The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 4.2.1.110     
Accepted name: aldos-2-ulose dehydratase
Reaction: 1,5-anhydro-D-fructose = 2-hydroxy-2-(hydroxymethyl)-2H-pyran-3(6H)-one + H2O (overall reaction)
(1a) 1,5-anhydro-D-fructose = 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose + H2O
(1b) 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose = 2-hydroxy-2-(hydroxymethyl)-2H-pyran-3(6H)-one
For diagram of the anhydrofructose pathway, click here
Glossary: 1,5-anhydro-D-fructose = 1,5-anhydro-D-arabino-hex-2-ulose = (4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)dihydro-2H-pyran-3(4H)-one
ascopyrone M = 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose = (6S)-4-hydroxy-6-(hydroxymethyl)-2H-pyran-3(6H)-one
microthecin = 2-hydroxy-2-(hydroxymethyl)-2H-pyran-3(6H)-one
Other name(s): pyranosone dehydratase; AUDH; 1,5-anhydro-D-fructose dehydratase (microthecin-forming)
Systematic name: 1,5-anhydro-D-fructose hydro-lyase (microthecin-forming)
Comments: This enzyme catalyses two of the steps in the anhydrofructose pathway, which leads to the degradation of glycogen and starch via 1,5-anhydro-D-fructose [1,2]. Aldose-2-uloses such as 2-dehydroglucose can also act as substrates, but more slowly [1,2,4]. This is a bifunctional enzyme that acts as both a lyase and as an isomerase [2]. Differs from EC 4.2.1.111, which can carry out only reaction (1a), is inhibited by its product and requires metal ions for activity [1].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 101920-80-3
References:
1.  Yu, S. and Fiskesund, R. The anhydrofructose pathway and its possible role in stress response and signaling. Biochim. Biophys. Acta 1760 (2006) 1314–1322. [DOI] [PMID: 16822618]
2.  Yu, S. Enzymatic description of the anhydrofructose pathway of glycogen degradation. II. Gene identification and characterization of the reactions catalyzed by aldos-2-ulose dehydratase that converts 1,5-anhydro-D-fructose to microthecin with ascopyrone M as the intermediate. Biochim. Biophys. Acta 1723 (2005) 63–73. [DOI] [PMID: 15716041]
3.  Broberg, A., Kenne, L. and Pedersén, M. Presence of microthecin in the red alga Gracilariopsis lemaneiformis and its formation from 1,5-anhydro-D-fructose. Phytochemistry 41 (1996) 151–154.
4.  Gabriel, J., Volc, J., Sedmera, P., Daniel, G. and Kubátová, E. Pyranosone dehydratase from the basidiomycete Phanerochaete chrysosporium: improved purification, and identification of 6-deoxy-D-glucosone and D-xylosone reaction products. Arch. Microbiol. 160 (1993) 27–34. [PMID: 8352649]
5.  Yu, S., Refdahl, C. and Lundt, I. Enzymatic description of the anhydrofructose pathway of glycogen degradation; I. Identification and purification of anhydrofructose dehydratase, ascopyrone tautomerase and α-1,4-glucan lyase in the fungus Anthracobia melaloma. Biochim. Biophys. Acta 1672 (2004) 120–129. [DOI] [PMID: 15110094]
[EC 4.2.1.110 created 2006]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald