The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 7.1.1.3     
Accepted name: ubiquinol oxidase (H+-transporting)
Reaction: 2 quinol + O2[side 2] + 8 H+[side 2] = 2 quinone + 2 H2O[side 2] + 8 H+[side 1]
Other name(s): cyoABCD (gene names); cytochrome bo3 oxidase; cytochrome bb3 oxidase; cytochrome bo oxidase; Cyo oxidase; ubiquinol:O2 oxidoreductase (H+-transporting); ubiquinol:oxygen oxidoreductase (H+-transporting)
Systematic name: quinol:oxygen oxidoreductase (H+-transporting)
Comments: Contains a dinuclear centre comprising heme and copper. This terminal oxidase enzyme generates proton motive force by two mechanisms: (1) transmembrane charge separation resulting from utilizing protons and electrons originating from opposite sides of the membrane to generate water, and (2) active pumping of protons across the membrane. The bioenergetic efficiency (the number of charges driven across the membrane per electron used to reduce oxygen to water) of enzymes that have been characterized so far is 2. cf. EC 7.1.1.7, ubiquinol oxidase ubiquinol oxidase (electrogenic, proton-motive force generating).
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, PDB
References:
1.  Miyoshi-Akiyama, T., Hayashi, M. and Unemoto, T. Purification and properties of cytochrome bo-type ubiquinol oxidase from a marine bacterium Vibrio alginolyticus. Biochim. Biophys Acta 1141 (1993) 283–287. [DOI] [PMID: 8443214]
2.  de Gier, J.W., Lubben, M., Reijnders, W.N., Tipker, C.A., Slotboom, D.J., van Spanning, R.J., Stouthamer, A.H. and van der Oost, J. The terminal oxidases of Paracoccus denitrificans. Mol. Microbiol. 13 (1994) 183–196. [DOI] [PMID: 7984100]
3.  Howitt, C.A. and Vermaas, W.F. Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37 (1998) 17944–17951. [DOI] [PMID: 9922162]
4.  Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S. and Wikstrom, M. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7 (2000) 910–917. [DOI] [PMID: 11017202]
5.  Morales, G., Ugidos, A. and Rojo, F. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ. Microbiol. 8 (2006) 1764–1774. [DOI] [PMID: 16958757]
6.  Stenberg, F., von Heijne, G. and Daley, D.O. Assembly of the cytochrome bo3 complex. J. Mol. Biol. 371 (2007) 765–773. [PMID: 17583738]
7.  Yap, L.L., Lin, M.T., Ouyang, H., Samoilova, R.I., Dikanov, S.A. and Gennis, R.B. The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochim. Biophys. Acta 1797 (2010) 1924–1932. [DOI] [PMID: 20416270]
8.  Choi, S.K., Lin, M.T., Ouyang, H. and Gennis, R.B. Searching for the low affinity ubiquinone binding site in cytochrome bo3 from Escherichia coli. Biochim Biophys Acta Bioenerg 1858 (2017) 366–370. [PMID: 28235459]
9.  Choi, S.K., Schurig-Briccio, L., Ding, Z., Hong, S., Sun, C. and Gennis, R.B. Location of the substrate binding site of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. J. Am. Chem. Soc. 139 (2017) 8346–8354. [PMID: 28538096]
10.  Graf, S., Brzezinski, P. and von Ballmoos, C. The proton pumping bo oxidase from Vitreoscilla. Sci. Rep. 9:4766 (2019). [DOI] [PMID: 30886219]
[EC 7.1.1.3 created 2011 as EC 1.10.3.10, modified 2014, transferred 2018 to EC 7.1.1.3, modified 2023]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald