-(2-aminoethyl)benzene-1,2-diol
Other name(s): dopamine β-hydroxylase; MDBH (membrane-associated dopamine β-monooxygenase); SDBH (soluble dopamine β-monooxygenase); dopamine-B-hydroxylase; 3,4-dihydroxyphenethylamine β-oxidase; 4-(2-aminoethyl)pyrocatechol β-oxidase; dopa β-hydroxylase; dopamine β-oxidase; dopamine hydroxylase; phenylamine β-hydroxylase; (3,4-dihydroxyphenethylamine)β-mono-oxygenase; DβM (gene name)
Systematic name: dopamine,ascorbate:oxygen oxidoreductase (β-hydroxylating)
Comments: A copper protein. The enzyme, found in animals, binds two copper ions with distinct roles during catalysis. Stimulated by fumarate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-38-1
References:
1.  Levin, E.Y., Levenberg, B. and Kaufman, S. The enzymatic conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J. Biol. Chem. 235 (1960) 2080–2086. [PMID: 14416204]
2.  Friedman, S. and Kaufman, S. 3,4-Dihydroxyphenylethylamine β-hydroxylase. Physical properties, copper content, and role of copper in the catalytic activity. J. Biol. Chem. 240 (1965) 4763–4773. [PMID: 5846992]
3.  Skotland, T. and Ljones, T. Direct spectrophotometric detection of ascorbate free radical formed by dopamine β-monooxygenase and by ascorbate oxidase. Biochim. Biophys. Acta 630 (1980) 30–35. [PMID: 7388045]
4.  Evans, J.P., Ahn, K. and Klinman, J.P. Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase. Implications for the reactive oxygen species. J. Biol. Chem. 278 (2003) 49691–49698. [PMID: 12966104]
[EC 1.14.17.1 created 1965 as EC 1.14.2.1, transferred 1972 to EC 1.14.17.1, modified 2020]
 
 
EC 1.14.18.8      
Transferred entry: 7α-hydroxycholest-4-en-3-one 12α-hydroxylase. Now included with EC 1.14.14.139, 5β-cholestane-3α,7α-diol 12α-hydroxylase
[EC 1.14.18.8 created 2005 as EC 1.14.13.95, transferred 2015 to EC 1.14.18.8, deleted 2020]
 
 
EC 1.14.18.9     
Accepted name: 4α-methylsterol monooxygenase
Reaction: 4,4-dimethyl-5α-cholest-7-en-3β-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + 6 ferricytochrome b5 + 4 H2O (overall reaction)
(1a) 4,4-dimethyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4α-hydroxymethyl-4β-methyl-5α-cholest-7-en-3β-ol + 2 ferricytochrome b5 + H2O
(1b) 4α-hydroxymethyl-4β-methyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferricytochrome b5 + 2 H2O
(1c) 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferrocytochrome b5 + O2 + 2 H+ = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + 2 ferricytochrome b5 + H2O
For diagram of sterol ring A modification, click here
Other name(s): methylsterol hydroxylase (ambiguous); 4-methylsterol oxidase (ambiguous); 4,4-dimethyl-5α-cholest-7-en-3β-ol,hydrogen-donor:oxygen oxidoreductase (hydroxylating) (ambiguous); methylsterol monooxygenase (ambiguous); ERG25 (gene name); MSMO1 (gene name); 4,4-dimethyl-5α-cholest-7-en-3β-ol,ferrocytochrome-b5:oxygen oxidoreductase (hydroxylating) (ambiguous)
Systematic name: 4,4-dimethyl-5α-cholest-7-en-3β-ol,ferrocytochrome-b5:oxygen oxidoreductase (C4α-methyl-hydroxylating)
Comments: This enzyme is found in fungi and animals and catalyses a step in the biosynthesis of important sterol molecules such as ergosterol and cholesterol, respectively. The enzyme acts on the 4α-methyl group. Subsequent decarboxylation by EC 1.1.1.170, 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating), occurs concomitantly with epimerization of the remaining 4β-methyl into the 4α position, thus making it a suitable substrate for a second round of catalysis. cf. EC 1.14.13.246, 4β-methylsterol monooxygenase; EC 1.14.18.10, plant 4,4-dimethylsterol C-4α-methyl-monooxygenase; and EC 1.14.18.11, plant 4α-monomethylsterol monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-80-7
References:
1.  Miller, W.L., Kalafer, M.E., Gaylor, J.L. and Delwicke, C.V. Investigation of the component reactions of oxidative sterol demethylation. Study of the aerobic and anaerobic processes. Biochemistry 6 (1967) 2673–2678. [PMID: 4383278]
2.  Gaylor, J.L. and Mason, H.S. Investigation of the component reactions of oxidative sterol demethylation. Evidence against participation of cytochrome P-450. J. Biol. Chem. 243 (1968) 4966–4972. [PMID: 4234469]
3.  Sharpless, K.B., Snyder, T.E., Spencer, T.A., Maheshwari, K.K. and Nelson, J.A. Biological demethylation of 4,4-dimethyl sterols, Evidence for enzymic epimerization of the 4β-methyl group prior to its oxidative removal. J. Am. Chem. Soc. 91 (1969) 3394–3396. [PMID: 5791927]
4.  Brady, D.R., Crowder, R.D. and Hayes, W.J. Mixed function oxidases in sterol metabolism. Source of reducing equivalents. J. Biol. Chem. 255 (1980) 10624–10629. [PMID: 7430141]
5.  Fukushima, H., Grinstead, G.F. and Gaylor, J.L. Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase. J. Biol. Chem. 256 (1981) 4822–4826. [PMID: 7228857]
6.  Kawata, S., Trzaskos, J.M. and Gaylor, J.L. Affinity chromatography of microsomal enzymes on immobilized detergent-solubilized cytochrome b5. J. Biol. Chem. 261 (1986) 3790–3799. [PMID: 3949790]
[EC 1.14.18.9 created 1972 as EC 1.14.99.16, transferred 2002 to EC 1.14.13.72, transferred 2017 to EC 1.14.18.9, modified 2019]
 
 
EC 1.14.19.17     
Accepted name: sphingolipid 4-desaturase
Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 ferricytochrome b5 + 2 H2O
Glossary: a dihydroceramide = an N-acylsphinganine
Other name(s): dehydroceramide desaturase
Systematic name: dihydroceramide,ferrocytochrome b5:oxygen oxidoreductase (4,5-dehydrogenating)
Comments: The enzyme, which has been characterized from plants, fungi, and mammals, generates a trans double bond at position 4 of sphinganine bases in sphingolipids [1]. The preferred substrate is dihydroceramide, but the enzyme is also active with dihydroglucosylceramide [2]. Unlike EC 1.14.19.29, sphingolipid 8-desaturase, this enzyme does not contain an integral cytochrome b5 domain [4] and requires an external cytochrome b5 [3]. The product serves as an important signalling molecules in mammals and is required for spermatide differentiation [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Stoffel, W., Assmann, G. and Bister, K. Metabolism of sphingosine bases. XVII. Stereospecificities in the introduction of the 4t-double bond into sphinganine yielding 4t-sphingenine (sphingosine). Hoppe-Seylers Z. Physiol. Chem. 352 (1971) 1531–1544. [PMID: 5140816]
2.  Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E. and Merrill, A.H., Jr. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272 (1997) 22432–22437. [DOI] [PMID: 9312549]
3.  Causeret, C., Geeraert, L., Van der Hoeven, G., Mannaerts, G.P. and Van Veldhoven, P.P. Further characterization of rat dihydroceramide desaturase: tissue distribution, subcellular localization, and substrate specificity. Lipids 35 (2000) 1117–1125. [DOI] [PMID: 11104018]
4.  Ternes, P., Franke, S., Zähringer, U., Sperling, P. and Heinz, E. Identification and characterization of a sphingolipid Δ4-desaturase family. J. Biol. Chem. 277 (2002) 25512–25518. [DOI] [PMID: 11937514]
5.  Michaelson, L.V., Zäuner, S., Markham, J.E., Haslam, R.P., Desikan, R., Mugford, S., Albrecht, S., Warnecke, D., Sperling, P., Heinz, E. and Napier, J.A. Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol. 149 (2009) 487–498. [DOI] [PMID: 18978071]
[EC 1.14.19.17 created 2015]
 
 
EC 1.14.19.29     
Accepted name: sphingolipid 8-(E/Z)-desaturase
Reaction: (1) a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8E)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
(2) a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8Z)-4-hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
Glossary: a (4R)-4-hydroxysphinganine-ceramide = a phytoceramide
(4R)-4-hydroxysphinganine = phytosphinganine
Other name(s): 8-sphingolipid desaturase (ambiguous); 8 fatty acid desaturase (ambiguous); DELTA8-sphingolipid desaturase (ambiguous)
Systematic name: (4R)-4-hydroxysphinganine ceramide,ferrocytochrome b5:oxygen oxidoreductase (8,9 cis/trans-dehydrogenating)
Comments: The enzymes from higher plants convert sphinganine, 4E-sphing-4-enine and phytosphinganine into E/Z-mixtures of Δ8-desaturated products displaying different proportions of geometrical isomers depending on plant species. The nature of the actual desaturase substrate has not yet been studied experimentally. The enzymes contain an N-terminal cytochrome b5 domain that acts as the direct electron donor to the active site of the desaturase [1]. The homologous enzymes from some yeasts and diatoms, EC 1.14.19.18, sphingolipid 8-(E)-desaturase, act on sphing-4-enine ceramides and produce only the trans isomer.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sperling, P., Zähringer, U. and Heinz, E. A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J. Biol. Chem. 273 (1998) 28590–28596. [DOI] [PMID: 9786850]
2.  Sperling, P., Blume, A., Zähringer, U., and Heinz, E. Further characterization of Δ8-sphingolipid desaturases from higher plants. Biochem Soc Trans. 28 (2000) 638–641. [PMID: 11171153]
3.  Sperling, P., Libisch, B., Zähringer, U., Napier, J.A. and Heinz, E. Functional identification of a Δ8-sphingolipid desaturase from Borago officinalis. Arch. Biochem. Biophys. 388 (2001) 293–298. [DOI] [PMID: 11368168]
4.  Beckmann, C., Rattke, J., Oldham, N.J., Sperling, P., Heinz, E. and Boland, W. Characterization of a Δ8-sphingolipid desaturase from higher plants: a stereochemical and mechanistic study on the origin of E,Z isomers. Angew. Chem. Int. Ed. Engl. 41 (2002) 2298–2300. [DOI] [PMID: 12203571]
5.  Ryan, P.R., Liu, Q., Sperling, P., Dong, B., Franke, S. and Delhaize, E. A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol. 144 (2007) 1968–1977. [DOI] [PMID: 17600137]
6.  Chen, M., Markham, J.E. and Cahoon, E.B. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J. 69 (2012) 769–781. [DOI] [PMID: 22023480]
[EC 1.14.19.29 created 2015]
 
 
EC 1.14.19.33     
Accepted name: Δ12 acyl-lipid conjugase (11E,13E-forming)
Reaction: (1) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-eleostearoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a γ-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-parinaroyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: α-eleostearate = (9Z,11E,13E)-octadeca-9,11,13-trienoate
α-parinarate = (9Z,11E,13E,15Z)-octadeca-9,11,13,15-tetraenoate
γ-linolenic acid = (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid
linoleic acid = (9Z,12Z)-octadeca-9,12-dienoic acid
Other name(s): fatty acid Δ12-conjugase (ambiguous); FADX (gene name)
Systematic name: Δ12 acyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13E-forming)
Comments: The enzyme, characterized from the plants Impatiens balsamina, Momordica charantia (bitter gourd) and Vernicia fordii (tung tree), converts a single cis double bond at carbon 12 to two conjugated trans bonds at positions 11 and 13. The enzyme from Vernicia fordii can also act as a 12(E) desaturase when acting on the monounsaturated fatty acids oleate and palmitoleate. cf. EC 1.14.19.16, linoleoyl-lipid Δ12 conjugase (11E,13Z-forming).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E. and Kinney, A.J. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl. Acad. Sci. USA 96 (1999) 12935–12940. [DOI] [PMID: 10536026]
2.  Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130 (2002) 2027–2038. [DOI] [PMID: 12481086]
[EC 1.14.19.33 created 2015]
 
 
EC 1.14.19.34     
Accepted name: acyl-lipid (9+3)-(E)-desaturase
Reaction: (1) an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-octadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a palmitoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-hexadeca-9,12-dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Other name(s): acyl-lipid 12-(E)-desaturase; DsFAD2-1; FADX
Systematic name: Δ9 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (12,13 trans-dehydrogenating)
Comments: The enzymes from the plants Dimorphotheca sinuata (African daisy) and Vernicia fordii (tung oil tree) insert a trans double bond in position C-12 of oleate and palmitoleate incorporated into glycerolipids. The enzyme introduces the new double bond at a position three carbons away from an existing double bond at position 9, towards the methyl end of the fatty acid. The enzyme from tung oil tree also possesses the activity of EC 1.14.19.33, Δ12 acyl-lipid conjugase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol. 130 (2002) 2027–2038. [DOI] [PMID: 12481086]
2.  Cahoon, E.B. and Kinney, A.J. Dimorphecolic acid is synthesized by the coordinate activities of two divergent Δ12-oleic acid desaturases. J. Biol. Chem. 279 (2004) 12495–12502. [DOI] [PMID: 14718523]
[EC 1.14.19.34 created 2015]
 
 
EC 1.14.19.49     
Accepted name: tetracycline 7-halogenase
Reaction: tetracycline + FADH2 + chloride + O2 + H+ = 7-chlorotetracycline + FAD + 2 H2O
For diagram of tetracycline biosynthesis, click here
Other name(s): ctcP (gene name)
Systematic name: tetracycline:FADH2 oxidoreductase (7-halogenating)
Comments: The enzyme, characterized from the bacterium Streptomyces aureofaciens, is a member of the flavin-dependent halogenase family. The enzyme forms a lysine chloramine intermediate on an internal lysine residue before transferring the chlorine to the substrate. It is stereo-selective for the 4S (natural) isomer of tetracycline. FADH2 is provided by a dedicated EC 1.5.1.36, flavin reductase (NADH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Dairi, T., Nakano, T., Aisaka, K., Katsumata, R. and Hasegawa, M. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci. Biotechnol. Biochem. 59 (1995) 1099–1106. [DOI] [PMID: 7612997]
2.  Zhu, T., Cheng, X., Liu, Y., Deng, Z. and You, D. Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab. Eng. 19 (2013) 69–78. [DOI] [PMID: 23800859]
[EC 1.14.19.49 created 2016]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald