The Enzyme Database

Your query returned 7 entries.    printer_iconPrintable version

EC 1.4.1.25     
Accepted name: L-arginine dehydrogenase
Reaction: L-arginine + H2O + NAD(P)+ = 5-guanidino-2-oxopentanoate + NH3 + NAD(P)H + H+
Other name(s): dauB (gene name); anabolic L-arginine dehydrogenase
Systematic name: L-arginine:NAD(P)+ oxidoreductase (deaminating)
Comments: The enzyme, which has been isolated from the bacterium Pseudomonas aeruginosa PAO1, forms with EC 1.4.99.6, D-arginine dehydrogenase, a two-enzyme complex involved in the racemization of D- and L-arginine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, C. and Lu, C.D. Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc. Natl. Acad. Sci. USA 106 (2009) 906–911. [DOI] [PMID: 19139398]
[EC 1.4.1.25 created 2017]
 
 
EC 1.4.3.25     
Accepted name: L-arginine oxidase
Reaction: L-arginine + H2O + O2 = 5-guanidino-2-oxopentanoate + NH3 + H2O2
Systematic name: L-arginine:oxygen oxidoreductase (deaminating)
Comments: Contains FAD. The enzyme from cyanobacteria can also act on other basic amino acids with lower activity. The enzyme from the bacterium Pseudomonas sp. TPU 7192 is highly specific.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Miller, D.L. and Rodwell, V.W. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism. J. Biol. Chem. 246 (1971) 5053–5058. [PMID: 5570437]
2.  Pistorius, E.K. and Voss, H. Some properties of a basic L-amino-acid oxidase from Anacystis nidulans. Biochim. Biophys. Acta 611 (1980) 227–240. [DOI] [PMID: 6766743]
3.  Gau, A.E., Heindl, A., Nodop, A., Kahmann, U. and Pistorius, E.K. L-Amino acid oxidases with specificity for basic L-amino acids in cyanobacteria. Z. Naturforsch. C 62 (2007) 273–284. [PMID: 17542496]
4.  Matsui, D., Terai, A. and Asano, Y. L-Arginine oxidase from Pseudomonas sp. TPU 7192: Characterization, gene cloning, heterologous expression, and application to L-arginine determination. Enzyme Microb. Technol. 82 (2016) 151–157. [DOI] [PMID: 26672462]
[EC 1.4.3.25 created 2017]
 
 
EC 1.4.99.6     
Accepted name: D-arginine dehydrogenase
Reaction: D-arginine + acceptor + H2O = 5-guanidino-2-oxopentanoate + NH3 + reduced acceptor (overall reaction)
(1a) D-arginine + acceptor = iminoarginine + reduced acceptor
(1b) iminoarginine + H2O = 5-guanidino-2-oxopentanoate + NH3 (spontaneous)
Glossary: 5-guanidino-2-oxopentanoate = 2-ketoarginine
iminoarginine = 5-carbamimidamido-2-iminopentanoate
Other name(s): D-amino-acid:(acceptor) oxidoreductase (deaminating); D-amino-acid dehydrogenase; D-amino-acid:acceptor oxidoreductase (deaminating)
Systematic name: D-arginine:acceptor oxidoreductase (deaminating)
Comments: Contains a non-covalent FAD cofactor. The enzyme, which has been isolated from the bacterium Pseudomonas aeruginosa PAO1, forms with EC 1.4.1.25, L-arginine dehydrogenase, a two-enzyme complex involved in the racemization of D- and L-arginine. The enzyme has a broad substrate range and can act on most D-amino acids with the exception of D-glutamate and D-aspartate. However, activity is maximal with D-arginine and D-lysine. Not active on glycine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-44-0
References:
1.  Tsukada, K. D-Amino acid dehydrogenases of Pseudomonas fluorescens. J. Biol. Chem. 241 (1966) 4522–4528. [PMID: 5925166]
2.  Li, C. and Lu, C.D. Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc. Natl. Acad. Sci. USA 106 (2009) 906–911. [DOI] [PMID: 19139398]
3.  Fu, G., Yuan, H., Li, C., Lu, C.D., Gadda, G. and Weber, I.T. Conformational changes and substrate recognition in Pseudomonas aeruginosa D-arginine dehydrogenase. Biochemistry 49 (2010) 8535–8545. [DOI] [PMID: 20809650]
4.  Yuan, H., Fu, G., Brooks, P.T., Weber, I. and Gadda, G. Steady-state kinetic mechanism and reductive half-reaction of D-arginine dehydrogenase from Pseudomonas aeruginosa. Biochemistry 49 (2010) 9542–9550. [DOI] [PMID: 20932054]
5.  Fu, G., Yuan, H., Wang, S., Gadda, G. and Weber, I.T. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase. Biochemistry 50 (2011) 6292–6294. [DOI] [PMID: 21707047]
6.  Yuan, H., Xin, Y., Hamelberg, D. and Gadda, G. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects. J. Am. Chem. Soc. 133 (2011) 18957–18965. [DOI] [PMID: 21999550]
[EC 1.4.99.6 created 1972 as EC 1.4.99.1, transferred 2015 to EC 1.4.99.6, modified 2017]
 
 
EC 2.1.1.243     
Accepted name: 5-guanidino-2-oxopentanoate (3R)-methyltransferase
Reaction: S-adenosyl-L-methionine + 5-guanidino-2-oxopentanoate = S-adenosyl-L-homocysteine + (3R)-5-guanidino-3-methyl-2-oxopentanoate
Glossary: 5-guanidino-2-oxopentanoate = 2-ketoarginine
(3R)-5-guanidino-3-methyl-2-oxopentanoate = (3R)-5-carbamimidamido-3-methyl-2-oxopentanoate
Other name(s): mrsA (gene name); argN (gene name); 2-ketoarginine methyltransferase; S-adenosyl-L-methionine:5-carbamimidamido-2-oxopentanoate S-methyltransferase
Systematic name: S-adenosyl-L-methionine:5-guanidino-2-oxopentanoate (3R)-methyltransferase
Comments: The enzyme is involved in production of the rare amino acid (3R)-3-methyl-L-arginine. The compound is used by the epiphytic bacterium Pseudomonas syringae pv. syringae as an antibiotic against the related pathogenic species Pseudomonas savastanoi pv. glycinea. Other bacteria incorporate the compound into more complex compounds such as the peptidyl nucleoside antibiotic arginomycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Braun, S.D., Hofmann, J., Wensing, A., Ullrich, M.S., Weingart, H., Völksch, B. and Spiteller, D. Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93. Appl. Environ. Microbiol. 76 (2010) 2500–2508. [DOI] [PMID: 20190091]
2.  Feng, J., Wu, J., Gao, J., Xia, Z., Deng, Z. and He, X. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 80 (2014) 5021–5027. [DOI] [PMID: 24907335]
[EC 2.1.1.243 created 2012, modified 2024]
 
 
EC 2.6.1.84     
Accepted name: arginine—pyruvate transaminase
Reaction: L-arginine + pyruvate = 5-guanidino-2-oxopentanoate + L-alanine
For diagram of arginine-catabolism pathway, click here
Other name(s): arginine:pyruvate transaminase; AruH; ATase
Systematic name: L-arginine:pyruvate aminotransferase
Comments: A pyridoxal-phosphate protein. While L-arginine is the best substrate, the enzyme exhibits broad substrate specificity, with L-lysine, L-methionine, L-leucine, L-ornithine and L-glutamine also able to act as substrates, but more slowly. Pyruvate cannot be replaced by 2-oxoglutarate as amino-group acceptor. This is the first catalytic enzyme of the arginine transaminase pathway for L-arginine utilization in Pseudomonas aeruginosa. This pathway is only used when the major route of arginine catabolism, i.e. the arginine succinyltransferase pathway, is blocked.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yang, Z. and Lu, C.-D. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1. J. Bacteriol. 189 (2007) 3954–3959. [DOI] [PMID: 17416668]
2.  Yang, Z. and Lu, C.D. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J. Bacteriol. 189 (2007) 3945–3953. [DOI] [PMID: 17416670]
[EC 2.6.1.84 created 2007]
 
 
EC 2.6.1.125     
Accepted name: L-arginine:2-oxoglutarate transaminase
Reaction: L-arginine + 2-oxoglutarate = 5-guanidino-2-oxopentanoate + L-glutamate
Other name(s): argM (gene name); arginine-α-ketoglutarate transaminase
Systematic name: L-arginine:2-oxoglutarate aminotransferase
Comments: Requires pyridoxal 5′-phosphate. The enzyme, characterized from several bacterial species, is known to participate in L-arginine degradation and in the biosynthesis of the rare amino acid (3R)-3-methyl-L-arginine. The enzyme from Streptomyces arginensis also catalyses the activity of EC 2.6.1.126, L-aspartate:5-guanidino-3-methyl-2-oxopentanoate transaminase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tachiki, T., Kohno, H., Sugiyama, K., Matsubara, T. and Tochikura, T. Purification, properties and formation of arginine-α-ketoglutarate transaminase in Arthrobacter simplex. Biochim. Biophys Acta 615 (1980) 79–84. [DOI] [PMID: 7426667]
2.  Feng, J., Wu, J., Gao, J., Xia, Z., Deng, Z. and He, X. Biosynthesis of the β-methylarginine residue of peptidyl nucleoside arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 80 (2014) 5021–5027. [DOI] [PMID: 24907335]
[EC 2.6.1.125 created 2024]
 
 
EC 4.1.1.75     
Accepted name: 5-guanidino-2-oxopentanoate decarboxylase
Reaction: 5-guanidino-2-oxopentanoate = 4-guanidinobutanal + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): α-ketoarginine decarboxylase; 2-oxo-5-guanidinopentanoate carboxy-lyase
Systematic name: 5-guanidino-2-oxopentanoate carboxy-lyase (4-guanidinobutanal-forming)
Comments: Enzyme activity is dependent on the presence of thiamine diphosphate and a divalent cation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56831-67-5
References:
1.  Vanderbilt, A.S., Gaby, N.S., Rodwell, V.W. Intermediates and enzymes between α-ketoarginine and γ-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J. Biol. Chem. 250 (1975) 5322–5329. [PMID: 237915]
[EC 4.1.1.75 created 1999]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald