EC 4.1.1.1     
Accepted name: pyruvate decarboxylase
Reaction: a 2-oxo carboxylate = an aldehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): α-carboxylase (ambiguous); pyruvic decarboxylase; α-ketoacid carboxylase; 2-oxo-acid carboxy-lyase
Systematic name: 2-oxo-acid carboxy-lyase (aldehyde-forming)
Comments: A thiamine-diphosphate protein. Also catalyses acyloin formation.
References:
1.  Singer, T.P. and Pensky, J. Isolation and properties of the α-carboxylase of wheat germ. J. Biol. Chem. 196 (1952) 375–388. [PMID: 12980978]
[EC 4.1.1.1 created 1961]
 
 
EC 4.1.1.2     
Accepted name: oxalate decarboxylase
Reaction: oxalate + H+ = formate + CO2
Other name(s): oxalate carboxy-lyase
Systematic name: oxalate carboxy-lyase (formate-forming)
Comments: The enzyme from Bacillus subtilis contains manganese and requires O2 for activity, even though there is no net redox change.
References:
1.  Jakoby, W.B., Ohmura, E. and Hayaishi, O. Enzymatic decarboxylation of oxalic acid. J. Biol. Chem. 222 (1956) 435–446. [PMID: 13367015]
2.  Tanner, A. and Bornemann, S. Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J. Bacteriol. 182 (2000) 5271–5273. [PMID: 10960116]
3.  Tanner, A., Bowater, L., Fairhurst, S.A. and Bornemann, S. Oxalate decarboxylase requires manganese and dioxygen for activity: Overexpression and characterization of Bacillus subtilis YvrK and YoaN. J. Biol. Chem. 276 (2001) 43627–43634. [PMID: 11546787]
[EC 4.1.1.2 created 1961]
 
 
EC 4.1.1.3      
Transferred entry: oxaloacetate decarboxylase. Now recognized to be two enzymes EC 7.2.4.2 [oxaloacetate decarboxylase (Na+ extruding)] and EC 4.1.1.112 (oxaloacetate decarboxylase).
[EC 4.1.1.3 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, deleted 2018]
 
 
EC 4.1.1.4     
Accepted name: acetoacetate decarboxylase
Reaction: acetoacetate + H+ = acetone + CO2
Other name(s): acetoacetic acid decarboxylase; acetoacetate carboxy-lyase
Systematic name: acetoacetate carboxy-lyase (acetone-forming)
References:
1.  Davies, R. Studies of the acetone-butanol fermentation. 4. Acetoacetic acid decarboxylase of Cl. acetobutylicum (BY). Biochem. J. 37 (1943) 230–238. [PMID: 16747621]
2.  Zerner, B., Coutts, S.M., Lederer, F., Waters, H.H. and Westheimer, F.H. Acetoacetate decarboxylase. Preparation of the enzyme. Biochemistry 5 (1966) 813–816. [PMID: 5911291]
3.  Ho, M.C., Menetret, J.F., Tsuruta, H. and Allen, K.N. The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature 459 (2009) 393–397. [PMID: 19458715]
[EC 4.1.1.4 created 1961]
 
 
EC 4.1.1.5     
Accepted name: acetolactate decarboxylase
Reaction: (2S)-2-hydroxy-2-methyl-3-oxobutanoate = (3R)-3-hydroxybutan-2-one + CO2
Other name(s): α-acetolactate decarboxylase; (S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase; (S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase [(R)-2-acetoin-forming]; (S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase [(3R)-3-hydroxybutan-2-one-forming]
Systematic name: (2S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase [(3R)-3-hydroxybutan-2-one-forming]
References:
1.  Hill, R.K., Sawada, S. and Arfin, S.M. Stereochemistry of valine and isoleucine biosynthesis. IV. Synthesis, configuration, and enzymatic specificity of α-acetolactate and α-aceto-α-hydroxybutyrate. Bioorg. Chem. 8 (1979) 175–189.
2.  Størmer, F.C. Isolation of crystalline pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. J. Biol. Chem. 242 (1967) 1756–1759. [PMID: 6024768]
[EC 4.1.1.5 created 1961]
 
 
EC 4.1.1.6     
Accepted name: cis-aconitate decarboxylase
Reaction: cis-aconitate = itaconate + CO2
Glossary: itaconate = 2-methylenesuccinate
cis-aconitate = (Z)-prop-1-ene-1,2,3-tricarboxylate
Other name(s): cis-aconitic decarboxylase; cis-aconitate carboxy-lyase; CAD1 (gene name); IRG1 (gene name)
Systematic name: cis-aconitate carboxy-lyase (itaconate-forming)
Comments: The enzyme has been characterized from the fungus Aspergillus terreus and from human macrophages. cf. EC 4.1.1.113, trans-aconitate decarboxylase.
References:
1.  Bentley, R. and Thiessen, C.P. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 226 (1957) 703–720. [PMID: 13438855]
2.  Dwiarti, L., Yamane, K., Yamatani, H., Kahar, P. and Okabe, M. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 94 (2002) 29–33. [PMID: 16233265]
3.  Kanamasa, S., Dwiarti, L., Okabe, M. and Park, E.Y. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 80 (2008) 223–229. [PMID: 18584171]
4.  Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., Buttini, M., Linster, C.L., Medina, E., Balling, R. and Hiller, K. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 110 (2013) 7820–7825. [PMID: 23610393]
[EC 4.1.1.6 created 1961, modified 2018]
 
 
EC 4.1.1.7     
Accepted name: benzoylformate decarboxylase
Reaction: phenylglyoxylate = benzaldehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
phenylglyoxylate = benzoylformate = 2-oxo-2-phenylacetate
Other name(s): phenylglyoxylate decarboxylase; benzoylformate carboxy-lyase; benzoylformate carboxy-lyase (benzaldehyde-forming)
Systematic name: phenylglyoxylate carboxy-lyase (benzaldehyde-forming)
Comments: A thiamine-diphosphate protein.
References:
1.  Gunsalus, C.F., Stanier, R.Y. and Gunsalus, I.C. The enzymatic conversion of mandelic acid to benzoic acid. III. Fractionation and properties of the soluble enzymes. J. Bacteriol. 66 (1953) 548–553. [PMID: 13108854]
[EC 4.1.1.7 created 1961]
 
 
EC 4.1.1.8     
Accepted name: oxalyl-CoA decarboxylase
Reaction: oxalyl-CoA = formyl-CoA + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): oxalyl coenzyme A decarboxylase; oxalyl-CoA carboxy-lyase
Systematic name: oxalyl-CoA carboxy-lyase (formyl-CoA-forming)
Comments: A thiamine-diphosphate protein.
References:
1.  Quayle, J.R. Carbon assimilation by Pseudomonas oxalaticus (OX1). 7. Decarboxylation of oxalyl-coenzyme A to formyl-coenzyme A. Biochem. J. 89 (1963) 492–503. [PMID: 14101969]
[EC 4.1.1.8 created 1961]
 
 
EC 4.1.1.9     
Accepted name: malonyl-CoA decarboxylase
Reaction: malonyl-CoA = acetyl-CoA + CO2
Other name(s): malonyl coenzyme A decarboxylase; malonyl-CoA carboxy-lyase
Systematic name: malonyl-CoA carboxy-lyase (acetyl-CoA-forming)
Comments: Specific for malonyl-CoA. The enzyme from Pseudomonas ovalis also catalyses the reaction of EC 2.8.3.3 malonate CoA-transferase.
References:
1.  Buckner, J.S., Kolattudy, P.E. and Poulose, A.J. Purification and properties of malonyl-coenzyme A decarboxylase, a regulatory enzyme from the uropygial gland of goose. Arch. Biochem. Biophys. 177 (1976) 539–551. [PMID: 827976]
2.  Takamura, Y. and Kitayama, Y. Purification and some properties of malonate decarboxylase from Pseudomonas ovalis: an oligomeric enzyme with bifunctional properties. Biochem. Int. 3 (1981) 483–491.
[EC 4.1.1.9 created 1961, deleted 1972, reinstated 1978]
 
 
EC 4.1.1.10      
Deleted entry: aminomalonate decarboxylase. Now included with EC 4.1.1.12, aspartate 4-decarboxylase
[EC 4.1.1.10 created 1961, deleted 1972]
 
 
EC 4.1.1.11     
Accepted name: aspartate 1-decarboxylase
Reaction: L-aspartate = β-alanine + CO2
Other name(s): aspartate α-decarboxylase; L-aspartate α-decarboxylase; aspartic α-decarboxylase; L-aspartate 1-carboxy-lyase
Systematic name: L-aspartate 1-carboxy-lyase (β-alanine-forming)
Comments: The Escherichia coli enzyme contains a pyruvoyl group.
References:
1.  Williamson, J.M. and Brown, G.M. Purification and properties of L-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli. J. Biol. Chem. 254 (1979) 8074–8082. [PMID: 381298]
[EC 4.1.1.11 created 1961, deleted 1972, reinstated 1984]
 
 
EC 4.1.1.12     
Accepted name: aspartate 4-decarboxylase
Reaction: L-aspartate = L-alanine + CO2
Other name(s): desulfinase; aminomalonic decarboxylase; aspartate β-decarboxylase; aspartate ω-decarboxylase; aspartic ω-decarboxylase; aspartic β-decarboxylase; L-aspartate β-decarboxylase; cysteine sulfinic desulfinase; L-cysteine sulfinate acid desulfinase; L-aspartate 4-carboxy-lyase
Systematic name: L-aspartate 4-carboxy-lyase (L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Also catalyses the decarboxylation of aminomalonate (formerly listed as EC 4.1.1.10), and the desulfination of 3-sulfino-L-alanine to sulfite and alanine.
References:
1.  Kakimoto, T., Kato, J., Shibitani, T., Nishimura, N. and Chibata, I. Crystalline L-aspartate β-decarboxylase of Pseudomonas dacunhae. I. Crystallization and some physiocochemical properties. J. Biol. Chem. 244 (1969) 353–358. [PMID: 5773301]
2.  Novogrodsky, A. and Meister, A. Control of aspartate β-decarboxylase activity by transamination. J. Biol. Chem. 239 (1964) 879–888. [PMID: 14154469]
3.  Palekar, A.G., Tate, S.S. and Meister, A. Inhibition of aspartate β-decarboxylase by aminomalonate. Stereospecific decarboxylation of aminomalonate to glycine. Biochemistry 9 (1970) 2310–2315. [PMID: 5424207]
4.  Wilson, E.M. and Kornberg, H.L. Properties of crystalline L-aspartate 4-carboxy-lyase from Achromobacter sp. Biochem. J. 88 (1963) 578–587. [PMID: 14071532]
[EC 4.1.1.12 created 1961, modified 1976 (EC 4.1.1.10 created 1961, incorporated 1972)]
 
 
EC 4.1.1.13      
Deleted entry:  carbamoylaspartate decarboxylase
[EC 4.1.1.13 created 1961, deleted 1972]
 
 
EC 4.1.1.14     
Accepted name: valine decarboxylase
Reaction: L-valine = 2-methylpropanamine + CO2
Other name(s): leucine decarboxylase; L-valine carboxy-lyase
Systematic name: L-valine carboxy-lyase (2-methylpropanamine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on L-leucine.
References:
1.  Sutton, C.R. and King, H.K. Inhibition of leucine decarboxylase by thiol-binding reagents. Arch. Biochem. Biophys. 96 (1962) 360–370. [PMID: 13918558]
[EC 4.1.1.14 created 1961]
 
 
EC 4.1.1.15     
Accepted name: glutamate decarboxylase
Reaction: L-glutamate = 4-aminobutanoate + CO2
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Other name(s): L-glutamic acid decarboxylase; L-glutamic decarboxylase; cysteic acid decarboxylase; L-glutamate α-decarboxylase; aspartate 1-decarboxylase; aspartic α-decarboxylase; L-aspartate-α-decarboxylase; γ-glutamate decarboxylase; L-glutamate 1-carboxy-lyase
Systematic name: L-glutamate 1-carboxy-lyase (4-aminobutanoate-forming)
Comments: A pyridoxal-phosphate protein. The brain enzyme also acts on L-cysteate, 3-sulfino-L-alanine and L-aspartate.
References:
1.  Ambe, L. and Sohonie, K. Purification and properties of glutamate decarboxylase from the field bean (Dolichos lablab). Enzymologia 26 (1963) 98–107. [PMID: 14081858]
2.  Nakano, Y. and Kitaoka, S. L-Aspartate α-decarboxylase in a cell-free system from Escherichia coli. J. Biochem. (Tokyo) 70 (1971) 327. [PMID: 4937550]
3.  Roberts, E. and Frankel, S. Further studies of glutamic acid decarboxylase in brain. J. Biol. Chem. 190 (1951) 505–512. [PMID: 14841200]
[EC 4.1.1.15 created 1961]
 
 
EC 4.1.1.16     
Accepted name: hydroxyglutamate decarboxylase
Reaction: 3-hydroxy-L-glutamate = 4-amino-3-hydroxybutanoate + CO2
Other name(s): 3-hydroxy-L-glutamate 1-carboxy-lyase
Systematic name: 3-hydroxy-L-glutamate 1-carboxy-lyase (4-amino-3-hydroxybutanoate-forming)
Comments: A pyridoxal-phosphate protein.
References:
1.  Umbreit, W.W. and Heneage, P. β-Hydroxyglutamic acid decarboxylase. J. Biol. Chem. 201 (1953) 15–20. [PMID: 13044771]
[EC 4.1.1.16 created 1961]
 
 
EC 4.1.1.17     
Accepted name: ornithine decarboxylase
Reaction: L-ornithine = putrescine + CO2
Glossary: putrescine = butane-1,4-diamine
Other name(s): SpeC; L-ornithine carboxy-lyase
Systematic name: L-ornithine carboxy-lyase (putrescine-forming)
Comments: A pyridoxal-phosphate protein.
References:
1.  Ono, M., Inoue, H., Suzuki, F. and Takeda, Y. Studies on ornithine decarboxylase from the liver of thioacetamide-treated rats. Purification and some properties. Biochim. Biophys. Acta 284 (1972) 285–297. [PMID: 5073764]
2.  Taylor, E.S. and Gale, E.F. Studies on bacterial amino-acid decarboxylases. 6. Codecarboxylase content and action of inhibitors. Biochem. J. 39 (1945) 52–58. [PMID: 16747854]
[EC 4.1.1.17 created 1961]
 
 
EC 4.1.1.18     
Accepted name: lysine decarboxylase
Reaction: L-lysine = cadaverine + CO2
Other name(s): L-lysine carboxy-lyase
Systematic name: L-lysine carboxy-lyase (cadaverine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on 5-hydroxy-L-lysine.
References:
1.  Gale, E.F. and Epps, H.M.R. Studies on bacterial amino-acid decarboxylases. 1. l(+)-lysine decarboxylase. Biochem. J. 38 (1944) 232–242. [PMID: 16747785]
2.  Soda, K. and Moriguchi, M. Crystalline lysine decarboxylase. Biochem. Biophys. Res. Commun. 34 (1969) 34–39. [PMID: 5762458]
[EC 4.1.1.18 created 1961]
 
 
EC 4.1.1.19     
Accepted name: arginine decarboxylase
Reaction: L-arginine = agmatine + CO2
Glossary: agmatine = (4-aminobutyl)guanidine
Other name(s): SpeA; L-arginine carboxy-lyase
Systematic name: L-arginine carboxy-lyase (agmatine-forming)
Comments: A pyridoxal-phosphate protein.
References:
1.  Blethen, S.L., Boeker, E.A. and Snell, E.E. Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J. Biol. Chem. 243 (1968) 1671–1677. [PMID: 4870599]
2.  Ramakrishna, S. and Adiga, P.R. Arginine decarboxylase from Lathyrus sativus seedlings. Purification and properties. Eur. J. Biochem. 59 (1975) 377–386. [PMID: 1252]
3.  Taylor, E.S. and Gale, E.F. Studies on bacterial amino-acid decarboxylases. 6. Codecarboxylase content and action of inhibitors. Biochem. J. 39 (1945) 52–58. [PMID: 16747854]
[EC 4.1.1.19 created 1961]
 
 
EC 4.1.1.20     
Accepted name: diaminopimelate decarboxylase
Reaction: meso-2,6-diaminoheptanedioate = L-lysine + CO2
Other name(s): diaminopimelic acid decarboxylase; meso-diaminopimelate decarboxylase; DAP-decarboxylase; meso-2,6-diaminoheptanedioate carboxy-lyase
Systematic name: meso-2,6-diaminoheptanedioate carboxy-lyase (L-lysine-forming)
Comments: A pyridoxal-phosphate protein.
References:
1.  Denman, R.F., Hoare, D.S. and Work, E. Diaminopimelic acid decarboxylase in pyridoxin-deficient Escherichia coli. Biochim. Biophys. Acta 16 (1955) 442–443. [PMID: 14378182]
[EC 4.1.1.20 created 1961]
 
 
EC 4.1.1.21     
Accepted name: phosphoribosylaminoimidazole carboxylase
Reaction: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate = 5-amino-1-(5-phospho-D-ribosyl)imidazole + CO2
Other name(s): 5-phosphoribosyl-5-aminoimidazole carboxylase; 5-amino-1-ribosylimidazole 5-phosphate carboxylase; AIR carboxylase; 1-(5-phosphoribosyl)-5-amino-4-imidazolecarboxylate carboxy-lyase; ADE2; class II PurE; 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate carboxy-lyase
Systematic name: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate carboxy-lyase [5-amino-1-(5-phospho-D-ribosyl)imidazole-forming]
Comments: While this is the reaction that occurs in vertebrates during purine biosynthesis, two enzymes are required to carry out the same reaction in Escherichia coli, namely EC 6.3.4.18, 5-(carboxyamino)imidazole ribonucleotide synthase and EC 5.4.99.18, 5-(carboxyamino)imidazole ribonucleotide mutase [3]. 5-Carboxyamino-1-(5-phospho-D-ribosyl)imidazole is not a substrate.
References:
1.  Lukens, L.N. and Buchanan, J.M. Biosynthesis of purines. XXIV. The enzymatic synthesis of 5-amino-1-ribosyl-4-imidazolecarboxylic acid 5′-phosphate from 5-amino-1-ribosylimidazole 5′-phosphate and carbon dioxide. J. Biol. Chem. 234 (1959) 1799–1805. [PMID: 13672967]
2.  Firestine, S.M., Poon, S.W., Mueller, E.J., Stubbe, J. and Davisson, V.J. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry 33 (1994) 11927–11934. [PMID: 7918411]
3.  Firestine, S.M., Misialek, S., Toffaletti, D.L., Klem, T.J., Perfect, J.R. and Davisson, V.J. Biochemical role of the Cryptococcus neoformans ADE2 protein in fungal de novo purine biosynthesis. Arch. Biochem. Biophys. 351 (1998) 123–134. [PMID: 9500840]
[EC 4.1.1.21 created 1961, modified 2000, modified 2006]
 
 
EC 4.1.1.22     
Accepted name: histidine decarboxylase
Reaction: L-histidine = histamine + CO2
Other name(s): L-histidine decarboxylase; L-histidine carboxy-lyase
Systematic name: L-histidine carboxy-lyase (histamine-forming)
Comments: A pyridoxal-phosphate protein (in animal tissues). The bacterial enzyme has a pyruvoyl residue as prosthetic group.
References:
1.  Epps, H.M.R. Studies on bacterial amino-acid decarboxylases. 4. l(–)-Histidine decarboxylase from Cl. welchii type A. Biochem. J. 39 (1945) 42–46. [PMID: 16747851]
2.  Riley, W.O. and Snell, E.E. Histidine decarboxylase of Lactobacillus 30a. IV. The presence of covalently bound pyruvate as the prosthetic group. Biochemistry 7 (1968) 3520–3528. [PMID: 5681461]
3.  Rosenthaler, J., Guirard, B.M., Chang, G.W. and Snell, E.E. Purification and properties of histidine decarboxylase from Lactobacillus 30a. Proc. Natl. Acad. Sci. USA 54 (1965) 152–158. [PMID: 5216347]
[EC 4.1.1.22 created 1961]
 
 
EC 4.1.1.23     
Accepted name: orotidine-5′-phosphate decarboxylase
Reaction: orotidine 5′-phosphate = UMP + CO2
Other name(s): orotidine-5′-monophosphate decarboxylase; orotodylate decarboxylase; orotidine phosphate decarboxylase; OMP decarboxylase; orotate monophosphate decarboxylase; orotidine monophosphate decarboxylase; orotidine phosphate decarboxylase; OMP-DC; orotate decarboxylase; orotidine 5′-phosphate decarboxylase; orotidylic decarboxylase; orotidylic acid decarboxylase; orotodylate decarboxylase; ODCase; orotic decarboxylase; orotidine-5′-phosphate carboxy-lyase
Systematic name: orotidine-5′-phosphate carboxy-lyase (UMP-forming)
Comments: The enzyme from higher eukaryotes is identical with EC 2.4.2.10 orotate phosphoribosyltransferase .
References:
1.  Jones, M.E., Kavipurapu, P.R. and Traut, T.W. Orotate phosphoribosyltransferase: orotidylate decarboxylase (Ehrlich ascites cell). Methods Enzymol. 51 (1978) 155–167. [PMID: 692383]
2.  Lieberman, I., Kornberg, A. and Simms, E.S. Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J. Biol. Chem. 215 (1955) 403–415. [PMID: 14392174]
3.  McClard, R.W., Black, M.J., Livingstone, L.R. and Jones, M.E. Isolation and initial characterization of the single polypeptide that synthesizes uridine 5′-monophosphate from orotate in Ehrlich ascites carcinoma. Purification by tandem affinity chromatography of uridine-5′-monophosphate synthase. Biochemistry 19 (1980) 4699–4706. [PMID: 6893554]
[EC 4.1.1.23 created 1961, modified 1986]
 
 
EC 4.1.1.24     
Accepted name: aminobenzoate decarboxylase
Reaction: 4(or 2)-aminobenzoate = aniline + CO2
Systematic name: aminobenzoate carboxy-lyase (aniline-forming)
Comments: A pyridoxal-phosphate protein.
References:
1.  McCullough, W.G., Piligian, J.T. and Daniel, I.J. Enzymatic decarboxylation of three aminobenzoates. J. Am. Chem. Soc. 79 (1957) 628–630.
[EC 4.1.1.24 created 1961]
 
 
EC 4.1.1.25     
Accepted name: tyrosine decarboxylase
Reaction: L-tyrosine = tyramine + CO2
Other name(s): L-tyrosine decarboxylase; L-(-)-tyrosine apodecarboxylase; L-tyrosine carboxy-lyase
Systematic name: L-tyrosine carboxy-lyase (tyramine-forming)
Comments: A pyridoxal-phosphate protein. The bacterial enzyme also acts on 3-hydroxytyrosine and, more slowly, on 3-hydroxyphenylalanine.
References:
1.  McGilvery, R.W. and Cohen, P.P. The decarboxylation of L-phenylalanine by Streptococcus faecalis R. J. Biol. Chem. 174 (1948) 813–816. [PMID: 18871240]
[EC 4.1.1.25 created 1961]
 
 
EC 4.1.1.26      
Deleted entry:  DOPA decarboxylase. Now included with EC 4.1.1.28 aromatic-L-amino-acid decarboxylase
[EC 4.1.1.26 created 1961, deleted 1972]
 
 
EC 4.1.1.27      
Deleted entry:  tryptophan decarboxylase. Now included with EC 4.1.1.28 aromatic-L-amino-acid decarboxylase
[EC 4.1.1.27 created 1961, deleted 1972]
 
 
EC 4.1.1.28     
Accepted name: aromatic-L-amino-acid decarboxylase
Reaction: (1) L-dopa = dopamine + CO2
(2) 5-hydroxy-L-tryptophan = 5-hydroxytryptamine + CO2
Glossary: dopamine = 4-(2-aminoethyl)benzene-1,2-diol
L-dopa = 3,4-dihydroxyphenylalanine
Other name(s): DOPA decarboxylase; tryptophan decarboxylase; hydroxytryptophan decarboxylase; L-DOPA decarboxylase; aromatic amino acid decarboxylase; 5-hydroxytryptophan decarboxylase; aromatic-L-amino-acid carboxy-lyase (tryptamine-forming)
Systematic name: aromatic-L-amino-acid carboxy-lyase
Comments: A pyridoxal-phosphate protein. The enzyme also acts on some other aromatic L-amino acids, including L-tryptophan, L-tyrosine and L-phenylalanine.
References:
1.  Christenson, J.G., Dairman, W. and Udenfriend, S. On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase (immunological titration-aromatic L-amino acid decarboxylase-serotonin-dopamine-norepinephrine). Proc. Natl. Acad. Sci. USA 69 (1972) 343–347. [PMID: 4536745]
2.  Lovenberg, W., Weissbach, H. and Udenfriend, S. Aromatic L-amino acid decarboxylase. J. Biol. Chem. 237 (1962) 89–93. [PMID: 14466899]
3.  McGilvery, R.W. and Cohen, P.P. The decarboxylation of L-phenylalanine by Streptococcus faecalis R. J. Biol. Chem. 174 (1948) 813–816. [PMID: 18871240]
4.  Sekeris, C.E. Zur Tyrosinstoffwechsel der Insekten. XII. Reinigung, Eigenschaften und Substratspezifität der DOPA-Decarboxylase. Hoppe-Seyler's Z. Physiol. Chem. 332 (1963) 70–78. [PMID: 14054806]
5.  Weissbach, H., Bogdanski, D.F., Redfield, B.G. and Udenfriend, S. Studies on the effect of vitamin B6 on 5-hydroxytryptamine (serotonin) formation. J. Biol. Chem. 227 (1957) 617–624. [PMID: 13462983]
[EC 4.1.1.28 created 1961 (EC 4.1.1.26 and EC 4.1.1.27 both created 1961 and incorporated 1972)]
 
 
EC 4.1.1.29     
Accepted name: sulfinoalanine decarboxylase
Reaction: 3-sulfino-L-alanine = hypotaurine + CO2
Other name(s): cysteine-sulfinate decarboxylase; L-cysteinesulfinic acid decarboxylase; cysteine-sulfinate decarboxylase; CADCase/CSADCase; CSAD; cysteic decarboxylase; cysteinesulfinic acid decarboxylase; cysteinesulfinate decarboxylase; sulfoalanine decarboxylase; 3-sulfino-L-alanine carboxy-lyase
Systematic name: 3-sulfino-L-alanine carboxy-lyase (hypotaurine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on L-cysteate. The 1992 edition of the Enzyme List erroneously gave the name sulfoalanine decarboxylase to this enzyme.
References:
1.  Guion-Rain, M.C., Portemer, C. and Chatagner, F. Rat liver cysteine sulfinate decarboxylase: purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim. Biophys. Acta 384 (1975) 265–276. [PMID: 236774]
2.  Jacobsen, J.G., Thomas, L.L. and Smith, L.H., Jr. Properties and distribution of mammalian L-cysteine sulfinate carboxy-lyases. Biochim. Biophys. Acta 85 (1964) 103–116. [PMID: 14159288]
[EC 4.1.1.29 created 1961, deleted 1972, reinstated 1976, modified 1983, modified 1999]
 
 
EC 4.1.1.30     
Accepted name: pantothenoylcysteine decarboxylase
Reaction: N-[(R)-pantothenoyl]-L-cysteine = pantetheine + CO2
Other name(s): pantothenylcysteine decarboxylase; N-[(R)-pantothenoyl]-L-cysteine carboxy-lyase
Systematic name: N-[(R)-pantothenoyl]-L-cysteine carboxy-lyase (pantetheine-forming)
References:
1.  Brown, G.M. Pantothenylcysteine, a precursor of pantotheine in Lactobacillus helveticus. J. Biol. Chem. 226 (1957) 651–661. [PMID: 13438850]
[EC 4.1.1.30 created 1961]
 
 
EC 4.1.1.31     
Accepted name: phosphoenolpyruvate carboxylase
Reaction: phosphate + oxaloacetate = phosphoenolpyruvate + HCO3-
Other name(s): phosphopyruvate (phosphate) carboxylase; PEP carboxylase; phosphoenolpyruvic carboxylase; PEPC; PEPCase; phosphate:oxaloacetate carboxy-lyase (phosphorylating)
Systematic name: phosphate:oxaloacetate carboxy-lyase (adding phosphate, phosphoenolpyruvate-forming)
Comments: This enzyme replenishes oxaloacetate in the tricarboxylic acid cycle when operating in the reverse direction. The reaction proceeds in two steps: formation of carboxyphosphate and the enolate form of pyruvate, followed by carboxylation of the enolate and release of phosphate.
References:
1.  Chen, J.H. and Jones, R.F. Multiple forms of phosphoenolpyruvate carboxylase from Chlamydomonas reeinhardtii. Biochim. Biophys. Acta 214 (1970) 318–325. [PMID: 5501374]
2.  Mazelis, M. and Vennesland, B. Carbon dioxide fixation into oxalacetate in higher plants. Plant Physiol. 32 (1957) 591–600. [PMID: 16655053]
3.  Tovar-Mendez, A., Mujica-Jimenez, C. and Munoz-Clares, R.A. Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol. 123 (2000) 149–160. [PMID: 10806233]
[EC 4.1.1.31 created 1961, modified 2011]
 
 
EC 4.1.1.32     
Accepted name: phosphoenolpyruvate carboxykinase (GTP)
Reaction: GTP + oxaloacetate = GDP + phosphoenolpyruvate + CO2
Other name(s): phosphoenolpyruvate carboxylase (ambiguous); phosphopyruvate carboxylase (ambiguous); phosphopyruvate (guanosine triphosphate) carboxykinase; phosphoenolpyruvic carboxykinase (GTP); phosphopyruvate carboxylase (GTP); phosphoenolpyruvic carboxylase (GTP); phosphoenolpyruvic carboxykinase (ambiguous); phosphoenolpyruvate carboxykinase (ambiguous); PEP carboxylase (ambiguous); GTP:oxaloacetate carboxy-lyase (transphosphorylating)
Systematic name: GTP:oxaloacetate carboxy-lyase (adding GTP; phosphoenolpyruvate-forming)
Comments: ITP can act as phosphate donor.
References:
1.  Change, H.-C. and Lane, M.D. The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J. Biol. Chem. 241 (1966) 2413–2420. [PMID: 5911620]
2.  Kurahashi, K., Pennington, R.J. and Utter, M.J. Nucleotide specificity of oxalacetic carboxylase. J. Biol. Chem. 226 (1957) 1059–1075. [PMID: 13438893]
[EC 4.1.1.32 created 1961]
 
 
EC 4.1.1.33     
Accepted name: diphosphomevalonate decarboxylase
Reaction: ATP + (R)-5-diphosphomevalonate = ADP + phosphate + isopentenyl diphosphate + CO2
Other name(s): pyrophosphomevalonate decarboxylase; mevalonate-5-pyrophosphate decarboxylase; pyrophosphomevalonic acid decarboxylase; 5-pyrophosphomevalonate decarboxylase; mevalonate 5-diphosphate decarboxylase; ATP:(R)-5-diphosphomevalonate carboxy-lyase (dehydrating)
Systematic name: ATP:(R)-5-diphosphomevalonate carboxy-lyase (adding ATP; isopentenyl-diphosphate-forming)
References:
1.  Bloch, K., Chaykin, S., Phillips, A.H. and de Waard, A. Mevalonic acid pyrophosphate and isopentenyl pyrophosphate. J. Biol. Chem. 234 (1959) 2595–2604. [PMID: 13801508]
[EC 4.1.1.33 created 1961]
 
 
EC 4.1.1.34     
Accepted name: dehydro-L-gulonate decarboxylase
Reaction: 3-dehydro-L-gulonate = L-xylulose + CO2
Other name(s): keto-L-gulonate decarboxylase; 3-keto-L-gulonate decarboxylase; 3-dehydro-L-gulonate carboxy-lyase
Systematic name: 3-dehydro-L-gulonate carboxy-lyase (L-xylulose-forming)
References:
1.  Smiley, J.D. and Ashwell, G. Purification and properties of β-L-hydroxy acid dehydrogenase. II. Isolation of β-keto-L-gluconic acid, an intermediate in L-xylulose biosynthesis. J. Biol. Chem. 236 (1961) 357–364.
[EC 4.1.1.34 created 1965]
 
 
EC 4.1.1.35     
Accepted name: UDP-glucuronate decarboxylase
Reaction: UDP-D-glucuronate = UDP-D-xylose + CO2
Other name(s): uridine-diphosphoglucuronate decarboxylase; UDP-D-glucuronate carboxy-lyase
Systematic name: UDP-D-glucuronate carboxy-lyase (UDP-D-xylose-forming)
Comments: Requires NAD+.
References:
1.  Ankel, H. and Feingold, D.S. Biosynthesis of uridine diphosphate D-xylose. 1. Uridine diphosphate glucuronate carboxy-lyase of wheat germ. Biochemistry 4 (1965) 2468–2475.
[EC 4.1.1.35 created 1965]
 
 
EC 4.1.1.36     
Accepted name: phosphopantothenoylcysteine decarboxylase
Reaction: N-[(R)-4′-phosphopantothenoyl]-L-cysteine = pantotheine 4′-phosphate + CO2
Other name(s): 4-phosphopantotheoylcysteine decarboxylase; 4-phosphopantothenoyl-L-cysteine decarboxylase; PPC-decarboxylase; N-[(R)-4′-phosphopantothenoyl]-L-cysteine carboxy-lyase
Systematic name: N-[(R)-4′-phosphopantothenoyl]-L-cysteine carboxy-lyase (pantotheine-4′-phosphate-forming)
References:
1.  Brown, G.M. Requirement of cytidine triphosphate for the biosynthesis of phosphopantetheine. J. Am. Chem. Soc. 80 (1958) 3161.
2.  Brown, G.M. The metabolism of pantothenic acid. J. Biol. Chem. 234 (1959) 370–378. [PMID: 13630913]
[EC 4.1.1.36 created 1965]
 
 
EC 4.1.1.37     
Accepted name: uroporphyrinogen decarboxylase
Reaction: uroporphyrinogen III = coproporphyrinogen III + 4 CO2
Other name(s): uroporphyrinogen III decarboxylase; porphyrinogen carboxy-lyase; porphyrinogen decarboxylase; uroporphyrinogen-III carboxy-lyase
Systematic name: uroporphyrinogen-III carboxy-lyase (coproporphyrinogen-III-forming)
Comments: Acts on a number of porphyrinogens.
References:
1.  Mauzerall, D. and Granick, S. Porphyrin biosynthesis in erythrocytes. III. Uroporphyrinogen and its decarboxylase. J. Biol. Chem. 232 (1958) 1141–1162. [PMID: 13549492]
2.  Tomio, J.M., Garcia, R.C., San Martin de Viale, L.C. and Grinstein, M. Porphyrin biosynthesis. VII. Porphyrinogen carboxy-lyase from avian erythrocytes. Purification and properties. Biochim. Biophys. Acta 198 (1970) 353–363. [PMID: 4984554]
[EC 4.1.1.37 created 1965]
 
 
EC 4.1.1.38     
Accepted name: phosphoenolpyruvate carboxykinase (diphosphate)
Reaction: diphosphate + oxaloacetate = phosphate + phosphoenolpyruvate + CO2
Other name(s): phosphopyruvate carboxylase (ambiguous); PEP carboxyphosphotransferase (ambiguous); PEP carboxykinase (ambiguous); phosphopyruvate carboxykinase (pyrophosphate); PEP carboxylase (ambiguous); phosphopyruvate carboxykinase (ambiguous); phosphoenolpyruvic carboxykinase (ambiguous); phosphoenolpyruvic carboxylase (ambiguous); phosphoenolpyruvate carboxytransphosphorylase (ambiguous); phosphoenolpyruvate carboxykinase (ambiguous); phosphoenolpyruvic carboxykinase; phosphoenolpyruvic carboxylase; PEPCTrP; phosphoenolpyruvic carboxykinase (pyrophosphate); phosphoenolpyruvic carboxylase (pyrophosphate); phosphoenolpyruvate carboxylase (ambiguous); phosphoenolpyruvate carboxyphosphotransferase (ambiguous); phosphoenolpyruvic carboxytransphosphorylase (ambiguous); phosphoenolpyruvate carboxylase (pyrophosphate); phosphopyruvate carboxylase (pyrophosphate); diphosphate:oxaloacetate carboxy-lyase (transphosphorylating)
Systematic name: diphosphate:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming)
Comments: Also catalyses the reaction: phosphoenolpyruvate + phosphate = pyruvate + diphosphate.
References:
1.  Lochmuller, H., Wood, H.G. and Davis, J.J. Phosphoenolpyruvate carboxytransphosphorylase. II. Crystallization and properties. J. Biol. Chem. 241 (1966) 5678–5691. [PMID: 4288896]
[EC 4.1.1.38 created 1965]
 
 
EC 4.1.1.39     
Accepted name: ribulose-bisphosphate carboxylase
Reaction: 2 3-phospho-D-glycerate + 2 H+ = D-ribulose 1,5-bisphosphate + CO2 + H2O
Other name(s): D-ribulose 1,5-diphosphate carboxylase; D-ribulose-1,5-bisphosphate carboxylase; RuBP carboxylase; carboxydismutase; diphosphoribulose carboxylase; ribulose 1,5-bisphosphate carboxylase; ribulose 1,5-bisphosphate carboxylase/oxygenase; ribulose 1,5-diphosphate carboxylase; ribulose 1,5-diphosphate carboxylase/oxygenase; ribulose bisphosphate carboxylase/oxygenase; ribulose diphosphate carboxylase; ribulose diphosphate carboxylase/oxygenase; rubisco; 3-phospho-D-glycerate carboxy-lyase (dimerizing)
Systematic name: 3-phospho-D-glycerate carboxy-lyase (dimerizing; D-ribulose-1,5-bisphosphate-forming)
Comments: Will utilize O2 instead of CO2, forming 3-phospho-D-glycerate and 2-phosphoglycolate.
References:
1.  Bowles, G., Ogren, W.L. and Hageman, R.H. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45 (1971) 716–722. [PMID: 4331471]
2.  Wishnick, M., Lane, M.D., Scrutton, M.C. and Mildvan, A.S. The presence of tightly bound copper in ribulose diphosphate carboxylase from spinach. J. Biol. Chem. 244 (1969) 5761–5763. [PMID: 4310607]
[EC 4.1.1.39 created 1965, modified 2001, modified 2003]
 
 
EC 4.1.1.40     
Accepted name: hydroxypyruvate decarboxylase
Reaction: hydroxypyruvate = glycolaldehyde + CO2
Other name(s): hydroxypyruvate carboxy-lyase
Systematic name: hydroxypyruvate carboxy-lyase (glycolaldehyde-forming)
References:
1.  Hedrick, J.L. and Sallach, H.J. The nonoxidative decarboxylation of hydroxypyruvate in mammalian systems. Arch. Biochem. Biophys. 105 (1964) 261–269. [PMID: 14186730]
[EC 4.1.1.40 created 1972]
 
 
EC 4.1.1.41      
Transferred entry: (S)-methylmalonyl-CoA decarboxylase. Now EC 7.2.4.3, (S)-methylmalonyl-CoA decarboxylase
[EC 4.1.1.41 created 1972, modified 1983, modified 1986, deleted 2018]
 
 
EC 4.1.1.42     
Accepted name: carnitine decarboxylase
Reaction: carnitine = 2-methylcholine + CO2
Other name(s): carnitine carboxy-lyase
Systematic name: carnitine carboxy-lyase (2-methylcholine-forming)
Comments: Requires ATP.
References:
1.  Khairallah, E.A. and Wolf, G. Carnitine decarboxylase. The conversion of carnitine to β-methylcholine. J. Biol. Chem. 242 (1967) 32–39. [PMID: 6016331]
[EC 4.1.1.42 created 1972]
 
 
EC 4.1.1.43     
Accepted name: phenylpyruvate decarboxylase
Reaction: phenylpyruvate = phenylacetaldehyde + CO2
Glossary: phenylpyruvate = 3-phenyl-2-oxopropanoate
Other name(s): phenylpyruvate carboxy-lyase; phenylpyruvate carboxy-lyase (phenylacetaldehyde-forming)
Systematic name: 3-phenyl-2-oxopropanoate carboxy-lyase (phenylacetaldehyde-forming)
Comments: The enzyme from the bacterium Azospirillum brasilense also acts on some other substrates, including (indol-3-yl)pyruvate, with much lower efficiency. However, it only possesses classical Michaelis-Menten kinetics with phenylpyruvate. Aliphatic 2-oxo acids longer that 2-oxohexanoate are not substrates. cf. EC 4.1.1.74, indolepyruvate decarboxylase.
References:
1.  Asakawa, T., Wada, H. and Yamano, T. Enzymatic conversion of phenylpyruvate to phenylacetate. Biochim. Biophys. Acta 170 (1968) 375–391. [PMID: 4303395]
2.  Spaepen, S., Versees, W., Gocke, D., Pohl, M., Steyaert, J. and Vanderleyden, J. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J. Bacteriol. 189 (2007) 7626–7633. [PMID: 17766418]
[EC 4.1.1.43 created 1972]
 
 
EC 4.1.1.44     
Accepted name: 4-carboxymuconolactone decarboxylase
Reaction: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 4,5-dihydro-5-oxofuran-2-acetate + CO2
Glossary: 4-carboxymuconolactone = 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate
Other name(s): γ-4-carboxymuconolactone decarboxylase; 4-carboxymuconolactone carboxy-lyase; 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Systematic name: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 4.1.1.44 created 1972]
 
 
EC 4.1.1.45     
Accepted name: aminocarboxymuconate-semialdehyde decarboxylase
Reaction: 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate = 2-aminomuconate semialdehyde + CO2
Glossary: aminocarboxymuconate semialdehyde = 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate
Other name(s): picolinic acid carboxylase; picolinic acid decarboxylase; α-amino-β-carboxymuconate-ε-semialdehade decarboxylase; α-amino-β-carboxymuconate-ε-semialdehyde β-decarboxylase; 2-amino-3-(3-oxoprop-2-enyl)but-2-enedioate carboxy-lyase; 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate carboxy-lyase
Systematic name: 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate carboxy-lyase (2-aminomuconate-semialdehyde-forming)
Comments: Product rearranges non-enzymically to picolinate.
References:
1.  Ichiyama, A., Nakamura, S., Kawai, H., Honjo, T., Nishizuka, Y., Hayaishi, O. and Senoh, S. Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues. II. Enzymic formation of α-aminomuconic acid from 3-hydroxyanthranilic acid. J. Biol. Chem. 240 (1965) 740–749. [PMID: 14275130]
[EC 4.1.1.45 created 1972]
 
 
EC 4.1.1.46     
Accepted name: o-pyrocatechuate decarboxylase
Reaction: 2,3-dihydroxybenzoate = catechol + CO2
Other name(s): 2,3-dihydroxybenzoate carboxy-lyase
Systematic name: 2,3-dihydroxybenzoate carboxy-lyase (catechol-forming)
References:
1.  Subba Rao, P.V., Moore, K., Towers, G.H.N. O-Pyrocatechiuc acid carboxy-lyase from Aspergillus niger. Arch. Biochem. Biophys. 122 (1967) 466–473. [PMID: 6066253]
[EC 4.1.1.46 created 1972]
 
 
EC 4.1.1.47     
Accepted name: tartronate-semialdehyde synthase
Reaction: 2 glyoxylate = 2-hydroxy-3-oxopropanoate + CO2
Glossary: 2-hydroxy-3-oxopropanoate = tartronate semialdehyde
Other name(s): tartronate semialdehyde carboxylase; glyoxylate carbo-ligase; glyoxylic carbo-ligase; hydroxymalonic semialdehyde carboxylase; tartronic semialdehyde carboxylase; glyoxalate carboligase; glyoxylate carboxy-lyase (dimerizing); glyoxylate carboxy-lyase (dimerizing; tartronate-semialdehyde-forming)
Systematic name: glyoxylate carboxy-lyase (dimerizing; 2-hydroxy-3-oxopropanoate-forming)
Comments: A flavoprotein.
References:
1.  Gupta, N.K. and Vennesland, B. Glyoxylate carboligase of Escherichia coli: a flavoprotein. J. Biol. Chem. 239 (1964) 3787–3789. [PMID: 14257608]
2.  Krakow, G. and Barkulis, S.S. Conversion of glyoxylate to hydroxypyruvate by extracts of Escherichia coli. Biochim. Biophys. Acta 21 (1956) 593–594. [PMID: 13363977]
[EC 4.1.1.47 created 1972]
 
 
EC 4.1.1.48     
Accepted name: indole-3-glycerol-phosphate synthase
Reaction: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate = 1-C-(indol-3-yl)glycerol 3-phosphate + CO2 + H2O
Other name(s): indoleglycerol phosphate synthetase; indoleglycerol phosphate synthase; indole-3-glycerophosphate synthase; 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase (cyclizing)
Systematic name: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase [cyclizing; 1-C-(indol-3-yl)glycerol-3-phosphate-forming]
Comments: In some organisms, this enzyme is part of a multifunctional protein, together with one or more other components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphoribosyltransferase), EC 4.1.3.27 (anthranilate synthase), EC 4.2.1.20 (tryptophan synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)].
References:
1.  Creighton, T.E. and Yanofsky, C. Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. J. Biol. Chem. 241 (1966) 4616–4624. [PMID: 5332729]
2.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
3.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [PMID: 3535653]
[EC 4.1.1.48 created 1972]
 
 
EC 4.1.1.49     
Accepted name: phosphoenolpyruvate carboxykinase (ATP)
Reaction: ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO2
Other name(s): phosphopyruvate carboxylase (ATP); phosphoenolpyruvate carboxylase (ambiguous); phosphoenolpyruvate carboxykinase (ambiguous); phosphopyruvate carboxykinase (adenosine triphosphate); PEP carboxylase (ambiguous); PEP carboxykinase (ambiguous); PEPCK (ATP); PEPK; PEPCK; phosphoenolpyruvic carboxylase (ambiguous); phosphoenolpyruvic carboxykinase (ambiguous); phosphoenolpyruvate carboxylase (ATP); phosphopyruvate carboxykinase (ambiguous); ATP:oxaloacetate carboxy-lyase (transphosphorylating)
Systematic name: ATP:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming)
References:
1.  Cannata, J.J.B. Phosphoenolpyruvate carboxykinase from bakers' yeast. Isolation of the enzyme and study of its physical properties. J. Biol. Chem. 245 (1970) 792–798. [PMID: 5416663]
2.  Cannata, J.J.B. and Stoppani, A.O.M. Phosphopyruvate carboxylase from baker's yeast. I. Isolation, purification, and characterization. J. Biol. Chem. 238 (1963) 1196–1207. [PMID: 14018315]
3.  Cannata, J.J.B. and Stoppani, A.O.M. Phosphopyruvate carboxylase from baker's yeast. II. Properties of enzyme. J. Biol. Chem. 238 (1963) 1208–1212. [PMID: 14018316]
[EC 4.1.1.49 created 1972]
 
 
EC 4.1.1.50     
Accepted name: adenosylmethionine decarboxylase
Reaction: S-adenosyl-L-methionine = S-adenosyl 3-(methylsulfanyl)propylamine + CO2
Glossary: S-adenosyl 3-(methylsulfanyl)propylamine = (3-aminopropyl){[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}methylsulfonium
Other name(s): S-adenosylmethionine decarboxylase; S-adenosyl-L-methionine decarboxylase; S-adenosyl-L-methionine carboxy-lyase; S-adenosyl-L-methionine carboxy-lyase [(5-deoxy-5-adenosyl)(3-aminopropyl)methylsulfonium-salt-forming]
Systematic name: S-adenosyl-L-methionine carboxy-lyase [S-adenosyl 3-(methylsulfanyl)propylamine-forming]
Comments: The Escherichia coli enzyme contains a pyruvoyl group.
References:
1.  Anton, D.L. and Kutny, R. Escherichia coli S-adenosylmethionine decarboxylase. Subunit structure, reductive amination, and NH2-terminal sequences. J. Biol. Chem. 262 (1987) 2817–2822. [PMID: 3546296]
2.  Tabor, C.W. Adenosylmethionine decarboxylase. Methods Enzymol. 5 (1962) 756–760.
[EC 4.1.1.50 created 1972]
 
 
EC 4.1.1.51     
Accepted name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-decarboxylase
Reaction: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate = 3-hydroxy-2-methylpyridine-5-carboxylate + CO2
Other name(s): 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase
Systematic name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase (3-hydroxy-2-methylpyridine-5-carboxylate-forming)
References:
1.  Snell, E.E., Smucker, A.A., Ringelmann, E. and Lynen, F. Die bakterielle Oxydation des Vitamin B6. IV. Die enzymatische Decarboxylierung von 2-Methyl-3-hydroxypyridine-4,5-dicarbonsäure. Biochem. Z. 341 (1964) 109–119. [PMID: 14339645]
[EC 4.1.1.51 created 1972]
 
 
EC 4.1.1.52     
Accepted name: 6-methylsalicylate decarboxylase
Reaction: 6-methylsalicylate = 3-methylphenol + CO2
Glossary: 3-methylphenol = 3-cresol = m-cresol
Other name(s): 6-methylsalicylic acid (2,6-cresotic acid) decarboxylase; 6-MSA decarboxylase; 6-methylsalicylate carboxy-lyase
Systematic name: 6-methylsalicylate carboxy-lyase (3-methylphenol-forming)
References:
1.  Light, R.J. 6-Methylsalicylic acid decarboxylase from Penicillium patulum. Biochim. Biophys. Acta 191 (1969) 430–438. [PMID: 5354271]
2.  Vogel, G. and Lynen, F. 6-Methylsalicylsäure-Decarboxylase. Naturwissenschaften 57 (1970) 664.
[EC 4.1.1.52 created 1972, modified 2011]
 
 
EC 4.1.1.53     
Accepted name: phenylalanine decarboxylase
Reaction: L-phenylalanine = phenylethylamine + CO2
Other name(s): L-phenylalanine decarboxylase; aromatic L-amino acid decarboxylase (ambiguous); L-phenylalanine carboxy-lyase
Systematic name: L-phenylalanine carboxy-lyase (phenylethylamine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on tyrosine and other aromatic amino acids.
References:
1.  Lovenberg, W., Weissbach, H. and Udenfriend, S. Aromatic L-amino acid decarboxylase. J. Biol. Chem. 237 (1962) 89–93. [PMID: 14466899]
2.  Schulz, A.R. and Oliner, L. The possible role of thyroid aromatic amino acid decarboxylase in thyroxine biosynthesis. Life Sci. 6 (1967) 873–880. [PMID: 6034195]
[EC 4.1.1.53 created 1972]
 
 
EC 4.1.1.54     
Accepted name: dihydroxyfumarate decarboxylase
Reaction: dihydroxyfumarate = 2-hydroxy-3-oxopropanoate + CO2
Glossary: 2-hydroxy-3-oxopropanoate = tartronate semialdehyde
Other name(s): dihydroxyfumarate carboxy-lyase; dihydroxyfumarate carboxy-lyase (tartronate-semialdehyde-forming)
Systematic name: dihydroxyfumarate carboxy-lyase (2-hydroxy-3-oxopropanoate-forming)
References:
1.  Fukumaga, K. Metabolism of dihydroxyfumarate, hydroxypyruvate, and their related compounds. I. Enzymic formation of xylulose in liver. J. Biochem. (Tokyo) 47 (1960) 741–754.
[EC 4.1.1.54 created 1972]
 
 
EC 4.1.1.55     
Accepted name: 4,5-dihydroxyphthalate decarboxylase
Reaction: 4,5-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 4,5-dihydroxyphthalate carboxy-lyase
Systematic name: 4,5-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
References:
1.  Ribbons, D.W. and Evans, W.C. Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem. J. 76 (1966) 310–318. [PMID: 16748829]
[EC 4.1.1.55 created 1972]
 
 
EC 4.1.1.56     
Accepted name: 3-oxolaurate decarboxylase
Reaction: 3-oxododecanoate = 2-undecanone + CO2
Other name(s): β-ketolaurate decarboxylase; β-ketoacyl decarboxylase; 3-oxododecanoate carboxy-lyase
Systematic name: 3-oxododecanoate carboxy-lyase (2-undecanone-forming)
Comments: Also decarboxylates other C14 to C16 oxo acids.
References:
1.  Franke, W., Platzeck, A. and Eichhorn, G. [On the knowledge of fatty acid catabolism by mold fungi. III. On a decarboxylase for average β-ketomonocarbonic acids (β-ketolaurate decarboxylase)] Arch. Mikrobiol. 40 (1961) 73–93. [PMID: 13701396]
[EC 4.1.1.56 created 1972]
 
 
EC 4.1.1.57     
Accepted name: methionine decarboxylase
Reaction: L-methionine = 3-(methylsulfanyl)propanamine + CO2
Other name(s): L-methionine decarboxylase; L-methionine carboxy-lyase; L-methionine carboxy-lyase (3-methylthiopropanamine-forming)
Systematic name: L-methionine carboxy-lyase [3-(methylsulfanyl)propanamine-forming]
References:
1.  Hagion, H. and Nakayama, K. Amino acid metabolism in microorganisms. Part IV. L-Methionine decarboxylase produced by Streptomyces strain. Agric. Biol. Chem. 32 (1968) 727–733.
[EC 4.1.1.57 created 1972]
 
 
EC 4.1.1.58     
Accepted name: orsellinate decarboxylase
Reaction: orsellinate = orcinol + CO2
Glossary: orsellinate = 2,4-dihydroxy-6-methylbenzoate
Other name(s): orsellinate carboxy-lyase
Systematic name: 2,4-dihydroxy-6-methylbenzoate carboxy-lyase (orcinol-forming)
References:
1.  Pettersson, G. An orsellinic acid decarboxylase isolated from Gliocladium roseum. Acta Chem. Scand. 19 (1965) 2013–2021.
[EC 4.1.1.58 created 1972]
 
 
EC 4.1.1.59     
Accepted name: gallate decarboxylase
Reaction: 3,4,5-trihydroxybenzoate = 1,2,3-trihydroxybenzene + CO2
Glossary: 3,4,5-trihydroxybenzoate = gallate
1,2,3-trihydroxybenzene = pyrogallol
Other name(s): gallic acid decarboxylase; gallate carboxy-lyase; 3,4,5-trihydroxybenzoate carboxy-lyase (pyrogallol-forming)
Systematic name: 3,4,5-trihydroxybenzoate carboxy-lyase (1,2,3-trihydroxybenzene-forming)
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
2.  Zeida, M., Wieser, M., Yoshida, T., Sugio, T. and Nagasawa, T. Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T7. Appl. Environ. Microbiol. 64 (1998) 4743–4747. [PMID: 9835557]
3.  Jimenez, N., Curiel, J.A., Reveron, I., de Las Rivas, B. and Munoz, R. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl. Environ. Microbiol. 79 (2013) 4253–4263. [PMID: 23645198]
[EC 4.1.1.59 created 1972]
 
 
EC 4.1.1.60     
Accepted name: stipitatonate decarboxylase
Reaction: stipitatonate = stipitatate + CO2
Glossary: stipitatonate = 4,7-dihydroxy-1H-cyclohepta[c]furan-1,3,6-trione
stipitatate = 3,6-dihydroxy-5-oxocyclohepta-1,3,6-triene-1-carboxylate
Other name(s): stipitatonate carboxy-lyase (decyclizing); stipitatonate carboxy-lyase (decyclizing, stipitatate-forming)
Systematic name: stipitatonate carboxy-lyase (ring-opening, stipitatate-forming)
References:
1.  Bentley, R. and Thiessen, C.P. Biosynthesis of tropolones in Penicillium stipitatum. V. Preparation and properties of stipitatonic acid decarboxylase. J. Biol. Chem. 238 (1963) 3811–3816. [PMID: 14109225]
[EC 4.1.1.60 created 1972]
 
 
EC 4.1.1.61     
Accepted name: 4-hydroxybenzoate decarboxylase
Reaction: 4-hydroxybenzoate = phenol + CO2
Other name(s): p-hydroxybenzoate decarboxylase; 4-hydroxybenzoate carboxy-lyase
Systematic name: 4-hydroxybenzoate carboxy-lyase (phenol-forming)
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
2.  Tschech, A. and Fuchs, G. Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate - in vitro study of isotope exchange between (CO2)-C-14 and 4-hydroxybenzoate. Arch. Microbiol. 152 (1989) 594–599.
[EC 4.1.1.61 created 1972]
 
 
EC 4.1.1.62     
Accepted name: gentisate decarboxylase
Reaction: 2,5-dihydroxybenzoate = hydroquinone + CO2
Glossary: gentisate = 2,5-dihydroxybenzoate
Other name(s): 2,5-dihydroxybenzoate decarboxylase; gentisate carboxy-lyase
Systematic name: 2,5-dihydroxybenzoate carboxy-lyase (hydroquinone-forming)
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
[EC 4.1.1.62 created 1972]
 
 
EC 4.1.1.63     
Accepted name: protocatechuate decarboxylase
Reaction: 3,4-dihydroxybenzoate = catechol + CO2
Glossary: protocatechuate = 3,4-dihydroxybenzoate
Other name(s): 3,4-dihydrobenzoate decarboxylase; protocatechuate carboxy-lyase
Systematic name: 3,4-dihydroxybenzoate carboxy-lyase (catechol-forming)
References:
1.  Grant, D.J.W. and Patel, J.C. Non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid, and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). J. Microbiol. Serol. 35 (1969) 325–343. [PMID: 5309907]
[EC 4.1.1.63 created 1972]
 
 
EC 4.1.1.64     
Accepted name: 2,2-dialkylglycine decarboxylase (pyruvate)
Reaction: 2,2-dialkylglycine + pyruvate = dialkyl ketone + CO2 + L-alanine
Other name(s): dialkyl amino acid (pyruvate) decarboxylase; α-dialkyl amino acid transaminase; 2,2-dialkyl-2-amino acid-pyruvate aminotransferase; L-alanine-α-ketobutyrate aminotransferase; dialkylamino-acid decarboxylase (pyruvate); 2,2-dialkylglycine carboxy-lyase (amino-transferring)
Systematic name: 2,2-dialkylglycine carboxy-lyase (amino-transferring; L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Acts on 2-amino-2-methylpropanoate (i.e. 2-methylalanine), 2-amino-2-methylbutanoate and 1-aminocyclopentanecarboxylate.
References:
1.  Bailey, G.B. and Dempsey, W.B. Purification and properties of an α-dialkyl amino acid transaminase. Biochemistry 6 (1967) 1526–1533.
[EC 4.1.1.64 created 1972]
 
 
EC 4.1.1.65     
Accepted name: phosphatidylserine decarboxylase
Reaction: phosphatidyl-L-serine = phosphatidylethanolamine + CO2
Other name(s): PS decarboxylase; phosphatidyl-L-serine carboxy-lyase
Systematic name: phosphatidyl-L-serine carboxy-lyase (phosphatidylethanolamine-forming)
Comments: A pyridoxal-phosphate protein. In Escherichia coli, the prosthetic group is a pyruvoyl group.
References:
1.  Kanfer, J. and Kennedy, E.P. Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli. J. Biol. Chem. 239 (1964) 1720–1726. [PMID: 14213340]
2.  Satre, M. and Kennedy, E.P. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli. J. Biol. Chem. 253 (1978) 479–483. [PMID: 338609]
[EC 4.1.1.65 created 1976]
 
 
EC 4.1.1.66     
Accepted name: uracil-5-carboxylate decarboxylase
Reaction: uracil 5-carboxylate = uracil + CO2
Other name(s): uracil-5-carboxylic acid decarboxylase; uracil-5-carboxylate carboxy-lyase
Systematic name: uracil-5-carboxylate carboxy-lyase (uracil-forming)
References:
1.  Palmatier, R.D., McCroskey, R.P. and Abbott, M.T. The enzymatic conversion of uracil 5-carboxylic acid to uracil and carbon dioxide. J. Biol. Chem. 245 (1970) 6706–6710. [PMID: 5482775]
[EC 4.1.1.66 created 1976]
 
 
EC 4.1.1.67     
Accepted name: UDP-galacturonate decarboxylase
Reaction: UDP-D-galacturonate = UDP-L-arabinose + CO2
Other name(s): UDP-galacturonic acid decarboxylase; UDPGalUA carboxy lyase; UDP-D-galacturonate carboxy-lyase
Systematic name: UDP-D-galacturonate carboxy-lyase (UDP-L-arabinose-forming)
References:
1.  Fan, D.-F. and Feingold, D.S. UDPgalacturonic acid decarboxylase from Ampullariella digitata. Methods Enzymol. 28B (1972) 438–439.
[EC 4.1.1.67 created 1984]
 
 
EC 4.1.1.68     
Accepted name: 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase
Reaction: (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (4Z)-2-oxohept-4-enedioate + CO2 (overall reaction)
(1a) (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate + CO2
(1b) (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate = (4Z)-2-oxohept-4-enedioate
Glossary: 5-carboxy-2-oxohept-3-enedioate = 5-oxopent-3-ene-1,2,5-tricarboxylate
Other name(s): 5-carboxymethyl-2-oxo-hex-3-ene-1,6-dioate decarboxylase; 5-oxopent-3-ene-1,2,5-tricarboxylate carboxy-lyase; 5-oxopent-3-ene-1,2,5-tricarboxylate carboxy-lyase (2-oxohept-3-enedioate-forming)
Systematic name: (3E,5R)-5-carboxy-2-oxohept-3-enedioate carboxy-lyase [(4Z)-2-oxohept-4-enedioate-forming]
Comments: Requires Mg2+ [2,3]. Part of the 4-hydroxyphenylacetate degradation pathway in Escherichia coli.
References:
1.  Garrido-Pertierra, A. and Cooper, R.A. Identification and purification of distinct isomerase and decarboxylase enzymes involved in the 4-hydroxyphenylacetate pathway of Escherichia coli. Eur. J. Biochem. 117 (1981) 581–584. [PMID: 7026235]
2.  Johnson, W.H., Jr., Hajipour, G. and Whitman, C.P. Characterization of a dienol intermediate in the 5-(carboxymethyl)-2-oxo-3-hexene-1,6-dioate decarboxylase reaction. J. Am. Chem. Soc. 114 (1992) 11001–11003.
3.  Johnson, W.H., Jr., Hajipour, G. and Whitman, C.P. Stereochemical studies of 5-(carboxymethyl)-2-hydroxymuconate isomerase and 5-(carboxymethyl)-2-oxo-3-hexene-1,6-dioate decarboxylase from Escherichia coli C: mechanistic and evolutionary implications. J. Am. Chem. Soc. 117 (1995) 8719–8726.
[EC 4.1.1.68 created 1984]
 
 
EC 4.1.1.69     
Accepted name: 3,4-dihydroxyphthalate decarboxylase
Reaction: 3,4-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 3,4-dihydroxyphthalate carboxy-lyase
Systematic name: 3,4-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
References:
1.  Eaton, R.W. and Ribbons, D.W. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J. Gen. Microbiol. 151 (1982) 48–57. [PMID: 7085570]
[EC 4.1.1.69 created 1986]
 
 
EC 4.1.1.70      
Transferred entry: glutaconyl-CoA decarboxylase. Now EC 7.2.4.5, glutaconyl-CoA decarboxylase
[EC 4.1.1.70 created 1986, modified 2003, deleted 2019]
 
 
EC 4.1.1.71     
Accepted name: 2-oxoglutarate decarboxylase
Reaction: 2-oxoglutarate = succinate semialdehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): oxoglutarate decarboxylase; α-ketoglutarate decarboxylase; α-ketoglutaric decarboxylase; pre-2-oxoglutarate decarboxylase; 2-oxoglutarate carboxy-lyase
Systematic name: 2-oxoglutarate carboxy-lyase (succinate-semialdehyde-forming)
Comments: Requires thiamine diphosphate. Highly specific.
References:
1.  Shigeoka, S., Onishi, T., Maeda, K., Nakano, Y. and Kitaoka, S. Occurrence of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in mitochondria of Euglena gracilis. FEBS Lett. 195 (1986) 43–47.
[EC 4.1.1.71 created 1989]
 
 
EC 4.1.1.72     
Accepted name: branched-chain-2-oxoacid decarboxylase
Reaction: (3S)-3-methyl-2-oxopentanoate = 2-methylbutanal + CO2
Other name(s): branched-chain oxo acid decarboxylase; branched-chain α-keto acid decarboxylase; branched-chain keto acid decarboxylase; BCKA; (3S)-3-methyl-2-oxopentanoate carboxy-lyase
Systematic name: (3S)-3-methyl-2-oxopentanoate carboxy-lyase (2-methylbutanal-forming)
Comments: Acts on a number of 2-oxo acids, with a high affinity towards branched-chain substrates. The aldehyde formed may be enzyme-bound, and may be an intermediate in the bacterial system for the biosynthesis of branched-chain fatty acids.
References:
1.  Oku, H. and Kaneda, T. Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J. Biol. Chem. 263 (1988) 18386–18396. [PMID: 3142877]
2.  de la Plaza, M., Fernandez de Palencia, P., Pelaez, C. and Requena, T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol. Lett. 238 (2004) 367–374. [PMID: 15358422]
3.  Smit, B.A., van Hylckama Vlieg, J.E., Engels, W.J., Meijer, L., Wouters, J.T. and Smit, G. Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Appl. Environ. Microbiol. 71 (2005) 303–311. [PMID: 15640202]
[EC 4.1.1.72 created 1990]
 
 
EC 4.1.1.73     
Accepted name: tartrate decarboxylase
Reaction: (R,R)-tartrate = D-glycerate + CO2
Other name(s): (R,R)-tartrate carboxy-lyase
Systematic name: (R,R)-tartrate carboxy-lyase (D-glycerate-forming)
References:
1.  Furuyoshi, S., Kawabata, N., Tanaka, H. and Soda, K. Enzymatic production of D-glycerate from L-tartrate. Agric. Biol. Chem. 53 (1989) 2101–2105.
[EC 4.1.1.73 created 1992]
 
 
EC 4.1.1.74     
Accepted name: indolepyruvate decarboxylase
Reaction: 3-(indol-3-yl)pyruvate = 2-(indol-3-yl)acetaldehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): indol-3-yl-pyruvate carboxy-lyase; 3-(indol-3-yl)pyruvate carboxy-lyase
Systematic name: 3-(indol-3-yl)pyruvate carboxy-lyase [(2-indol-3-yl)acetaldehyde-forming]
Comments: Thiamine diphosphate- and Mg2+-dependent. More specific than EC 4.1.1.1 pyruvate decarboxylase
References:
1.  Koga, J. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-pyruvic acid biosynthesis. Biochim. Biophys. Acta 1249 (1995) 1–13. [PMID: 7766676]
[EC 4.1.1.74 created 1999]
 
 
EC 4.1.1.75     
Accepted name: 5-guanidino-2-oxopentanoate decarboxylase
Reaction: 5-guanidino-2-oxopentanoate = 4-guanidinobutanal + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
Other name(s): α-ketoarginine decarboxylase; 2-oxo-5-guanidinopentanoate carboxy-lyase
Systematic name: 5-guanidino-2-oxopentanoate carboxy-lyase (4-guanidinobutanal-forming)
Comments: Enzyme activity is dependent on the presence of thiamine diphosphate and a divalent cation.
References:
1.  Vanderbilt, A.S., Gaby, N.S., Rodwell, V.W. Intermediates and enzymes between α-ketoarginine and γ-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J. Biol. Chem. 250 (1975) 5322–5329. [PMID: 237915]
[EC 4.1.1.75 created 1999]
 
 
EC 4.1.1.76     
Accepted name: arylmalonate decarboxylase
Reaction: 2-aryl-2-methylmalonate = 2-arylpropanoate + CO2
Other name(s): AMDASE; 2-aryl-2-methylmalonate carboxy-lyase; 2-aryl-2-methylmalonate carboxy-lyase (2-arylpropionate-forming)
Systematic name: 2-aryl-2-methylmalonate carboxy-lyase (2-arylpropanoate-forming)
References:
1.  Miyamoto, K., Ohta, H. Cloning and heterologous expression of a novel arylmalonate decarboxylase gene from Alcaligenes bronchisepticus KU 1201. Appl. Microbiol. Biotechnol. 38 (1992) 234–238. [PMID: 1369144]
[EC 4.1.1.76 created 1999]
 
 
EC 4.1.1.77     
Accepted name: 2-oxo-3-hexenedioate decarboxylase
Reaction: (3E)-2-oxohex-3-enedioate = 2-oxopent-4-enoate + CO2
Other name(s): 4-oxalocrotonate carboxy-lyase (misleading); 4-oxalocrotonate decarboxylase (misleading); cnbF (gene name); praD (gene name); amnE (gene name); nbaG (gene name); xylI (gene name)
Systematic name: (3E)-2-oxohex-3-enedioate carboxy-lyase (2-oxopent-4-enoate-forming)
Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enzyme has been reported to accept multiple tautomeric forms [1-4]. However, careful analysis of the stability of the different tautomers, as well as characterization of the enzyme that produces its substrate, EC 5.3.2.6, 2-hydroxymuconate tautomerase, showed that the actual substrate for the enzyme is (3E)-2-oxohex-3-enedioate [4].
References:
1.  Shingler, V., Marklund, U., Powlowski, J. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174 (1992) 711–724. [PMID: 1732207]
2.  Takenaka, S., Murakami, S., Shinke, R. and Aoki, K. Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 170 (1998) 132–137. [PMID: 9683650]
3.  Stanley, T.M., Johnson, W.H., Jr., Burks, E.A., Whitman, C.P., Hwang, C.C. and Cook, P.F. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase. Biochemistry 39 (2000) 718–726. [PMID: 10651637]
4.  Wang, S.C., Johnson, W.H., Jr., Czerwinski, R.M., Stamps, S.L. and Whitman, C.P. Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions. Biochemistry 46 (2007) 11919–11929. [PMID: 17902707]
5.  Kasai, D., Fujinami, T., Abe, T., Mase, K., Katayama, Y., Fukuda, M. and Masai, E. Uncovering the protocatechuate 2,3-cleavage pathway genes. J. Bacteriol. 191 (2009) 6758–6768. [PMID: 19717587]
[EC 4.1.1.77 created 1999, modified 2011, modified 2012]
 
 
EC 4.1.1.78     
Accepted name: acetylenedicarboxylate decarboxylase
Reaction: acetylenedicarboxylate + H2O = pyruvate + CO2
Other name(s): acetylenedicarboxylate hydratase; acetylenedicarboxylate hydrase; acetylenedicarboxylate carboxy-lyase
Systematic name: acetylenedicarboxylate carboxy-lyase (pyruvate-forming)
Comments: The mechanism appears to involve hydration of the acetylene and decarboxylation of the oxaloacetic acid formed, although free oxaloacetate is not an intermediate. It is thus analogous to EC 4.2.1.27 (acetylenecarboxylate hydratase) in its mechanism.
References:
1.  Yamada, E.W. and Jakoby, W.B. Enzymatic utilization of acetylenic compounds. I. An enzyme converting acetylenedicarboxylic acid to pyruvate. J. Biol. Chem. 233 (1958) 706–711. [PMID: 13575441]
[EC 4.1.1.78 created 1978 as EC 4.2.1.72, transferred 2000 to EC 4.1.1.78]
 
 
EC 4.1.1.79     
Accepted name: sulfopyruvate decarboxylase
Reaction: 3-sulfopyruvate = 2-sulfoacetaldehyde + CO2
Glossary: thiamine diphosphate = 3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-diphosphoethyl)-4-methyl-1,3-thiazolium
2-sulfoacetaldehyde = 2-oxoethanesulfonate
Other name(s): sulfopyruvate carboxy-lyase
Systematic name: 3-sulfopyruvate carboxy-lyase (2-sulfoacetaldehyde-forming)
Comments: Requires thiamine diphosphate. Does not decarboxylate pyruvate or phosphonopyruvate. The enzyme appears to be oxygen-sensitive.
References:
1.  Graupner, M., Xu, H. and White, R.H. Identification of the gene encoding sulfopyruvate decarboxylase, an enzyme involved in biosynthesis of coenzyme M. J. Bacteriol. 182 (2000) 4862–4867. [PMID: 10940029]
[EC 4.1.1.79 created 2002]
 
 
EC 4.1.1.80     
Accepted name: 4-hydroxyphenylpyruvate decarboxylase
Reaction: 4-hydroxyphenylpyruvate = 4-hydroxyphenylacetaldehyde + CO2
Other name(s): 4-hydroxyphenylpyruvate carboxy-lyase
Systematic name: 4-hydroxyphenylpyruvate carboxy-lyase (4-hydroxyphenylacetaldehyde-forming)
Comments: Reacts with dopamine to give the benzylisoquinoline alkaloid skeleton.
References:
1.  Rueffer, M. and Zenk, M.H. Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Z. Naturforsch. C: Biosci. 42 (1987) 319–332.
[EC 4.1.1.80 created 2002]
 
 
EC 4.1.1.81     
Accepted name: threonine-phosphate decarboxylase
Reaction: L-threonine O-3-phosphate = (R)-1-aminopropan-2-yl phosphate + CO2
Other name(s): L-threonine-O-3-phosphate decarboxylase; CobD; L-threonine-O-3-phosphate carboxy-lyase
Systematic name: L-threonine-O-3-phosphate carboxy-lyase [(R)-1-aminopropan-2-yl-phosphate-forming]
Comments: A pyridoxal-phosphate protein. This enzyme is unable to decarboxylate the D-isomer of threonine O-3-phosphate. The product of this reaction, (R)-1-aminopropan-2-yl phosphate, is the substrate of EC 6.3.1.10, adenosylcobinamide-phosphate synthase, which converts adenosylcobyric acid into adenosylcobinamide phosphate in the anaerobic cobalamin biosynthesis pathway.
References:
1.  Cheong, C.G., Bauer, C.B., Brushaber, K.R., Escalante-Semerena, J.C. and Rayment, I. Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica. Biochemistry 41 (2002) 4798–4808. [PMID: 11939774]
2.  Brushaber, K.R., O'Toole, G.A. and Escalante-Semerena, J.C. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273 (1998) 2684–2691. [PMID: 9446573]
3.  Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390–412. [PMID: 12195810]
[EC 4.1.1.81 created 2004]
 
 
EC 4.1.1.82     
Accepted name: phosphonopyruvate decarboxylase
Reaction: 3-phosphonopyruvate = 2-phosphonoacetaldehyde + CO2
Other name(s): 3-phosphonopyruvate carboxy-lyase
Systematic name: 3-phosphonopyruvate carboxy-lyase (2-phosphonoacetaldehyde-forming)
Comments: The enzyme catalyses a step in the biosynthetic pathway of 2-aminoethylphosphonate, a component of the capsular polysaccharide complex of Bacteroides fragilis. Requires thiamine diphosphate and Mg2+ as cofactors. The enzyme is activated by the divalent cations Mg2+, Ca2+ and Mn2+. Pyruvate and sulfopyruvate can also act as substrates, but more slowly. This enzyme drives the reaction catalysed by EC 5.4.2.9, phosphoenolpyruvate mutase, in the thermodynamically unfavourable direction of 3-phosphonopyruvate formation [2]. It is the initial step in all of the major biosynthetic pathways of phosphonate natural products [3].
References:
1.  Zhang, G., Dai, J., Lu, Z. and Dunaway-Mariano, D. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J. Biol. Chem. 278 (2003) 41302–41308. [PMID: 12904299]
2.  Seidel, H.M. and Knowles, J.R. Interaction of inhibitors with phosphoenolpyruvate mutase: implications for the reaction mechanism and the nature of the active site. Biochemistry 33 (1994) 5641–5646. [PMID: 8180189]
3.  Nakashita, H., Watanabe, K., Hara, O., Hidaka, T. and Seto, H. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. J. Antibiot. (Tokyo) 50 (1997) 212–219. [PMID: 9127192]
[EC 4.1.1.82 created 2005]
 
 
EC 4.1.1.83     
Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2
Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)
Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.
References:
1.  D'Ari, L. and Barker, H.A. p-Cresol formation by cell-free extracts of Clostridium difficile. Arch. Microbiol. 143 (1985) 311–312. [PMID: 3938267]
2.  Selmer, T. and Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268 (2001) 1363–1372. [PMID: 11231288]
3.  Andrei, P.I., Pierik, A.J., Zauner, S., Andrei-Selmer, L.C. and Selmer, T. Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. Eur. J. Biochem. 271 (2004) 2225–2230. [PMID: 15153112]
[EC 4.1.1.83 created 2005]
 
 
EC 4.1.1.84     
Accepted name: D-dopachrome decarboxylase
Reaction: D-dopachrome = 5,6-dihydroxyindole + CO2
Glossary: D-dopachrome = (2R)-5,6-dioxo-2,3,5,6-tetrahydro-1H-indole-2-carboxylate
Other name(s): phenylpyruvate tautomerase II; D-tautomerase; D-dopachrome tautomerase; D-dopachrome carboxy-lyase
Systematic name: D-dopachrome carboxy-lyase (5,6-dihydroxyindole-forming)
Comments: This enzyme is specific for D-dopachrome as substrate and belongs to the MIF (macrophage migration inhibitory factor) family of proteins. L-Dopachrome, L- or D-α-methyldopachrome and dopaminochrome do not act as substrates (see also EC 5.3.3.12, L-dopachrome isomerase)
References:
1.  Odh, G., Hindemith, A., Rosengren, A.M., Rosengren, E. and Rorsman, H. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochem. Biophys. Res. Commun. 197 (1993) 619–624. [PMID: 8267597]
2.  Yoshida, H., Nishihira, J., Suzuki, M. and Hikichi, K. NMR characterization of physicochemical properties of rat D-dopachrome tautomerase. Biochem. Mol. Biol. Int. 42 (1997) 891–899. [PMID: 9285056]
3.  Sugimoto, H., Taniguchi, M., Nakagawa, A., Tanaka, I., Suzuki, M. and Nishihira, J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å resolution. Biochemistry 38 (1999) 3268–3279. [PMID: 10079069]
4.  Nishihira, J., Fujinaga, M., Kuriyama, T., Suzuki, M., Sugimoto, H., Nakagawa, A., Tanaka, I. and Sakai, M. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem. Biophys. Res. Commun. 243 (1998) 538–544. [PMID: 9480844]
[EC 4.1.1.84 created 2005]
 
 
EC 4.1.1.85     
Accepted name: 3-dehydro-L-gulonate-6-phosphate decarboxylase
Reaction: 3-dehydro-L-gulonate 6-phosphate + H+ = L-xylulose 5-phosphate + CO2
Other name(s): 3-keto-L-gulonate 6-phosphate decarboxylase; UlaD; SgaH; SgbH; KGPDC; 3-dehydro-L-gulonate-6-phosphate carboxy-lyase
Systematic name: 3-dehydro-L-gulonate-6-phosphate carboxy-lyase (L-xylulose-5-phosphate-forming)
Comments: Requires Mg2+. Along with EC 5.1.3.22, L-ribulose-5-phosphate 3-epimerase, this enzyme is involved in a pathway for the utilization of L-ascorbate by Escherichia coli.
References:
1.  Yew, W.S. and Gerlt, J.A. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J. Bacteriol. 184 (2002) 302–306. [PMID: 11741871]
2.  Wise, E., Yew, W.S., Babbitt, P.C., Gerlt, J.A. and Rayment, I. Homologous 8-barrel enzymes that catalyze unrelated reactions: orotidine 5′-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41 (2002) 3861–3869. [PMID: 11900527]
[EC 4.1.1.85 created 2005]
 
 
EC 4.1.1.86     
Accepted name: diaminobutyrate decarboxylase
Reaction: L-2,4-diaminobutanoate = propane-1,3-diamine + CO2
Other name(s): DABA DC; L-2,4-diaminobutyrate decarboxylase; L-2,4-diaminobutanoate carboxy-lyase
Systematic name: L-2,4-diaminobutanoate carboxy-lyase (propane-1,3-diamine-forming)
Comments: A pyridoxal-phosphate protein that requires a divalent cation for activity [1]. N4-Acetyl-L-2,4-diaminobutanoate, 2,3-diaminopropanoate, ornithine and lysine are not substrates. Found in the proteobacteria Haemophilus influenzae and Acinetobacter baumannii. In the latter, this enzyme is cotranscribed with the dat gene that encodes EC 2.6.1.76, diaminobutyrate—2-oxoglutarate transaminase, which can supply the substrate for this enzyme.
References:
1.  Yamamoto, S., Tsuzaki, Y., Tougou, K. and Shinoda, S. Purification and characterization of L-2,4-diaminobutyrate decarboxylase from Acinetobacter calcoaceticus. J. Gen. Microbiol. 138 (1992) 1461–1465. [PMID: 1512577]
2.  Ikai, H. and Yamamoto, S. Cloning and expression in Escherichia coli of the gene encoding a novel L-2,4-diaminobutyrate decarboxylase of Acinetobacter baumannii. FEMS Microbiol. Lett. 124 (1994) 225–228. [PMID: 7813892]
3.  Ikai, H. and Yamamoto, S. Identification and analysis of a gene encoding L-2,4-diaminobutyrate:2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J. Bacteriol. 179 (1997) 5118–5125. [PMID: 9260954]
[EC 4.1.1.86 created 2006]
 
 
EC 4.1.1.87     
Accepted name: malonyl-S-ACP decarboxylase
Reaction: a malonyl-[acyl-carrier protein] + H+ = an acetyl-[acyl-carrier protein] + CO2
Other name(s): malonyl-S-acyl-carrier protein decarboxylase; MdcD/MdcE; MdcD,E
Systematic name: malonyl-[acyl-carrier-protein] carboxy-lyase
Comments: This enzyme comprises the β and γ subunits of EC 4.1.1.88, biotin-independent malonate decarboxylase but is not present in EC 7.2.4.4, biotin-dependent malonate decarboxylase. It follows on from EC 2.3.1.187, acetyl-S-ACP:malonate ACP transferase, and results in the regeneration of the acetylated form of the acyl-carrier-protein subunit of malonate decarboxylase [5]. The carboxy group is lost with retention of configuration [3].
References:
1.  Schmid, M., Berg, M., Hilbi, H. and Dimroth, P. Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. Eur. J. Biochem. 237 (1996) 221–228. [PMID: 8620876]
2.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [PMID: 10561613]
3.  Handa, S., Koo, J.H., Kim, Y.S. and Floss, H.G. Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370 (1999) 93–96. [PMID: 10496981]
4.  Chohnan, S., Akagi, K. and Takamura, Y. Functions of malonate decarboxylase subunits from Pseudomonas putida. Biosci. Biotechnol. Biochem. 67 (2003) 214–217. [PMID: 12619701]
5.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [PMID: 11902724]
[EC 4.1.1.87 created 2008]
 
 
EC 4.1.1.88     
Accepted name: biotin-independent malonate decarboxylase
Reaction: malonate + H+ = acetate + CO2
Other name(s): malonate decarboxylase (without biotin); malonate decarboxylase (ambiguous); MDC
Systematic name: malonate carboxy-lyase (biotin-independent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. This enzyme is a cytosolic protein that is biotin-independent. The other type is a biotin-dependent, Na+-translocating enzyme that includes both soluble and membrane-bound components (cf. EC 7.2.4.4, biotin-dependent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. In both enzymes, this is achieved by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-ACP. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. The individual enzymes involved in carrying out the reaction of this enzyme complex are EC 2.3.1.187 (acetyl-S-ACP:malonate ACP transferase), EC 2.3.1.39 ([acyl-carrier-protein] S-malonyltransferase) and EC 4.1.1.87 (malonyl-S-ACP decarboxylase). The carboxy group is lost with retention of configuration [6].
References:
1.  Schmid, M., Berg, M., Hilbi, H. and Dimroth, P. Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. Eur. J. Biochem. 237 (1996) 221–228. [PMID: 8620876]
2.  Byun, H.S. and Kim, Y.S. Subunit organization of bacterial malonate decarboxylases: the smallest δ subunit as an acyl-carrier protein. J. Biochem. Mol. Biol. 30 (1997) 132–137.
3.  Hoenke, S., Schmid, M. and Dimroth, P. Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246 (1997) 530–538. [PMID: 9208947]
4.  Chohnan, S., Fujio, T., Takaki, T., Yonekura, M., Nishihara, H. and Takamura, Y. Malonate decarboxylase of Pseudomonas putida is composed of five subunits. FEMS Microbiol. Lett. 169 (1998) 37–43. [PMID: 9851033]
5.  Hoenke, S., Schmid, M. and Dimroth, P. Identification of the active site of phosphoribosyl-dephospho-coenzyme A transferase and relationship of the enzyme to an ancient class of nucleotidyltransferases. Biochemistry 39 (2000) 13233–13240. [PMID: 11052676]
6.  Handa, S., Koo, J.H., Kim, Y.S. and Floss, H.G. Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370 (1999) 93–96. [PMID: 10496981]
7.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [PMID: 10561613]
8.  Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 35 (2002) 443–451. [PMID: 12359084]
9.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [PMID: 11902724]
[EC 4.1.1.88 created 2008, modified 2018]
 
 
EC 4.1.1.89      
Transferred entry: biotin-dependent malonate decarboxylase. Now EC 7.2.4.4, biotin-dependent malonate decarboxylase
[EC 4.1.1.89 created 2008, deleted 2018]
 
 
EC 4.1.1.90     
Accepted name: peptidyl-glutamate 4-carboxylase
Reaction: peptidyl-4-carboxyglutamate + 2,3-epoxyphylloquinone + H2O = peptidyl-glutamate + CO2 + O2 + phylloquinol
Other name(s): vitamin K-dependent carboxylase; γ-glutamyl carboxylase; peptidyl-glutamate 4-carboxylase (2-methyl-3-phytyl-1,4-naphthoquinone-epoxidizing)
Systematic name: peptidyl-glutamate 4-carboxylase (2-methyl-3-phytyl-1,4-naphthoquinol-epoxidizing)
Comments: The enzyme can use various vitamin-K derivatives, including menaquinol, but does not contain iron. The mechanism appears to involve the generation of a strong base by oxygenation of vitamin K. It catalyses the post-translational carboxylation of glutamate residues of several proteins of the blood-clotting system. 9–12 glutamate residues are converted to 4-carboxyglutamate (Gla) in a specific domain of the target protein. The 4-pro-S hydrogen of the glutamate residue is removed [5] and there is an inversion of stereochemistry at this position [6].
References:
1.  Dowd, P., Hershline, R., Ham, S.W. and Naganathan, S. Vitamin K and energy transduction: a base strength amplification mechanism. Science 269 (1995) 1684–1691. [PMID: 7569894]
2.  Furie, B., Bouchard, B.A. and Furie, B.C. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93 (1999) 1798–1808. [PMID: 10068650]
3.  Rishavy, M.A., Hallgren, K.W., Yakubenko, A.V., Shtofman, R.L., Runge, K.W. and Berkner, K.L. Bronsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation. Biochemistry 45 (2006) 13239–13248. [PMID: 17073445]
4.  Silva, P.J. and Ramos, M.J. Reaction mechanism of the vitamin K-dependent glutamate carboxylase: a computational study. J. Phys. Chem. B 111 (2007) 12883–12887. [PMID: 17935315]
5.  Decottignies-Le Maréchal, P., Ducrocq, C., Marquet, A. and Azerad, R. The stereochemistry of hydrogen abstraction in vitamin K-dependent carboxylation. J. Biol. Chem. 259 (1984) 15010–15012. [PMID: 6150930]
6.  Dubois, J., Dugave, C., Foures, C., Kaminsky, M., Tabet, J.C., Bory, S., Gaudry, M. and Marquet, A. Vitamin K dependent carboxylation: determination of the stereochemical course using 4-fluoroglutamyl-containing substrate. Biochemistry 30 (1991) 10506–10512. [PMID: 1931973]
7.  Rishavy, M.A. and Berkner, K.L. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3 (2012) 135–148. [PMID: 22516721]
[EC 4.1.1.90 created 2009, modified 2011]
 
 
EC 4.1.1.91     
Accepted name: salicylate decarboxylase
Reaction: salicylate = phenol + CO2
Other name(s): salicylic acid decarboxylase; Scd
Systematic name: salicylate carboxy-lyase
Comments: In the reverse direction the enzyme catalyses the regioselective carboxylation of phenol into stoichiometric amounts of salicylate. The enzyme also catalyses the reversible decarboxylation of 2,4-dihydroxybenzoate, 2,6-dihydroxybenzoate, 2,3-dihydroxybenzoate and 4-aminosalicylate [1].
References:
1.  Kirimura, K., Gunji, H., Wakayama, R., Hattori, T. and Ishii, Y. Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. Biochem. Biophys. Res. Commun. 394 (2010) 279–284. [PMID: 20188702]
[EC 4.1.1.91 created 2011]
 
 
EC 4.1.1.92     
Accepted name: indole-3-carboxylate decarboxylase
Reaction: indole-3-carboxylate = indole + CO2
Systematic name: indole-3-carboxylate carboxy-lyase
Comments: Activated by Zn2+, Mn2+ or Mg2+.
References:
1.  Yoshida, T., Fujita, K. and Nagasawa, T. Novel reversible indole-3-carboxylate decarboxylase catalyzing nonoxidative decarboxylation. Biosci. Biotechnol. Biochem. 66 (2002) 2388–2394. [PMID: 12506977]
[EC 4.1.1.92 created 2011]
 
 
EC 4.1.1.93     
Accepted name: pyrrole-2-carboxylate decarboxylase
Reaction: (1) pyrrole-2-carboxylate = pyrrole + CO2
(2) pyrrole-2-carboxylate + H2O = pyrrole + HCO3-
Systematic name: pyrrole-2-carboxylate carboxy-lyase
Comments: The enzyme catalyses both the carboxylation and decarboxylation reactions. However, while bicarbonate is the preferred substrate for the carboxylation reaction, decarboxylation produces carbon dioxide. The enzyme is activated by carboxylic acids.
References:
1.  Wieser, M., Fujii, N., Yoshida, T. and Nagasawa, T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur. J. Biochem. 257 (1998) 495–499. [PMID: 9826198]
2.  Omura, H., Wieser, M. and Nagasawa, T. Pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910, an organic-acid-requiring enzyme. Eur. J. Biochem. 253 (1998) 480–484. [PMID: 9654100]
3.  Wieser, M., Yoshida, T. and Nagasawa, T. Microbial synthesis of pyrrole-2-carboxylate by Bacillus megaterium PYR2910. Tetrahedron Lett. 39 (1998) 4309–4310.
[EC 4.1.1.93 created 2011]
 
 
EC 4.1.1.94     
Accepted name: ethylmalonyl-CoA decarboxylase
Reaction: (S)-ethylmalonyl-CoA = butanoyl-CoA + CO2
Systematic name: (S)-ethylmalonyl-CoA carboxy-lyase (butanoyl-CoA-forming)
Comments: The enzyme, which exists in all vertebrates, decarboxylates ethylmalonyl-CoA, a potentially toxic compound that is formed in low amounts by the activity of EC 6.4.1.2, acetyl-CoA carboxylase and EC 6.4.1.3, propanoyl-CoA carboxylase. It prefers the S isomer, and can decarboxylate (R)-ethylmalonyl-CoA with lower efficiency. cf. EC 7.2.4.1, (S)-methylmalonyl-CoA decarboxylase (sodium-transporting).
References:
1.  Linster, C.L., Noel, G., Stroobant, V., Vertommen, D., Vincent, M.F., Bommer, G.T., Veiga-da-Cunha, M. and Van Schaftingen, E. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J. Biol. Chem. 286 (2011) 42992–43003. [PMID: 22016388]
[EC 4.1.1.94 created 2012]
 
 
EC 4.1.1.95     
Accepted name: L-glutamyl-[BtrI acyl-carrier protein] decarboxylase
Reaction: L-glutamyl-[BtrI acyl-carrier protein] = 4-amino butanoyl-[BtrI acyl-carrier protein] + CO2
Other name(s): btrK (gene name)
Systematic name: L-glutamyl-[BtrI acyl-carrier protein] carboxy-lyase
Comments: Binds pyridoxal 5′-phosphate. Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin family. Has very low activity with substrates not bound to an acyl-carrier protein.
References:
1.  Li, Y., Llewellyn, N.M., Giri, R., Huang, F. and Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 12 (2005) 665–675. [PMID: 15975512]
[EC 4.1.1.95 created 2012]
 
 
EC 4.1.1.96     
Accepted name: carboxynorspermidine decarboxylase
Reaction: (1) carboxynorspermidine = bis(3-aminopropyl)amine + CO2
(2) carboxyspermidine = spermidine + CO2
Glossary: bis(3-aminopropyl)amine = norspermidine
Other name(s): carboxyspermidine decarboxylase; CANSDC; VC1623 (gene name)
Systematic name: carboxynorspermidine carboxy-lyase (bis(3-aminopropyl)amine-forming)
Comments: A pyridoxal 5′-phosphate enzyme. Part of a bacterial polyamine biosynthesis pathway. The enzyme is essential for biofilm formation in the bacterium Vibrio cholerae [1]. The enzyme from Campylobacter jejuni only produces spermidine in vivo even though it shows activity with carboxynorspermidine in vitro [3].
References:
1.  Lee, J., Sperandio, V., Frantz, D.E., Longgood, J., Camilli, A., Phillips, M.A. and Michael, A.J. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol. Chem. 284 (2009) 9899–9907. [PMID: 19196710]
2.  Deng, X., Lee, J., Michael, A.J., Tomchick, D.R., Goldsmith, E.J. and Phillips, M.A. Evolution of substrate specificity within a diverse family of β/α-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine. J. Biol. Chem. 285 (2010) 25708–25719. [PMID: 20534592]
3.  Hanfrey, C.C., Pearson, B.M., Hazeldine, S., Lee, J., Gaskin, D.J., Woster, P.M., Phillips, M.A. and Michael, A.J. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286 (2011) 43301–43312. [PMID: 22025614]
[EC 4.1.1.96 created 2012]
 
 
EC 4.1.1.97     
Accepted name: 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase
Reaction: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = (S)-allantoin + CO2
Glossary: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline
Other name(s): OHCU decarboxylase; hpxQ (gene name); PRHOXNB (gene name)
Systematic name: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate carboxy-lyase [(S)-allantoin-forming]
Comments: This enzyme is part of the pathway from urate to (S)-allantoin, which is present in bacteria, plants and animals (but not in humans).
References:
1.  Ramazzina, I., Folli, C., Secchi, A., Berni, R. and Percudani, R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat. Chem. Biol. 2 (2006) 144–148. [PMID: 16462750]
2.  Cendron, L., Berni, R., Folli, C., Ramazzina, I., Percudani, R. and Zanotti, G. The structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase provides insights into the mechanism of uric acid degradation. J. Biol. Chem. 282 (2007) 18182–18189. [PMID: 17428786]
3.  Kim, K., Park, J. and Rhee, S. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 282 (2007) 23457–23464. [PMID: 17567580]
4.  French, J.B. and Ealick, S.E. Structural and mechanistic studies on Klebsiella pneumoniae 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J. Biol. Chem. 285 (2010) 35446–35454. [PMID: 20826786]
[EC 4.1.1.97 created 2014]
 
 
EC 4.1.1.98     
Accepted name: 4-hydroxy-3-polyprenylbenzoate decarboxylase
Reaction: a 4-hydroxy-3-polyprenylbenzoate = a 2-polyprenylphenol + CO2
Other name(s): ubiD (gene name); 4-hydroxy-3-solanesylbenzoate decarboxylase; 3-octaprenyl-4-hydroxybenzoate decarboxylase
Systematic name: 4-hydroxy-3-polyprenylbenzoate carboxy-lyase
Comments: The enzyme catalyses a step in prokaryotic ubiquinone biosynthesis, as well as in plastoquinone biosynthesis in cyanobacteria. The enzyme can accept substrates with different polyprenyl tail lengths in vitro, but uses a specific length in vivo, which is determined by the polyprenyl diphosphate synthase that exists in the specific organism. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
References:
1.  Leppik, R.A., Young, I.G. and Gibson, F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim. Biophys. Acta 436 (1976) 800–810. [PMID: 782527]
2.  Gulmezian, M., Hyman, K.R., Marbois, B.N., Clarke, C.F. and Javor, G.T. The role of UbiX in Escherichia coli coenzyme Q biosynthesis. Arch. Biochem. Biophys. 467 (2007) 144–153. [PMID: 17889824]
3.  Pfaff, C., Glindemann, N., Gruber, J., Frentzen, M. and Sadre, R. Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium Synechocystis sp. PCC6803. J. Biol. Chem. 289 (2014) 2675–2686. [PMID: 24337576]
4.  Lin, F., Ferguson, K.L., Boyer, D.R., Lin, X.N. and Marsh, E.N. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. ACS Chem. Biol. 10 (2015) 1137–1144. [PMID: 25647642]
5.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [PMID: 26083754]
[EC 4.1.1.98 created 2014, modified 2015]
 
 
EC 4.1.1.99     
Accepted name: phosphomevalonate decarboxylase
Reaction: ATP + (R)-5-phosphomevalonate = ADP + phosphate + isopentenyl phosphate + CO2
Systematic name: ATP:(R)-5-phosphomevalonate carboxy-lyase (adding ATP; isopentenyl-phosphate-forming)
Comments: The enzyme participates in a mevalonate pathway that occurs in halophilic archaea. The activity is also present in eubacteria of the Chloroflexi phylum. cf. EC 4.1.1.33, diphosphomevalonate decarboxylase, and EC 4.1.1.110, bisphosphomevalonate decarboxylase.
References:
1.  Dellas, N., Thomas, S.T., Manning, G. and Noel, J.P. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672 (2013). [PMID: 24327557]
2.  Vannice, J.C., Skaff, D.A., Keightley, A., Addo, J.K., Wyckoff, G.J. and Miziorko, H.M. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J. Bacteriol. 196 (2014) 1055–1063. [PMID: 24375100]
3.  Thomas, S.T., Louie, G.V., Lubin, J.W., Lundblad, V. and Noel, J.P. Substrate Specificity and Engineering of Mevalonate 5-Phosphate Decarboxylase. ACS Chem. Biol. 14 (2019) 1767–1779. [PMID: 31268677]
[EC 4.1.1.99 created 2014, modified 2018]
 
 
EC 4.1.1.100     
Accepted name: prephenate decarboxylase
Reaction: prephenate = 3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate + CO2
Glossary: L-anticapsin = 3-[(1R,2S,6R)-5-oxo-7-oxabicyclo[4.1.0]hept-2-yl]-L-alanine
Other name(s): BacA; AerD; SalX; non-aromatizing prephenate decarboxylase
Systematic name: prephenate carboxy-lyase (3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin. The enzyme isomerizes only the pro-R double bond in prephenate.
References:
1.  Mahlstedt, S.A. and Walsh, C.T. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry 49 (2010) 912–923. [PMID: 20052993]
2.  Mahlstedt, S., Fielding, E.N., Moore, B.S. and Walsh, C.T. Prephenate decarboxylases: a new prephenate-utilizing enzyme family that performs nonaromatizing decarboxylation en route to diverse secondary metabolites. Biochemistry 49 (2010) 9021–9023. [PMID: 20863139]
3.  Parker, J.B. and Walsh, C.T. Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis. Biochemistry 51 (2012) 3241–3251. [PMID: 22483065]
[EC 4.1.1.100 created 2015]
 
 
EC 4.1.1.101     
Accepted name: malolactic enzyme
Reaction: (S)-malate = (S)-lactate + CO2
Other name(s): mleA (gene name); mleS (gene name)
Systematic name: (S)-malate carboxy-lyase
Comments: The enzyme is involved in the malolactic fermentation of wine, which results in a natural decrease in acidity and favorable changes in wine flavors. It has been purified from several lactic acid bacteria, including Leuconostoc mesenteroides [1], Lactobacillus plantarum [2], and Oenococcus oeni [3,4]. The enzyme contains a tightly bound NAD+ cofactor and requires Mn2+.
References:
1.  Lonvaud-Funel, A. and de Saad, A.M. Purification and properties of a malolactic Enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol. 43 (1982) 357–361. [PMID: 16345941]
2.  Caspritz, G. and Radler, F. Malolactic enzyme of Lactobacillus plantarum. Purification, properties, and distribution among bacteria. J. Biol. Chem. 258 (1983) 4907–4910. [PMID: 6833282]
3.  Naouri, P., Chagnaud, P., Arnaud, A. and Galzy, P. Purification and properties of a malolactic enzyme from Leuconostoc oenos ATCC 23278. J. Basic Microbiol. 30 (1990) 577–585. [PMID: 2097345]
4.  Schumann, C., Michlmayr, H., Del Hierro, A.M., Kulbe, K.D., Jiranek, V., Eder, R. and Nguyen, T.H. Malolactic enzyme from Oenococcus oeni: heterologous expression in Escherichia coli and biochemical characterization. Bioengineered 4 (2013) 147–152. [PMID: 23196745]
[EC 4.1.1.101 created 2015]
 
 
EC 4.1.1.102     
Accepted name: phenacrylate decarboxylase
Reaction: (1) 4-coumarate = 4-vinylphenol + CO2
(2) trans-cinnamate = styrene + CO2
(3) ferulate = 4-vinylguaiacol + CO2
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
trans-cinnamate = (2E)-3-phenylprop-2-enoate
ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): FDC1 (gene name); ferulic acid decarboxylase
Systematic name: 3-phenylprop-2-enoate carboxy-lyase
Comments: The enzyme, found in fungi, catalyses the decarboxylation of phenacrylic acids present in plant cell walls. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltransferase.
References:
1.  Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. and Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109 (2010) 564–569. [PMID: 20471595]
2.  Bhuiya, M.W., Lee, S.G., Jez, J.M. and Yu, O. Structure and mechanism of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81 (2015) 4216–4223. [PMID: 25862228]
3.  Payne, K.A., White, M.D., Fisher, K., Khara, B., Bailey, S.S., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Beveridge, R., Barran, P., Rigby, S.E., Scrutton, N.S., Hay, S. and Leys, D. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522 (2015) 497–501. [PMID: 26083754]
[EC 4.1.1.102 created 2015]
 
 
EC 4.1.1.103     
Accepted name: γ-resorcylate decarboxylase
Reaction: 2,6-dihydroxybenzoate = 1,3-dihydroxybenzene + CO2
Glossary: 2,6-dihydroxybenzoate = γ-resorcylate
1,3-dihydroxybenzene = resorcinol
Other name(s): graF (gene name); tsdA (gene name)
Systematic name: 2,6-dihydroxybenzoate carboxy-lyase
Comments: The enzyme, characterized from several bacterial strains, is involved in the degradation of γ-resorcylate. It contains a zinc ion and a water molecule at the active site. The reaction is reversible, but equilibrium greatly favors the decarboxylation reaction.
References:
1.  Yoshida, M., Fukuhara, N. and Oikawa, T. Thermophilic, reversible γ-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J. Bacteriol. 186 (2004) 6855–6863. [PMID: 15466039]
2.  Ishii, Y., Narimatsu, Y., Iwasaki, Y., Arai, N., Kino, K. and Kirimura, K. Reversible and nonoxidative γ-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter. Biochem. Biophys. Res. Commun. 324 (2004) 611–620. [PMID: 15474471]
3.  Matsui, T., Yoshida, T., Yoshimura, T. and Nagasawa, T. Regioselective carboxylation of 1,3-dihydroxybenzene by 2,6-dihydroxybenzoate decarboxylase of Pandoraea sp. 12B-2. Appl. Microbiol. Biotechnol. 73 (2006) 95–102. [PMID: 16683134]
4.  Goto, M., Hayashi, H., Miyahara, I., Hirotsu, K., Yoshida, M. and Oikawa, T. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (γ-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J. Biol. Chem. 281 (2006) 34365–34373. [PMID: 16963440]
5.  Kasai, D., Araki, N., Motoi, K., Yoshikawa, S., Iino, T., Imai, S., Masai, E. and Fukuda, M. γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 81 (2015) 7656–7665. [PMID: 26319878]
[EC 4.1.1.103 created 2016]
 
 
EC 4.1.1.104     
Accepted name: 3-dehydro-4-phosphotetronate decarboxylase
Reaction: (1) 3-dehydro-4-phospho-L-erythronate = glycerone phosphate + CO2
(2) 3-dehydro-4-phospho-D-erythronate = glycerone phosphate + CO2
Glossary: L-erythronate = (2S,3S)-2,3,4-trihydroxybutanoate
D-erythronate = (2R,3R)-2,3,4-trihydroxybutanoate
Other name(s): otnC (gene name)
Systematic name: 3-dehydro-4-phosphotetronate carboxy-lyase
Comments: The enzyme, characterized from bacteria, is involved in D-erythronate and L-threonate catabolism.
References:
1.  Zhang, X., Carter, M.S., Vetting, M.W., San Francisco, B., Zhao, S., Al-Obaidi, N.F., Solbiati, J.O., Thiaville, J.J., de Crecy-Lagard, V., Jacobson, M.P., Almo, S.C. and Gerlt, J.A. Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proc. Natl. Acad. Sci. USA 113 (2016) E4161–E4169. [PMID: 27402745]
[EC 4.1.1.104 created 2017]
 
 
EC 4.1.1.105     
Accepted name: L-tryptophan decarboxylase
Reaction: L-tryptophan = tryptamine + CO2
Other name(s): psiD (gene name); TDC (gene name)
Systematic name: L-tryptophan carboxy-lyase
Comments: The enzyme has been characterized from bacteria, plants, and fungi. Unlike EC 4.1.1.28, aromatic-L-amino-acid decarboxylase, this enzyme is specific for L-tryptophan.
References:
1.  Noe, W., Mollenschott, C. and Berlin, J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol. Biol. 3 (1984) 281–288. [PMID: 24310513]
2.  Buki, K.G., Vinh, D.Q. and Horvath, I. Partial purification and some properties of tryptophan decarboxylase from a Bacillus strain. Acta Microbiol Hung 32 (1985) 65–73. [PMID: 4036551]
3.  Nakazawa, H., Kumagai, H. and Yamada, H. Constitutive aromatic L-amino acid decarboxylase from Micrococcus percitreus. Biochem. Biophys. Res. Commun. 61 (1974) 75–82. [PMID: 4441405]
4.  Lopez-Meyer, M. and Nessler, C.L. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 11 (1997) 1167–1175. [PMID: 9225462]
5.  Fricke, J., Blei, F. and Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. Engl. 56 (2017) 12352–12355. [PMID: 28763571]
[EC 4.1.1.105 created 2017]
 
 
EC 4.1.1.106     
Accepted name: fatty acid photodecarboxylase
Reaction: a long-chain fatty acid + = a long-chain alkane + CO2
Other name(s): FAP (gene name)
Systematic name: fatty acid carboxy-lyase (light-dependent, alkane-forming)
Comments: This algal enzyme, characterized from the green algae Chlorella variabilis and Chlamydomonas reinhardtii, is dependent on blue light, which photooxidizes its FAD cofactor. The enzyme acts on fatty acids in the range of C12 to C22, with a higher efficiency for C16 to C17 chains, and forms an alkane product that is one carbon shorter than the substrate. The enzyme can also act on unsaturated fatty acids, forming the respective alkenes, but does not generate a new double bond.
References:
1.  Sorigue, D., Legeret, B., Cuine, S., Blangy, S., Moulin, S., Billon, E., Richaud, P., Brugiere, S., Coute, Y., Nurizzo, D., Muller, P., Brettel, K., Pignol, D., Arnoux, P., Li-Beisson, Y., Peltier, G. and Beisson, F. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357 (2017) 903–907. [PMID: 28860382]
[EC 4.1.1.106 created 2017]
 
 
EC 4.1.1.107     
Accepted name: 3,4-dihydroxyphenylacetaldehyde synthase
Reaction: L-dopa + O2 + H2O = 3,4-dihydroxyphenylacetaldehyde + CO2 + NH3 + H2O2
Glossary: L-dopa = 3,4-dihydroxyphenylalanine
Other name(s): DHPAA synthase
Systematic name: L-dopa carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the mosquito Aedes aegypti, catalyses the production of 3,4-dihydroxylphenylacetaldehyde directly from L-dopa. Dopamine is not formed as an intermediate (cf. EC 4.1.1.28, aromatic-L-amino-acid decarboxylase). The enzyme is specific for L-dopa and does not react with other aromatic amino acids with the exception of a low activity with α-methyl-L-dopa.
References:
1.  Vavricka, C., Han, Q., Huang, Y., Erickson, S.M., Harich, K., Christensen, B.M. and Li, J. From L-dopa to dihydroxyphenylacetaldehyde: a toxic biochemical pathway plays a vital physiological function in insects. PLoS One 6:e16124 (2011). [PMID: 21283636]
[EC 4.1.1.107 created 2017]
 
 
EC 4.1.1.108     
Accepted name: 4-hydroxyphenylacetaldehyde synthase
Reaction: L-tyrosine + O2 + H2O = (4-hydroxyphenyl)acetaldehyde + CO2 + NH3 + H2O2
Other name(s): TYRDC-2 (gene name)
Systematic name: L-tyrosine carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plant Petroselinum crispum (parsley), catalyses the production of 4-hydroxyphenylacetaldehyde directly from L-tyrosine. Tyramine is not formed as an intermediate. The enzyme has a low activity with L-dopa (cf. EC 4.1.1.107, 3,4-dihydroxyphenylacetaldehyde synthase).
References:
1.  Torrens-Spence, M.P., Gillaspy, G., Zhao, B., Harich, K., White, R.H. and Li, J. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem. Biophys. Res. Commun. 418 (2012) 211–216. [PMID: 22266321]
2.  Torrens-Spence, M.P., Liu, P., Ding, H., Harich, K., Gillaspy, G. and Li, J. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J. Biol. Chem. 288 (2013) 2376–2387. [PMID: 23204519]
[EC 4.1.1.108 created 2017]
 
 
EC 4.1.1.109     
Accepted name: phenylacetaldehyde synthase
Reaction: L-phenylalanine + O2 + H2O = phenylacetaldehyde + CO2 + NH3 + H2O2
Other name(s): PAAS (gene name)
Systematic name: L-phenylalanine carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plants Petunia hybrida and a Rosa hybrid, catalyses the production of phenylacetaldehyde directly from L-phenylalanine. The enzyme is specific for L-phenylalanine and does not accept other aromatic amino acids as substrates.
References:
1.  Kaminaga, Y., Schnepp, J., Peel, G., Kish, C.M., Ben-Nissan, G., Weiss, D., Orlova, I., Lavie, O., Rhodes, D., Wood, K., Porterfield, D.M., Cooper, A.J., Schloss, J.V., Pichersky, E., Vainstein, A. and Dudareva, N. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281 (2006) 23357–23366. [PMID: 16766535]
[EC 4.1.1.109 created 2017]
 
 
EC 4.1.1.110     
Accepted name: bisphosphomevalonate decarboxylase
Reaction: (R)-3,5-bisphosphomevalonate = isopentenyl phosphate + CO2 + phosphate
Other name(s): mevalonate 3,5-bisphosphate decarboxylase
Systematic name: (R)-3,5-bisphosphomevalonate carboxy-lyase (isopentenyl-phosphate-forming)
Comments: The enzyme participates in an alternative mevalonate pathway that takes place in extreme acidophiles of the Thermoplasmatales order. cf. EC 4.1.1.99, phosphomevalonate decarboxylase.
References:
1.  Vinokur, J.M., Cummins, M.C., Korman, T.P. and Bowie, J.U. An adaptation to life in acid through a novel mevalonate pathway. Sci. Rep. 6 (2016) 39737. [PMID: 28004831]
[EC 4.1.1.110 created 2018]
 
 
EC 4.1.1.111     
Accepted name: siroheme decarboxylase
Reaction: siroheme = 12,18-didecarboxysiroheme + 2 CO2
Other name(s): sirohaem decarboxylase; nirDLHG (gene name); ahbAB (gene name)
Systematic name: siroheme carboxy-lyase
Comments: The enzyme from archaea is involved in an alternative heme biosynthesis pathway. The enzyme from denitrifying bacteria is involved in the heme d1 biosynthesis pathway.
References:
1.  Bali, S., Lawrence, A.D., Lobo, S.A., Saraiva, L.M., Golding, B.T., Palmer, D.J., Howard, M.J., Ferguson, S.J. and Warren, M.J. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl. Acad. Sci. USA 108 (2011) 18260–18265. [PMID: 21969545]
2.  Kuhner, M., Haufschildt, K., Neumann, A., Storbeck, S., Streif, J. and Layer, G. The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri. Archaea 2014:327637 (2014). [PMID: 24669201]
3.  Palmer, D.J., Schroeder, S., Lawrence, A.D., Deery, E., Lobo, S.A., Saraiva, L.M., McLean, K.J., Munro, A.W., Ferguson, S.J., Pickersgill, R.W., Brown, D.G. and Warren, M.J. The structure, function and properties of sirohaem decarboxylase--an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway. Mol. Microbiol. 93 (2014) 247–261. [PMID: 24865947]
4.  Haufschildt, K., Schmelz, S., Kriegler, T.M., Neumann, A., Streif, J., Arai, H., Heinz, D.W. and Layer, G. The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues. J. Mol. Biol. 426 (2014) 3272–3286. [PMID: 25083922]
[EC 4.1.1.111 created 2018]
 
 
EC 4.1.1.112     
Accepted name: oxaloacetate decarboxylase
Reaction: oxaloacetate = pyruvate + CO2
Other name(s): oxaloacetate β-decarboxylase; oxalacetic acid decarboxylase; oxalate β-decarboxylase; oxaloacetate carboxy-lyase
Systematic name: oxaloacetate carboxy-lyase (pyruvate-forming)
Comments: Requires a divalent metal cation. The enzymes from the fish Gadus morhua (Atlantic cod) and the bacterium Micrococcus luteus prefer Mn2+, while those from the bacteria Pseudomonas putida and Pseudomonas aeruginosa prefer Mg2+. Unlike EC 7.2.4.2 [oxaloacetate decarboxylase (Na+ extruding)], there is no evidence of the enzyme’s involvement in Na+ transport.
References:
1.  Schmitt, A., Bottke, I. and Siebert, G. Eigenschaften einer Oxaloacetat-Decarboxylase aus Dorschmuskulatur. Hoppe-Seyler's Z. Physiol. Chem. 347 (1966) 18–34. [PMID: 5972993]
2.  Herbert, D. Oxalacetic carboxylase of Micrococcus lysodeikticus. Methods Enzymol. 1 (1955) 753–757.
3.  Horton, A.A. and Kornberg, H.L. Oxaloacetate 4-carboxy-lyase from Pseudomonas ovalis chester. Biochim. Biophys. Acta 89 (1964) 381–383. [PMID: 14205502]
4.  Sender, P.D., Martin, M.G., Peiru, S. and Magni, C. Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family. FEBS Lett. 570 (2004) 217–222. [PMID: 15251467]
5.  Narayanan, B.C., Niu, W., Han, Y., Zou, J., Mariano, P.S., Dunaway-Mariano, D. and Herzberg, O. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily. Biochemistry 47 (2008) 167–182. [PMID: 18081320]
[EC 4.1.1.112 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, part transferred 2018 to EC 4.1.1.112]
 
 
EC 4.1.1.113     
Accepted name: trans-aconitate decarboxylase
Reaction: trans-aconitate = itaconate + CO2
Glossary: trans-aconitate = (E)-prop-1-ene-1,2,3-tricarboxylate
itaconate = 2-methylenesuccinate
Other name(s): TAD1 (gene name)
Systematic name: trans-aconitate carboxy-lyase (itaconate-forming)
Comments: The enzyme, characterized from the smut fungus Ustilago maydis, is involved in an alternative pathway for the biosynthesis of itaconate. cf. EC 4.1.1.6, cis-aconitate decarboxylase.
References:
1.  Geiser, E., Przybilla, S.K., Friedrich, A., Buckel, W., Wierckx, N., Blank, L.M. and Bolker, M. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb. Biotechnol. 9 (2016) 116–126. [PMID: 26639528]
[EC 4.1.1.113 created 2018]
 
 
EC 4.1.1.114     
Accepted name: cis-3-alkyl-4-alkyloxetan-2-one decarboxylase
Reaction: a cis-3-alkyl-4-alkyloxetan-2-one = a cis-alkene + CO2
Other name(s): oleB (gene name)
Systematic name: cis-3-alkyl-4-alkyloxetan-2-one carboxy-lyase (cis-alkene-forming)
Comments: The enzyme, found in certain bacterial species, catalyses the last step in a pathway for the production of olefins.
References:
1.  Christenson, J.K., Richman, J.E., Jensen, M.R., Neufeld, J.Y., Wilmot, C.M. and Wackett, L.P. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56 (2017) 348–351. [PMID: 28029240]
2.  Christenson, J.K., Jensen, M.R., Goblirsch, B.R., Mohamed, F., Zhang, W., Wilmot, C.M. and Wackett, L.P. Active multienzyme assemblies for long-chain olefinic hydrocarbon biosynthesis. J. Bacteriol. 199 (2017) . [PMID: 28223313]
[EC 4.1.1.114 created 2018]
 
 
EC 4.1.1.115     
Accepted name: indoleacetate decarboxylase
Reaction: (1H-indol-3-yl)acetate = skatole + CO2
Glossary: (1H-indol-3-yl)acetate = indoleacetate
skatole = 3-methyl-1H-indole
Other name(s): IAD
Systematic name: (1H-indol-3-yl)acetate carboxy-lyase (skatole-forming)
Comments: This glycyl radical enzyme has been isolate from a number of bacterial species. Skatole contributes to the characteristic smell of animal faeces.
References:
1.  Liu, D., Wei, Y., Liu, X., Zhou, Y., Jiang, L., Yin, J., Wang, F., Hu, Y., Nanjaraj Urs, A.N., Liu, Y., Ang, E.L., Zhao, S., Zhao, H. and Zhang, Y. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. Commun. 9:4224 (2018). [PMID: 30310076]
[EC 4.1.1.115 created 2019]
 
 
EC 4.1.1.116     
Accepted name: D-ornithine/D-lysine decarboxylase
Reaction: (1) D-ornithine = putrescine + CO2
(2) D-lysine = cadaverine + CO2
Glossary: cadaverine = pentane-1,5-diamine
putrescine = butane-1,4-diamine
Other name(s): dokD (gene name); DOKDC
Systematic name: D-ornithine/D-lysine carboxy-lyase
Comments: The enzyme, characterized from the bacterium Salmonella typhimurium LT2, is specific for D-ornithine and D-lysine. Requires pyridoxal 5′-phosphate.
References:
1.  Phillips, R.S., Poteh, P., Miller, K.A. and Hoover, T.R. STM2360 encodes a D-ornithine/D-lysine decarboxylase in Salmonella enterica serovar typhimurium. Arch. Biochem. Biophys. 634 (2017) 83–87. [PMID: 29024617]
[EC 4.1.1.116 created 2019]
 
 
EC 4.1.1.117     
Accepted name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate decarboxylase
Reaction: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate = 2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate + CO2
Glossary: staphyloferrin B = 5-[(2-{[(3S)-5-{[(2S)-2-amino-2-carboxyethyl]amino}-3-carboxy-3-hydroxy-5-oxopentanoyl]amino}ethyl)amino]-2,5-dioxopentanoate
Other name(s): sbnH (gene name)
Systematic name: 2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate carboxy-lyase (2-[(2-aminoethylcarbamoyl)methyl]-2-hydroxybutanedioate-forming)
Comments: The enzyme, characterized from the bacterium Staphylococcus aureus, participates in the biosynthesis of the siderophore staphyloferrin B.
References:
1.  Cheung, J., Beasley, F.C., Liu, S., Lajoie, G.A. and Heinrichs, D.E. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 74 (2009) 594–608. [PMID: 19775248]
[EC 4.1.1.117 created 2019]
 
 
EC 4.1.1.118     
Accepted name: isophthalyl-CoA decarboxylase
Reaction: isophthalyl-CoA = benzoyl-CoA + CO2
Other name(s): IPCD
Systematic name: isophthalyl-CoA carboxy-lyase
Comments: The enzyme, characterized from the bacterium Syntrophorhabdus aromaticivorans, participates in an anaerobic isophthalate degradation pathway. The enzyme requires a prenylated flavin mononucleotide cofactor.
References:
1.  Junghare, M., Spiteller, D. and Schink, B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME J. 13 (2019) 1252–1268. [PMID: 30647456]
[EC 4.1.1.118 created 2019]
 
 
EC 4.1.1.119     
Accepted name: phenylacetate decarboxylase
Reaction: phenylacetate = toluene + CO2
Other name(s): phdB (gene name)
Systematic name: phenylacetate carboxy-lyase
Comments: This bacterial enzyme, isolated from anoxic, toluene-producing microbial communities, is a glycyl radical enzyme. It needs to be activated by a dedicated activating enzyme (PhdA). The activase catalyses the reductive cleavage of AdoMet, producing a 5′-deoxyadenosyl radical that leads to the production of the glycyl radical in PhdB.
References:
1.  Zargar, K., Saville, R., Phelan, R.M., Tringe, S.G., Petzold, C.J., Keasling, J.D. and Beller, H.R. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep. 6:31362 (2016). [PMID: 27506494]
2.  Beller, H.R., Rodrigues, A.V., Zargar, K., Wu, Y.W., Saini, A.K., Saville, R.M., Pereira, J.H., Adams, P.D., Tringe, S.G., Petzold, C.J. and Keasling, J.D. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14 (2018) 451–457. [PMID: 29556105]
3.  Rodrigues, A.V., Tantillo, D.J., Mukhopadhyay, A., Keasling, J.D. and Beller, H. Insights into the mechanism of phenylacetate decarboxylase (PhdB), a toluene-producing glycyl radical enzyme. ChemBioChem (2019) . [PMID: 31512343]
[EC 4.1.1.119 created 2019]
 
 
EC 4.1.1.120     
Accepted name: 3-oxoisoapionate decarboxylase
Reaction: 3-oxoisoapionate = L-erythrulose + CO2
Glossary: 3-oxoisoapionate = 2,4-dihydroxy-2-(hydroxymethyl)-3-oxobutanoate
Other name(s): oiaC (gene name)
Systematic name: 3-oxoisoapionate carboxy-lyase
Comments: The enzyme, characterized from several bacterial species, is involved in the degradation of D-apionate. Stereospecificity of 3-oxoisoapionate has not been determined.
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [PMID: 29867142]
[EC 4.1.1.120 created 2020]
 
 
EC 4.1.1.121     
Accepted name: 3-oxoisoapionate-4-phosphate decarboxylase
Reaction: 3-oxoisoapionate 4-phosphate = L-erythrulose 1-phosphate + CO2
Glossary: 3-oxoisoapionate = 2,4-dihydroxy-2-(hydroxymethyl)-3-oxobutanoate
Other name(s): oiaX (gene name)
Systematic name: 3-oxoisoapionate 4-phosphate carboxy-lyase
Comments: The enzyme, characterized from several bacterial species, participates in the degradation of D-apionate. It belongs to the RuBisCO-like-protein (RLP) superfamily. Stereospecificity of 3-oxoisoapionate 4-phosphate has not been determined.
References:
1.  Carter, M.S., Zhang, X., Huang, H., Bouvier, J.T., Francisco, B.S., Vetting, M.W., Al-Obaidi, N., Bonanno, J.B., Ghosh, A., Zallot, R.G., Andersen, H.M., Almo, S.C. and Gerlt, J.A. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14 (2018) 696–705. [PMID: 29867142]
[EC 4.1.1.121 created 2020]