The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 4.1.2.62     
Accepted name: 5-deoxyribulose 1-phosphate aldolase
Reaction: (1) 5-deoxy-D-ribulose 1-phosphate = glycerone phosphate + acetaldehyde
(2) S-methyl-5-thio-D-ribulose 1-phosphate = glycerone phosphate + (2-methylsulfanyl)acetaldehyde
Other name(s): 5-(methylthio)ribulose-1-phosphate aldolase; ald2 (gene name)
Systematic name: 5-deoxy-D-ribulose 1-phosphate acetaldehyde-lyase (glycerone-phosphate-forming)
Comments: The enzyme, originally characterized from the bacterium Rhodospirillum rubrum, is involved in degradation pathways for 5′-deoxyadenosine and S-methyl-5′-thioadenosine, which are formed from S-adenosyl-L-methionine (SAM, AdoMet) by radical SAM enzymes and other types of SAM-dependent enzymes, respectively. The enzyme requires a divalent metal cation, with Co2+ producing the highest activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  North, J.A., Miller, A.R., Wildenthal, J.A., Young, S.J. and Tabita, F.R. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation. Proc. Natl. Acad. Sci. USA 114 (2017) E10455–E10464. [PMID: 29133429]
2.  North, J.A., Wildenthal, J.A., Erb, T.J., Evans, B.S., Byerly, K.M., Gerlt, J.A. and Tabita, F.R. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Mol. Microbiol. (2020) . [PMID: 31950558]
[EC 4.1.2.62 created 2020]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald