The Enzyme Database

Displaying entries 101-113 of 113.

<< Previous | Next >>    printer_iconPrintable version

EC 3.1.3.101     
Accepted name: validoxylamine A 7′-phosphate phosphatase
Reaction: validoxylamine A 7′-phosphate + H2O = validoxylamine A + phosphate
For diagram of validamycin biosynthesis, click here
Glossary: validoxylamine A = (1S,2S,3R,6S)-4-(hydroxymethyl)-6-{[(1S,2S,3S,4R,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]amino}cyclohex-4-ene-1,2,3-triol
Other name(s): vldH (gene name)
Systematic name: validoxylamine-A 7′-phosphate phosphohydrolase
Comments: The enzyme, characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus, is involved in the biosynthesis of the antifungal agent validamycin A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Asamizu, S., Yang, J., Almabruk, K.H. and Mahmud, T. Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin a biosynthesis. J. Am. Chem. Soc. 133 (2011) 12124–12135. [DOI] [PMID: 21766819]
[EC 3.1.3.101 created 2016]
 
 
EC 3.1.3.102     
Accepted name: FMN hydrolase
Reaction: FMN + H2O = riboflavin + phosphate
Other name(s): FMN phosphatase; AtcpFHy1
Systematic name: FMN phosphohydrolase
Comments: Requires Mg2+. The enzyme, found in many isoforms purified from both bacteria and plants, is a member of the haloacid dehalogenase superfamily. Most of the isoforms have a wide substrate specificity [2], but isoforms specific for FMN also exist [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sandoval, F.J. and Roje, S. An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J. Biol. Chem. 280 (2005) 38337–38345. [DOI] [PMID: 16183635]
2.  Kuznetsova, E., Proudfoot, M., Gonzalez, C.F., Brown, G., Omelchenko, M.V., Borozan, I., Carmel, L., Wolf, Y.I., Mori, H., Savchenko, A.V., Arrowsmith, C.H., Koonin, E.V., Edwards, A.M. and Yakunin, A.F. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J. Biol. Chem. 281 (2006) 36149–36161. [DOI] [PMID: 16990279]
3.  Rawat, R., Sandoval, F.J., Wei, Z., Winkler, R. and Roje, S. An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. J. Biol. Chem. 286 (2011) 42091–42098. [DOI] [PMID: 22002057]
[EC 3.1.3.102 created 2016]
 
 
EC 3.1.3.103     
Accepted name: 3-deoxy-D-glycero-D-galacto-nonulopyranosonate 9-phosphatase
Reaction: 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate 9-phosphate + H2O = 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate + phosphate
Other name(s): 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate-9-phosphate phosphatase
Systematic name: 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate 9-phosphohydrolase
Comments: The enzyme, characterized from the bacterium Bacteroides thetaiotaomicron, is part of the biosynthesis pathway of the sialic acid 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonate (Kdn). Kdn is abundant in extracellular glycoconjugates of lower vertebrates such as fish and amphibians, but is also found in the capsular polysaccharides of bacteria that belong to the Bacteroides genus.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Wang, L., Lu, Z., Allen, K.N., Mariano, P.S. and Dunaway-Mariano, D. Human symbiont Bacteroides thetaiotaomicron synthesizes 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Chem. Biol. 15 (2008) 893–897. [DOI] [PMID: 18804026]
2.  Lu, Z., Wang, L., Dunaway-Mariano, D. and Allen, K.N. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. J. Biol. Chem. 284 (2009) 1224–1233. [DOI] [PMID: 18986982]
[EC 3.1.3.103 created 2016]
 
 
EC 3.1.3.104     
Accepted name: 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase
Reaction: 5-amino-6-(5-phospho-D-ribitylamino)uracil + H2O = 5-amino-6-(D-ribitylamino)uracil + phosphate
Other name(s): 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate phosphatase
Systematic name: 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphohydrolase
Comments: Requires Mg2+. The enzyme, which is found in plants and bacteria, is part of a pathway for riboflavin biosynthesis. Most forms of the enzyme has a broad substrate specificity [1,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Haase, I., Sarge, S., Illarionov, B., Laudert, D., Hohmann, H.P., Bacher, A. and Fischer, M. Enzymes from the haloacid dehalogenase (HAD) superfamily catalyse the elusive dephosphorylation step of riboflavin biosynthesis. ChemBioChem 14 (2013) 2272–2275. [DOI] [PMID: 24123841]
2.  London, N., Farelli, J.D., Brown, S.D., Liu, C., Huang, H., Korczynska, M., Al-Obaidi, N.F., Babbitt, P.C., Almo, S.C., Allen, K.N. and Shoichet, B.K. Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry 54 (2015) 528–537. [DOI] [PMID: 25513739]
3.  Sarge, S., Haase, I., Illarionov, B., Laudert, D., Hohmann, H.P., Bacher, A. and Fischer, M. Catalysis of an essential step in vitamin B2 biosynthesis by a consortium of broad spectrum hydrolases. ChemBioChem 16 (2015) 2466–2469. [DOI] [PMID: 26316208]
[EC 3.1.3.104 created 2016]
 
 
EC 3.1.3.105     
Accepted name: N-acetyl-D-muramate 6-phosphate phosphatase
Reaction: N-acetyl-D-muramate 6-phosphate + H2O = N-acetyl-D-muramate + phosphate
Other name(s): mupP (gene name)
Systematic name: N-acetyl-D-muramate 6-phosphate phosphohydrolase
Comments: The enzyme, characterized from Pseudomonas species, participates in a peptidoglycan salvage pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Borisova, M., Gisin, J. and Mayer, C. The N-acetylmuramic acid 6-phosphate phosphatase MupP completes the Pseudomonas peptidoglycan recycling pathway leading to intrinsic fosfomycin resistance. mBio 8 (2017) e00092-17. [DOI] [PMID: 28351914]
[EC 3.1.3.105 created 2017]
 
 
EC 3.1.3.106     
Accepted name: 2-lysophosphatidate phosphatase
Reaction: a 1-acyl-sn-glycerol 3-phosphate + H2O = a 1-acyl-sn-glycerol + phosphate
Other name(s): 1-acyl-sn-glycerol 3-phosphatase; CPC3 (gene name); PHM8 (gene name)
Systematic name: 1-acyl-sn-glycerol 3-phosphate phosphohydrolase
Comments: The enzyme has been studied from the plants Arachis hypogaea (peanut) and Arabidopsis thaliana (thale cress) and from the yeast Saccharomyces cerevisiae. The enzyme from yeast, but not from the plants, requires Mg2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shekar, S., Tumaney, A.W., Rao, T.J. and Rajasekharan, R. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol. 128 (2002) 988–996. [PMID: 11891254]
2.  Reddy, V.S., Singh, A.K. and Rajasekharan, R. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase. J. Biol. Chem. 283 (2008) 8846–8854. [PMID: 18234677]
3.  Reddy, V.S., Rao, D.K. and Rajasekharan, R. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim. Biophys. Acta 1801 (2010) 455–461. [PMID: 20045079]
[EC 3.1.3.106 created 2019]
 
 
EC 3.1.3.107     
Accepted name: amicoumacin phosphatase
Reaction: amicoumacin A 2-phosphate + H2O = amicoumacin A + phosphate
Other name(s): amiO (gene name)
Systematic name: amicoumacin 2-phosphate phosphohydrolase
Comments: This bacterial enzyme activates the antibiotic amicoumacin A by removing a phosphate group that is added by EC 2.7.1.230, amicoumacin kinase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Terekhov, S.S., Smirnov, I.V., Malakhova, M.V., Samoilov, A.E., Manolov, A.I., Nazarov, A.S., Danilov, D.V., Dubiley, S.A., Osterman, I.A., Rubtsova, M.P., Kostryukova, E.S., Ziganshin, R.H., Kornienko, M.A., Vanyushkina, A.A., Bukato, O.N., Ilina, E.N., Vlasov, V.V., Severinov, K.V., Gabibov, A.G. and Altman, S. Ultrahigh-throughput functional profiling of microbiota communities. Proc. Natl. Acad. Sci. USA 115 (2018) 9551–9556. [PMID: 30181282]
[EC 3.1.3.107 created 2019]
 
 
EC 3.1.3.108     
Accepted name: nocturnin
Reaction: (1) NADPH + H2O = NADH + phosphate
(2) NADP+ + H2O = NAD+ + phosphate
Other name(s): NOCT (gene name); nocturnin (curled); MJ0109 (gene name); NADP phosphatase; NADPase
Systematic name: NADPH 2′-phosphohydrolase
Comments: The mammalian mitochondrial enzyme is a rhythmically expressed protein that regulates metabolism under the control of circadian clock. It has a slight preference for NADPH over NADP+. The archaeal enzyme, identified in Methanocaldococcus jannaschii, is bifunctional acting as NAD+ kinase (EC 2.7.1.23) and NADP+ phosphatase with a slight preference for NADP+ over NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kawai, S. and Murata, K. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci. Biotechnol. Biochem. 72 (2008) 919–930. [DOI] [PMID: 18391451]
2.  Abshire, E.T., Chasseur, J., Bohn, J.A., Del Rizzo, P.A., Freddolino, P.L., Goldstrohm, A.C. and Trievel, R.C. The structure of human nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res. 46 (2018) 6257–6270. [PMID: 29860338]
3.  Estrella, M.A., Du, J. and Korennykh, A. Crystal structure of human nocturnin catalytic domain. Sci. Rep. 8:16294 (2018). [PMID: 30389976]
4.  Estrella, M.A., Du, J., Chen, L., Rath, S., Prangley, E., Chitrakar, A., Aoki, T., Schedl, P., Rabinowitz, J. and Korennykh, A. The metabolites NADP+ and NADPH are the targets of the circadian protein nocturnin (curled). Nat. Commun. 10:2367 (2019). [PMID: 31147539]
[EC 3.1.3.108 created 2020]
 
 
EC 3.1.3.109     
Accepted name: ribulose-1,5-bisphosphate 5-phosphatase
Reaction: D-ribulose-1,5-bisphosphate + H2O = D-ribulose 1-phosphate + phosphate
Other name(s): RuBP 5-phosphatase
Systematic name: D-ribulose-1,5-bisphosphate 5-phosphohydrolase
Comments: The enzyme, characterized from the halophilic archaeon Halopiger xanaduensis, participates in a non-carboxylating pentose bisphosphate pathway for nucleoside degradation, which is found in some halophilic archaea. The enzyme requires both monovalent and divalent ions for optimal activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sato, T., Utashima, S.H., Yoshii, Y., Hirata, K., Kanda, S., Onoda, Y., Jin, J.Q., Xiao, S., Minami, R., Fukushima, H., Noguchi, A., Manabe, Y., Fukase, K. and Atomi, H. A non-carboxylating pentose bisphosphate pathway in halophilic archaea. Commun Biol 5:1290 (2022). [DOI] [PMID: 36434094]
[EC 3.1.3.109 created 2022]
 
 
EC 3.1.3.110     
Accepted name: 4′-phosphopantetheine phosphatase
Reaction: 4′-phosphopantetheine + H2O = pantetheine + phosphate
Glossary: pantetheine = (2R)-2,4-dihydroxy-3,3-dimethyl-N-{3-oxo-3-[(2-sulfanylethyl)amino]propyl}butanamide
Other name(s): thnH (gene name); PANK4 (gene name)
Systematic name: 4′-phosphopantetheine phosphohydrolase
Comments: The enzyme has been characterized from mammals and from the bacterium Streptantibioticus cattleyicolor. In mammals it hydrolyses excess 4′-phosphopantetheine to prevent cell damage. In S. cattleyicolor it participates in the biosynthesis of the β-lactam antibiotic thienamycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Freeman, M.F., Moshos, K.A., Bodner, M.J., Li, R. and Townsend, C.A. Four enzymes define the incorporation of coenzyme A in thienamycin biosynthesis. Proc. Natl. Acad. Sci. USA 105 (2008) 11128–11133. [DOI] [PMID: 18678912]
2.  Huang, L., Khusnutdinova, A., Nocek, B., Brown, G., Xu, X., Cui, H., Petit, P., Flick, R., Zallot, R., Balmant, K., Ziemak, M.J., Shanklin, J., de Crecy-Lagard, V., Fiehn, O., Gregory, J.F., 3rd, Joachimiak, A., Savchenko, A., Yakunin, A.F. and Hanson, A.D. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12 (2016) 621–627. [DOI] [PMID: 27322068]
[EC 3.1.3.110 created 2024]
 
 
EC 3.1.30.1     
Accepted name: Aspergillus nuclease S1
Reaction: Endonucleolytic cleavage to 5′-phosphomononucleotide and 5′-phosphooligonucleotide end-products
Other name(s): endonuclease S1 (Aspergillus); single-stranded-nucleate endonuclease; deoxyribonuclease S1; deoxyribonuclease S1; nuclease S1; Neurospora crassa single-strand specific endonuclease; S1 nuclease; single-strand endodeoxyribonuclease; single-stranded DNA specific endonuclease; single-strand-specific endodeoxyribonuclease; single strand-specific DNase; Aspergillus oryzae S1 nuclease
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-25-8
References:
1.  Ando, T. A nuclease specific for heat-denatured DNA isolated from a product of Aspergillus oryzae. Biochim. Biophys. Acta 114 (1966) 158–168. [DOI] [PMID: 4287053]
2.  Sutton, W.D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim. Biophys. Acta 240 (1971) 522–531. [DOI] [PMID: 5123563]
3.  Vogt, V.M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur. J. Biochem. 33 (1973) 192–200. [DOI] [PMID: 4691350]
[EC 3.1.30.1 created 1972 as EC 3.1.4.21, transferred 1978 to EC 3.1.30.1, modified 1981]
 
 
EC 3.1.30.2     
Accepted name: Serratia marcescens nuclease
Reaction: Endonucleolytic cleavage to 5′-phosphomononucleotide and 5′-phosphooligonucleotide end-products
Other name(s): endonuclease (Serratia marcescens); barley nuclease; plant nuclease I; nucleate endonuclease
Comments: Hydrolyses double- or single-stranded substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-65-4
References:
1.  Mikulski, A.J. and Laskowski, M. , Sr. Mung bean nuclease I. 3. Purification procedure and (3′) ω monophosphatase activity. J. Biol. Chem. 245 (1970) 5026–5031. [PMID: 4319109]
2.  Stevens, A. and Hilmoe, R.J. Studies on a nuclease from Azotobacter agilis. I. Isolation and mode of action. J. Biol. Chem. 235 (1960) 3016–3022.
3.  Stevens, A. and Hilmoe, R.J. Studies on a nuclease from Azotobacter agilis. II. Hydrolysis of ribonucleic and deoxyribonucleic acids. J. Biol. Chem. 235 (1960) 3023–3027.
4.  Wechter, W.J., Mikulski, A.J. and Laskowski, M. , Sr. Gradation of specificity with regard to sugar among nucleases. Biochem. Biophys. Res. Commun. 30 (1968) 318–322. [DOI] [PMID: 4296679]
[EC 3.1.30.2 created 1965 as EC 3.1.4.9, transferred 1978 to EC 3.1.30.2, modified 1981]
 
 
EC 3.1.31.1     
Accepted name: micrococcal nuclease
Reaction: Endonucleolytic cleavage to nucleoside 3′-phosphates and 3′-phosphooligonucleotide end-products
Other name(s): spleen endonuclease; thermonuclease; nuclease T; micrococcal endonuclease; nuclease T′; staphylococcal nuclease; spleen phosphodiesterase; Staphylococcus aureus nuclease; Staphylococcus aureus nuclease B; ribonucleate (deoxynucleate) 3′-nucleotidohydrolase
Comments: Hydrolyses double- or single-stranded substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-53-0
References:
1.  Alexander, M., Heppel, L.A. and Hurwitz, J. The purification and properties of micrococcal nuclease. J. Biol. Chem. 236 (1961) 3014–3019. [PMID: 13860347]
2.  Anfinsen, C.B., Cuatrecasas, P. and Taniuchi, H. Staphylococcal nuclease, chemical properties and catalysis. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 4, Academic Press, New York, 1971, pp. 177–204.
3.  Reddi, K.K. Micrococcal nuclease. Methods Enzymol. 12A (1967) 257–262.
4.  Sulkowski, E. and Laskowski, M. , Sr. Phosphatase-free crystalline micrococcal nuclease. J. Biol. Chem. 241 (1966) 4386–4388. [PMID: 5922962]
[EC 3.1.31.1 created 1961 as EC 3.1.4.7, transferred 1978 to EC 3.1.31.1, modified 1981]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald