The Enzyme Database

Your query returned 8 entries.    printer_iconPrintable version

EC 1.1.98.7     
Accepted name: serine-type anaerobic sulfatase-maturating enzyme
Reaction: S-adenosyl-L-methionine + a [sulfatase]-L-serine = a [sulfatase]-3-oxo-L-alanine + 5′-deoxyadenosine + L-methionine
Glossary: 3-oxo-L-alanine = (S)-formylglycine = (S)-Cα-formylglycine = FGly
Other name(s): atsB (gene name)
Systematic name: [sulfatase]-L-serine:S-adenosyl-L-methionine oxidoreductase (3-oxo-L-alanine-forming)
Comments: A bacterial radical S-adenosyl-L-methionine (AdoMet) enzyme that contains three [4Fe-4S] clusters. The enzyme, found in some bacteria, activates a type I sulfatase enzyme (EC 3.1.6.1) by converting a conserved L-serine residue in the active site to a unique 3-oxo-L-alanine residue that is essential for the sulfatase activity. While the enzyme from Klebsiella pneumoniae is specific for L-serine, the enzyme from Clostridium perfringens can also act on L-cysteine, see EC 1.8.98.7, cysteine-type anaerobic sulfatase-maturating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Szameit, C., Miech, C., Balleininger, M., Schmidt, B., von Figura, K. and Dierks, T. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. J. Biol. Chem. 274 (1999) 15375–15381. [PMID: 10336424]
2.  Fang, Q., Peng, J. and Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J. Biol. Chem. 279 (2004) 14570–14578. [PMID: 14749327]
3.  Grove, T.L., Lee, K.H., St Clair, J., Krebs, C. and Booker, S.J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47 (2008) 7523–7538. [PMID: 18558715]
[EC 1.1.98.7 created 2020]
 
 
EC 1.8.3.7     
Accepted name: formylglycine-generating enzyme
Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disulfide + H2O
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)
Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Dierks, T., Schmidt, B. and von Figura, K. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94 (1997) 11963–11968. [DOI] [PMID: 9342345]
2.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
3.  Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S.L., Mutenda, K., Wenzel, D., von Figura, K. and Dierks, T. Molecular characterization of the human Cα-formylglycine-generating enzyme. J. Biol. Chem. 280 (2005) 14900–14910. [DOI] [PMID: 15657036]
4.  Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K. and Rudolph, M.G. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc. Natl. Acad. Sci. USA 103 (2006) 81–86. [DOI] [PMID: 16368756]
5.  Carlson, B.L., Ballister, E.R., Skordalakes, E., King, D.S., Breidenbach, M.A., Gilmore, S.A., Berger, J.M. and Bertozzi, C.R. Function and structure of a prokaryotic formylglycine-generating enzyme. J. Biol. Chem. 283 (2008) 20117–20125. [DOI] [PMID: 18390551]
6.  Holder, P.G., Jones, L.C., Drake, P.M., Barfield, R.M., Banas, S., de Hart, G.W., Baker, J. and Rabuka, D. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J. Biol. Chem. 290 (2015) 15730–15745. [DOI] [PMID: 25931126]
7.  Knop, M., Engi, P., Lemnaru, R. and Seebeck, F.P. In vitro reconstitution of formylglycine-generating enzymes requires copper(I). ChemBioChem 16 (2015) 2147–2150. [DOI] [PMID: 26403223]
8.  Knop, M., Dang, T.Q., Jeschke, G. and Seebeck, F.P. Copper is a cofactor of the formylglycine-generating enzyme. ChemBioChem 18 (2017) 161–165. [DOI] [PMID: 27862795]
9.  Meury, M., Knop, M. and Seebeck, F.P. Structural basis for copper-oxygen mediated C-H bond activation by the formylglycine-generating enzyme. Angew. Chem. Int. Ed. Engl. (2017) . [DOI] [PMID: 28544744]
[EC 1.8.3.7 created 2014]
 
 
EC 1.8.98.7     
Accepted name: cysteine-type anaerobic sulfatase-maturating enzyme
Reaction: S-adenosyl-L-methionine + a [sulfatase]-L-cysteine + H2O = a [sulfatase]-3-oxo-L-alanine + 5′-deoxyadenosine + L-methionine + hydrogen sulfide
Glossary: 3-oxo-L-alanine = formylglycine = Cα-formylglycine = FGly
Other name(s): anSME; Cys-type anaerobic sulfatase-maturating enzyme; anaerobic sulfatase maturase
Systematic name: [sulfatase]-L-cysteine:S-adenosyl-L-methionine oxidoreductase (3-oxo-L-alanine-forming)
Comments: A radical S-adenosylmethionine (AdoMet) enzyme that contains three [4Fe-4S] clusters. The enzyme, found in some bacteria, activates a type I sulfatase enzyme (EC 3.1.6.1) by converting a conserved L-cysteine residue in the active site to a unique 3-oxo-L-alanine residue that is essential for the sulfatase activity. Some enzymes can also act on L-serine, see EC 1.1.98.7, serine-type anaerobic sulfatase-maturating enzyme and EC 1.8.3.7, formylglycine-generating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Berteau, O., Guillot, A., Benjdia, A. and Rabot, S. A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281 (2006) 22464–22470. [PMID: 16766528]
2.  Benjdia, A., Subramanian, S., Leprince, J., Vaudry, H., Johnson, M.K. and Berteau, O. Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes. J. Biol. Chem. 283 (2008) 17815–17826. [PMID: 18408004]
3.  Benjdia, A., Leprince, J., Sandstrom, C., Vaudry, H. and Berteau, O. Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cβ H-atom abstraction catalyzed by a radical AdoMet enzyme. J. Am. Chem. Soc. 131 (2009) 8348–8349. [PMID: 19489556]
4.  Benjdia, A., Subramanian, S., Leprince, J., Vaudry, H., Johnson, M.K. and Berteau, O. Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes. FEBS J. 277 (2010) 1906–1920. [PMID: 20218986]
5.  Grove, T.L., Ahlum, J.H., Qin, R.M., Lanz, N.D., Radle, M.I., Krebs, C. and Booker, S.J. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis. Biochemistry 52 (2013) 2874–2887. [PMID: 23477283]
[EC 1.8.98.7 created 2020]
 
 
EC 1.14.11.77     
Accepted name: alkyl sulfatase
Reaction: a primary alkyl sulfate ester + 2-oxoglutarate + O2 = an aldehyde + succinate + CO2 + sulfate
Other name(s): atsK (gene name); α-ketoglutarate-dependent sulfate ester dioxygenase; 2-oxoglutarate-dependent sulfate ester dioxygenase; type II alkyl sulfatase
Systematic name: primary alkyl sulfate ester, 2-oxoglutarate:oxygen oxidoreductase (sulfate-hydrolyzing)
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. The type II sulfatases oxidize the C-H bond of the carbon next to the sulfate ester, using 2-oxoglutarate and oxygen as substrates. The resulting hemiacetal sulfate ester collapses, liberating inorganic sulfate and an alkyl aldehyde along with carbon dioxide and succinate. The enzymes often desulfate a broad spectrum of linear and branched-chain sulfate esters. The enzyme from Pseudomonas putida acts on a range of medium-chain alkyl sulfate esters, with chain lengths ranging from C4 to C12. cf. sulfatase EC 3.1.6.1, arylsulfatase (type I), EC 3.1.6.21, linear primary-alkylsulfatase, and EC 3.1.6.22, branched primary-alkylsulfatase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kahnert, A. and Kertesz, M.A. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J. Biol. Chem. 275 (2000) 31661–31667. [DOI] [PMID: 10913158]
2.  Muller, I., Kahnert, A., Pape, T., Sheldrick, G.M., Meyer-Klaucke, W., Dierks, T., Kertesz, M. and Uson, I. Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) α-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 43 (2004) 3075–3088. [DOI] [PMID: 15023059]
3.  Sogi, K.M., Gartner, Z.J., Breidenbach, M.A., Appel, M.J., Schelle, M.W. and Bertozzi, C.R. Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging. PLoS One 8:e65080 (2013). [DOI] [PMID: 23762287]
[EC 1.14.11.77 created 2021]
 
 
EC 3.1.6.1     
Accepted name: arylsulfatase (type I)
Reaction: an aryl sulfate + H2O = a phenol + sulfate
Other name(s): sulfatase; nitrocatechol sulfatase; phenolsulfatase; phenylsulfatase; p-nitrophenyl sulfatase; arylsulfohydrolase; 4-methylumbelliferyl sulfatase; estrogen sulfatase; type I sulfatase; arylsulfatase
Systematic name: aryl-sulfate sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. Arylsulfatases are type I enzymes, found in both prokaryotes and eukaryotes, with rather similar specificities. The key catalytic residue 3-oxo-L-alanine initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. This residue is generated by posttranslational modification of a conserved cysteine or serine residue by EC 1.8.3.7, formylglycine-generating enzyme, EC 1.1.98.7, serine-type anaerobic sulfatase-maturating enzyme, or EC 1.8.98.7, cysteine-type anaerobic sulfatase-maturating enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9016-17-5
References:
1.  Dodgson, K.S., Spencer, B. and Williams, K. Studies on sulphatases. 13. The hydrolysis of substituted phenyl sulphates by the arylsulphatase of Alcaligenes metacaligenes. Biochem. J. 64 (1956) 216–221. [PMID: 13363831]
2.  Webb, E.C. and Morrow, P.F.W. The activation of an arysulphatase from ox liver by chloride and other anions. Biochem. J. 73 (1959) 7–15. [PMID: 13843260]
3.  Roy, A.B. The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. Relat. Subj. Biochem. 22 (1960) 205–235. [PMID: 13744184]
4.  Roy, A.B. Sulphatases, lysosomes and disease. Aust. J. Exp. Biol. Med. Sci. 54 (1976) 111–135. [PMID: 13772]
5.  Schmidt, B., Selmer, T., Ingendoh, A. and von Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82 (1995) 271–278. [PMID: 7628016]
6.  Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A. and von Figura, K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 273 (1998) 25560–25564. [DOI] [PMID: 9748219]
[EC 3.1.6.1 created 1961, modified 2011, modified 2021]
 
 
EC 3.1.6.19     
Accepted name: (R)-specific secondary-alkylsulfatase (type III)
Reaction: an (R)-secondary-alkyl sulfate + H2O = an (S)-secondary-alcohol + sulfate
Other name(s): S3 secondary alkylsulphohydrolase; Pisa1; secondary alkylsulphohydrolase; (R)-specific sec-alkylsulfatase; sec-alkylsulfatase; (R)-specific secondary-alkylsulfatase; type III (R)-specific secondary-alkylsulfatase
Systematic name: (R)-secondary-alkyl sulfate sulfohydrolase [(S)-secondary-alcohol-forming]
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III sulfatase family. The enzyme from the bacterium Rhodococcus ruber prefers linear secondary-alkyl sulfate esters, particularly octan-2-yl, octan-3-yl, and octan-4-yl sulfates [1]. The enzyme from the bacterium Pseudomonas sp. DSM6611 utilizes a range of secondary-alkyl sulfate esters bearing aromatic, olefinic and acetylenic moieties. Hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom, resulting in perfect enantioselectivity. cf. EC 3.1.6.1, arylsulfatase (type I), and EC 1.14.11.77, alkyl sulfatase (type II).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Pogorevc, M. and Faber, K. Purification and characterization of an inverting stereo- and enantioselective sec-alkylsulfatase from the gram-positive bacterium Rhodococcus ruber DSM 44541. Appl. Environ. Microbiol. 69 (2003) 2810–2815. [DOI] [PMID: 12732552]
2.  Wallner, S.R., Nestl, B.M. and Faber, K. Highly enantioselective sec-alkyl sulfatase activity of Sulfolobus acidocaldarius DSM 639. Org. Lett. 6 (2004) 5009–5010. [DOI] [PMID: 15606122]
3.  Knaus, T., Schober, M., Kepplinger, B., Faccinelli, M., Pitzer, J., Faber, K., Macheroux, P. and Wagner, U. Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp. DSM6611 specific for secondary alkyl sulfates. FEBS J. 279 (2012) 4374–4384. [DOI] [PMID: 23061549]
4.  Schober, M., Knaus, T., Toesch, M., Macheroux, P., Wagner, U. and Faber, K. The substrate spectrum of the inverting sec-alkylsulfatase Pisa1. Adv. Synth. Catal. 354 (2012) 1737–1742. [DOI]
[EC 3.1.6.19 created 2013, modified 2021]
 
 
EC 3.1.6.21     
Accepted name: linear primary-alkylsulfatase
Reaction: a primary alkyl sulfate ester + H2O = an alcohol + sulfate
Other name(s): sdsA1 (gene name); yjcS (gene name); type III linear primary-alkylsulfatase
Systematic name: primary alkyl sulfate ester sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III sulfatase family. It is active against linear primary-alkyl sulfate esters, such as dodecyl sulfate, decyl sulfate, octyl sulfate, and hexyl sulfate. The enzyme from Pseudomonas aeruginosa is secreted out of the cell. The catalytic mechanism begins with activation of a water molecule by the binuclear Zn2+ cluster, resulting in a nucleophilic attack on the carbon atom. cf. EC 3.1.6.22, branched primary-alkylsulfatase, and EC 3.1.6.19, (R)-specific secondary-alkylsulfatase (type III).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hagelueken, G., Adams, T.M., Wiehlmann, L., Widow, U., Kolmar, H., Tummler, B., Heinz, D.W. and Schubert, W.D. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc. Natl. Acad. Sci. USA 103 (2006) 7631–7636. [DOI] [PMID: 16684886]
2.  Long, M., Ruan, L., Li, F., Yu, Z. and Xu, X. Heterologous expression and characterization of a recombinant thermostable alkylsulfatase (sdsAP). Extremophiles 15 (2011) 293–301. [DOI] [PMID: 21318560]
3.  Liang, Y., Gao, Z., Dong, Y. and Liu, Q. Structural and functional analysis show that the Escherichia coli uncharacterized protein YjcS is likely an alkylsulfatase. Protein Sci. 23 (2014) 1442–1450. [DOI] [PMID: 25066955]
4.  Sun, L., Chen, P., Su, Y., Cai, Z., Ruan, L., Xu, X. and Wu, Y. Crystal structure of thermostable alkylsulfatase SdsAP from Pseudomonas sp. S9. Biosci Rep 37 (2017) . [DOI] [PMID: 28442601]
[EC 3.1.6.21 created 2021]
 
 
EC 3.1.6.22     
Accepted name: branched primary-alkylsulfatase
Reaction: 2-butyloctyl sulfate + H2O = 2-butyloctan-1-ol + sulfate
Other name(s): DP1 (gene name); type III branched primary-alkylsulfatase
Systematic name: branched primary-alkyl sulfate ester sulfohydrolase
Comments: Sulfatase enzymes are classified as type I, in which the key catalytic residue is 3-oxo-L-alanine, type II, which are non-heme iron-dependent dioxygenases, or type III, whose catalytic domain adopts a metallo-β-lactamase fold and binds two zinc ions as cofactors. This enzyme belongs to the type III family. The enzyme, characterized from a Pseudomonas strain, is specific for branched primary-alkyl sulfate esters and does not act on linear substrates such as dodecyl sulfate. cf. EC 3.1.6.1, arylsulfatase (type I), EC 1.14.11.77, alkyl sulfatase, EC 3.1.6.19, (R)-specific secondary-alkylsulfatase (type III) and EC 3.1.6.21, linear primary-alkylsulfatase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ellis, A.J., Hales, S.G., Ur-Rehman, N.G. and White, G.F. Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Appl. Environ. Microbiol. 68 (2002) 31–36. [PMID: 11772605]
2.  Toesch, M., Schober, M. and Faber, K. Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl. Microbiol. Biotechnol. 98 (2014) 1485–1496. [DOI] [PMID: 24352732]
[EC 3.1.6.22 created 2021]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald