The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: aromatic 2-oxoacid reductase
Reaction: (1) (R)-3-(phenyl)lactate + NAD+ = 3-phenylpyruvate + NADH + H+
(2) (R)-3-(4-hydroxyphenyl)lactate + NAD+ = 3-(4-hydroxyphenyl)pyruvate + NADH + H+
(3) (R)-(indol-3-yl)lactate + NAD+ = (indol-3-yl)pyruvate + NADH + H+
Glossary: 3-phenylpyruvate = 2-oxo-3-phenylpropanoate
Other name(s): (R)-aromatic lactate dehydrogenase; (R)-4-hydroxyphenyllactate dehydrogenase; indolelactate:NAD+ oxidoreductase; indolelactate dehydrogenase; fldH (gene name); (indol-3-yl)lactate:NAD+ oxidoreductase
Systematic name: aromatic 2-oxoacid:NAD+ oxidoreductase
Comments: The enzymes from anaerobic bacteria such as Clostridium sporogenes participate in the fermentation pathways of L-phenylalanine, L-tyrosine and L-tryptophan. The enzyme from the yeast Candida maltosa has similar activity, but, unlike the bacterial enzyme, requires Mn2+ and can also use NADPH with lower activity.
Links to other databases: BRENDA, EXPASY, Gene, GTD, KEGG, MetaCyc, CAS registry number: 37250-41-2
1.  Jean, M. and DeMoss, R.D. Indolelactate dehydrogenase from Clostridium sporogenes. Can. J. Microbiol. 14 (1968) 429–435. [PMID: 4384683]
2.  Giesel, H. and Simon, H. On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius. Arch. Microbiol. 135 (1983) 51–57. [PMID: 6354130]
3.  Bode, R., Lippoldt, A. and Birnbaum, D. Purification and properties of D-aromatic lactate dehydrogenase an enzyme involved in the catabolism of the aromatic amino acids of Candida maltosa. Biochem. Physiol. Pflanzen 181 (1986) 189–198.
4.  Dickert, S., Pierik, A.J., Linder, D. and Buckel, W. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes. Eur. J. Biochem. 267 (2000) 3874–3884. [DOI] [PMID: 10849007]
5.  Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M., Nolan, G.P., Fischbach, M.A. and Sonnenburg, J.L. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551 (2017) 648–652. [PMID: 29168502]
[EC created 1972 (EC created 2000, incorporated 2018), modified 2018]

Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald