The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 4.3.1.30     
Accepted name: dTDP-4-amino-4,6-dideoxy-D-glucose ammonia-lyase
Reaction: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose + S-adenosyl-L-methionine + reduced acceptor = dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose + NH3 + L-methionine + 5′-deoxyadenosine + acceptor
For diagram of dTDP-D-desosamine biosynthesis, click here
Other name(s): desII (gene name); eryCV (gene name); MegCV
Systematic name: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose ammonia lyase (dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose-forming)
Comments: The enzyme, which is a member of the ’AdoMet radical’ (radical SAM) family, is involved in biosynthesis of TDP-α-D-desosamine. The reaction starts by the transfer of an electron from the reduced form of the enzyme’s [4Fe-4S] cluster to S-adenosyl-L-methionine, spliting it into methionine and the radical 5-deoxyadenosin-5′-yl, which attacks the sugar substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Szu, P.H., Ruszczycky, M.W., Choi, S.H., Yan, F. and Liu, H.W. Characterization and mechanistic studies of DesII: a radical S-adenosyl-L-methionine enzyme involved in the biosynthesis of TDP-D-desosamine. J. Am. Chem. Soc. 131 (2009) 14030–14042. [DOI] [PMID: 19746907]
2.  Ruszczycky, M.W., Choi, S.H. and Liu, H.W. Stoichiometry of the redox neutral deamination and oxidative dehydrogenation reactions catalyzed by the radical SAM enzyme DesII. J. Am. Chem. Soc. 132 (2010) 2359–2369. [DOI] [PMID: 20121093]
3.  Ruszczycky, M.W., Choi, S.H., Mansoorabadi, S.O. and Liu, H.W. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose. J. Am. Chem. Soc. 133 (2011) 7292–7295. [DOI] [PMID: 21513273]
[EC 4.3.1.30 created 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald