The Enzyme Database

Displaying entries 51-66 of 66.

<< Previous | Next >>    printer_iconPrintable version



EC 1.14.99.51     
Accepted name: hercynylcysteine S-oxide synthase
Reaction: hercynine + L-cysteine + O2 = S-(hercyn-2-yl)-L-cysteine S-oxide + H2O
For diagram of ergothioneine and ovothiol biosynthesis, click here
Glossary: hercynine = Nα,Nα,Nα-trimethyl-L-histidine
Other name(s): Egt1; Egt-1
Systematic name: hercynine,L-cysteine:oxygen [S-(hercyn-2-yl)-L-cysteine S-oxide-forming]
Comments: Requires Fe2+ for activity. The enzyme, found in fungal species, is part of a fusion protein that also has the the activity of EC 2.1.1.44, L-histidine Nα-methyltransferase. It is part of the biosynthesis pathway of ergothioneine. The enzyme can also use L-selenocysteine to produce hercynylselenocysteine, which can be converted to selenoneine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pluskal, T., Ueno, M. and Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One 9:e97774 (2014). [DOI] [PMID: 24828577]
[EC 1.14.99.51 created 2015]
 
 
EC 1.14.99.52     
Accepted name: L-cysteinyl-L-histidinylsulfoxide synthase
Reaction: L-histidine + L-cysteine + O2 = S-(L-histidin-5-yl)-L-cysteine S-oxide + H2O
For diagram of ergothioneine and ovothiol biosynthesis, click here
Glossary: S-(L-histidin-5-yl)-L-cysteine S-oxide = 5-{[(2R)-2-amino-2-carboxyethyl]sulfinyl}-L-histidine
Other name(s): OvoA
Systematic name: L-histidine,L-cysteine:oxygen [S-(L-histidin-5-yl)-L-cysteine S-oxide-forming]
Comments: Requires Fe2+ for activity. The enzyme participates in ovothiol biosynthesis. It also has some activity as EC 1.13.11.20, cysteine dioxygenase, and can perform the reaction of EC 1.14.99.50, γ-glutamyl hercynylcysteine sulfoxide synthase, albeit with low activity [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Braunshausen, A. and Seebeck, F.P. Identification and characterization of the first ovothiol biosynthetic enzyme. J. Am. Chem. Soc. 133 (2011) 1757–1759. [DOI] [PMID: 21247153]
2.  Song, H., Leninger, M., Lee, N. and Liu, P. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses. Org. Lett. 15 (2013) 4854–4857. [DOI] [PMID: 24016264]
3.  Mashabela, G.T. and Seebeck, F.P. Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis. Chem. Commun. (Camb.) 49 (2013) 7714–7716. [DOI] [PMID: 23877651]
4.  Song, H., Her, A.S., Raso, F., Zhen, Z., Huo, Y. and Liu, P. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis. Org. Lett. 16 (2014) 2122–2125. [DOI] [PMID: 24684381]
[EC 1.14.99.52 created 2015]
 
 
EC 1.14.99.53     
Accepted name: lytic chitin monooxygenase
Reaction: [(1→4)-N-acetyl-β-D-glucosaminyl](m+n) + reduced acceptor + O2 = [(1→4)-N-acetyl-β-D-glucosaminyl](m-1)-(1→4)-2-(acetylamino)-2-deoxy-D-glucono-1,5-lactone + [(1→4)-N-acetyl-β-D-glucosaminyl]n + acceptor + H2O
Glossary: chitin = [(1→4)-N-acetyl-β-D-glucosaminyl]n
Other name(s): LPMO (ambiguous); CBP21; chitin oxidohydrolase
Systematic name: chitin, hydrogen-donor:oxygen oxidoreductase (N-acetyl-β-D-glucosaminyl C1-hydroxylating/C4-dehdyrogenating)
Comments: The enzyme cleaves chitin in an oxidative manner, releasing fragments of chitin with an N-acetylamino-D-glucono-1,5-lactone at the reducing end. The initially formed lactone at the reducing end of the shortened chitin chain quickly hydrolyses spontaneously to the aldonic acid. In vitro ascorbate can serve as reducing agent. The enzyme contains copper at the active site.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sorlie, M. and Eijsink, V.G. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330 (2010) 219–222. [DOI] [PMID: 20929773]
2.  Vaaje-Kolstad, G., Bohle, L.A., Gaseidnes, S., Dalhus, B., Bjoras, M., Mathiesen, G. and Eijsink, V.G. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J. Mol. Biol. 416 (2012) 239–254. [DOI] [PMID: 22210154]
3.  Gudmundsson, M., Kim, S., Wu, M., Ishida, T., Momeni, M.H., Vaaje-Kolstad, G., Lundberg, D., Royant, A., Stahlberg, J., Eijsink, V.G., Beckham, G.T. and Sandgren, M. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J. Biol. Chem. 289 (2014) 18782–18792. [DOI] [PMID: 24828494]
4.  Zhang, H., Zhao, Y., Cao, H., Mou, G. and Yin, H. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Int. J. Biol. Macromol. 79 (2015) 72–75. [DOI] [PMID: 25936286]
[EC 1.14.99.53 created 2017]
 
 
EC 1.14.99.54     
Accepted name: lytic cellulose monooxygenase (C1-hydroxylating)
Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = [(1→4)-β-D-glucosyl]m-1-(1→4)-D-glucono-1,5-lactone + [(1→4)-β-D-glucosyl]n + acceptor + H2O
Other name(s): lytic polysaccharide monooxygenase (ambiguous); LPMO (ambiguous); LPMO9A
Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl C1-hydroxylating)
Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner. The cellulose fragments that are formed contain a D-glucono-1,5-lactone residue at the reducing end, which hydrolyses quickly and spontaneously to the aldonic acid. The electrons are provided in vivo by the cytochrome b domain of EC 1.1.99.18, cellobiose dehydrogenase (acceptor) [1]. Ascorbate can serve as the electron donor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Phillips, C.M., Beeson, W.T., Cate, J.H. and Marletta, M.A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6 (2011) 1399–1406. [DOI] [PMID: 22004347]
2.  Beeson, W.T., Phillips, C.M., Cate, J.H. and Marletta, M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134 (2012) 890–892. [DOI] [PMID: 22188218]
3.  Li, X., Beeson, W.T., 4th, Phillips, C.M., Marletta, M.A. and Cate, J.H. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20 (2012) 1051–1061. [DOI] [PMID: 22578542]
4.  Bey, M., Zhou, S., Poidevin, L., Henrissat, B., Coutinho, P.M., Berrin, J.G. and Sigoillot, J.C. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl. Environ. Microbiol. 79 (2013) 488–496. [DOI] [PMID: 23124232]
5.  Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W., Koetsier, M.J., van Berkel, W.J., Gruppen, H. and Kabel, M.A. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol. Biofuels 8:101 (2015). [DOI] [PMID: 26185526]
6.  Patel, I., Kracher, D., Ma, S., Garajova, S., Haon, M., Faulds, C.B., Berrin, J.G., Ludwig, R. and Record, E. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels 9:108 (2016). [DOI] [PMID: 27213015]
7.  Courtade, G., Wimmer, R., Rohr, A.K., Preims, M., Felice, A.K., Dimarogona, M., Vaaje-Kolstad, G., Sorlie, M., Sandgren, M., Ludwig, R., Eijsink, V.G. and Aachmann, F.L. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc. Natl. Acad. Sci. USA 113 (2016) 5922–5927. [DOI] [PMID: 27152023]
[EC 1.14.99.54 created 2017]
 
 
EC 1.14.99.55     
Accepted name: lytic starch monooxygenase
Reaction: starch + reduced acceptor + O2 = D-glucono-1,5-lactone-terminated malto-oligosaccharides + short-chain malto-oligosaccharides + acceptor + H2O
Other name(s): LPMO (ambiguous)
Systematic name: starch, hydrogen-donor:oxygen oxidoreductase (D-glucosyl C1-hydroxylating)
Comments: The enzyme cleaves starch in an oxidative manner. It releases fragments of starch with a D-glucono-1,5-lactone at the reducing end. The initially formed α-D-glucono-1,5-lactone at the reducing end of the shortend amylose chain quickly hydrolyses spontaneously to the aldonic acid. In vitro ascorbate has been found to be able to serve as reducing agent. The enzyme contains copper at the active site.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vu, V.V., Beeson, W.T., Span, E.A., Farquhar, E.R. and Marletta, M.A. A family of starch-active polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA 111 (2014) 13822–13827. [DOI] [PMID: 25201969]
2.  Gudmundsson, M., Kim, S., Wu, M., Ishida, T., Momeni, M.H., Vaaje-Kolstad, G., Lundberg, D., Royant, A., Stahlberg, J., Eijsink, V.G., Beckham, G.T. and Sandgren, M. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J. Biol. Chem. 289 (2014) 18782–18792. [DOI] [PMID: 24828494]
3.  Lo Leggio, L., Simmons, T.J., Poulsen, J.C., Frandsen, K.E., Hemsworth, G.R., Stringer, M.A., von Freiesleben, P., Tovborg, M., Johansen, K.S., De Maria, L., Harris, P.V., Soong, C.L., Dupree, P., Tryfona, T., Lenfant, N., Henrissat, B., Davies, G.J. and Walton, P.H. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6:5961 (2015). [DOI] [PMID: 25608804]
[EC 1.14.99.55 created 2017]
 
 
EC 1.14.99.56     
Accepted name: lytic cellulose monooxygenase (C4-dehydrogenating)
Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = 4-dehydro-β-D-glucosyl-[(1→4)-β-D-glucosyl]n-1 + [(1→4)-β-D-glucosyl]m + acceptor + H2O
Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl 4-dehydrogenating)
Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner. The cellulose fragments that are formed contain a 4-dehydro-D-glucose residue at the non-reducing end. Some enzymes also oxidize cellulose at the C-1 position of the reducing end forming a D-glucono-1,5-lactone residue [cf. EC 1.14.99.54, lytic cellulose monooxygenase (C1-hydroxylating)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Beeson, W.T., Phillips, C.M., Cate, J.H. and Marletta, M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134 (2012) 890–892. [DOI] [PMID: 22188218]
2.  Li, X., Beeson, W.T., 4th, Phillips, C.M., Marletta, M.A. and Cate, J.H. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20 (2012) 1051–1061. [DOI] [PMID: 22578542]
3.  Forsberg, Z., Mackenzie, A.K., Sorlie, M., Rohr, A.K., Helland, R., Arvai, A.S., Vaaje-Kolstad, G. and Eijsink, V.G. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA 111 (2014) 8446–8451. [DOI] [PMID: 24912171]
4.  Borisova, A.S., Isaksen, T., Dimarogona, M., Kognole, A.A., Mathiesen, G., Varnai, A., Rohr, A.K., Payne, C.M., Sorlie, M., Sandgren, M. and Eijsink, V.G. Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J. Biol. Chem. 290 (2015) 22955–22969. [DOI] [PMID: 26178376]
5.  Patel, I., Kracher, D., Ma, S., Garajova, S., Haon, M., Faulds, C.B., Berrin, J.G., Ludwig, R. and Record, E. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels 9:108 (2016). [DOI] [PMID: 27213015]
[EC 1.14.99.56 created 2017]
 
 
EC 1.14.99.57     
Accepted name: heme oxygenase (mycobilin-producing)
Reaction: (1) protoheme + 3 reduced acceptor + 3 O2 = mycobilin a + Fe2+ + 3 acceptor + 3 H2O
(2) protoheme + 3 reduced acceptor + 3 O2 = mycobilin b + Fe2+ + 3 acceptor + 3 H2O
For diagram of mycobilin biosynthesis, click here
Glossary: mycobilin a = 8,12-bis(2-carboxyethyl)-19-formyl-3,7,13,18-tetramethyl-3,17-divinylbiladiene-ab-1,15(21H)-dione
mycobilin b = 8,12-bis(2-carboxyethyl)-19-formyl-2,7,13,17-tetramethyl-3,18-divinylbiladiene-ab-1,15(21H)-dione
Other name(s): mhuD (gene name)
Systematic name: protoheme,donor:oxygen oxidoreductase (mycobilin-producing)
Comments: The enzyme, characterized from the bacterium Mycobacterium tuberculosis, is involved in heme degradation and iron utilization. The enzyme binds two stacked protoheme molecules per monomer. Unlike the canonical heme oxygenases, the enzyme does not release carbon monoxide or formaldehyde. Instead, it forms unique products, named mycobilins, that retain the α-meso-carbon at the ring cleavage site as an aldehyde group. EC 1.6.2.4, NADPH-hemoprotein reductase, can act as electron donor in vitro.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chim, N., Iniguez, A., Nguyen, T.Q. and Goulding, C.W. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395 (2010) 595–608. [DOI] [PMID: 19917297]
2.  Nambu, S., Matsui, T., Goulding, C.W., Takahashi, S. and Ikeda-Saito, M. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J. Biol. Chem. 288 (2013) 10101–10109. [DOI] [PMID: 23420845]
3.  Graves, A.B., Morse, R.P., Chao, A., Iniguez, A., Goulding, C.W. and Liptak, M.D. Crystallographic and spectroscopic insights into heme degradation by Mycobacterium tuberculosis MhuD. Inorg. Chem. 53 (2014) 5931–5940. [DOI] [PMID: 24901029]
[EC 1.14.99.57 created 2017]
 
 
EC 1.14.99.58     
Accepted name: heme oxygenase (biliverdin-IX-β and δ-forming)
Reaction: (1) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-δ + CO + Fe2+ + 3 acceptor + 3 H2O
(2) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-β + CO + Fe2+ + 3 acceptor + 3 H2O
For diagram of biliverdin biosynthesis, click here
Glossary: biliverdin-IX-β = 3,7-bis(2-carboxyethyl)-2,8,12,17-tetramethyl-13,18-divinylbilin-1,19(21H,24H)-dione
biliverdin-IX-δ = 3,7-bis(2-carboxyethyl)-2,8,13,18-tetramethyl-12,17-divinylbilin-1,19(21H,24H)-dione
Other name(s): pigA (gene name)
Systematic name: protoheme,donor:oxygen oxidoreductase (biliverdin-IX-β and δ-forming)
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, differs from EC 1.14.15.20, heme oxygenase (biliverdin-producing, ferredoxin), in that the heme substrate is rotated by approximately 110 degrees within the active site, resulting in cleavage at a different part of the ring. It forms a mixture of about 70% biliverdin-IX-δ and 30% biliverdin-IX-β.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ratliff, M., Zhu, W., Deshmukh, R., Wilks, A. and Stojiljkovic, I. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol. 183 (2001) 6394–6403. [DOI] [PMID: 11591684]
2.  Caignan, G.A., Deshmukh, R., Wilks, A., Zeng, Y., Huang, H.W., Moenne-Loccoz, P., Bunce, R.A., Eastman, M.A. and Rivera, M. Oxidation of heme to β- and δ-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. J. Am. Chem. Soc. 124 (2002) 14879–14892. [DOI] [PMID: 12475329]
3.  Friedman, J., Lad, L., Li, H., Wilks, A. and Poulos, T.L. Structural basis for novel δ-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43 (2004) 5239–5245. [DOI] [PMID: 15122889]
[EC 1.14.99.58 created 2017]
 
 
EC 1.14.99.59     
Accepted name: tryptamine 4-monooxygenase
Reaction: tryptamine + reduced acceptor + O2 = 4-hydroxytryptamine + acceptor + H2O
For diagram of psilocybin biosynthesis, click here
Glossary: psilocybin = 3-[2-(dimethylamino)ethyl]-1H-indol-4-yl phosphate
Other name(s): PsiH
Systematic name: tryptamine,hydrogen-donor:oxygen oxidoreductase (4-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the fungus Psilocybe cubensis. Involved in the biosynthesis of the psychoactive compound psilocybin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fricke, J., Blei, F. and Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. Engl. 56 (2017) 12352–12355. [DOI] [PMID: 28763571]
[EC 1.14.99.59 created 2017]
 
 
EC 1.14.99.60     
Accepted name: 3-demethoxyubiquinol 3-hydroxylase
Reaction: 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol + a reduced acceptor + O2 = 3-demethylubiquinol + acceptor + H2O
Glossary: 3-demethylubiquinol = 3-methoxy-6-methyl-5-(all trans-polyprenyl)benzene-1,2,4-triol
Other name(s): 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol 5-hydroxylase; COQ7 (gene name); clk-1 (gene name); ubiF (gene name)
Systematic name: 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol,acceptor:oxygen oxidoreductase (5-hydroxylating)
Comments: The enzyme catalyses the last hydroxylation reaction during the biosynthesis of ubiquinone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Marbois, B.N. and Clarke, C.F. The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J. Biol. Chem. 271 (1996) 2995–3004. [PMID: 8621692]
2.  Vajo, Z., King, L.M., Jonassen, T., Wilkin, D.J., Ho, N., Munnich, A., Clarke, C.F. and Francomano, C.A. Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging. Mamm Genome 10 (1999) 1000–1004. [PMID: 10501970]
3.  Kwon, O., Kotsakis, A. and Meganathan, R. Ubiquinone (coenzyme Q) biosynthesis in Escherichia coli: identification of the ubiF gene. FEMS Microbiol. Lett. 186 (2000) 157–161. [PMID: 10802164]
4.  Stenmark, P., Grunler, J., Mattsson, J., Sindelar, P.J., Nordlund, P. and Berthold, D.A. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J. Biol. Chem. 276 (2001) 33297–33300. [PMID: 11435415]
5.  Tran, U.C., Marbois, B., Gin, P., Gulmezian, M., Jonassen, T. and Clarke, C.F. Complementation of Saccharomyces cerevisiae coq7 mutants by mitochondrial targeting of the Escherichia coli UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. J. Biol. Chem. 281 (2006) 16401–16409. [PMID: 16624818]
[EC 1.14.99.60 created 2018]
 
 
EC 1.14.99.61     
Accepted name: cyclooctat-9-en-7-ol 5-monooxygenase
Reaction: cyclooctat-9-en-7-ol + reduced acceptor + O2 = cyclooctat-9-ene-5,7-diol + acceptor + H2O
Glossary: cyclooctat-9-en-7-ol = (1S,3aS,4R,7S,9aS,10aS)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulen-4-ol
cyclooctat-9-ene-5,7-diol = (1S,3R,3aS,4R,7S,9aS,10aS)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulene-3,4-diol
Other name(s): CotB3
Systematic name: cyclooctat-9-en-7-ol,hydrogen-donor:oxygen oxidoreductase (5-hydroxylating)
Comments: Isolated from the bacterium Streptomyces melanosporofaciens M1614-43f2. Involved in the biosynthesis of cyclooctatin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, S.Y., Zhao, P., Igarashi, M., Sawa, R., Tomita, T., Nishiyama, M. and Kuzuyama, T. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two P450 hydroxylases. Chem. Biol. 16 (2009) 736–743. [DOI] [PMID: 19635410]
2.  Gorner, C., Schrepfer, P., Redai, V., Wallrapp, F., Loll, B., Eisenreich, W., Haslbeck, M. and Bruck, T. Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb. Cell Fact. 15:86 (2016). [PMID: 27216162]
[EC 1.14.99.61 created 2018]
 
 
EC 1.14.99.62     
Accepted name: cyclooctatin synthase
Reaction: cyclooctat-9-ene-5,7-diol + reduced acceptor + O2 = cyclooctatin + acceptor + H2O
Glossary: cyclooctat-9-ene-5,7-diol = (1S,3R,3aS,4R,7S,9aS,10aS)-1,4,9a-trimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulene-3,4-diol
cyclooctatin = cycloctat-9-ene-5,7,18-triol = (1R,3R,3aS,4R,7S,9aS,10aS)-1-(hydroxymethyl-)4,9a-dimethyl-7-(propan-2-yl)-1,2,3,3a,4,5,7,8,9,9a,10,10a-dodecahydrodicyclopenta[a,d][8]annulene-3,4-diol
Other name(s): CotB4
Systematic name: cyclooctat-9-ene-5,7-diol,hydrogen-donor:oxygen oxidoreductase (18-hydroxylating)
Comments: Isolated from the bacterium Streptomyces melanosporofaciens M1614-43f2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, S.Y., Zhao, P., Igarashi, M., Sawa, R., Tomita, T., Nishiyama, M. and Kuzuyama, T. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two P450 hydroxylases. Chem. Biol. 16 (2009) 736–743. [DOI] [PMID: 19635410]
2.  Gorner, C., Schrepfer, P., Redai, V., Wallrapp, F., Loll, B., Eisenreich, W., Haslbeck, M. and Bruck, T. Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb. Cell Fact. 15:86 (2016). [PMID: 27216162]
[EC 1.14.99.62 created 2018]
 
 
EC 1.14.99.63     
Accepted name: β-carotene 4-ketolase
Reaction: (1) β-carotene + 2 reduced acceptor + 2 O2 = echinenone + 2 acceptor + 3 H2O
(2) echinenone + 2 reduced acceptor + 2 O2 = canthaxanthin + 2 acceptor + 3 H2O
Glossary: echinenone = β,β-caroten-4-one
canthaxanthin = β,β-carotene-4,4′-dione
zeaxanthin = β,β-carotene-3,3′-diol
astaxanthin = 3,3′-dihydroxy-β,β-carotene-4,4′-dione
Other name(s): BKT (ambiguous); β-C-4 oxygenase; β-carotene ketolase; crtS (gene name); crtW (gene name)
Systematic name: β-carotene,donor:oxygen oxidoreductase (echinenone-forming)
Comments: The enzyme, studied from algae, plants, fungi, and bacteria, adds an oxo group at position 4 of a carotenoid β ring. It is involved in the biosynthesis of carotenoids such as astaxanthin and flexixanthin. The enzyme does not act on β rings that are hydroxylated at position 3, such as in zeaxanthin (cf. EC 1.14.99.64, zeaxanthin 4-ketolase). The enzyme from the yeast Xanthophyllomyces dendrorhous is bifuntional and also catalyses the activity of EC 1.14.15.24, β-carotene 3-hydroxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lotan, T. and Hirschberg, J. Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364 (1995) 125–128. [PMID: 7750556]
2.  Breitenbach, J., Misawa, N., Kajiwara, S. and Sandmann, G. Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol. Lett. 140 (1996) 241–246. [PMID: 8764486]
3.  Steiger, S. and Sandmann, G. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnol. Lett. 26 (2004) 813–817. [PMID: 15269553]
4.  Ojima, K., Breitenbach, J., Visser, H., Setoguchi, Y., Tabata, K., Hoshino, T., van den Berg, J. and Sandmann, G. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a β-carotene 3-hydroxylase/4-ketolase. Mol. Genet. Genomics 275 (2006) 148–158. [PMID: 16416328]
5.  Tao, L., Yao, H., Kasai, H., Misawa, N. and Cheng, Q. A carotenoid synthesis gene cluster from Algoriphagus sp. KK10202C with a novel fusion-type lycopene β-cyclase gene. Mol. Genet. Genomics 276 (2006) 79–86. [PMID: 16625353]
6.  Kathiresan, S., Chandrashekar, A., Ravishankar, G.A. and Sarada, R. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J. Biotechnol. 196-197 (2015) 33–41. [PMID: 25612872]
[EC 1.14.99.63 created 2018]
 
 
EC 1.14.99.64     
Accepted name: zeaxanthin 4-ketolase
Reaction: (1) zeaxanthin + 2 reduced acceptor + 2 O2 = adonixanthin + 2 acceptor + 3 H2O
(2) adonixanthin + 2 reduced acceptor + 2 O2 = (3S,3′S)-astaxanthin + 2 acceptor + 3 H2O
Glossary: zeaxanthin = β,β-carotene-3,3′-diol
adonixanthin = 3,3′-dihydroxy-β,β-carotene-4-one
(3S,3′S)-astaxanthin = (3S,3′S)-3,3′-dihydroxy-β,β-carotene-4,4′-dione
Other name(s): BKT (ambiguous); crtW148 (gene name)
Systematic name: zeaxanthin,donor:oxygen oxidoreductase (adonixanthin-forming)
Comments: The enzyme has a similar activity to that of EC 1.14.99.63, β-carotene 4-ketolase, but unlike that enzyme is able to also act on zeaxanthin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zhong, Y.J., Huang, J.C., Liu, J., Li, Y., Jiang, Y., Xu, Z.F., Sandmann, G. and Chen, F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62 (2011) 3659–3669. [PMID: 21398427]
2.  Huang, J., Zhong, Y., Sandmann, G., Liu, J. and Chen, F. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236 (2012) 691–699. [PMID: 22526507]
[EC 1.14.99.64 created 2018]
 
 
EC 1.14.99.65     
Accepted name: 4-amino-L-phenylalanyl-[CmlP-peptidyl-carrier-protein] 3-hydroxylase
Reaction: 4-amino-L-phenylalanyl-[CmlP-peptidyl-carrier-protein] + reduced acceptor + O2 = 2-(4-aminophenyl)-L-seryl-[CmlP-peptidyl-carrier-protein] + acceptor + H2O
Other name(s): cmlA (gene name)
Systematic name: 4-amino-L-phenylalanyl-[CmlP-peptidyl-carrier-protein],acceptor:oxygen 3-oxidoreductase
Comments: The enzyme, characterized from the bacterium Streptomyces venezuelae, participates in the biosynthesis of the antibiotic chloramphenicol. It carries an oxygen-bridged dinuclear iron cluster. The native electron donor remains unknown, and the enzyme was assayed in vitro using sodium dithionite. The enzyme only acts on its substrate when it is loaded onto the peptidyl-carrier domain of the CmlP non-ribosomal peptide synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Makris, T.M., Chakrabarti, M., Munck, E. and Lipscomb, J.D. A family of diiron monooxygenases catalyzing amino acid β-hydroxylation in antibiotic biosynthesis. Proc. Natl. Acad. Sci. USA 107 (2010) 15391–15396. [PMID: 20713732]
[EC 1.14.99.65 created 2019]
 
 
EC 1.14.99.66     
Accepted name: [histone H3]-N6,N6-dimethyl-L-lysine4 FAD-dependent demethylase
Reaction: a [histone H3]-N6,N6-dimethyl-L-lysine4 + 2 acceptor + 2 H2O = a [histone H3]-L-lysine4 + 2 formaldehyde + 2 reduced acceptor (overall reaction)
(1a) a [histone H3]-N6,N6-dimethyl-L-lysine4 + acceptor + H2O = a [histone H3]-N6-methyl-L-lysine4 + formaldehyde + reduced acceptor
(1b) a [histone H3]-N6-methyl-L-lysine4 + acceptor + H2O = a [histone H3]-L-lysine4 + formaldehyde + reduced acceptor
Other name(s): KDM1 (gene name); LSD1 (gene name); lysine-specific histone demethylase 1
Systematic name: [histone H3]-N6,N6-dimethyl-L-lysine4:acceptor oxidoreductase (demethylating)
Comments: The enzyme specifically removes methyl groups from mono- and dimethylated lysine4 of histone 3. During the reaction the substrate is oxidized by the FAD cofactor of the enzyme to generate the corresponding imine, which is subsequently hydrolysed in the form of formaldehyde.The enzyme is similar to flavin amine oxidases, and differs from all other known histone lysine demethylases, which are iron(II)- and 2-oxoglutarate-dependent dioxygenases. The physiological electron acceptor is not known with certainty. In vitro the enzyme can use oxygen, which is reduced to hydrogen peroxide, but generation of hydrogen peroxide in the chromatin environment is unlikely as it will result in oxidative damage of DNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Forneris, F., Binda, C., Vanoni, M.A., Mattevi, A. and Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579 (2005) 2203–2207. [PMID: 15811342]
2.  Forneris, F., Battaglioli, E., Mattevi, A. and Binda, C. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. FEBS J. 276 (2009) 4304–4312. [PMID: 19624733]
[EC 1.14.99.66 created 2019]
 
 


Data © 2001–2020 IUBMB
Web site © 2005–2020 Andrew McDonald