The Enzyme Database

Your query returned 5 entries.    printer_iconPrintable version



EC 3.1.7.3     
Accepted name: monoterpenyl-diphosphatase
Reaction: a monoterpenyl diphosphate + H2O = a monoterpenol + diphosphate
For diagram of bornane and related monoterpenoids, click here
Other name(s): bornyl pyrophosphate hydrolase; monoterpenyl-pyrophosphatase
Systematic name: monoterpenyl-diphosphate diphosphohydrolase
Comments: A group of enzymes with varying specificity for the monoterpenol moiety. One has the highest activity on sterically hindered compounds such as (+)-bornyl diphosphate; another has highest activity on the diphosphates of primary allylic alcohols such as geraniol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Croteau, R. and Karp, F. Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch. Biochem. Biophys. 198 (1979) 523–532. [DOI] [PMID: 42357]
[EC 3.1.7.3 created 1984]
 
 
EC 4.2.3.108     
Accepted name: 1,8-cineole synthase
Reaction: geranyl diphosphate + H2O = 1,8-cineole + diphosphate
For diagram of menthane monoterpenoid biosynthesis, click here
Glossary: 1,8-cineole = 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane
Other name(s): 1,8-cineole cyclase; geranyl pyrophoshate:1,8-cineole cyclase; 1,8-cineole synthetase
Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, 1,8-cineole-forming)
Comments: Requires Mn2+ or Zn2+. Mg2+ is less effective than either. 1,8-Cineole is the main product from the enzyme with just traces of other monoterpenoids. The oxygen atom is derived from water. The reaction proceeds via linalyl diphosphate and α-terpineol, the stereochemistry of both depends on the organism. However neither intermediate can substitute for geranyl diphosphate. The reaction in Salvia officinalis (sage) proceeds via (–)-(3R)-linalyl diphosphate [1-3] while that in Arabidopsis (rock cress) proceeds via (+)-(3S)-linalyl diphosphate [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110637-19-9
References:
1.  Croteau, R., Alonso, W.R., Koepp, A.E. and Johnson, M.A. Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase. Arch. Biochem. Biophys. 309 (1994) 184–192. [DOI] [PMID: 8117108]
2.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
3.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
4.  Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E. and Tholl, D. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135 (2004) 1956–1966. [DOI] [PMID: 15299125]
5.  Keszei, A., Brubaker, C.L., Carter, R., Kollner, T., Degenhardt, J. and Foley, W.J. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae. Phytochemistry 71 (2010) 844–852. [DOI] [PMID: 20399476]
[EC 4.2.3.108 created 2012]
 
 
EC 4.2.3.110     
Accepted name: (+)-sabinene synthase
Reaction: geranyl diphosphate = (+)-sabinene + diphosphate
For diagram of thujane monoterpenoid biosynthesis, click here
Glossary: (+)-sabinene = (+)-thuj-4(10)-ene = (1R,5R)-1-isopropyl-4-methylenebicyclo[3.1.0]hexane
Other name(s): SS
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-sabinene-forming]
Comments: Isolated from Salvia officinalis (sage). The recombinant enzyme gave 63% (+)-sabinene, 21% γ-terpinene, and traces of other monoterpenoids. See EC 4.2.3.114 γ-terpinene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
2.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
[EC 4.2.3.110 created 2012]
 
 
EC 5.5.1.8     
Accepted name: (+)-bornyl diphosphate synthase
Reaction: geranyl diphosphate = (+)-bornyl diphosphate
For diagram of bornane and related monoterpenoids, click here
Glossary: (+)-bornyl diphosphate = (1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl diphosphate
Other name(s): bornyl pyrophosphate synthase (ambiguous); bornyl pyrophosphate synthetase (ambiguous); (+)-bornylpyrophosphate cyclase; geranyl-diphosphate cyclase (ambiguous); (+)-bornyl-diphosphate lyase (decyclizing)
Systematic name: (+)-bornyl-diphosphate lyase (ring-opening)
Comments: Requires Mg2+. The enzyme from Salvia officinalis (sage) can also use (3R)-linalyl diphosphate or more slowly neryl diphosphate in vitro [3]. The reaction proceeds via isomeration of geranyl diphosphate to (3R)-linalyl diphosphate. The oxygen and phosphorus originally linked to C-1 of geranyl diphosphate end up linked to C-2 of (+)-bornyl diphosphate [3]. cf. EC 5.5.1.22 [(–)-bornyl diphosphate synthase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72668-91-8
References:
1.  Croteau, R. and Karp, F. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch. Biochem. Biophys. 198 (1979) 512–522. [DOI] [PMID: 42356]
2.  Croteau, R., Gershenzon, J., Wheeler, C.J. and Satterwhite, D.M. Biosynthesis of monoterpenes: stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Arch. Biochem. Biophys. 277 (1990) 374–381. [DOI] [PMID: 2178556]
3.  Croteau, R., Satterwhite, D.M., Cane, D.E. and Chang, C.C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 261 (1986) 13438–13445. [PMID: 3759972]
4.  Croteau, R., Felton, N.M. and Wheeler, C.J. Stereochemistry at C-1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 260 (1985) 5956–5962. [PMID: 3997807]
5.  Croteau, R.B., Shaskus, J.J., Renstrom, B., Felton, N.M., Cane, D.E., Saito, A. and Chang, C. Mechanism of the pyrophosphate migration in the enzymatic cyclization of geranyl and linalyl pyrophosphates to (+)- and (-)-bornyl pyrophosphates. Biochemistry 24 (1985) 7077–7085. [PMID: 4084562]
6.  McGeady, P. and Croteau, R. Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. Arch. Biochem. Biophys. 317 (1995) 149–155. [DOI] [PMID: 7872777]
7.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [DOI] [PMID: 9614092]
8.  Whittington, D.A., Wise, M.L., Urbansky, M., Coates, R.M., Croteau, R.B. and Christianson, D.W. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 99 (2002) 15375–15380. [DOI] [PMID: 12432096]
9.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [DOI] [PMID: 12941302]
[EC 5.5.1.8 created 1984, modified 2012]
 
 
EC 5.5.1.22     
Accepted name: (–)-bornyl diphosphate synthase
Reaction: geranyl diphosphate = (–)-bornyl diphosphate
For diagram of bornane and related monoterpenoids, click here
Glossary: (–)-bornyl diphosphate = (2R,4S)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl diphosphate
Other name(s): bornyl pyrophosphate synthase (ambiguous); bornyl pyrophosphate synthetase (ambiguous); (–)-bornyl pyrophosphate cyclase; bornyl diphosphate synthase; geranyl-diphosphate cyclase (ambiguous); (–)-bornyl-diphosphate lyase (decyclizing)
Systematic name: (–)-bornyl-diphosphate lyase (ring-opening)
Comments: Requires Mg2+. The enzyme from Tanacetum vulgare (tansy) can also use (3S)-linalyl diphosphate or more slowly neryl diphosphate in vitro. The reaction proceeds via isomeration of geranyl diphosphate to (3S)-linalyl diphosphate [3]. The oxygen and phosphorus originally linked to C-1 of geranyl diphosphate end up linked to C-2 of (–)-bornyl diphosphate [4]. cf. EC 5.5.1.8 (+)-bornyl diphosphate synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110639-17-3
References:
1.  Croteau, R., Gershenzon, J., Wheeler, C.J. and Satterwhite, D.M. Biosynthesis of monoterpenes: stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Arch. Biochem. Biophys. 277 (1990) 374–381. [DOI] [PMID: 2178556]
2.  Croteau, R. and Shaskus, J. Biosynthesis of monoterpenes: demonstration of a geranyl pyrophosphate:(-)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare). Arch. Biochem. Biophys. 236 (1985) 535–543. [DOI] [PMID: 3970524]
3.  Croteau, R., Felton, N.M. and Wheeler, C.J. Stereochemistry at C-1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 260 (1985) 5956–5962. [PMID: 3997807]
4.  Croteau, R.B., Shaskus, J.J., Renstrom, B., Felton, N.M., Cane, D.E., Saito, A. and Chang, C. Mechanism of the pyrophosphate migration in the enzymatic cyclization of geranyl and linalyl pyrophosphates to (+)- and (-)-bornyl pyrophosphates. Biochemistry 24 (1985) 7077–7085. [PMID: 4084562]
5.  Adam, K.P. and Croteau, R. Monoterpene biosynthesis in the liverwort Conocephalum conicum: demonstration of sabinene synthase and bornyl diphosphate synthase. Phytochemistry 49 (1998) 475–480. [DOI] [PMID: 9747540]
[EC 5.5.1.22 created 2012]
 
 


Data © 2001–2022 IUBMB
Web site © 2005–2022 Andrew McDonald