The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 2.4.1.243     
Accepted name: 6G-fructosyltransferase
Reaction: [1-β-D-fructofuranosyl-(2→1)-]m+1-α-D-glucopyranoside + [1-β-D-fructofuranosyl-(2→1)-]n-α-D-glucopyranoside = [1-β-D-fructofuranosyl-(2→1)-]m-α-D-glucopyranoside + [1-β-D-fructofuranosyl-(2→1)-]n-β-D-fructofuranosyl-(2→6)-α-D-glucopyranoside (m > 0; n ≥ 0)
Glossary: [1-β-D-fructofuranosyl-(2→1)-]n-α-D-glucopyranoside = inulin
Other name(s): fructan:fructan 6G-fructosyltransferase; 1F(1-β-D-fructofuranosyl)m sucrose:1F(1-β-D-fructofuranosyl)nsucrose 6G-fructosyltransferase; 6G-FFT; 6G-FT; 6G-fructotransferase
Systematic name: 1F-oligo[β-D-fructofuranosyl-(2→1)-]sucrose 6G-β-D-fructotransferase
Comments: Inulins are polysaccharides consisting of linear or branched D-fructofuranosyl chains attached to the fructosyl residue of sucrose by a β(2→1) linkage. This enzyme catalyses the transfer of the terminal (2→1)-linked -D-fructosyl group of an inulin chain onto O-6 position of the glucose residue of another inulin molecule [1]. For example, if 1-kestose [1F-(β-D-fructofuranosyl)sucrose] is both the donor and recipient in the reaction shown above, i.e., if m = 1 and n = 1, then the products will be sucrose and 6G-di-β-D-fructofuranosylsucrose. In this notation, the superscripts F and G are used to specify whether the fructose or glucose residue of the sucrose carries the substituent. Alternatively, this may be indicated by the presence and/or absence of primes (see http://www.chem.qmul.ac.uk/iupac/2carb/36.html#362). Sucrose cannot be a donor substrate in the reaction (i.e. m cannot be zero) and inulin cannot act as an acceptor. Side reactions catalysed are transfer of a β-D-fructosyl group between compounds of the structure 1F-(1-β-D-fructofuranosyl)m-6G-(1-β-D-fructofuranosyl)n sucrose, where m ≥ 0 and n = 1 for the donor, and m ≥ 0 and n ≥ 0 for the acceptor.
Links to other databases: BRENDA, EXPASY, Gene, KEGG, MetaCyc, CAS registry number: 79633-28-6
References:
1.  Shiomi, N. Purification and characterisation of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydr. Res. 96 (1981) 281–292.
2.  Shiomi, N. Reverse reaction of fructosyl transfer catalysed by asparagus 6G-fructosyltransferase. Carbohydr. Res. 106 (1982) 166–169.
3.  Shiomi, N. and Ueno, K. Cloning and expression of genes encoding fructosyltransferases from higher plants in food technology. J. Appl. Glycosci. 51 (2004) 177–183.
4.  Ueno, K., Onodera, S., Kawakami, A., Yoshida, M. and Shiomi, N. Molecular characterization and expression of a cDNA encoding fructan:fructan 6G-fructosyltransferase from asparagus (Asparagus officinalis). New Phytol. 165 (2005) 813–824. [DOI] [PMID: 15720693]
[EC 2.4.1.243 created 2006]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald