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EC 4.1 Carbon-carbon lyases
This subclass contains the decarboxylases (carboxy-lyases; EC 4.1.1), the aldehyde-lyases, which catalyse the reversal of an
aldol condensation (EC 4.1.2), the oxo-acid-lyases, which catalyse the cleavage of a 3-hydroxy acid (EC 4.1.3) and other carbon-
carbon lyases (EC 4.1.99), or the reverse reactions.

EC 4.1.1 Carboxy-lyases

EC 4.1.1.1
Accepted name: pyruvate decarboxylase

Reaction: a 2-oxo carboxylate = an aldehyde + CO2
Other name(s): α-carboxylase (ambiguous); pyruvic decarboxylase; α-ketoacid carboxylase; 2-oxo-acid carboxy-

lyase
Systematic name: 2-oxo-acid carboxy-lyase (aldehyde-forming)

Comments: A thiamine-diphosphate protein. Also catalyses acyloin formation.
References: [1192]

[EC 4.1.1.1 created 1961]

EC 4.1.1.2
Accepted name: oxalate decarboxylase

Reaction: oxalate + H+ = formate + CO2
Other name(s): oxalate carboxy-lyase

Systematic name: oxalate carboxy-lyase (formate-forming)
Comments: The enzyme from Bacillus subtilis contains manganese and requires O2 for activity, even though there

is no net redox change.
References: [578, 1261, 1262]

[EC 4.1.1.2 created 1961]

[4.1.1.3 Transferred entry. oxaloacetate decarboxylase. Now recognized to be two enzymes EC 7.2.4.2 [oxaloacetate decar-
boxylase (Na+ extruding)] and EC 4.1.1.112 (oxaloacetate decarboxylase).]

[EC 4.1.1.3 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, deleted 2018]

EC 4.1.1.4
Accepted name: acetoacetate decarboxylase

Reaction: acetoacetate + H+ = acetone + CO2
Other name(s): acetoacetic acid decarboxylase; acetoacetate carboxy-lyase

Systematic name: acetoacetate carboxy-lyase (acetone-forming)
References: [278, 1444, 521]

[EC 4.1.1.4 created 1961]

EC 4.1.1.5
Accepted name: acetolactate decarboxylase

Reaction: (2S)-2-hydroxy-2-methyl-3-oxobutanoate = (3R)-3-hydroxybutan-2-one + CO2
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Other name(s): α-acetolactate decarboxylase; (S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase; (S)-2-hydroxy-
2-methyl-3-oxobutanoate carboxy-lyase [(R)-2-acetoin-forming]; (S)-2-hydroxy-2-methyl-3-
oxobutanoate carboxy-lyase [(3R)-3-hydroxybutan-2-one-forming]

Systematic name: (2S)-2-hydroxy-2-methyl-3-oxobutanoate carboxy-lyase [(3R)-3-hydroxybutan-2-one-forming]
References: [514, 1222]

[EC 4.1.1.5 created 1961]

EC 4.1.1.6
Accepted name: cis-aconitate decarboxylase

Reaction: cis-aconitate = itaconate + CO2
Other name(s): cis-aconitic decarboxylase; cis-aconitate carboxy-lyase; CAD1 (gene name); IRG1 (gene name)

Systematic name: cis-aconitate carboxy-lyase (itaconate-forming)
Comments: The enzyme has been characterized from the fungus Aspergillus terreus and from human

macrophages. cf. EC 4.1.1.113, trans-aconitate decarboxylase.
References: [84, 321, 618, 872]

[EC 4.1.1.6 created 1961, modified 2018]

EC 4.1.1.7
Accepted name: benzoylformate decarboxylase

Reaction: phenylglyoxylate = benzaldehyde + CO2
Other name(s): phenylglyoxylate decarboxylase; benzoylformate carboxy-lyase; benzoylformate carboxy-lyase

(benzaldehyde-forming)
Systematic name: phenylglyoxylate carboxy-lyase (benzaldehyde-forming)

Comments: A thiamine-diphosphate protein.
References: [446]

[EC 4.1.1.7 created 1961]

EC 4.1.1.8
Accepted name: oxalyl-CoA decarboxylase

Reaction: oxalyl-CoA = formyl-CoA + CO2
Other name(s): oxalyl coenzyme A decarboxylase; oxalyl-CoA carboxy-lyase

Systematic name: oxalyl-CoA carboxy-lyase (formyl-CoA-forming)
Comments: A thiamine-diphosphate protein.
References: [1032]

[EC 4.1.1.8 created 1961]

EC 4.1.1.9
Accepted name: malonyl-CoA decarboxylase

Reaction: malonyl-CoA = acetyl-CoA + CO2
Other name(s): malonyl coenzyme A decarboxylase; malonyl-CoA carboxy-lyase

Systematic name: malonyl-CoA carboxy-lyase (acetyl-CoA-forming)
Comments: Specific for malonyl-CoA. The enzyme from Pseudomonas ovalis also catalyses the reaction of EC

2.8.3.3 malonate CoA-transferase.
References: [148, 1253]

[EC 4.1.1.9 created 1961, deleted 1972, reinstated 1978]

[4.1.1.10 Deleted entry. aminomalonate decarboxylase. Now included with EC 4.1.1.12, aspartate 4-decarboxylase]

[EC 4.1.1.10 created 1961, deleted 1972]
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EC 4.1.1.11
Accepted name: aspartate 1-decarboxylase

Reaction: L-aspartate = β-alanine + CO2
Other name(s): aspartate α-decarboxylase; L-aspartate α-decarboxylase; aspartic α-decarboxylase; L-aspartate 1-

carboxy-lyase
Systematic name: L-aspartate 1-carboxy-lyase (β-alanine-forming)

Comments: The Escherichia coli enzyme contains a pyruvoyl group.
References: [1371]

[EC 4.1.1.11 created 1961, deleted 1972, reinstated 1984]

EC 4.1.1.12
Accepted name: aspartate 4-decarboxylase

Reaction: L-aspartate = L-alanine + CO2
Other name(s): desulfinase; aminomalonic decarboxylase; aspartate β-decarboxylase; aspartate ω-decarboxylase;

aspartic ω-decarboxylase; aspartic β-decarboxylase; L-aspartate β-decarboxylase; cysteine sulfinic
desulfinase; L-cysteine sulfinate acid desulfinase; L-aspartate 4-carboxy-lyase

Systematic name: L-aspartate 4-carboxy-lyase (L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Also catalyses the decarboxylation of aminomalonate (formerly listed

as EC 4.1.1.10), and the desulfination of 3-sulfino-L-alanine to sulfite and alanine.
References: [612, 944, 971, 1372]

[EC 4.1.1.12 created 1961, modified 1976 (EC 4.1.1.10 created 1961, incorporated 1972)]

[4.1.1.13 Deleted entry. carbamoylaspartate decarboxylase]

[EC 4.1.1.13 created 1961, deleted 1972]

EC 4.1.1.14
Accepted name: valine decarboxylase

Reaction: L-valine = 2-methylpropanamine + CO2
Other name(s): leucine decarboxylase; L-valine carboxy-lyase

Systematic name: L-valine carboxy-lyase (2-methylpropanamine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on L-leucine.
References: [1235]

[EC 4.1.1.14 created 1961]

EC 4.1.1.15
Accepted name: glutamate decarboxylase

Reaction: L-glutamate = 4-aminobutanoate + CO2
Other name(s): L-glutamic acid decarboxylase; L-glutamic decarboxylase; cysteic acid decarboxylase; L-glutamate

α-decarboxylase; aspartate 1-decarboxylase; aspartic α-decarboxylase; L-aspartate-α-decarboxylase;
γ-glutamate decarboxylase; L-glutamate 1-carboxy-lyase

Systematic name: L-glutamate 1-carboxy-lyase (4-aminobutanoate-forming)
Comments: A pyridoxal-phosphate protein. The brain enzyme also acts on L-cysteate, 3-sulfino-L-alanine and L-

aspartate.
References: [22, 921, 1082]

[EC 4.1.1.15 created 1961]

EC 4.1.1.16
Accepted name: hydroxyglutamate decarboxylase

Reaction: 3-hydroxy-L-glutamate = 4-amino-3-hydroxybutanoate + CO2
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Other name(s): 3-hydroxy-L-glutamate 1-carboxy-lyase
Systematic name: 3-hydroxy-L-glutamate 1-carboxy-lyase (4-amino-3-hydroxybutanoate-forming)

Comments: A pyridoxal-phosphate protein.
References: [1314]

[EC 4.1.1.16 created 1961]

EC 4.1.1.17
Accepted name: ornithine decarboxylase

Reaction: L-ornithine = putrescine + CO2
Other name(s): SpeC; L-ornithine carboxy-lyase

Systematic name: L-ornithine carboxy-lyase (putrescine-forming)
Comments: A pyridoxal-phosphate protein.
References: [960, 1267]

[EC 4.1.1.17 created 1961]

EC 4.1.1.18
Accepted name: lysine decarboxylase

Reaction: L-lysine = cadaverine + CO2
Other name(s): L-lysine carboxy-lyase

Systematic name: L-lysine carboxy-lyase (cadaverine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on 5-hydroxy-L-lysine.
References: [395, 1201]

[EC 4.1.1.18 created 1961]

EC 4.1.1.19
Accepted name: arginine decarboxylase

Reaction: L-arginine = agmatine + CO2
Other name(s): SpeA; L-arginine carboxy-lyase

Systematic name: L-arginine carboxy-lyase (agmatine-forming)
Comments: A pyridoxal-phosphate protein.
References: [96, 1046, 1267]

[EC 4.1.1.19 created 1961]

EC 4.1.1.20
Accepted name: diaminopimelate decarboxylase

Reaction: meso-2,6-diaminoheptanedioate = L-lysine + CO2
Other name(s): diaminopimelic acid decarboxylase; meso-diaminopimelate decarboxylase; DAP-decarboxylase;

meso-2,6-diaminoheptanedioate carboxy-lyase
Systematic name: meso-2,6-diaminoheptanedioate carboxy-lyase (L-lysine-forming)

Comments: A pyridoxal-phosphate protein.
References: [298]

[EC 4.1.1.20 created 1961]

EC 4.1.1.21
Accepted name: phosphoribosylaminoimidazole carboxylase

Reaction: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate = 5-amino-1-(5-phospho-D-
ribosyl)imidazole + CO2
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Other name(s): 5-phosphoribosyl-5-aminoimidazole carboxylase; 5-amino-1-ribosylimidazole 5-phosphate carboxy-
lase; AIR carboxylase; 1-(5-phosphoribosyl)-5-amino-4-imidazolecarboxylate carboxy-lyase; ADE2;
class II PurE; 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate carboxy-lyase

Systematic name: 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate carboxy-lyase [5-amino-1-(5-phospho-D-
ribosyl)imidazole-forming]

Comments: While this is the reaction that occurs in vertebrates during purine biosynthesis, two en-
zymes are required to carry out the same reaction in Escherichia coli, namely EC 6.3.4.18, 5-
(carboxyamino)imidazole ribonucleotide synthase and EC 5.4.99.18, 5-(carboxyamino)imidazole
ribonucleotide mutase [360]. 5-Carboxyamino-1-(5-phospho-D-ribosyl)imidazole is not a substrate.

References: [794, 361, 360]

[EC 4.1.1.21 created 1961, modified 2000, modified 2006]

EC 4.1.1.22
Accepted name: histidine decarboxylase

Reaction: L-histidine = histamine + CO2
Other name(s): L-histidine decarboxylase; L-histidine carboxy-lyase

Systematic name: L-histidine carboxy-lyase (histamine-forming)
Comments: A pyridoxal-phosphate protein (in animal tissues). The bacterial enzyme has a pyruvoyl residue as

prosthetic group.
References: [339, 1071, 1087]

[EC 4.1.1.22 created 1961]

EC 4.1.1.23
Accepted name: orotidine-5′-phosphate decarboxylase

Reaction: orotidine 5′-phosphate = UMP + CO2
Other name(s): orotidine-5′-monophosphate decarboxylase; orotodylate decarboxylase; orotidine phosphate decar-

boxylase; OMP decarboxylase; orotate monophosphate decarboxylase; orotidine monophosphate
decarboxylase; orotidine phosphate decarboxylase; OMP-DC; orotate decarboxylase; orotidine 5′-
phosphate decarboxylase; orotidylic decarboxylase; orotidylic acid decarboxylase; orotodylate decar-
boxylase; ODCase; orotic decarboxylase; orotidine-5′-phosphate carboxy-lyase

Systematic name: orotidine-5′-phosphate carboxy-lyase (UMP-forming)
Comments: The enzyme from higher eukaryotes is identical with EC 2.4.2.10 orotate phosphoribosyltransferase .
References: [606, 756, 842]

[EC 4.1.1.23 created 1961, modified 1986]

EC 4.1.1.24
Accepted name: aminobenzoate decarboxylase

Reaction: 4(or 2)-aminobenzoate = aniline + CO2
Systematic name: aminobenzoate carboxy-lyase (aniline-forming)

Comments: A pyridoxal-phosphate protein.
References: [844]

[EC 4.1.1.24 created 1961]

EC 4.1.1.25
Accepted name: tyrosine decarboxylase

Reaction: L-tyrosine = tyramine + CO2
Other name(s): L-tyrosine decarboxylase; L-(-)-tyrosine apodecarboxylase; L-tyrosine carboxy-lyase

Systematic name: L-tyrosine carboxy-lyase (tyramine-forming)
Comments: A pyridoxal-phosphate protein. The bacterial enzyme also acts on 3-hydroxytyrosine and, more

slowly, on 3-hydroxyphenylalanine.
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References: [846]

[EC 4.1.1.25 created 1961]

[4.1.1.26 Deleted entry. DOPA decarboxylase. Now included with EC 4.1.1.28 aromatic-L-amino-acid decarboxylase]

[EC 4.1.1.26 created 1961, deleted 1972]

[4.1.1.27 Deleted entry. tryptophan decarboxylase. Now included with EC 4.1.1.28 aromatic-L-amino-acid decarboxylase]

[EC 4.1.1.27 created 1961, deleted 1972]

EC 4.1.1.28
Accepted name: aromatic-L-amino-acid decarboxylase

Reaction: (1) L-dopa = dopamine + CO2
(2) 5-hydroxy-L-tryptophan = 5-hydroxytryptamine + CO2

Other name(s): DOPA decarboxylase; tryptophan decarboxylase; hydroxytryptophan decarboxylase; L-DOPA de-
carboxylase; aromatic amino acid decarboxylase; 5-hydroxytryptophan decarboxylase; aromatic-L-
amino-acid carboxy-lyase (tryptamine-forming)

Systematic name: aromatic-L-amino-acid carboxy-lyase
Comments: A pyridoxal-phosphate protein. The enzyme also acts on some other aromatic L-amino acids, includ-

ing L-tryptophan, L-tyrosine and L-phenylalanine.
References: [219, 785, 846, 1162, 1361]

[EC 4.1.1.28 created 1961 (EC 4.1.1.26 and EC 4.1.1.27 both created 1961 and incorporated 1972)]

EC 4.1.1.29
Accepted name: sulfinoalanine decarboxylase

Reaction: 3-sulfino-L-alanine = hypotaurine + CO2
Other name(s): cysteine-sulfinate decarboxylase; L-cysteinesulfinic acid decarboxylase; cysteine-sulfinate decarboxy-

lase; CADCase/CSADCase; CSAD; cysteic decarboxylase; cysteinesulfinic acid decarboxylase; cys-
teinesulfinate decarboxylase; sulfoalanine decarboxylase; 3-sulfino-L-alanine carboxy-lyase

Systematic name: 3-sulfino-L-alanine carboxy-lyase (hypotaurine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on L-cysteate. The 1992 edition of the Enzyme List erro-

neously gave the name sulfoalanine decarboxylase to this enzyme.
References: [442, 571]

[EC 4.1.1.29 created 1961, deleted 1972, reinstated 1976, modified 1983, modified 1999]

EC 4.1.1.30
Accepted name: pantothenoylcysteine decarboxylase

Reaction: N-[(R)-pantothenoyl]-L-cysteine = pantetheine + CO2
Other name(s): pantothenylcysteine decarboxylase; N-[(R)-pantothenoyl]-L-cysteine carboxy-lyase

Systematic name: N-[(R)-pantothenoyl]-L-cysteine carboxy-lyase (pantetheine-forming)
References: [137]

[EC 4.1.1.30 created 1961]

EC 4.1.1.31
Accepted name: phosphoenolpyruvate carboxylase

Reaction: phosphate + oxaloacetate = phosphoenolpyruvate + HCO3
−

Other name(s): phosphopyruvate (phosphate) carboxylase; PEP carboxylase; phosphoenolpyruvic carboxylase;
PEPC; PEPCase; phosphate:oxaloacetate carboxy-lyase (phosphorylating)

Systematic name: phosphate:oxaloacetate carboxy-lyase (adding phosphate, phosphoenolpyruvate-forming)
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Comments: This enzyme replenishes oxaloacetate in the tricarboxylic acid cycle when operating in the reverse
direction. The reaction proceeds in two steps: formation of carboxyphosphate and the enolate form of
pyruvate, followed by carboxylation of the enolate and release of phosphate.

References: [207, 838, 1288]

[EC 4.1.1.31 created 1961, modified 2011]

EC 4.1.1.32
Accepted name: phosphoenolpyruvate carboxykinase (GTP)

Reaction: GTP + oxaloacetate = GDP + phosphoenolpyruvate + CO2
Other name(s): phosphoenolpyruvate carboxylase; phosphopyruvate carboxylase; phosphopyruvate (guanosine

triphosphate) carboxykinase; phosphoenolpyruvic carboxykinase (GTP); phosphopyruvate carboxy-
lase (GTP); phosphoenolpyruvic carboxylase (GTP); phosphoenolpyruvic carboxykinase; phos-
phoenolpyruvate carboxykinase; PEP carboxylase; GTP:oxaloacetate carboxy-lyase (transphospho-
rylating)

Systematic name: GTP:oxaloacetate carboxy-lyase (adding GTP; phosphoenolpyruvate-forming)
Comments: ITP can act as phosphate donor.
References: [200, 713]

[EC 4.1.1.32 created 1961]

EC 4.1.1.33
Accepted name: diphosphomevalonate decarboxylase

Reaction: ATP + (R)-5-diphosphomevalonate = ADP + phosphate + isopentenyl diphosphate + CO2
Other name(s): pyrophosphomevalonate decarboxylase; mevalonate-5-pyrophosphate decarboxylase; pyrophospho-

mevalonic acid decarboxylase; 5-pyrophosphomevalonate decarboxylase; mevalonate 5-diphosphate
decarboxylase; ATP:(R)-5-diphosphomevalonate carboxy-lyase (dehydrating)

Systematic name: ATP:(R)-5-diphosphomevalonate carboxy-lyase (adding ATP; isopentenyl-diphosphate-forming)
References: [98]

[EC 4.1.1.33 created 1961]

EC 4.1.1.34
Accepted name: dehydro-L-gulonate decarboxylase

Reaction: 3-dehydro-L-gulonate = L-xylulose + CO2
Other name(s): keto-L-gulonate decarboxylase; 3-keto-L-gulonate decarboxylase; 3-dehydro-L-gulonate carboxy-

lyase
Systematic name: 3-dehydro-L-gulonate carboxy-lyase (L-xylulose-forming)

References: [1195]

[EC 4.1.1.34 created 1965]

EC 4.1.1.35
Accepted name: UDP-glucuronate decarboxylase

Reaction: UDP-D-glucuronate = UDP-D-xylose + CO2
Other name(s): uridine-diphosphoglucuronate decarboxylase; UDP-D-glucuronate carboxy-lyase

Systematic name: UDP-D-glucuronate carboxy-lyase (UDP-D-xylose-forming)
Comments: Requires NAD+.
References: [32]

[EC 4.1.1.35 created 1965]
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EC 4.1.1.36
Accepted name: phosphopantothenoylcysteine decarboxylase

Reaction: N-[(R)-4′-phosphopantothenoyl]-L-cysteine = pantotheine 4′-phosphate + CO2
Other name(s): 4-phosphopantotheoylcysteine decarboxylase; 4-phosphopantothenoyl-L-cysteine decarboxylase;

PPC-decarboxylase; N-[(R)-4′-phosphopantothenoyl]-L-cysteine carboxy-lyase
Systematic name: N-[(R)-4′-phosphopantothenoyl]-L-cysteine carboxy-lyase (pantotheine-4′-phosphate-forming)

References: [138, 139]

[EC 4.1.1.36 created 1965]

EC 4.1.1.37
Accepted name: uroporphyrinogen decarboxylase

Reaction: uroporphyrinogen III = coproporphyrinogen III + 4 CO2
Other name(s): uroporphyrinogen III decarboxylase; porphyrinogen carboxy-lyase; porphyrinogen decarboxylase;

uroporphyrinogen-III carboxy-lyase
Systematic name: uroporphyrinogen-III carboxy-lyase (coproporphyrinogen-III-forming)

Comments: Acts on a number of porphyrinogens.
References: [836, 1283]

[EC 4.1.1.37 created 1965]

EC 4.1.1.38
Accepted name: phosphoenolpyruvate carboxykinase (diphosphate)

Reaction: diphosphate + oxaloacetate = phosphate + phosphoenolpyruvate + CO2
Other name(s): phosphopyruvate carboxylase (ambiguous); PEP carboxyphosphotransferase (ambiguous); PEP car-

boxykinase (ambiguous); phosphopyruvate carboxykinase (pyrophosphate); PEP carboxylase (am-
biguous); phosphopyruvate carboxykinase (ambiguous); phosphoenolpyruvic carboxykinase (am-
biguous); phosphoenolpyruvic carboxylase (ambiguous); phosphoenolpyruvate carboxytransphos-
phorylase (ambiguous); phosphoenolpyruvate carboxykinase (ambiguous); phosphoenolpyruvic car-
boxykinase; phosphoenolpyruvic carboxylase; PEPCTrP; phosphoenolpyruvic carboxykinase (py-
rophosphate); phosphoenolpyruvic carboxylase (pyrophosphate); phosphoenolpyruvate carboxylase
(ambiguous); phosphoenolpyruvate carboxyphosphotransferase (ambiguous); phosphoenolpyruvic
carboxytransphosphorylase (ambiguous); phosphoenolpyruvate carboxylase (pyrophosphate); phos-
phopyruvate carboxylase (pyrophosphate); diphosphate:oxaloacetate carboxy-lyase (transphosphory-
lating)

Systematic name: diphosphate:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming)
Comments: Also catalyses the reaction: phosphoenolpyruvate + phosphate = pyruvate + diphosphate.
References: [778]

[EC 4.1.1.38 created 1965]

EC 4.1.1.39
Accepted name: ribulose-bisphosphate carboxylase

Reaction: 2 3-phospho-D-glycerate + 2 H+ = D-ribulose 1,5-bisphosphate + CO2 + H2O
Other name(s): D-ribulose 1,5-diphosphate carboxylase; D-ribulose-1,5-bisphosphate carboxylase; RuBP carboxy-

lase; carboxydismutase; diphosphoribulose carboxylase; ribulose 1,5-bisphosphate carboxylase; ribu-
lose 1,5-bisphosphate carboxylase/oxygenase; ribulose 1,5-diphosphate carboxylase; ribulose 1,5-
diphosphate carboxylase/oxygenase; ribulose bisphosphate carboxylase/oxygenase; ribulose diphos-
phate carboxylase; ribulose diphosphate carboxylase/oxygenase; rubisco; 3-phospho-D-glycerate
carboxy-lyase (dimerizing)

Systematic name: 3-phospho-D-glycerate carboxy-lyase (dimerizing; D-ribulose-1,5-bisphosphate-forming)
Comments: Will utilize O2 instead of CO2, forming 3-phospho-D-glycerate and 2-phosphoglycolate.
References: [118, 1375]
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[EC 4.1.1.39 created 1965, modified 2001, modified 2003]

EC 4.1.1.40
Accepted name: hydroxypyruvate decarboxylase

Reaction: hydroxypyruvate = glycolaldehyde + CO2
Other name(s): hydroxypyruvate carboxy-lyase

Systematic name: hydroxypyruvate carboxy-lyase (glycolaldehyde-forming)
References: [495]

[EC 4.1.1.40 created 1972]

[4.1.1.41 Transferred entry. (S)-methylmalonyl-CoA decarboxylase. Now EC 7.2.4.3, (S)-methylmalonyl-CoA decarboxy-
lase]

[EC 4.1.1.41 created 1972, modified 1983, modified 1986, deleted 2018]

EC 4.1.1.42
Accepted name: carnitine decarboxylase

Reaction: carnitine = 2-methylcholine + CO2
Other name(s): carnitine carboxy-lyase

Systematic name: carnitine carboxy-lyase (2-methylcholine-forming)
Comments: Requires ATP.
References: [647]

[EC 4.1.1.42 created 1972]

EC 4.1.1.43
Accepted name: phenylpyruvate decarboxylase

Reaction: phenylpyruvate = phenylacetaldehyde + CO2
Other name(s): phenylpyruvate carboxy-lyase; phenylpyruvate carboxy-lyase (phenylacetaldehyde-forming)

Systematic name: 3-phenyl-2-oxopropanoate carboxy-lyase (phenylacetaldehyde-forming)
Comments: The enzyme from the bacterium Azospirillum brasilense also acts on some other substrates, includ-

ing (indol-3-yl)pyruvate, with much lower efficiency. However, it only possesses classical Michaelis-
Menten kinetics with phenylpyruvate. Aliphatic 2-oxo acids longer that 2-oxohexanoate are not sub-
strates. cf. EC 4.1.1.74, indolepyruvate decarboxylase.

References: [40, 1205]

[EC 4.1.1.43 created 1972]

EC 4.1.1.44
Accepted name: 4-carboxymuconolactone decarboxylase

Reaction: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 4,5-dihydro-5-oxofuran-2-acetate + CO2
Other name(s): γ-4-carboxymuconolactone decarboxylase; 4-carboxymuconolactone carboxy-lyase; 2-carboxy-2,5-

dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Systematic name: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-

forming)
References: [963, 964]

[EC 4.1.1.44 created 1972]

EC 4.1.1.45
Accepted name: aminocarboxymuconate-semialdehyde decarboxylase

Reaction: 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate = 2-aminomuconate semialdehyde + CO2
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Other name(s): picolinic acid carboxylase; picolinic acid decarboxylase; α-amino-β-carboxymuconate-ε-
semialdehade decarboxylase; α-amino-β-carboxymuconate-ε-semialdehyde β-decarboxylase; 2-
amino-3-(3-oxoprop-2-enyl)but-2-enedioate carboxy-lyase; 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-
enedioate carboxy-lyase

Systematic name: 2-amino-3-(3-oxoprop-1-en-1-yl)but-2-enedioate carboxy-lyase (2-aminomuconate-semialdehyde-
forming)

Comments: Product rearranges non-enzymically to picolinate.
References: [554]

[EC 4.1.1.45 created 1972]

EC 4.1.1.46
Accepted name: o-pyrocatechuate decarboxylase

Reaction: 2,3-dihydroxybenzoate = catechol + CO2
Other name(s): 2,3-dihydroxybenzoate carboxy-lyase

Systematic name: 2,3-dihydroxybenzoate carboxy-lyase (catechol-forming)
References: [1052]

[EC 4.1.1.46 created 1972]

EC 4.1.1.47
Accepted name: tartronate-semialdehyde synthase

Reaction: 2 glyoxylate = 2-hydroxy-3-oxopropanoate + CO2
Other name(s): tartronate semialdehyde carboxylase; glyoxylate carbo-ligase; glyoxylic carbo-ligase; hydroxy-

malonic semialdehyde carboxylase; tartronic semialdehyde carboxylase; glyoxalate carboligase; gly-
oxylate carboxy-lyase (dimerizing); glyoxylate carboxy-lyase (dimerizing; tartronate-semialdehyde-
forming)

Systematic name: glyoxylate carboxy-lyase (dimerizing; 2-hydroxy-3-oxopropanoate-forming)
Comments: A flavoprotein.
References: [449, 686]

[EC 4.1.1.47 created 1972]

EC 4.1.1.48
Accepted name: indole-3-glycerol-phosphate synthase

Reaction: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate = 1-C-(indol-3-yl)glycerol 3-phosphate +
CO2 + H2O

Other name(s): indoleglycerol phosphate synthetase; indoleglycerol phosphate synthase; indole-3-glycerophosphate
synthase; 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase (cyclizing)

Systematic name: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate carboxy-lyase [cyclizing; 1-C-(indol-3-
yl)glycerol-3-phosphate-forming]

Comments: In some organisms, this enzyme is part of a multifunctional protein, together with one or more other
components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphori-
bosyltransferase), EC 4.1.3.27 (anthranilate synthase), EC 4.2.1.20 (tryptophan synthase) and EC
5.3.1.24 (phosphoribosylanthranilate isomerase)].

References: [246, 247, 550]

[EC 4.1.1.48 created 1972]

EC 4.1.1.49
Accepted name: phosphoenolpyruvate carboxykinase (ATP)

Reaction: ATP + oxaloacetate = ADP + phosphoenolpyruvate + CO2
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Other name(s): phosphopyruvate carboxylase (ATP); phosphoenolpyruvate carboxylase (ambiguous); phos-
phoenolpyruvate carboxykinase (ambiguous); phosphopyruvate carboxykinase (adenosine triphos-
phate); PEP carboxylase (ambiguous); PEP carboxykinase (ambiguous); PEPCK (ATP); PEPK;
PEPCK; phosphoenolpyruvic carboxylase (ambiguous); phosphoenolpyruvic carboxykinase (am-
biguous); phosphoenolpyruvate carboxylase (ATP); phosphopyruvate carboxykinase (ambiguous);
ATP:oxaloacetate carboxy-lyase (transphosphorylating)

Systematic name: ATP:oxaloacetate carboxy-lyase (transphosphorylating; phosphoenolpyruvate-forming)
References: [178, 179, 180]

[EC 4.1.1.49 created 1972]

EC 4.1.1.50
Accepted name: adenosylmethionine decarboxylase

Reaction: S-adenosyl-L-methionine = S-adenosyl 3-(methylsulfanyl)propylamine + CO2
Other name(s): S-adenosylmethionine decarboxylase; S-adenosyl-L-methionine decarboxylase; S-adenosyl-L-

methionine carboxy-lyase; S-adenosyl-L-methionine carboxy-lyase [(5-deoxy-5-adenosyl)(3-
aminopropyl)methylsulfonium-salt-forming]

Systematic name: S-adenosyl-L-methionine carboxy-lyase [S-adenosyl 3-(methylsulfanyl)propylamine-forming]
Comments: The Escherichia coli enzyme contains a pyruvoyl group.
References: [33, 1246]

[EC 4.1.1.50 created 1972]

EC 4.1.1.51
Accepted name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-decarboxylase

Reaction: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate = 3-hydroxy-2-methylpyridine-5-carboxylate + CO2
Other name(s): 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase

Systematic name: 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase (3-hydroxy-2-methylpyridine-5-
carboxylate-forming)

References: [1200]

[EC 4.1.1.51 created 1972]

EC 4.1.1.52
Accepted name: 6-methylsalicylate decarboxylase

Reaction: 6-methylsalicylate = 3-methylphenol + CO2
Other name(s): 6-methylsalicylic acid (2,6-cresotic acid) decarboxylase; 6-MSA decarboxylase; 6-methylsalicylate

carboxy-lyase
Systematic name: 6-methylsalicylate carboxy-lyase (3-methylphenol-forming)

References: [757, 1329]

[EC 4.1.1.52 created 1972, modified 2011]

EC 4.1.1.53
Accepted name: phenylalanine decarboxylase

Reaction: L-phenylalanine = phenylethylamine + CO2
Other name(s): L-phenylalanine decarboxylase; aromatic L-amino acid decarboxylase; L-phenylalanine carboxy-lyase

Systematic name: L-phenylalanine carboxy-lyase (phenylethylamine-forming)
Comments: A pyridoxal-phosphate protein. Also acts on tyrosine and other aromatic amino acids.
References: [785, 1150]

[EC 4.1.1.53 created 1972]
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EC 4.1.1.54
Accepted name: dihydroxyfumarate decarboxylase

Reaction: dihydroxyfumarate = 2-hydroxy-3-oxopropanoate + CO2
Other name(s): dihydroxyfumarate carboxy-lyase; dihydroxyfumarate carboxy-lyase (tartronate-semialdehyde-

forming)
Systematic name: dihydroxyfumarate carboxy-lyase (2-hydroxy-3-oxopropanoate-forming)

References: [388]

[EC 4.1.1.54 created 1972]

EC 4.1.1.55
Accepted name: 4,5-dihydroxyphthalate decarboxylase

Reaction: 4,5-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 4,5-dihydroxyphthalate carboxy-lyase

Systematic name: 4,5-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
References: [1067]

[EC 4.1.1.55 created 1972]

EC 4.1.1.56
Accepted name: 3-oxolaurate decarboxylase

Reaction: 3-oxododecanoate = 2-undecanone + CO2
Other name(s): β-ketolaurate decarboxylase; β-ketoacyl decarboxylase; 3-oxododecanoate carboxy-lyase

Systematic name: 3-oxododecanoate carboxy-lyase (2-undecanone-forming)
Comments: Also decarboxylates other C14 to C16 oxo acids.
References: [375]

[EC 4.1.1.56 created 1972]

EC 4.1.1.57
Accepted name: methionine decarboxylase

Reaction: L-methionine = 3-(methylsulfanyl)propanamine + CO2
Other name(s): L-methionine decarboxylase; L-methionine carboxy-lyase; L-methionine carboxy-lyase (3-

methylthiopropanamine-forming)
Systematic name: L-methionine carboxy-lyase [3-(methylsulfanyl)propanamine-forming]

References: [453]

[EC 4.1.1.57 created 1972]

EC 4.1.1.58
Accepted name: orsellinate decarboxylase

Reaction: orsellinate = orcinol + CO2
Other name(s): orsellinate carboxy-lyase

Systematic name: 2,4-dihydroxy-6-methylbenzoate carboxy-lyase (orcinol-forming)
References: [994]

[EC 4.1.1.58 created 1972]

EC 4.1.1.59
Accepted name: gallate decarboxylase

Reaction: 3,4,5-trihydroxybenzoate = 1,2,3-trihydroxybenzene + CO2
Other name(s): gallic acid decarboxylase; gallate carboxy-lyase; 3,4,5-trihydroxybenzoate carboxy-lyase (pyrogallol-

forming)
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Systematic name: 3,4,5-trihydroxybenzoate carboxy-lyase (1,2,3-trihydroxybenzene-forming)
References: [434, 1440, 594]

[EC 4.1.1.59 created 1972]

EC 4.1.1.60
Accepted name: stipitatonate decarboxylase

Reaction: stipitatonate = stipitatate + CO2
Other name(s): stipitatonate carboxy-lyase (decyclizing); stipitatonate carboxy-lyase (decyclizing, stipitatate-

forming)
Systematic name: stipitatonate carboxy-lyase (ring-opening, stipitatate-forming)

References: [85]

[EC 4.1.1.60 created 1972]

EC 4.1.1.61
Accepted name: 4-hydroxybenzoate decarboxylase

Reaction: 4-hydroxybenzoate = phenol + CO2
Other name(s): p-hydroxybenzoate decarboxylase; 4-hydroxybenzoate carboxy-lyase

Systematic name: 4-hydroxybenzoate carboxy-lyase (phenol-forming)
References: [434, 1300]

[EC 4.1.1.61 created 1972]

EC 4.1.1.62
Accepted name: gentisate decarboxylase

Reaction: 2,5-dihydroxybenzoate = hydroquinone + CO2
Other name(s): 2,5-dihydroxybenzoate decarboxylase; gentisate carboxy-lyase

Systematic name: 2,5-dihydroxybenzoate carboxy-lyase (hydroquinone-forming)
References: [434]

[EC 4.1.1.62 created 1972]

EC 4.1.1.63
Accepted name: protocatechuate decarboxylase

Reaction: 3,4-dihydroxybenzoate = catechol + CO2
Other name(s): 3,4-dihydrobenzoate decarboxylase; protocatechuate carboxy-lyase

Systematic name: 3,4-dihydroxybenzoate carboxy-lyase (catechol-forming)
References: [434]

[EC 4.1.1.63 created 1972]

EC 4.1.1.64
Accepted name: 2,2-dialkylglycine decarboxylase (pyruvate)

Reaction: 2,2-dialkylglycine + pyruvate = dialkyl ketone + CO2 + L-alanine
Other name(s): dialkyl amino acid (pyruvate) decarboxylase; α-dialkyl amino acid transaminase; 2,2-dialkyl-2-amino

acid-pyruvate aminotransferase; L-alanine-α-ketobutyrate aminotransferase; dialkylamino-acid decar-
boxylase (pyruvate); 2,2-dialkylglycine carboxy-lyase (amino-transferring)

Systematic name: 2,2-dialkylglycine carboxy-lyase (amino-transferring; L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Acts on 2-amino-2-methylpropanoate (i.e. 2-methylalanine), 2-

amino-2-methylbutanoate and 1-aminocyclopentanecarboxylate.
References: [58]
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[EC 4.1.1.64 created 1972]

EC 4.1.1.65
Accepted name: phosphatidylserine decarboxylase

Reaction: phosphatidyl-L-serine = phosphatidylethanolamine + CO2
Other name(s): PS decarboxylase; phosphatidyl-L-serine carboxy-lyase

Systematic name: phosphatidyl-L-serine carboxy-lyase (phosphatidylethanolamine-forming)
Comments: A pyridoxal-phosphate protein. In Escherichia coli, the prosthetic group is a pyruvoyl group.
References: [621, 1112]

[EC 4.1.1.65 created 1976]

EC 4.1.1.66
Accepted name: uracil-5-carboxylate decarboxylase

Reaction: uracil 5-carboxylate = uracil + CO2
Other name(s): uracil-5-carboxylic acid decarboxylase; uracil-5-carboxylate carboxy-lyase

Systematic name: uracil-5-carboxylate carboxy-lyase (uracil-forming)
References: [973]

[EC 4.1.1.66 created 1976]

EC 4.1.1.67
Accepted name: UDP-galacturonate decarboxylase

Reaction: UDP-D-galacturonate = UDP-L-arabinose + CO2
Other name(s): UDP-galacturonic acid decarboxylase; UDPGalUA carboxy lyase; UDP-D-galacturonate carboxy-

lyase
Systematic name: UDP-D-galacturonate carboxy-lyase (UDP-L-arabinose-forming)

References: [352]

[EC 4.1.1.67 created 1984]

EC 4.1.1.68
Accepted name: 5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase

Reaction: (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (4Z)-2-oxohept-4-enedioate + CO2 (overall reaction)
(1a) (3E,5R)-5-carboxy-2-oxohept-3-enedioate = (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate + CO2
(1b) (2Z,4Z)-2-hydroxyhepta-2,4-dienedioate = (4Z)-2-oxohept-4-enedioate

Other name(s): 5-carboxymethyl-2-oxo-hex-3-ene-1,6-dioate decarboxylase; 5-oxopent-3-ene-1,2,5-tricarboxylate
carboxy-lyase; 5-oxopent-3-ene-1,2,5-tricarboxylate carboxy-lyase (2-oxohept-3-enedioate-forming)

Systematic name: (3E,5R)-5-carboxy-2-oxohept-3-enedioate carboxy-lyase [(4Z)-2-oxohept-4-enedioate-forming]
Comments: Requires Mg2+ [600, 601]. Part of the 4-hydroxyphenylacetate degradation pathway in Escherichia

coli.
References: [400, 600, 601]

[EC 4.1.1.68 created 1984]

EC 4.1.1.69
Accepted name: 3,4-dihydroxyphthalate decarboxylase

Reaction: 3,4-dihydroxyphthalate = 3,4-dihydroxybenzoate + CO2
Other name(s): 3,4-dihydroxyphthalate carboxy-lyase

Systematic name: 3,4-dihydroxyphthalate carboxy-lyase (3,4-dihydroxybenzoate-forming)
References: [325]

15

http://www.enzyme-database.org/query.php?ec=4.1.1.65
http://www.enzyme-database.org/query.php?ec=4.1.1.66
http://www.enzyme-database.org/query.php?ec=4.1.1.67
http://www.enzyme-database.org/query.php?ec=4.1.1.68
http://www.enzyme-database.org/query.php?ec=4.1.1.69


[EC 4.1.1.69 created 1986]

EC 4.1.1.70
Accepted name: glutaconyl-CoA decarboxylase

Reaction: 4-carboxybut-2-enoyl-CoA = but-2-enoyl-CoA + CO2
Other name(s): glutaconyl coenzyme A decarboxylase; pent-2-enoyl-CoA carboxy-lyase; 4-carboxybut-2-enoyl-CoA

carboxy-lyase
Systematic name: 4-carboxybut-2-enoyl-CoA carboxy-lyase (but-2-enoyl-CoA-forming)

Comments: The enzyme from Acidaminococcus fermentans is a biotinyl-protein, requires Na+, and acts as a
sodium pump. Prior to the Na+-dependent decarboxylation, the carboxylate is transferred to biotin
in a Na+-independent manner. The conserved lysine, to which biotin forms an amide bond, is located
34 amino acids before the C-terminus, flanked on both sides by two methionine residues, which are
conserved in every biotin-dependent enzyme.

References: [147, 146]

[EC 4.1.1.70 created 1986, modified 2003]

EC 4.1.1.71
Accepted name: 2-oxoglutarate decarboxylase

Reaction: 2-oxoglutarate = succinate semialdehyde + CO2
Other name(s): oxoglutarate decarboxylase; α-ketoglutarate decarboxylase; α-ketoglutaric decarboxylase; pre-2-

oxoglutarate decarboxylase; 2-oxoglutarate carboxy-lyase
Systematic name: 2-oxoglutarate carboxy-lyase (succinate-semialdehyde-forming)

Comments: Requires thiamine diphosphate. Highly specific.
References: [1176]

[EC 4.1.1.71 created 1989]

EC 4.1.1.72
Accepted name: branched-chain-2-oxoacid decarboxylase

Reaction: (3S)-3-methyl-2-oxopentanoate = 2-methylbutanal + CO2
Other name(s): branched-chain oxo acid decarboxylase; branched-chain α-keto acid decarboxylase; branched-chain

keto acid decarboxylase; BCKA; (3S)-3-methyl-2-oxopentanoate carboxy-lyase
Systematic name: (3S)-3-methyl-2-oxopentanoate carboxy-lyase (2-methylbutanal-forming)

Comments: Acts on a number of 2-oxo acids, with a high affinity towards branched-chain substrates. The alde-
hyde formed may be enzyme-bound, and may be an intermediate in the bacterial system for the
biosynthesis of branched-chain fatty acids.

References: [954, 287, 1197]

[EC 4.1.1.72 created 1990]

EC 4.1.1.73
Accepted name: tartrate decarboxylase

Reaction: (R,R)-tartrate = D-glycerate + CO2
Other name(s): (R,R)-tartrate carboxy-lyase

Systematic name: (R,R)-tartrate carboxy-lyase (D-glycerate-forming)
References: [391]

[EC 4.1.1.73 created 1992]

EC 4.1.1.74
Accepted name: indolepyruvate decarboxylase
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Reaction: 3-(indol-3-yl)pyruvate = 2-(indol-3-yl)acetaldehyde + CO2
Other name(s): indol-3-yl-pyruvate carboxy-lyase; 3-(indol-3-yl)pyruvate carboxy-lyase

Systematic name: 3-(indol-3-yl)pyruvate carboxy-lyase [(2-indol-3-yl)acetaldehyde-forming]
Comments: Thiamine diphosphate- and Mg2+-dependent. More specific than EC 4.1.1.1 pyruvate decarboxylase
References: [671]

[EC 4.1.1.74 created 1999]

EC 4.1.1.75
Accepted name: 5-guanidino-2-oxopentanoate decarboxylase

Reaction: 5-guanidino-2-oxopentanoate = 4-guanidinobutanal + CO2
Other name(s): α-ketoarginine decarboxylase; 2-oxo-5-guanidinopentanoate carboxy-lyase

Systematic name: 5-guanidino-2-oxopentanoate carboxy-lyase (4-guanidinobutanal-forming)
Comments: Enzyme activity is dependent on the presence of thiamine diphosphate and a divalent cation.
References: [1320]

[EC 4.1.1.75 created 1999]

EC 4.1.1.76
Accepted name: arylmalonate decarboxylase

Reaction: 2-aryl-2-methylmalonate = 2-arylpropanoate + CO2
Other name(s): AMDASE; 2-aryl-2-methylmalonate carboxy-lyase; 2-aryl-2-methylmalonate carboxy-lyase (2-

arylpropionate-forming)
Systematic name: 2-aryl-2-methylmalonate carboxy-lyase (2-arylpropanoate-forming)

References: [883]

[EC 4.1.1.76 created 1999]

EC 4.1.1.77
Accepted name: 2-oxo-3-hexenedioate decarboxylase

Reaction: (3E)-2-oxohex-3-enedioate = 2-oxopent-4-enoate + CO2
Other name(s): 4-oxalocrotonate carboxy-lyase (misleading); 4-oxalocrotonate decarboxylase (misleading); cnbF

(gene name); praD (gene name); amnE (gene name); nbaG (gene name); xylI (gene name)
Systematic name: (3E)-2-oxohex-3-enedioate carboxy-lyase (2-oxopent-4-enoate-forming)

Comments: Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and cate-
chols. The enzyme has been reported to accept multiple tautomeric forms [1180, 1254, 1210, 1347].
However, careful analysis of the stability of the different tautomers, as well as characterization of the
enzyme that produces its substrate, EC 5.3.2.6, 2-hydroxymuconate tautomerase, showed that the ac-
tual substrate for the enzyme is (3E)-2-oxohex-3-enedioate [1347].

References: [1180, 1254, 1210, 1347, 627]

[EC 4.1.1.77 created 1999, modified 2011, modified 2012]

EC 4.1.1.78
Accepted name: acetylenedicarboxylate decarboxylase

Reaction: acetylenedicarboxylate + H2O = pyruvate + CO2
Other name(s): acetylenedicarboxylate hydratase; acetylenedicarboxylate hydrase; acetylenedicarboxylate carboxy-

lyase
Systematic name: acetylenedicarboxylate carboxy-lyase (pyruvate-forming)

Comments: The mechanism appears to involve hydration of the acetylene and decarboxylation of the oxaloacetic
acid formed, although free oxaloacetate is not an intermediate. It is thus analogous to EC 4.2.1.27
(acetylenecarboxylate hydratase) in its mechanism.

References: [1389]

17

http://www.enzyme-database.org/query.php?ec=4.1.1.75
http://www.enzyme-database.org/query.php?ec=4.1.1.76
http://www.enzyme-database.org/query.php?ec=4.1.1.77
http://www.enzyme-database.org/query.php?ec=4.1.1.78


[EC 4.1.1.78 created 1978 as EC 4.2.1.72, transferred 2000 to EC 4.1.1.78]

EC 4.1.1.79
Accepted name: sulfopyruvate decarboxylase

Reaction: 3-sulfopyruvate = 2-sulfoacetaldehyde + CO2
Other name(s): sulfopyruvate carboxy-lyase

Systematic name: 3-sulfopyruvate carboxy-lyase (2-sulfoacetaldehyde-forming)
Comments: Requires thiamine diphosphate. Does not decarboxylate pyruvate or phosphonopyruvate. The enzyme

appears to be oxygen-sensitive.
References: [435]

[EC 4.1.1.79 created 2002]

EC 4.1.1.80
Accepted name: 4-hydroxyphenylpyruvate decarboxylase

Reaction: 4-hydroxyphenylpyruvate = 4-hydroxyphenylacetaldehyde + CO2
Other name(s): 4-hydroxyphenylpyruvate carboxy-lyase

Systematic name: 4-hydroxyphenylpyruvate carboxy-lyase (4-hydroxyphenylacetaldehyde-forming)
Comments: Reacts with dopamine to give the benzylisoquinoline alkaloid skeleton.
References: [1091]

[EC 4.1.1.80 created 2002]

EC 4.1.1.81
Accepted name: threonine-phosphate decarboxylase

Reaction: L-threonine O-3-phosphate = (R)-1-aminopropan-2-yl phosphate + CO2
Other name(s): L-threonine-O-3-phosphate decarboxylase; CobD; L-threonine-O-3-phosphate carboxy-lyase

Systematic name: L-threonine-O-3-phosphate carboxy-lyase [(R)-1-aminopropan-2-yl-phosphate-forming]
Comments: A pyridoxal-phosphate protein. This enzyme is unable to decarboxylate the D-isomer of threonine O-

3-phosphate. The product of this reaction, (R)-1-aminopropan-2-yl phosphate, is the substrate of EC
6.3.1.10, adenosylcobinamide-phosphate synthase, which converts adenosylcobyric acid into adeno-
sylcobinamide phosphate in the anaerobic cobalamin biosynthesis pathway.

References: [210, 143, 1355]

[EC 4.1.1.81 created 2004]

EC 4.1.1.82
Accepted name: phosphonopyruvate decarboxylase

Reaction: 3-phosphonopyruvate = 2-phosphonoacetaldehyde + CO2
Other name(s): 3-phosphonopyruvate carboxy-lyase

Systematic name: 3-phosphonopyruvate carboxy-lyase (2-phosphonoacetaldehyde-forming)
Comments: The enzyme catalyses a step in the biosynthetic pathway of 2-aminoethylphosphonate, a component

of the capsular polysaccharide complex of Bacteroides fragilis. Requires thiamine diphosphate and
Mg2+ as cofactors. The enzyme is activated by the divalent cations Mg2+, Ca2+ and Mn2+. Pyruvate
and sulfopyruvate can also act as substrates, but more slowly. This enzyme drives the reaction catal-
ysed by EC 5.4.2.9, phosphoenolpyruvate mutase, in the thermodynamically unfavourable direction of
3-phosphonopyruvate formation [1160]. It is the initial step in all of the major biosynthetic pathways
of phosphonate natural products [922].

References: [1446, 1160, 922]

[EC 4.1.1.82 created 2005]

EC 4.1.1.83
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Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2

Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)

Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate
as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.

References: [274, 1165, 31]

[EC 4.1.1.83 created 2005]

EC 4.1.1.84
Accepted name: D-dopachrome decarboxylase

Reaction: D-dopachrome = 5,6-dihydroxyindole + CO2
Other name(s): phenylpyruvate tautomerase II; D-tautomerase; D-dopachrome tautomerase; D-dopachrome carboxy-

lyase
Systematic name: D-dopachrome carboxy-lyase (5,6-dihydroxyindole-forming)

Comments: This enzyme is specific for D-dopachrome as substrate and belongs to the MIF (macrophage mi-
gration inhibitory factor) family of proteins. L-Dopachrome, L- or D-α-methyldopachrome and
dopaminochrome do not act as substrates (see also EC 5.3.3.12, L-dopachrome isomerase)

References: [950, 1411, 1231, 937]

[EC 4.1.1.84 created 2005]

EC 4.1.1.85
Accepted name: 3-dehydro-L-gulonate-6-phosphate decarboxylase

Reaction: 3-dehydro-L-gulonate 6-phosphate + H+ = L-xylulose 5-phosphate + CO2
Other name(s): 3-keto-L-gulonate 6-phosphate decarboxylase; UlaD; SgaH; SgbH; KGPDC; 3-dehydro-L-gulonate-6-

phosphate carboxy-lyase
Systematic name: 3-dehydro-L-gulonate-6-phosphate carboxy-lyase (L-xylulose-5-phosphate-forming)

Comments: Requires Mg2+. Along with EC 5.1.3.22, L-ribulose-5-phosphate 3-epimerase, this enzyme is in-
volved in a pathway for the utilization of L-ascorbate by Escherichia coli.

References: [1409, 1373]

[EC 4.1.1.85 created 2005]

EC 4.1.1.86
Accepted name: diaminobutyrate decarboxylase

Reaction: L-2,4-diaminobutanoate = propane-1,3-diamine + CO2
Other name(s): DABA DC; L-2,4-diaminobutyrate decarboxylase; L-2,4-diaminobutanoate carboxy-lyase

Systematic name: L-2,4-diaminobutanoate carboxy-lyase (propane-1,3-diamine-forming)
Comments: A pyridoxal-phosphate protein that requires a divalent cation for activity [1398]. N4-Acetyl-L-2,4-

diaminobutanoate, 2,3-diaminopropanoate, ornithine and lysine are not substrates. Found in the pro-
teobacteria Haemophilus influenzae and Acinetobacter baumannii. In the latter, this enzyme is cotran-
scribed with the dat gene that encodes EC 2.6.1.76, diaminobutyrate—2-oxoglutarate transaminase,
which can supply the substrate for this enzyme.

References: [1398, 556, 557]

[EC 4.1.1.86 created 2006]

EC 4.1.1.87
Accepted name: malonyl-S-ACP decarboxylase

Reaction: a malonyl-[acyl-carrier protein] + H+ = an acetyl-[acyl-carrier protein] + CO2
Other name(s): malonyl-S-acyl-carrier protein decarboxylase; MdcD/MdcE; MdcD,E
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Systematic name: malonyl-[acyl-carrier-protein] carboxy-lyase
Comments: This enzyme comprises the β and γ subunits of EC 4.1.1.88 (biotin-independent malonate decarboxy-

lase) but is not present in EC 4.1.1.89 (biotin-dependent malonate decarboxylase). It follows on from
EC 2.3.1.187, acetyl-S-ACP:malonate ACP transferase, and results in the regeneration of the acety-
lated form of the acyl-carrier-protein subunit of malonate decarboxylase [304]. The carboxy group is
lost with retention of configuration [466].

References: [1129, 680, 466, 215, 304]

[EC 4.1.1.87 created 2008]

EC 4.1.1.88
Accepted name: biotin-independent malonate decarboxylase

Reaction: malonate + H+ = acetate + CO2
Other name(s): malonate decarboxylase (without biotin); malonate decarboxylase (ambiguous); MDC

Systematic name: malonate carboxy-lyase (biotin-independent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme com-

plexes. This enzyme is a cytosolic protein that is biotin-independent. The other type is a biotin-
dependent, Na+-translocating enzyme that includes both soluble and membrane-bound components
(cf. EC 7.2.4.4, biotin-dependent malonate decarboxylase). As free malonate is chemically rather in-
ert, it has to be activated prior to decarboxylation. In both enzymes, this is achieved by exchanging
malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and
acetate, with subsequent decarboxylation regenerating the acetyl-ACP. The ACP subunit of both en-
zymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a
serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine
4′-phosphate. The individual enzymes involved in carrying out the reaction of this enzyme complex
are EC 2.3.1.187 (acetyl-S-ACP:malonate ACP transferase), EC 2.3.1.39 ([acyl-carrier-protein] S-
malonyltransferase) and EC 4.1.1.87 (malonyl-S-ACP decarboxylase). The carboxy group is lost with
retention of configuration [466].

References: [1129, 158, 522, 216, 523, 466, 680, 656, 304]

[EC 4.1.1.88 created 2008, modified 2018]

[4.1.1.89 Transferred entry. biotin-dependent malonate decarboxylase. Now EC 7.2.4.4, biotin-dependent malonate decar-
boxylase]

[EC 4.1.1.89 created 2008, deleted 2018]

EC 4.1.1.90
Accepted name: peptidyl-glutamate 4-carboxylase

Reaction: peptidyl-4-carboxyglutamate + 2,3-epoxyphylloquinone + H2O = peptidyl-glutamate + CO2 + O2 +
phylloquinol

Other name(s): vitamin K-dependent carboxylase; γ-glutamyl carboxylase; peptidyl-glutamate 4-carboxylase (2-
methyl-3-phytyl-1,4-naphthoquinone-epoxidizing)

Systematic name: peptidyl-glutamate 4-carboxylase (2-methyl-3-phytyl-1,4-naphthoquinol-epoxidizing)
Comments: The enzyme can use various vitamin-K derivatives, including menaquinol, but does not contain iron.

The mechanism appears to involve the generation of a strong base by oxygenation of vitamin K. It
catalyses the post-translational carboxylation of glutamate residues of several proteins of the blood-
clotting system. 9–12 glutamate residues are converted to 4-carboxyglutamate (Gla) in a specific do-
main of the target protein. The 4-pro-S hydrogen of the glutamate residue is removed [813] and there
is an inversion of stereochemistry at this position [314].

References: [309, 390, 1076, 1187, 813, 314, 1075]

[EC 4.1.1.90 created 2009, modified 2011]

EC 4.1.1.91
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Accepted name: salicylate decarboxylase
Reaction: salicylate = phenol + CO2

Other name(s): salicylic acid decarboxylase; Scd
Systematic name: salicylate carboxy-lyase

Comments: In the reverse direction the enzyme catalyses the regioselective carboxylation of phenol into stoi-
chiometric amounts of salicylate. The enzyme also catalyses the reversible decarboxylation of 2,4-
dihydroxybenzoate, 2,6-dihydroxybenzoate, 2,3-dihydroxybenzoate and 4-aminosalicylate [658].

References: [658]

[EC 4.1.1.91 created 2011]

EC 4.1.1.92
Accepted name: indole-3-carboxylate decarboxylase

Reaction: indole-3-carboxylate = indole + CO2
Systematic name: indole-3-carboxylate carboxy-lyase

Comments: Activated by Zn2+, Mn2+ or Mg2+.
References: [1413]

[EC 4.1.1.92 created 2011]

EC 4.1.1.93
Accepted name: pyrrole-2-carboxylate decarboxylase

Reaction: (1) pyrrole-2-carboxylate = pyrrole + CO2
(2) pyrrole-2-carboxylate + H2O = pyrrole + HCO3

−

Systematic name: pyrrole-2-carboxylate carboxy-lyase
Comments: The enzyme catalyses both the carboxylation and decarboxylation reactions. However, while bicar-

bonate is the preferred substrate for the carboxylation reaction, decarboxylation produces carbon
dioxide. The enzyme is activated by carboxylic acids.

References: [1366, 958, 1367]

[EC 4.1.1.93 created 2011]

EC 4.1.1.94
Accepted name: ethylmalonyl-CoA decarboxylase

Reaction: (S)-ethylmalonyl-CoA = butanoyl-CoA + CO2
Systematic name: (S)-ethylmalonyl-CoA carboxy-lyase (butanoyl-CoA-forming)

Comments: The enzyme, which exists in all vertebrates, decarboxylates ethylmalonyl-CoA, a potentially toxic
compound that is formed in low amounts by the activity of EC 6.4.1.2, acetyl-CoA carboxylase
and EC 6.4.1.3, propanoyl-CoA carboxylase. It prefers the S isomer, and can decarboxylate (R)-
methylmalonyl-CoA with lower efficiency. cf. EC 7.2.4.1, (S)-methylmalonyl-CoA decarboxylase
(sodium-transporting).

References: [765]

[EC 4.1.1.94 created 2012]

EC 4.1.1.95
Accepted name: L-glutamyl-[BtrI acyl-carrier protein] decarboxylase

Reaction: L-glutamyl-[BtrI acyl-carrier protein] = 4-amino butanoyl-[BtrI acyl-carrier protein] + CO2
Other name(s): btrK (gene name)

Systematic name: L-glutamyl-[BtrI acyl-carrier protein] carboxy-lyase
Comments: Binds pyridoxal 5′-phosphate. Catalyses a step in the biosynthesis of the side chain of the aminogly-

coside antibiotics of the butirosin family. Has very low activity with substrates not bound to an acyl-
carrier protein.

References: [749]
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[EC 4.1.1.95 created 2012]

EC 4.1.1.96
Accepted name: carboxynorspermidine decarboxylase

Reaction: (1) carboxynorspermidine = bis(3-aminopropyl)amine + CO2
(2) carboxyspermidine = spermidine + CO2

Other name(s): carboxyspermidine decarboxylase; CANSDC; VC1623 (gene name)
Systematic name: carboxynorspermidine carboxy-lyase (bis(3-aminopropyl)amine-forming)

Comments: A pyridoxal 5′-phosphate enzyme. Part of a bacterial polyamine biosynthesis pathway. The enzyme
is essential for biofilm formation in the bacterium Vibrio cholerae [733]. The enzyme from Campy-
lobacter jejuni only produces spermidine in vivo even though it shows activity with carboxynorsper-
midine in vitro [470].

References: [733, 294, 470]

[EC 4.1.1.96 created 2012]

EC 4.1.1.97
Accepted name: 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase

Reaction: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate = (S)-allantoin + CO2
Other name(s): OHCU decarboxylase; hpxQ (gene name); PRHOXNB (gene name)

Systematic name: 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate carboxy-lyase [(S)-allantoin-
forming]

Comments: This enzyme is part of the pathway from urate to (S)-allantoin, which is present in bacteria, plants and
animals (but not in humans).

References: [1048, 192, 654, 376]

[EC 4.1.1.97 created 2014]

EC 4.1.1.98
Accepted name: 4-hydroxy-3-polyprenylbenzoate decarboxylase

Reaction: a 4-hydroxy-3-polyprenylbenzoate = a 2-polyprenylphenol + CO2
Other name(s): ubiD (gene name); 4-hydroxy-3-solanesylbenzoate decarboxylase; 3-octaprenyl-4-hydroxybenzoate

decarboxylase
Systematic name: 4-hydroxy-3-polyprenylbenzoate carboxy-lyase

Comments: The enzyme catalyses a step in prokaryotic ubiquinone biosynthesis, as well as in plastoquinone
biosynthesis in cyanobacteria. The enzyme can accept substrates with different polyprenyl tail lengths
in vitro, but uses a specific length in vivo, which is determined by the polyprenyl diphosphate syn-
thase that exists in the specific organism. It requires a prenylated flavin cofactor that is produced by
EC 2.5.1.129, flavin prenyltransferase.

References: [739, 444, 995, 760, 982]

[EC 4.1.1.98 created 2014, modified 2015]

EC 4.1.1.99
Accepted name: phosphomevalonate decarboxylase

Reaction: ATP + (R)-5-phosphomevalonate = ADP + phosphate + isopentenyl phosphate + CO2
Systematic name: ATP:(R)-5-phosphomevalonate carboxy-lyase (adding ATP; isopentenyl-phosphate-forming)

Comments: The enzyme participates in a mevalonate pathway that occurs in archaea other than the extreme aci-
dophiles of the Thermoplasmatales order. cf. EC 4.1.1.110, bisphosphomevalonate decarboxylase.

References: [1321]

[EC 4.1.1.99 created 2014, modified 2018]
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EC 4.1.1.100
Accepted name: prephenate decarboxylase

Reaction: prephenate = 3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate + CO2
Other name(s): BacA; AerD; SalX; non-aromatizing prephenate decarboxylase

Systematic name: prephenate carboxy-lyase (3-[(4R)-4-hydroxycyclohexa-1,5-dien-1-yl]-2-oxopropanoate-forming)
Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the

nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin.
The enzyme isomerizes only the pro-R double bond in prephenate.

References: [804, 803, 977]

[EC 4.1.1.100 created 2015]

EC 4.1.1.101
Accepted name: malolactic enzyme

Reaction: (S)-malate = (S)-lactate + CO2
Other name(s): mleA (gene name); mleS (gene name)

Systematic name: (S)-malate carboxy-lyase
Comments: The enzyme is involved in the malolactic fermentation of wine, which results in a natural decrease in

acidity and favorable changes in wine flavors. It has been purified from several lactic acid bacteria,
including Leuconostoc mesenteroides [779], Lactobacillus plantarum [187], and Oenococcus oeni
[924, 1152]. The enzyme contains a tightly bound NAD+ cofactor and requires Mn2+.

References: [779, 187, 924, 1152]

[EC 4.1.1.101 created 2015]

EC 4.1.1.102
Accepted name: phenacrylate decarboxylase

Reaction: (1) 4-coumarate = 4-vinylphenol + CO2
(2) trans-cinnamate = styrene + CO2
(3) ferulate = 4-vinylguaiacol + CO2

Other name(s): FDC1 (gene name); ferulic acid decarboxylase
Systematic name: 3-phenylprop-2-enoate carboxy-lyase

Comments: The enzyme, found in fungi, catalyses the decarboxylation of phenacrylic acids present in plant cell
walls. It requires a prenylated flavin cofactor that is produced by EC 2.5.1.129, flavin prenyltrans-
ferase.

References: [899, 91, 982]

[EC 4.1.1.102 created 2015]

EC 4.1.1.103
Accepted name: γ-resorcylate decarboxylase

Reaction: 2,6-dihydroxybenzoate = 1,3-dihydroxybenzene + CO2
Other name(s): graF (gene name); tsdA (gene name)

Systematic name: 2,6-dihydroxybenzoate carboxy-lyase
Comments: The enzyme, characterized from several bacterial strains, is involved in the degradation of γ-

resorcylate. It contains a zinc ion and a water molecule at the active site. The reaction is reversible,
but equilibrium greatly favors the decarboxylation reaction.

References: [1412, 563, 832, 426, 626]

[EC 4.1.1.103 created 2016]

EC 4.1.1.104
Accepted name: 3-dehydro-4-phosphotetronate decarboxylase
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Reaction: (1) 3-dehydro-4-phospho-L-erythronate = glycerone phosphate + CO2
(2) 3-dehydro-4-phospho-D-erythronate = glycerone phosphate + CO2

Other name(s): otnC (gene name)
Systematic name: 3-dehydro-4-phosphotetronate carboxy-lyase

Comments: The enzyme, characterized from bacteria, is involved in D-erythronate and L-threonate catabolism.
References: [1449]

[EC 4.1.1.104 created 2017]

EC 4.1.1.105
Accepted name: L-tryptophan decarboxylase

Reaction: L-tryptophan = tryptamine + CO2
Other name(s): psiD (gene name); TDC (gene name)

Systematic name: L-tryptophan carboxy-lyase
Comments: The enzyme has been characterized from bacteria, plants, and fungi. Unlike EC 4.1.1.28, aromatic-L-

amino-acid decarboxylase, this enzyme is specific for L-tryptophan.
References: [940, 151, 923, 782, 379]

[EC 4.1.1.105 created 2017]

EC 4.1.1.106
Accepted name: fatty acid photodecarboxylase

Reaction: a long-chain fatty acid + hν = a long-chain alkane + CO2
Other name(s): FAP (gene name)

Systematic name: fatty acid carboxy-lyase (light-dependent, alkane-forming)
Comments: This algal enzyme, characterized from the green algae Chlorella variabilis and Chlamydomonas rein-

hardtii, is dependent on blue light, which photooxidizes its FAD cofactor. The enzyme acts on fatty
acids in the range of C12 to C22, with a higher efficiency for C16 to C17 chains, and forms an alkane
product that is one carbon shorter than the substrate. The enzyme can also act on unsaturated fatty
acids, forming the respective alkenes, but does not generate a new double bond.

References: [1204]

[EC 4.1.1.106 created 2017]

EC 4.1.1.107
Accepted name: 3,4-dihydroxyphenylacetaldehyde synthase

Reaction: L-dopa + O2 + H2O = 3,4-dihydroxyphenylacetaldehyde + CO2 + NH3 + H2O2
Other name(s): DHPAA synthase

Systematic name: L-dopa carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the mosquito Aedes aegypti, catalyses

the production of 3,4-dihydroxylphenylacetaldehyde directly from L-dopa. Dopamine is not formed
as an intermediate (cf. EC 4.1.1.28, aromatic-L-amino-acid decarboxylase). The enzyme is specific
for L-dopa and does not react with other aromatic amino acids with the exception of a low activity
with α-methyl-L-dopa.

References: [1324]

[EC 4.1.1.107 created 2017]

EC 4.1.1.108
Accepted name: 4-hydroxyphenylacetaldehyde synthase

Reaction: L-tyrosine + O2 + H2O = (4-hydroxyphenyl)acetaldehyde + CO2 + NH3 + H2O2
Other name(s): TYRDC-2 (gene name)

Systematic name: L-tyrosine carboxy-lyase (oxidative-deaminating)
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Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plant Petroselinum crispum
(parsley), catalyses the production of 4-hydroxyphenylacetaldehyde directly from L-tyrosine. Tyra-
mine is not formed as an intermediate. The enzyme has a low activity with L-dopa (cf. EC 4.1.1.107,
3,4-dihydroxyphenylacetaldehyde synthase).

References: [1286, 1287]

[EC 4.1.1.108 created 2017]

EC 4.1.1.109
Accepted name: phenylacetaldehyde synthase

Reaction: L-phenylalanine + O2 + H2O = phenylacetaldehyde + CO2 + NH3 + H2O2
Other name(s): PAAS (gene name)

Systematic name: L-phenylalanine carboxy-lyase (oxidative-deaminating)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the the plants Petunia hybrida and a

Rosa hybrid, catalyses the production of phenylacetaldehyde directly from L-phenylalanine. The en-
zyme is specific for L-phenylalanine and does not accept other aromatic amino acids as substrates.

References: [615]

[EC 4.1.1.109 created 2017]

EC 4.1.1.110
Accepted name: bisphosphomevalonate decarboxylase

Reaction: (R)-3,5-bisphosphomevalonate = isopentenyl phosphate + CO2 + phosphate
Other name(s): mevalonate 3,5-bisphosphate decarboxylase

Systematic name: (R)-3,5-bisphosphomevalonate carboxy-lyase (isopentenyl-phosphate-forming)
Comments: The enzyme participates in an alternative mevalonate pathway that takes place in extreme acidophiles

of the Thermoplasmatales order. cf. EC 4.1.1.99, phosphomevalonate decarboxylase.
References: [1327]

[EC 4.1.1.110 created 2018]

EC 4.1.1.111
Accepted name: siroheme decarboxylase

Reaction: siroheme = 12,18-didecarboxysiroheme + 2 CO2
Other name(s): sirohaem decarboxylase; nirDLHG (gene name); ahbAB (gene name)

Systematic name: siroheme carboxy-lyase
Comments: The enzyme from archaea is involved in an alternative heme biosynthesis pathway. The enzyme from

denitrifying bacteria is involved in the heme d1 biosynthesis pathway.
References: [68, 699, 974, 489]

[EC 4.1.1.111 created 2018]

EC 4.1.1.112
Accepted name: oxaloacetate decarboxylase

Reaction: oxaloacetate = pyruvate + CO2
Other name(s): oxaloacetate β-decarboxylase; oxalacetic acid decarboxylase; oxalate β-decarboxylase; oxaloacetate

carboxy-lyase
Systematic name: oxaloacetate carboxy-lyase (pyruvate-forming)

Comments: Requires a divalent metal cation. The enzymes from the fish Gadus morhua (Atlantic cod) and the
bacterium Micrococcus luteus prefer Mn2+, while those from the bacteria Pseudomonas putida and
Pseudomonas aeruginosa prefer Mg2+. Unlike EC 7.2.4.2 [oxaloacetate decarboxylase (Na+ extrud-
ing)], there is no evidence of the enzyme’s involvement in Na+ transport.

References: [1137, 504, 536, 1167, 925]
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[EC 4.1.1.112 created 1961 as EC 4.1.1.3, modified 1986, modified 2000, part transferred 2018 to EC 4.1.1.112]

EC 4.1.1.113
Accepted name: trans-aconitate decarboxylase

Reaction: trans-aconitate = itaconate + CO2
Other name(s): TAD1 (gene name)

Systematic name: trans-aconitate carboxy-lyase (itaconate-forming)
Comments: The enzyme, characterized from the smut fungus Ustilago maydis, is involved in an alternative path-

way for the biosynthesis of itaconate. cf. EC 4.1.1.6, cis-aconitate decarboxylase.
References: [404]

[EC 4.1.1.113 created 2018]

EC 4.1.1.114
Accepted name: cis-3-alkyl-4-alkyloxetan-2-one decarboxylase

Reaction: a cis-3-alkyl-4-alkyloxetan-2-one = a cis-alkene + CO2
Other name(s): oleB (gene name)

Systematic name: cis-3-alkyl-4-alkyloxetan-2-one carboxy-lyase (cis-alkene-forming)
Comments: The enzyme, found in certain bacterial species, catalyses the last step in a pathway for the production

of olefins.
References: [221, 220]

[EC 4.1.1.114 created 2018]

EC 4.1.2 Aldehyde-lyases

[4.1.2.1 Deleted entry. hydroxyoxobutyrate aldolase. Now included with EC 4.1.3.16 4-hydroxy-2-oxoglutarate aldolase]

[EC 4.1.2.1 created 1961, deleted 1972]

EC 4.1.2.2
Accepted name: ketotetrose-phosphate aldolase

Reaction: erythrulose 1-phosphate = glycerone phosphate + formaldehyde
Other name(s): phosphoketotetrose aldolase; erythrulose-1-phosphate synthetase; erythrose-1-phosphate synthase;

erythrulose-1-phosphate formaldehyde-lyase
Systematic name: erythrulose-1-phosphate formaldehyde-lyase (glycerone-phosphate-forming)

References: [201]

[EC 4.1.2.2 created 1961]

[4.1.2.3 Deleted entry. pentosealdolase]

[EC 4.1.2.3 created 1961, deleted 1972]

EC 4.1.2.4
Accepted name: deoxyribose-phosphate aldolase

Reaction: 2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde
Other name(s): phosphodeoxyriboaldolase; deoxyriboaldolase; deoxyribose-5-phosphate aldolase; 2-deoxyribose-5-

phosphate aldolase; 2-deoxy-D-ribose-5-phosphate acetaldehyde-lyase
Systematic name: 2-deoxy-D-ribose-5-phosphate acetaldehyde-lyase (D-glyceraldehyde-3-phosphate-forming)

References: [525, 583, 1043, 524]

[EC 4.1.2.4 created 1961]
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EC 4.1.2.5
Accepted name: L-threonine aldolase

Reaction: L-threonine = glycine + acetaldehyde
Other name(s): L-threonine acetaldehyde-lyase

Systematic name: L-threonine acetaldehyde-lyase (glycine-forming)
Comments: A pyridoxal-phosphate protein. This enzyme is specific for L-threonine and can not utilize L-allo-

threonine. Different from EC 4.1.2.49, L-allo-threonine aldolase, and EC 4.1.2.48, low-specificity
L-threonine aldolase.

References: [272, 625]

[EC 4.1.2.5 created 1961, deleted 1972, reinstated 1976, modified 2011]

[4.1.2.6 Deleted entry. allothreonine aldolase. Reaction is due to EC 2.1.2.1, glycine hydroxymethyltransferase]

[EC 4.1.2.6 created 1961, deleted 1972]

[4.1.2.7 Deleted entry. ketose-1-phosphate aldolase. Now included with EC 4.1.2.13 fructose-bisphosphate aldolase]

[EC 4.1.2.7 created 1961, deleted 1972]

EC 4.1.2.8
Accepted name: indole-3-glycerol-phosphate lyase

Reaction: (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate = indole + D-glyceraldehyde 3-phosphate
Other name(s): tryptophan synthase α; TSA; indoleglycerolphosphate aldolase; indole glycerol phosphate hydro-

lase; indole synthase; indole-3-glycerolphosphate D-glyceraldehyde-3-phosphate-lyase; indole-3-
glycerol phosphate lyase; IGL; BX1; (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate D-glyceraldehyde-
3-phosphate-lyase

Systematic name: (1S,2R)-1-C-(indol-3-yl)glycerol-3-phosphate D-glyceraldehyde-3-phosphate-lyase (indole-forming)
Comments: Forms part of the defence mechanism against insects and microbial pathogens in the grass family,

Gramineae, where it catalyses the first committed step in the formation of the cyclic hydroxamic
acids 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-2H-
1,4-benzoxazin-3(4H)-one (DIMBOA) [1404]. This enzyme resembles the α-subunit of EC 4.2.1.20,
tryptophan synthase [378], for which, (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate is also a sub-
strate, but, unlike tryptophan synthase, its activity is independent of the β-subunit and free indole is
released [377].

References: [1404, 377, 378, 859]

[EC 4.1.2.8 created 1961, deleted 1972, reinstated 2006]

EC 4.1.2.9
Accepted name: phosphoketolase

Reaction: D-xylulose 5-phosphate + phosphate = acetyl phosphate + D-glyceraldehyde 3-phosphate + H2O
Other name(s): D-xylulose-5-phosphate D-glyceraldehyde-3-phosphate-lyase (phosphate-acetylating)

Systematic name: D-xylulose-5-phosphate D-glyceraldehyde-3-phosphate-lyase (adding phosphate; acetyl-phosphate-
forming)

Comments: A thiamine-diphosphate protein.
References: [493, 1147]

[EC 4.1.2.9 created 1961]

EC 4.1.2.10
Accepted name: (R)-mandelonitrile lyase

Reaction: (R)-mandelonitrile = cyanide + benzaldehyde
Other name(s): (R)-oxynitrilase; oxynitrilase; D-oxynitrilase; D-α-hydroxynitrile lyase; mandelonitrile benzaldehyde-

lyase; PaHNL; AtHNL; PhaMDL; (R)-HNL; (R)-PeHNL; (R)-hydroxynitrile lyase; R-selective hy-
droxynitrile lyase; R-selective HNL; (R)-(+)-mandelonitrile lyase
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Systematic name: (R)-mandelonitrile benzaldehyde-lyase (cyanide-forming)
Comments: A variety of enzymes from different sources and with different properties. Some are flavoproteins,

others are not. Active towards a number of aromatic and aliphatic hydroxynitriles (cyanohydrins).
References: [1308, 761, 285, 1309, 28, 451]

[EC 4.1.2.10 created 1961, modified 1999, modified 2011]

EC 4.1.2.11
Accepted name: hydroxymandelonitrile lyase

Reaction: (S)-4-hydroxymandelonitrile = cyanide + 4-hydroxybenzaldehyde
Other name(s): hydroxynitrile lyase; oxynitrilase; Sorghum hydroxynitrile lyase; (S)-4-hydroxymandelonitrile

hydroxybenzaldehyde-lyase
Systematic name: (S)-4-hydroxymandelonitrile 4-hydroxybenzaldehyde-lyase (cyanide-forming)

Comments: Does not accept aliphatic hydroxynitriles, unlike EC 4.1.2.10 (mandelonitrile lyase), EC 4.1.2.46
[aliphatic (R)-hydroxynitrile lyase] and EC 4.1.2.47 [(S)-hydroxynitrile ketone-lyase (cyanide form-
ing)].

References: [117, 1158]

[EC 4.1.2.11 created 1965, modified 1999]

EC 4.1.2.12
Accepted name: 2-dehydropantoate aldolase

Reaction: 2-dehydropantoate = 3-methyl-2-oxobutanoate + formaldehyde
Other name(s): ketopantoaldolase; 2-dehydropantoate formaldehyde-lyase

Systematic name: 2-dehydropantoate formaldehyde-lyase (3-methyl-2-oxobutanoate-forming)
References: [848]

[EC 4.1.2.12 created 1965, modified 2002]

EC 4.1.2.13
Accepted name: fructose-bisphosphate aldolase

Reaction: D-fructose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde 3-phosphate
Other name(s): aldolase; fructose-1,6-bisphosphate triosephosphate-lyase; fructose diphosphate aldolase; diphos-

phofructose aldolase; fructose 1,6-diphosphate aldolase; ketose 1-phosphate aldolase; phosphofruc-
toaldolase; zymohexase; fructoaldolase; fructose 1-phosphate aldolase; fructose 1-monophosphate
aldolase; 1,6-diphosphofructose aldolase; SMALDO; D-fructose-1,6-bisphosphate D-glyceraldehyde-
3-phosphate-lyase

Systematic name: D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
Comments: Also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. The en-

zymes increase electron-attraction by the carbonyl group, some (Class I) forming a protonated imine
with it, others (Class II), mainly of microbial origin, polarizing it with a metal ion, e.g. zinc.

References: [534, 17]

[EC 4.1.2.13 created 1965, modified 1999 (EC 4.1.2.7 created 1961, incorporated 1972)]

EC 4.1.2.14
Accepted name: 2-dehydro-3-deoxy-phosphogluconate aldolase

Reaction: 2-dehydro-3-deoxy-6-phospho-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
Other name(s): phospho-2-keto-3-deoxygluconate aldolase; KDPG aldolase; phospho-2-keto-3-deoxygluconic al-

dolase; 2-keto-3-deoxy-6-phosphogluconic aldolase; 2-keto-3-deoxy-6-phosphogluconate aldolase;
6-phospho-2-keto-3-deoxygluconate aldolase; ODPG aldolase; 2-oxo-3-deoxy-6-phosphogluconate
aldolase; 2-keto-3-deoxygluconate-6-P-aldolase; 2-keto-3-deoxygluconate-6-phosphate aldolase; 2-
dehydro-3-deoxy-D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-
D-gluconate-6-phosphate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
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Systematic name: 2-dehydro-3-deoxy-6-phospho-D-gluconate D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Comments: The enzyme shows no activity with 2-dehydro-3-deoxy-6-phosphate-D-galactonate. cf. EC 4.1.2.55,

2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase [75]. Also
acts on 2-oxobutanoate [861].

References: [861, 75]

[EC 4.1.2.14 created 1965, modified 1976, modified 2014]

[4.1.2.15 Transferred entry. 2-dehydro-3-deoxy-phosphoheptonate aldolase. Now EC 2.5.1.54, 3-deoxy-7-phosphoheptulonate
synthase]

[EC 4.1.2.15 created 1965, modified 1976, deleted 2002]

[4.1.2.16 Transferred entry. 2-dehydro-3-deoxy-phosphooctonate aldolase. Now EC 2.5.1.55, 3-deoxy-8-phosphooctulonate
synthase]

[EC 4.1.2.16 created 1965, deleted 2002]

EC 4.1.2.17
Accepted name: L-fuculose-phosphate aldolase

Reaction: L-fuculose 1-phosphate = glycerone phosphate + (S)-lactaldehyde
Other name(s): L-fuculose 1-phosphate aldolase; fuculose aldolase; L-fuculose-1-phosphate lactaldehyde-lyase

Systematic name: L-fuculose-1-phosphate (S)-lactaldehyde-lyase (glycerone-phosphate-forming)
References: [406, 312, 313]

[EC 4.1.2.17 created 1965]

EC 4.1.2.18
Accepted name: 2-dehydro-3-deoxy-L-pentonate aldolase

Reaction: 2-dehydro-3-deoxy-L-pentonate = pyruvate + glycolaldehyde
Other name(s): 2-keto-3-deoxy-L-pentonate aldolase; 2-keto-3-deoxy-L-arabonate aldolase; 2-keto-3-deoxy-

D-xylonate aldolase; 3-deoxy-D-pentulosonic acid aldolase; 2-dehydro-3-deoxy-L-pentonate
glycolaldehyde-lyase

Systematic name: 2-dehydro-3-deoxy-L-pentonate glycolaldehyde-lyase (pyruvate-forming)
References: [267]

[EC 4.1.2.18 created 1972, modified 1976]

EC 4.1.2.19
Accepted name: rhamnulose-1-phosphate aldolase

Reaction: L-rhamnulose 1-phosphate = glycerone phosphate + (S)-lactaldehyde
Other name(s): rhamnulose phosphate aldolase; L-rhamnulose 1-phosphate aldolase; L-rhamnulose-phosphate al-

dolase; L-rhamnulose-1-phosphate lactaldehyde-lyase
Systematic name: L-rhamnulose-1-phosphate (S)-lactaldehyde-lyase (glycerone-phosphate-forming)

References: [213, 1117]

[EC 4.1.2.19 created 1972]

EC 4.1.2.20
Accepted name: 2-dehydro-3-deoxyglucarate aldolase

Reaction: 2-dehydro-3-deoxy-D-glucarate = pyruvate + 2-hydroxy-3-oxopropanoate
Other name(s): 2-keto-3-deoxyglucarate aldolase; α-keto-β-deoxy-D-glucarate aldolase; 2-dehydro-3-deoxy-D-

glucarate tartronate-semialdehyde-lyase; 2-dehydro-3-deoxy-D-glucarate tartronate-semialdehyde-
lyase (pyruvate-forming)
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Systematic name: 2-dehydro-3-deoxy-D-glucarate 2-hydroxy-3-oxopropanoate-lyase (pyruvate-forming)
References: [364]

[EC 4.1.2.20 created 1961 as EC 4.1.2.8, transferred 1972 to EC 4.1.2.20]

EC 4.1.2.21
Accepted name: 2-dehydro-3-deoxy-6-phosphogalactonate aldolase

Reaction: 2-dehydro-3-deoxy-6-phospho-D-galactonate = pyruvate + D-glyceraldehyde 3-phosphate
Other name(s): 6-phospho-2-keto-3-deoxygalactonate aldolase; phospho-2-keto-3-deoxygalactonate aldolase; 2-

keto-3-deoxy-6-phosphogalactonic aldolase; phospho-2-keto-3-deoxygalactonic aldolase; 2-keto-
3-deoxy-6-phosphogalactonic acid aldolase; (KDPGal)aldolase; 2-dehydro-3-deoxy-D-galactonate-
6-phosphate D-glyceraldehyde-3-phosphate-lyase; 2-dehydro-3-deoxy-D-galactonate-6-phosphate
D-glyceraldehyde-3-phosphate-lyase (pyruvate-forming)

Systematic name: 2-dehydro-3-deoxy-6-phospho-D-galactonate D-glyceraldehyde-3-phospho-lyase (pyruvate-forming)
Comments: The enzyme catalyses the last reaction in a D-galactose degradation pathway. cf. EC 4.1.2.55, 2-

dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase.
References: [1182]

[EC 4.1.2.21 created 1972, modified 2014]

EC 4.1.2.22
Accepted name: fructose-6-phosphate phosphoketolase

Reaction: D-fructose 6-phosphate + phosphate = acetyl phosphate + D-erythrose 4-phosphate + H2O
Other name(s): D-fructose-6-phosphate D-erythrose-4-phosphate-lyase (phosphate-acetylating)

Systematic name: D-fructose-6-phosphate D-erythrose-4-phosphate-lyase (adding phosphate; acetyl-phosphate-forming)
Comments: Also acts on D-xylulose 5-phosphate.
References: [1147]

[EC 4.1.2.22 created 1972]

EC 4.1.2.23
Accepted name: 3-deoxy-D-manno-octulosonate aldolase

Reaction: 3-deoxy-D-manno-octulosonate = pyruvate + D-arabinose
Other name(s): 2-keto-3-deoxyoctonate aldolase; KDOaldolase; 3-deoxyoctulosonic aldolase; 2-keto-3-deoxyoctonic

aldolase; 3-deoxy-D-manno-octulosonic aldolase; 3-deoxy-D-manno-octulosonate D-arabinose-lyase
Systematic name: 3-deoxy-D-manno-octulosonate D-arabinose-lyase (pyruvate-forming)

References: [407]

[EC 4.1.2.23 created 1972]

EC 4.1.2.24
Accepted name: dimethylaniline-N-oxide aldolase

Reaction: N,N-dimethylaniline N-oxide = N-methylaniline + formaldehyde
Other name(s): microsomal oxidase II; microsomal N-oxide dealkylase; N,N-dimethylaniline-N-oxide formaldehyde-

lyase
Systematic name: N,N-dimethylaniline-N-oxide formaldehyde-lyase (N-methylaniline-forming)

Comments: Acts on various N,N-dialkylarylamides.
References: [796]

[EC 4.1.2.24 created 1972]

EC 4.1.2.25
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Accepted name: dihydroneopterin aldolase
Reaction: 7,8-dihydroneopterin = 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde

Other name(s): 7,8-dihydroneopterin aldolase; 2-amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-
dihydropteridine glycolaldehyde-lyase; 2-amino-4-hydroxy-6-(D-erythro-1,2,3-trihydroxypropyl)-7,8-
dihydropteridine glycolaldehyde-lyase (2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine-
forming); DHNA; mptD (gene name); folB (gene name)

Systematic name: 7,8-dihydroneopterin glycolaldehyde-lyase [6-(hydroxymethyl)-7,8-dihydropterin-forming]
Comments: The enzyme participates in folate (in bacteria, plants and fungi) and methanopterin (in archaea)

biosynthesis. The enzymes from the bacterium Escherichia coli and the plant Arabidopsis thaliana
also catalyse the epimerisation of the 2′ hydroxy-group (EC 5.1.99.8, 7,8-dihydroneopterin
epimerase) [490, 430]. The enzyme from the bacterium Mycobacterium tuberculosis is trifunctional
and also catalyses EC 5.1.99.8 and EC 1.13.11.81, 7,8-dihydroneopterin oxygenase [1353]. The en-
zyme from the yeast Saccharomyces cerevisiae also catalyses the two subsequent steps in the folate
biosynthesis pathway - EC 2.7.6.3, 2-amino-4-hydroxy-6-(hydroxymethyl)dihydropteridine diphos-
phokinase, and EC 2.5.1.15, dihydropteroate synthase [443].

References: [828, 490, 430, 443, 262, 1353, 93]

[EC 4.1.2.25 created 1972, modified 2015]

EC 4.1.2.26
Accepted name: phenylserine aldolase

Reaction: L-threo-3-phenylserine = glycine + benzaldehyde
Other name(s): L-threo-3-phenylserine benzaldehyde-lyase

Systematic name: L-threo-3-phenylserine benzaldehyde-lyase (glycine-forming)
Comments: A pyridoxal-phosphate protein.
References: [142]

[EC 4.1.2.26 created 1972]

EC 4.1.2.27
Accepted name: sphinganine-1-phosphate aldolase

Reaction: sphinganine 1-phosphate = phosphoethanolamine + palmitaldehyde
Other name(s): dihydrosphingosine 1-phosphate aldolase; sphinganine-1-phosphate alkanal-lyase; sphinganine-1-

phosphate lyase; sphinganine-1-phosphate palmitaldehyde-lyase
Systematic name: sphinganine-1-phosphate palmitaldehyde-lyase (phosphoethanolamine-forming)

Comments: A pyridoxal-phosphate protein.
References: [1219]

[EC 4.1.2.27 created 1972]

EC 4.1.2.28
Accepted name: 2-dehydro-3-deoxy-D-pentonate aldolase

Reaction: 2-dehydro-3-deoxy-D-pentonate = pyruvate + glycolaldehyde
Other name(s): 2-keto-3-deoxy-D-pentonate aldolase; 3-deoxy-D-pentulosonic acid aldolase; 2-dehydro-3-deoxy-D-

pentonate glycolaldehyde-lyase
Systematic name: 2-dehydro-3-deoxy-D-pentonate glycolaldehyde-lyase (pyruvate-forming)

References: [266, 269]

[EC 4.1.2.28 created 1976]

EC 4.1.2.29
Accepted name: 5-dehydro-2-deoxyphosphogluconate aldolase

Reaction: 5-dehydro-2-deoxy-D-gluconate 6-phosphate = glycerone phosphate + malonate semialdehyde
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Other name(s): phospho-5-keto-2-deoxygluconate aldolase; 5-dehydro-2-deoxy-D-gluconate-6-phosphate malonate-
semialdehyde-lyase

Systematic name: 5-dehydro-2-deoxy-D-gluconate-6-phosphate malonate-semialdehyde-lyase (glycerone-phosphate-
forming)

References: [27]

[EC 4.1.2.29 created 1976]

[4.1.2.30 Transferred entry. 17α-hydroxyprogesterone aldolase. Now EC 1.14.14.32, 17α-hydroxyprogesterone deacetylase]

[EC 4.1.2.30 created 1976, deleted 2016]

[4.1.2.31 Deleted entry. 2-oxo-4-hydroxyglutarate aldolase. Now included with EC 4.1.3.16 4-hydroxy-2-oxoglutarate al-
dolase]

[EC 4.1.2.31 created 1978, deleted 1982]

EC 4.1.2.32
Accepted name: trimethylamine-oxide aldolase

Reaction: trimethylamine N-oxide = dimethylamine + formaldehyde
Other name(s): trimethylamine N-oxide formaldehyde-lyase; trimethylamine N-oxide aldolase; trimethylamine N-

oxide demethylase; trimethylamine-N-oxide formaldehyde-lyase
Systematic name: trimethylamine-N-oxide formaldehyde-lyase (dimethylamine-forming)

References: [729, 909]

[EC 4.1.2.32 created 1978]

EC 4.1.2.33
Accepted name: fucosterol-epoxide lyase

Reaction: (24R,241R)-fucosterol epoxide = desmosterol + acetaldehyde
Other name(s): (24R,24′R)-fucosterol-epoxide acetaldehyde-lyase; (24R,24′R)-fucosterol-epoxide acetaldehyde-lyase

(desmosterol-forming)
Systematic name: (24R,241R)-fucosterol-epoxide acetaldehyde-lyase (desmosterol-forming)

Comments: The insect enzyme is involved in the conversion of sitosterol into cholesterol.
References: [1021]

[EC 4.1.2.33 created 1989, modified 2013]

EC 4.1.2.34
Accepted name: 4-(2-carboxyphenyl)-2-oxobut-3-enoate aldolase

Reaction: (3Z)-4-(2-carboxyphenyl)-2-oxobut-3-enoate + H2O = 2-formylbenzoate + pyruvate
Other name(s): 2′-carboxybenzalpyruvate aldolase; (3E)-4-(2-carboxyphenyl)-2-oxobut-3-enoate 2-

carboxybenzaldehyde-lyase; (3Z)-4-(2-carboxyphenyl)-2-oxobut-3-enoate 2-formylbenzoate-lyase
Systematic name: (3Z)-4-(2-carboxyphenyl)-2-oxobut-3-enoate 2-formylbenzoate-lyase (pyruvate-forming)

Comments: Involved, with EC 1.13.11.38 (1-hydroxy-2-naphthoate 1,2-dioxygenase), in the metabolism of
phenanthrene in bacteria.

References: [74]

[EC 4.1.2.34 created 1989]

EC 4.1.2.35
Accepted name: propioin synthase

Reaction: 4-hydroxy-3-hexanone = 2 propanal
Other name(s): 4-hydroxy-3-hexanone aldolase; 4-hydroxy-3-hexanone propanal-lyase
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Systematic name: 4-hydroxy-3-hexanone propanal-lyase (propanal-forming)
References: [893]

[EC 4.1.2.35 created 1990]

EC 4.1.2.36
Accepted name: lactate aldolase

Reaction: (S)-lactate = formate + acetaldehyde
Other name(s): lactate synthase; (S)-lactate acetaldehyde-lyase

Systematic name: (S)-lactate acetaldehyde-lyase (formate-forming)
References: [445]

[EC 4.1.2.36 created 1990]

[4.1.2.37 Deleted entry. hydroxynitrilase. Now covered by EC 4.1.2.46 [aliphatic (R)-hydroxynitrile lyase] and EC 4.1.2.47
[(S)-hydroxynitrile ketone-lyase (cyanide forming)]]

[EC 4.1.2.37 created 1992 (EC 4.1.2.39 created 1999, incorporated 2007), deleted 2011]

EC 4.1.2.38
Accepted name: benzoin aldolase

Reaction: 2-hydroxy-1,2-diphenylethanone = 2 benzaldehyde
Other name(s): benzaldehyde lyase; 2-hydroxy-1,2-diphenylethanone benzaldehyde-lyase

Systematic name: 2-hydroxy-1,2-diphenylethanone benzaldehyde-lyase (benzaldehyde-forming)
Comments: A thiamine-diphosphate protein.
References: [422]

[EC 4.1.2.38 created 1992]

[4.1.2.39 Deleted entry. hydroxynitrilase. The enzyme is identical to EC 4.1.2.37, hydroxynitrilase]

[EC 4.1.2.39 created 1999, deleted 2007]

EC 4.1.2.40
Accepted name: tagatose-bisphosphate aldolase

Reaction: D-tagatose 1,6-bisphosphate = glycerone phosphate + D-glyceraldehyde 3-phosphate
Other name(s): D-tagatose-1,6-bisphosphate triosephosphate lyase

Systematic name: D-tagatose 1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase (glycerone-phosphate-forming)
Comments: Enzyme activity is stimulated by certain divalent cations. It is involved in the tagatose 6-phosphate

pathway of lactose catabolism in bacteria.
References: [26, 1086]

[EC 4.1.2.40 created 1999]

EC 4.1.2.41
Accepted name: vanillin synthase

Reaction: 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propanoyl-CoA = vanillin + acetyl-CoA
Other name(s): 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propionyl-CoA:vanillin lyase (acetyl-CoA-forming)

Systematic name: 3-hydroxy-3-(4-hydroxy-3-methoxyphenyl)propanoyl-CoA vanillin-lyase (acetyl-CoA-forming)
Comments: Involved, together with EC 4.2.1.101 trans-feruloyl-CoA hydratase, in the production of vanillin from

trans-ferulic acid. Vanillin is converted to vanillate by EC 1.2.1.67 vanillin dehydrogenase.
References: [926, 1013]

[EC 4.1.2.41 created 2000]
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EC 4.1.2.42
Accepted name: D-threonine aldolase

Reaction: (1) D-threonine = glycine + acetaldehyde
(2) D-allothreonine = glycine + acetaldehyde

Other name(s): D-TA; DTA; low specificity D-TA; low specificity D-threonine aldolase
Systematic name: D-threonine acetaldehyde-lyase (glycine-forming)

Comments: A pyridoxal-phosphate protein that is activated by divalent metal cations (e.g. Co2+, Ni2+, Mn2+ or
Mg2+) [628, 770]. The reaction is reversible, which can lead to the interconversion of D-threonine
and D-allothreonine [628]. Several other D-β-hydroxy-α-amino acids, such as D-β-phenylserine, D-β-
hydroxy-α-aminovaleric acid and D-β-3,4-dihydroxyphenylserine, can also act as substrate [628].

References: [628, 770, 774, 775, 772, 970]

[EC 4.1.2.42 created 2007]

EC 4.1.2.43
Accepted name: 3-hexulose-6-phosphate synthase

Reaction: D-arabino-hex-3-ulose 6-phosphate = D-ribulose 5-phosphate + formaldehyde
Other name(s): D-arabino-3-hexulose 6-phosphate formaldehyde-lyase; 3-hexulosephosphate synthase; 3-hexulose

phosphate synthase; HPS
Systematic name: D-arabino-hex-3-ulose-6-phosphate formaldehyde-lyase (D-ribulose-5-phosphate-forming)

Comments: Requires Mg2+ or Mn2+ for maximal activity [357]. The enzyme is specific for D-ribulose 5-
phosphate as substrate as ribose 5-phosphate, xylulose 5-phosphate, allulose 6-phosphate and fructose
6-phosphate cannot act as substrate. In addition to formaldehyde, the enzyme can also use glycolalde-
hyde and methylglyoxal [631]. This enzyme, along with EC 5.3.1.27, 6-phospho-3-hexuloisomerase,
plays a key role in the ribulose-monophosphate cycle of formaldehyde fixation, which is present in
many microorganisms that are capable of utilizing C1-compounds [357]. The hyperthermophilic and
anaerobic archaeon Pyrococcus horikoshii OT3 constitutively produces a bifunctional enzyme that
sequentially catalyses the reactions of this enzyme and EC 5.3.1.27, 6-phospho-3-hexuloisomerase
[961]. This enzyme is a member of the orotidine 5′-monophosphate decarboxylase (OMPDC)
suprafamily [633].

References: [357, 632, 1402, 1434, 633, 961, 631]

[EC 4.1.2.43 created 2008]

EC 4.1.2.44
Accepted name: 2,3-epoxybenzoyl-CoA dihydrolase

Reaction: 2,3-epoxy-2,3-dihydrobenzoyl-CoA + 2 H2O = (3Z)-6-oxohex-3-enoyl-CoA + formate
Other name(s): 2,3-dihydro-2,3-dihydroxybenzoyl-CoA lyase/hydrolase (deformylating); BoxC; dihydrodiol trans-

forming enzyme; benzoyl-CoA oxidation component C; 2,3-dihydro-2,3-dihydroxybenzoyl-CoA
3,4-didehydroadipyl-CoA semialdehyde-lyase (formate-forming); benzoyl-CoA-dihydrodiol lyase
(incorrect); 2,3-dihydro-2,3-dihydroxybenzoyl-CoA 3,4-didehydroadipyl-CoA-semialdehyde-lyase
(formate-forming)

Systematic name: 2,3-epoxy-2,3-dihydrobenzoyl-CoA (3Z)-6-oxohex-3-enoyl-CoA-lyase (formate-forming)
Comments: The enzyme is involved in the aerobic benzoyl-CoA catabolic pathway of the bacterium Azoarcus

evansii. The enzyme converts 2,3-epoxy-2,3-dihydrobenzoyl-CoA to its oxepin form prior to the ring-
opening and the formation of a dialdehyde intermediate.

References: [405, 1055]

[EC 4.1.2.44 created 2010, modified 2015]

EC 4.1.2.45
Accepted name: trans-o-hydroxybenzylidenepyruvate hydratase-aldolase

Reaction: (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate + H2O = salicylaldehyde + pyruvate
Other name(s): 2′-hydroxybenzalpyruvate aldolase; NsaE; tHBPA hydratase-aldolase
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Systematic name: (3E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate hydro-lyase
Comments: This enzyme is involved in naphthalene degradation. The enzyme catalyses a retro-aldol reaction in

vitro, and it accepts a broad range of aldehydes and 4-substituted 2-oxobut-3-enoates as substrates
[324].

References: [698, 640, 323, 324]

[EC 4.1.2.45 created 2010, modified 2011]

EC 4.1.2.46
Accepted name: aliphatic (R)-hydroxynitrile lyase

Reaction: (2R)-2-hydroxy-2-methylbutanenitrile = cyanide + butan-2-one
Other name(s): (R)-HNL; (R)-oxynitrilase; (R)-hydroxynitrile lyase; LuHNL

Systematic name: (2R)-2-hydroxy-2-methylbutanenitrile butan-2-one-lyase (cyanide forming)
Comments: The enzyme contains Zn2+ [1296]. The enzyme catalyses the stereoselective synthesis of aliphatic

(R)-cyanohydrins [1296]. No activity towards mandelonitrile and 4-hydroxymandelonitrile [160].
Natural substrates for the (R)-oxynitrilase from Linum usitatissimum are acetone and butan-2-one,
which are the building blocks of the cyanogen glycosides in Linum, linamarin and lotaustralin, or li-
nustatin and neolinustatin, respectively [1385].

References: [1296, 1297, 16, 1385, 160, 128]

[EC 4.1.2.46 created 2011]

EC 4.1.2.47
Accepted name: (S)-hydroxynitrile lyase

Reaction: (1) an aliphatic (S)-hydroxynitrile = cyanide + an aliphatic aldehyde or ketone
(2) an aromatic (S)-hydroxynitrile = cyanide + an aromatic aldehyde

Other name(s): (S)-cyanohydrin producing hydroxynitrile lyase; (S)-oxynitrilase; (S)-HbHNL; (S)-MeHNL; hydrox-
ynitrile lyase; oxynitrilase; HbHNL; MeHNL; (S)-selective hydroxynitrile lyase; (S)-cyanohydrin
carbonyl-lyase (cyanide forming)

Systematic name: (S)-cyanohydrin lyase (cyanide forming)
Comments: Hydroxynitrile lyases catalyses the the cleavage of hydroxynitriles into cyanide and the correspond-

ing aldehyde or ketone. In nature the liberation of cyanide serves as a defense mechanism against
herbivores and microbial attack in plants. In vitro the enzymes from Manihot esculenta and Hevea
brasiliensis accept a broad range of aliphatic and aromatic carbonyl compounds as substrates and
catalyse the formation of (S)-hydroxynitriles [372, 661].

References: [372, 149, 1166, 48, 1331, 1132, 401, 1334, 1136, 661]

[EC 4.1.2.47 created 2011]

EC 4.1.2.48
Accepted name: low-specificity L-threonine aldolase

Reaction: (1) L-threonine = glycine + acetaldehyde
(2) L-allo-threonine = glycine + acetaldehyde

Other name(s): LtaE
Systematic name: L-threonine/L-allo-threonine acetaldehyde-lyase (glycine-forming)

Comments: Requires pyridoxal phosphate. The low-specificity L-threonine aldolase can act on both L-threonine
and L-allo-threonine [1391, 700]. The enzyme from Escherichia coli can also act on L-threo-
phenylserine and L-erythro-phenylserine [771]. The enzyme can also catalyse the aldol condensation
of glycolaldehyde and glycine to form 4-hydroxy-L-threonine, an intermediate of pyridoxal phosphate
biosynthesis [773]. Different from EC 4.1.2.5, L-threonine aldolase, and EC 4.1.2.49, L-allo-threonine
aldolase.

References: [1391, 700, 773, 771, 653]
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[EC 4.1.2.48 created 2011]

EC 4.1.2.49
Accepted name: L-allo-threonine aldolase

Reaction: L-allo-threonine = glycine + acetaldehyde
Systematic name: L-allo-threonine acetaldehyde-lyase (glycine-forming)

Comments: Requires pyridoxal phosphate. This enzyme, characterized from the bacterium Aeromonas jandaei,
is specific for L-allo-threonine and can not act on either L-threonine or L-serine. Different from EC
4.1.2.5, L-threonine aldolase, and EC 4.1.2.48, low-specificity L-threonine aldolase. A previously
listed enzyme with this name, EC 4.1.2.6, was deleted in 1971 after it was found to be identical to
EC 2.1.2.1, glycine hydroxymethyltransferase.

References: [629]

[EC 4.1.2.49 created 2011]

EC 4.1.2.50
Accepted name: 6-carboxytetrahydropterin synthase

Reaction: 7,8-dihydroneopterin 3′-triphosphate + H2O = 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde +
triphosphate

Other name(s): CPH4 synthase; queD (gene name); ToyB; ykvK (gene name)
Systematic name: 7,8-dihydroneopterin 3′-triphosphate acetaldehyde-lyase (6-carboxy-5,6,7,8-tetrahydropterin and

triphosphate-forming)
Comments: Binds Zn2+. Isolated from the bacteria Bacillus subtilis and Escherichia coli. The reaction is part

of the biosynthesis pathway of queuosine.The enzyme from Escherichia coli can also convert 6-
pyruvoyl-5,6,7,8-tetrahydropterin and sepiapterin to 6-carboxy-5,6,7,8-tetrahydropterin [840].

References: [224, 840]

[EC 4.1.2.50 created 2012]

EC 4.1.2.51
Accepted name: 2-dehydro-3-deoxy-D-gluconate aldolase

Reaction: 2-dehydro-3-deoxy-D-gluconate = pyruvate + D-glyceraldehyde
Other name(s): Pto1279 (gene name); KDGA; KDG-specific aldolase

Systematic name: 2-dehydro-3-deoxy-D-gluconate D-glyceraldehyde-lyase (pyruvate-forming)
Comments: The enzyme from the archaeon Picrophilus torridus is involved in D-glucose and D-galactose

catabolism via the nonphosphorylative variant of the Entner-Doudoroff pathway. In the direction of
aldol synthesis the enzyme catalyses the formation of 2-dehydro-3-deoxy-D-gluconate and 2-dehydro-
3-deoxy-D-galactonate at a similar ratio. It shows no activity with 2-dehydro-3-deoxy-D-gluconate
6-phosphate. cf. EC 4.1.2.14, 2-dehydro-3-deoxy-phosphogluconate aldolase.

References: [1061]

[EC 4.1.2.51 created 2013]

EC 4.1.2.52
Accepted name: 4-hydroxy-2-oxoheptanedioate aldolase

Reaction: 4-hydroxy-2-oxoheptanedioate = pyruvate + succinate semialdehyde
Other name(s): 2,4-dihydroxyhept-2-enedioate aldolase; HHED aldolase; 4-hydroxy-2-ketoheptanedioate al-

dolase; HKHD aldolase; HpcH; HpaI; 4-hydroxy-2-oxoheptanedioate succinate semialdehyde lyase
(pyruvate-forming)

Systematic name: 4-hydroxy-2-oxoheptanedioate succinate-semialdehyde-lyase (pyruvate-forming)

36

http://www.enzyme-database.org/query.php?ec=4.1.2.49
http://www.enzyme-database.org/query.php?ec=4.1.2.50
http://www.enzyme-database.org/query.php?ec=4.1.2.51
http://www.enzyme-database.org/query.php?ec=4.1.2.52


Comments: Requires Co2+ or Mn2+ for activity. The enzyme is also able to catalyse the aldol cleavage of 4-
hydroxy-2-oxopentanoate and 4-hydroxy-2-oxohexanoate, and can use 2-oxobutanoate as carbonyl
donor, with lower efficiency. In the reverse direction, is able to condense a range of aldehyde accep-
tors with pyruvate. The enzyme from the bacterium Escherichia coli produces a racemic mixture of
(4R)- and (4S)-hydroxy-2-oxoheptanedioate [1349].

References: [1350, 1058, 1351, 1349]

[EC 4.1.2.52 created 2013]

EC 4.1.2.53
Accepted name: 2-keto-3-deoxy-L-rhamnonate aldolase

Reaction: 2-dehydro-3-deoxy-L-rhamnonate = pyruvate + (S)-lactaldehyde
Other name(s): KDR aldolase; 2-dehydro-3-deoxyrhamnonate aldolase; 2-keto-3-deoxy acid sugar aldolase; YfaU;

2-dehydro-3-deoxy-L-rhamnonate (S)-lactaldehyde lyase (pyruvate-forming); 2-dehydro-3-deoxy-L-
rhamnonate (R)-lactaldehyde lyase (pyruvate-forming)

Systematic name: 2-dehydro-3-deoxy-L-rhamnonate (S)-lactaldehyde-lyase (pyruvate-forming)
Comments: Requires Mg2+ for activity. The enzyme can also use 2-oxo-3-deoxy-L-mannonate, 2-oxo-3-deoxy-L-

lyxonate and 4-hydroxy-2-ketoheptane-1,7-dioate (HKHD) as substrates [1059].
References: [1044, 1059]

[EC 4.1.2.53 created 2013]

EC 4.1.2.54
Accepted name: L-threo-3-deoxy-hexylosonate aldolase

Reaction: 2-dehydro-3-deoxy-L-galactonate = pyruvate + L-glyceraldehyde
Other name(s): GAAC; LGA1

Systematic name: 2-dehydro-3-deoxy-L-galactonate L-glyceraldehyde-lyase (pyruvate-forming)
Comments: The enzyme takes part in a D-galacturonate degradation pathway in the fungi Aspergillus niger and

Trichoderma reesei (Hypocrea jecorina).
References: [513, 815]

[EC 4.1.2.54 created 2013]

EC 4.1.2.55
Accepted name: 2-dehydro-3-deoxy-phosphogluconate/2-dehydro-3-deoxy-6-phosphogalactonate aldolase

Reaction: (1) 2-dehydro-3-deoxy-6-phospho-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
(2) 2-dehydro-3-deoxy-6-phospho-D-galactonate = pyruvate + D-glyceraldehyde 3-phosphate

Other name(s): 2-keto-3-deoxygluconate aldolase (ambiguous); KDGA (ambiguous)
Systematic name: 2-dehydro-3-deoxy-6-phospho-D-gluconate/2-dehydro-3-deoxy-6-phospho-D-galactonate D-

glyceraldehyde-3-phosphate-lyase (pyruvate-forming)
Comments: In the archaeon Sulfolobus solfataricus the enzyme is involved in glucose and galactose catabolism

via the branched variant of the Entner-Doudoroff pathway. It utilizes 2-dehydro-3-deoxy-6-
phosphate-D-gluconate and 2-dehydro-3-deoxy-6-phosphate-D-galactonate with similar catalytic
efficiency. In vitro the enzyme can also catalyse the cleavage of the non-phosphorylated forms 2-
dehydro-3-deoxy-D-gluconate and 2-dehydro-3-deoxy-D-galactonate with much lower catalytic ef-
ficiency. cf. EC 4.1.2.21, 2-dehydro-3-deoxy-6-phosphogalactonate aldolase, and EC 4.1.2.14, 2-
dehydro-3-deoxy-phosphogluconate aldolase.

References: [144, 724, 1319]

[EC 4.1.2.55 created 2014]

EC 4.1.2.56
Accepted name: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate synthase
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Reaction: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate = glycerone phosphate + L-aspartate 4-
semialdehyde

Other name(s): griI (gene name)
Systematic name: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate L-aspartate 4-semialdehyde-lyase (glyc-

erone phosphate-forming)
Comments: Part of the pathway for the biosynthesis of grixazone, a mixture of yellow pigments produced by the

bacterium Streptomyces griseus.
References: [1236]

[EC 4.1.2.56 created 2014]

EC 4.1.2.57
Accepted name: sulfofructosephosphate aldolase

Reaction: 6-deoxy-6-sulfo-D-fructose 1-phosphate = glycerone phosphate + 2-hydroxy-3-oxopropane-1-
sulfonate

Other name(s): yihT (gene name)
Systematic name: 6-deoxy-6-sulfofructose-1-phosphate 2-hydroxy-3-oxopropane-1-sulfonate-lyase (glycerone-

phosphate-forming)
Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in the degradation path-

way of sulfoquinovose, the polar headgroup of sulfolipids found in the photosynthetic membranes of
all higher plants, mosses, ferns, algae, and most photosynthetic bacteria, as well as the surface layer of
some archaea.

References: [297]

[EC 4.1.2.57 created 2014]

EC 4.1.2.58
Accepted name: 2-dehydro-3,6-dideoxy-6-sulfogluconate aldolase

Reaction: 2-dehydro-3,6-dideoxy-6-sulfo-D-gluconate = (2S)-3-sulfolactaldehyde + pyruvate
Other name(s): KDSG aldolase

Systematic name: 2-dehydro-3,6-dideoxy-6-sulfo-D-gluconate-lyase (pyruvate-forming)
Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfo-

quinovose degradation pathway.
References: [356]

[EC 4.1.2.58 created 2016]

EC 4.1.2.59
Accepted name: dihydroneopterin phosphate aldolase

Reaction: 7,8-dihydroneopterin 3′-phosphate = 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde phos-
phate

Other name(s): H2NMP aldolase
Systematic name: 7,8-dihydroneopterin 3′-phosphate glycolaldehyde phosphate-lyase [6-(hydroxymethyl)-7,8-

dihydropterin-forming]
Comments: The enzyme participates in methanopterin biosynthesis the archaeon Pyrococcus furiosus. The en-

zyme is specific for 7,8-dihydroneopterin 3′-phosphate. cf. EC 4.1.2.25, dihydroneopterin aldolase
and EC 4.1.2.60, dihydroneopterin triphosphate aldolase.

References: [284]

[EC 4.1.2.59 created 2017]

EC 4.1.2.60
Accepted name: dihydroneopterin triphosphate aldolase
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Reaction: 7,8-dihydroneopterin 3′-triphosphate = 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde
triphosphate

Other name(s): PTPS-III
Systematic name: 7,8-dihydroneopterin 3′-triphosphate glycolaldehyde phosphate-lyase [6-(hydroxymethyl)-7,8-

dihydropterin-forming]
Comments: The enzyme, which participates in a pathway for folate biosynthesis, is found in the Stramenopiles,

a large group that includes oomycetes, various microalgae and brown algae, as well as in several
bacterial phyla. It provides a bypass mechanism compensating for the lack of EC 4.1.2.25, dihydro-
neopterin aldolase. In the malaria parasite Plasmodium falciparum the enzyme is bifunctional and
also catalyses the activity of EC 4.2.3.12, 6-pyruvoyltetrahydropterin synthase. cf. EC 4.1.2.59, dihy-
droneopterin phosphate aldolase.

References: [306, 553, 1023]

[EC 4.1.2.60 created 2017]

EC 4.1.3 Oxo-acid-lyases

EC 4.1.3.1
Accepted name: isocitrate lyase

Reaction: isocitrate = succinate + glyoxylate
Other name(s): isocitrase; isocitritase; isocitratase; threo-Ds-isocitrate glyoxylate-lyase; isocitrate glyoxylate-lyase

Systematic name: isocitrate glyoxylate-lyase (succinate-forming)
Comments: The isomer of isocitrate involved is (1R,2S)-1-hydroxypropane-1,2,3-tricarboxylate [1326].
References: [845, 1177, 1326]

[EC 4.1.3.1 created 1961]

[4.1.3.2 Transferred entry. malate synthase. Now EC 2.3.3.9, malate synthase]

[EC 4.1.3.2 created 1961, deleted 2002]

EC 4.1.3.3
Accepted name: N-acetylneuraminate lyase

Reaction: N-acetylneuraminate = N-acetyl-D-mannosamine + pyruvate
Other name(s): N-acetylneuraminic acid aldolase; acetylneuraminate lyase; sialic aldolase; sialic acid aldolase; sialate

lyase; N-acetylneuraminic aldolase; neuraminic aldolase; N-acetylneuraminate aldolase; neuraminic
acid aldolase; N-acetylneuraminic acid aldolase; neuraminate aldolase; N-acetylneuraminic lyase;
N-acetylneuraminic acid lyase; NPL; NALase; NANA lyase; acetylneuraminate pyruvate-lyase; N-
acetylneuraminate pyruvate-lyase

Systematic name: N-acetylneuraminate pyruvate-lyase (N-acetyl-D-mannosamine-forming)
Comments: Also acts on N-glycoloylneuraminate, and on O-acetylated sialic acids, other than 4-O-acetylated

derivatives.
References: [232, 1118]

[EC 4.1.3.3 created 1961]

EC 4.1.3.4
Accepted name: hydroxymethylglutaryl-CoA lyase

Reaction: (S)-3-hydroxy-3-methylglutaryl-CoA = acetyl-CoA + acetoacetate
Other name(s): hydroxymethylglutaryl coenzyme A-cleaving enzyme; hydroxymethylglutaryl coenzyme A lyase;

3-hydroxy-3-methylglutaryl coenzyme A lyase; 3-hydroxy-3-methylglutaryl CoA cleaving enzyme;
3-hydroxy-3-methylglutaryl-CoA lyase; (S)-3-hydroxy-3-methylglutaryl-CoA acetoacetate-lyase

Systematic name: (S)-3-hydroxy-3-methylglutaryl-CoA acetoacetate-lyase (acetyl-CoA-forming)
References: [52]
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[EC 4.1.3.4 created 1961]

[4.1.3.5 Transferred entry. hydroxymethylglutaryl-CoA synthase. Now EC 2.3.3.10, hydroxymethylglutaryl-CoA synthase]

[EC 4.1.3.5 created 1961, deleted 2002]

EC 4.1.3.6
Accepted name: citrate (pro-3S)-lyase

Reaction: citrate = acetate + oxaloacetate
Other name(s): citrase; citratase; citritase; citridesmolase; citrate aldolase; citric aldolase; citrate lyase; citrate

oxaloacetate-lyase; citrate oxaloacetate-lyase [(pro-3S)-CH2COO−→acetate]
Systematic name: citrate oxaloacetate-lyase (forming acetate from the pro-S carboxymethyl group of citrate)

Comments: The enzyme can be dissociated into components, two of which are identical with EC 2.8.3.10 (citrate
CoA-transferase) and EC 4.1.3.34 (citryl-CoA lyase). EC 3.1.2.16, citrate lyase deacetylase, deacety-
lates and inactivates the enzyme.

References: [265, 305]

[EC 4.1.3.6 created 1961]

[4.1.3.7 Transferred entry. citrate (Si)-synthase. Now EC 2.3.3.1, citrate (Si)-synthase]

[EC 4.1.3.7 created 1961, deleted 2002]

[4.1.3.8 Transferred entry. ATP citrate (pro-S)-lyase. Now EC 2.3.3.8, ATP citrate synthase]

[EC 4.1.3.8 created 1965, modified 1986, deleted 2002]

[4.1.3.9 Transferred entry. 2-hydroxyglutarate synthase. Now EC 2.3.3.11, 2-hydroxyglutarate synthase]

[EC 4.1.3.9 created 1965, deleted 2002]

[4.1.3.10 Transferred entry. 3-ethylmalate synthase. Now EC 2.3.3.7, 3-ethylmalate synthase]

[EC 4.1.3.10 created 1965, modified 1983, deleted 2002]

[4.1.3.11 Transferred entry. 3-propylmalate synthase. Now EC 2.3.3.12, 3-propylmalate synthase]

[EC 4.1.3.11 created 1972, deleted 2002]

[4.1.3.12 Transferred entry. 2-isopropylmalate synthase. Now EC 2.3.3.13, 2-isopropylmalate synthase]

[EC 4.1.3.12 created 1972, deleted 2002]

EC 4.1.3.13
Accepted name: oxalomalate lyase

Reaction: 3-oxalomalate = oxaloacetate + glyoxylate
Other name(s): 3-oxalomalate glyoxylate-lyase

Systematic name: 3-oxalomalate glyoxylate-lyase (oxaloacetate-forming)
References: [1164]

[EC 4.1.3.13 created 1972]

EC 4.1.3.14
Accepted name: L-erythro-3-hydroxyaspartate aldolase

Reaction: L-erythro-3-hydroxy-aspartate = glycine + glyoxylate
Other name(s): L-erythro-β-hydroxyaspartate aldolase; L-erythro-β-hydroxyaspartate glycine-lyase; erythro-3-

hydroxy-Ls-aspartate glyoxylate-lyase
Systematic name: L-erythro-3-hydroxy-aspartate glyoxylate-lyase (glycine-forming)
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Comments: A pyridoxal-phosphate protein. The enzyme, purified from the bacterium Paracoccus denitrificans
NCIMB 8944, is strictly specific for the L-erythro stereoisomer of 3-hydroxyaspartate. Different from
EC 4.1.3.41, erythro-3-hydroxy-D-aspartate aldolase. Requires a divalent cation.

References: [408]

[EC 4.1.3.14 created 1972, modified 2011]

[4.1.3.15 Transferred entry. 2-hydroxy-3-oxoadipate synthase. Now EC 2.2.1.5, 2-hydroxy-3-oxoadipate synthase]

[EC 4.1.3.15 created 1972, deleted 2002]

EC 4.1.3.16
Accepted name: 4-hydroxy-2-oxoglutarate aldolase

Reaction: 4-hydroxy-2-oxoglutarate = pyruvate + glyoxylate
Other name(s): 2-oxo-4-hydroxyglutarate aldolase; hydroxyketoglutaric aldolase; 4-hydroxy-2-ketoglutaric aldolase;

2-keto-4-hydroxyglutaric aldolase; 4-hydroxy-2-ketoglutarate aldolase; 2-keto-4-hydroxyglutarate
aldolase; 2-oxo-4-hydroxyglutaric aldolase; DL-4-hydroxy-2-ketoglutarate aldolase; hydroxyke-
toglutarate aldolase; 2-keto-4-hydroxybutyrate aldolase; 4-hydroxy-2-oxoglutarate glyoxylate-lyase;
KHGA

Systematic name: 4-hydroxy-2-oxoglutarate glyoxylate-lyase (pyruvate-forming)
Comments: The enzymes from rat liver and bovine liver act on both enantiomers of 4-hydroxy-2-oxoglutarate. cf.

EC 4.1.3.42, (4S)-4-hydroxy-2-oxoglutarate aldolase.
References: [714, 668, 727, 1146]

[EC 4.1.3.16 created 1972 (EC 4.1.2.1 created 1961, incorporated 1972, EC 4.1.2.31 created 1978, incorporated 1982)]

EC 4.1.3.17
Accepted name: 4-hydroxy-4-methyl-2-oxoglutarate aldolase

Reaction: (1) 4-hydroxy-4-methyl-2-oxoglutarate = 2 pyruvate
(2) 2-hydroxy-4-oxobutane-1,2,4-tricarboxylate = oxaloacetate + pyruvate

Other name(s): pyruvate aldolase; γ-methyl-γ-hydroxy-α-ketoglutaric aldolase; 4-hydroxy-4-methyl-2-ketoglutarate
aldolase; 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase; HMG aldolase; CHA aldolase; 4-
carboxy-4-hydroxy-2-oxoadipate aldolase

Systematic name: 4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase (pyruvate-forming)
Comments: Requires a divalent metal ion [825]. This enzyme participates in the degradation of 3,4-

dihydroxybenzoate (via the meta-cleavage pathway), phthalate, syringate and 3,4,5-
trihydroxybenzoate [1250, 1377, 825]. The enzyme from Pseudomonas straminea can also catalyse
the activity of EC 4.1.3.16, 4-hydroxy-2-oxoglutarate aldolase, and the decarboxylation of oxaloac-
etate [825].

References: [1250, 1377, 825, 941]

[EC 4.1.3.17 created 1972, modified 2012]

[4.1.3.18 Transferred entry. acetolactate synthase. Now EC 2.2.1.6, acetolactate synthase]

[EC 4.1.3.18 created 1972, deleted 2002]

[4.1.3.19 Transferred entry. N-acetylneuraminate synthase. Now EC 2.5.1.56, N-acetylneuraminate synthase]

[EC 4.1.3.19 created 1972, deleted 2002]

[4.1.3.20 Transferred entry. N-acylneuraminate-9-phosphate synthase. Now EC 2.5.1.57, N-acylneuraminate-9-phosphate
synthase]

[EC 4.1.3.20 created 1972, deleted 2002]

[4.1.3.21 Transferred entry. homocitrate synthase. Now EC 2.3.3.14, homocitrate synthase]

[EC 4.1.3.21 created 1972, deleted 2002]
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EC 4.1.3.22
Accepted name: citramalate lyase

Reaction: (2S)-2-hydroxy-2-methylbutanedioate = acetate + pyruvate
Other name(s): citramalate pyruvate-lyase; citramalate synthase; citramalic-condensing enzyme; citramalate syn-

thetase; citramalic synthase; (S)-citramalate lyase; (+)-citramalate pyruvate-lyase; citramalate pyru-
vate lyase; (3S)-citramalate pyruvate-lyase; (2S)-2-hydroxy-2-methylbutanedioate pyruvate-lyase

Systematic name: (2S)-2-hydroxy-2-methylbutanedioate pyruvate-lyase (acetate-forming)
Comments: The enzyme can be dissociated into components, two of which are identical with EC 2.8.3.11 (citra-

malate CoA-transferase) and EC 4.1.3.25 (citramalyl-CoA lyase).
References: [71, 303]

[EC 4.1.3.22 created 1972]

[4.1.3.23 Transferred entry. decylcitrate synthase. Now EC 2.3.3.2, decylcitrate synthase]

[EC 4.1.3.23 created 1972, deleted 2002]

EC 4.1.3.24
Accepted name: malyl-CoA lyase

Reaction: (1) (S)-malyl-CoA = acetyl-CoA + glyoxylate
(2) (2R,3S)-2-methylmalyl-CoA = propanoyl-CoA + glyoxylate

Other name(s): malyl-coenzyme A lyase; (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase; mclA (gene
name); mcl1 (gene name); (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase (acetyl-CoA-
forming); L-malyl-CoA lyase

Systematic name: (S)-malyl-CoA glyoxylate-lyase (acetyl-CoA-forming)
Comments: The enzymes from Rhodobacter species catalyse a step in the ethylmalonyl-CoA pathway for acetate

assimilation [858, 340]. The enzyme from halophilic bacteria participate in the methylaspartate cy-
cle and catalyse the reaction in the direction of malyl-CoA formation [110]. The enzyme from the
bacterium Chloroflexus aurantiacus, which participates in the 3-hydroxypropanoate cycle for carbon
assimilation, also has the activity of EC 4.1.3.25, (3S)-citramalyl-CoA lyase [507, 381].

References: [1302, 507, 858, 381, 340, 110]

[EC 4.1.3.24 created 1972, modified 2014]

EC 4.1.3.25
Accepted name: (S)-citramalyl-CoA lyase

Reaction: (3S)-citramalyl-CoA = acetyl-CoA + pyruvate
Other name(s): citramalyl coenzyme A lyase (ambiguous); (+)-CMA-CoA lyase; (3S)-citramalyl-CoA pyruvate-

lyase; Mcl (ambiguous); citramalyl-CoA lyase (ambiguous)
Systematic name: (3S)-citramalyl-CoA pyruvate-lyase (acetyl-CoA-forming)

Comments: Requires Mg2+ ions for activity [381]. The enzyme from the bacterium Clostridium tetanomorphum
is a component of EC 4.1.3.22, citramalate lyase [303]. It also acts on (3S)-citramalyl thioacyl-carrier
protein [303]. The enzyme from the bacterium Chloroflexus aurantiacus also has the activity of EC
4.1.3.24, malyl-CoA lyase [381]. It has no activity with (3R)-citramalyl-CoA (cf. EC 4.1.3.46, (R)-
citramalyl-CoA lyase) [381].

References: [239, 303, 381]

[EC 4.1.3.25 created 1972, modified 2014]

EC 4.1.3.26
Accepted name: 3-hydroxy-3-isohexenylglutaryl-CoA lyase

Reaction: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA = 7-methyl-3-oxooct-6-enoyl-CoA + acetate
Other name(s): β-hydroxy-β-isohexenylglutaryl CoA-lyase; hydroxyisohexenylglutaryl-CoA:acetatelyase; 3-hydroxy-

3-isohexenylglutaryl coenzyme A lyase; 3-hydroxy-3-isohexenylglutaryl-CoA isopentenylacetoacetyl-
CoA-lyase; 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA acetate-lyase
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Systematic name: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA acetate-lyase (7-methyl-3-oxooct-6-enoyl-CoA-
forming)

Comments: Also acts on the hydroxy derivative of farnesoyl-CoA.
References: [1170]

[EC 4.1.3.26 created 1972]

EC 4.1.3.27
Accepted name: anthranilate synthase

Reaction: chorismate + L-glutamine = anthranilate + pyruvate + L-glutamate
Other name(s): anthranilate synthetase; chorismate lyase; chorismate pyruvate-lyase (amino-accepting); TrpE

Systematic name: chorismate pyruvate-lyase (amino-accepting; anthranilate-forming)
Comments: In some organisms, this enzyme is part of a multifunctional protein, together with one or more other

components of the system for the biosynthesis of tryptophan [EC 2.4.2.18 (anthranilate phosphoribo-
syltransferase ), EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.2.1.20 (tryptophan syn-
thase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)]. The native enzyme in the complex
uses either glutamine or, less efficiently, NH3. The enzyme separated from the complex uses NH3
only.

References: [66, 247, 550, 565, 1436]

[EC 4.1.3.27 created 1972]

[4.1.3.28 Transferred entry. citrate (Re)-synthase. Now EC 2.3.3.3, citrate (Re)-synthase]

[EC 4.1.3.28 created 1972, deleted 2002]

[4.1.3.29 Transferred entry. decylhomocitrate synthase. Now EC 2.3.3.4, decylhomocitrate synthase]

[EC 4.1.3.29 created 1976, deleted 2002]

EC 4.1.3.30
Accepted name: methylisocitrate lyase

Reaction: (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate = succinate + pyruvate
Other name(s): 2-methylisocitrate lyase; MICL; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate pyruvate-lyase

Systematic name: (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate pyruvate-lyase (succinate-forming)
Comments: The enzyme acts on threo-Ds-2-methylisocitrate, but not on threo-Ds-isocitrate, threo-DL-isocitrate or

erythro-Ls-isocitrate.
References: [1247, 1248]

[EC 4.1.3.30 created 1978]

[4.1.3.31 Transferred entry. 2-methylcitrate synthase. Now EC 2.3.3.5, 2-methylcitrate synthase]

[EC 4.1.3.31 created 1978, deleted 2002]

EC 4.1.3.32
Accepted name: 2,3-dimethylmalate lyase

Reaction: (2R,3S)-2,3-dimethylmalate = propanoate + pyruvate
Other name(s): 2,3-dimethylmalate pyruvate-lyase; (2R,3S)-2,3-dimethylmalate pyruvate-lyase

Systematic name: (2R,3S)-2,3-dimethylmalate pyruvate-lyase (propanoate-forming)
References: [1008, 18]

[EC 4.1.3.32 created 1981]

[4.1.3.33 Transferred entry. 2-ethylmalate synthase. Now EC 2.3.3.6, 2-ethylmalate synthase]

[EC 4.1.3.33 created 1983, deleted 2002]
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EC 4.1.3.34
Accepted name: citryl-CoA lyase

Reaction: (3S)-citryl-CoA = acetyl-CoA + oxaloacetate
Other name(s): (3S)-citryl-CoA oxaloacetate-lyase

Systematic name: (3S)-citryl-CoA oxaloacetate-lyase (acetyl-CoA-forming)
Comments: The enzyme is a component of EC 4.1.3.6 [citrate (pro-3S)-lyase]and EC 2.3.3.8 [ATP citrate syn-

thase]. Also acts on (3S)-citryl thioacyl-carrier protein.
References: [305, 758]

[EC 4.1.3.34 created 1984, modified 1986]

EC 4.1.3.35
Accepted name: (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase

Reaction: (1-hydroxycyclohexan-1-yl)acetyl-CoA = acetyl-CoA + cyclohexanone
Other name(s): (1-hydroxycyclohexan-1-yl)acetyl-CoA cyclohexanone-lyase

Systematic name: (1-hydroxycyclohexan-1-yl)acetyl-CoA cyclohexanone-lyase (acetyl-CoA-forming)
References: [968]

[EC 4.1.3.35 created 1986]

EC 4.1.3.36
Accepted name: 1,4-dihydroxy-2-naphthoyl-CoA synthase

Reaction: 4-(2-carboxyphenyl)-4-oxobutanoyl-CoA = 1,4-dihydroxy-2-naphthoyl-CoA + H2O
Other name(s): naphthoate synthase; 1,4-dihydroxy-2-naphthoate synthase; dihydroxynaphthoate synthase; o-

succinylbenzoyl-CoA 1,4-dihydroxy-2-naphthoate-lyase (cyclizing); MenB; o-succinylbenzoyl-CoA
dehydratase (cyclizing)

Systematic name: 4-(2-carboxyphenyl)-4-oxobutanoyl-CoA dehydratase (cyclizing)
Comments: This enzyme is involved in the synthesis of 1,4-dihydroxy-2-naphthoate, a branch point metabolite

leading to the biosynthesis of menaquinone (vitamin K2, in bacteria), phylloquinone (vitamin K1 in
plants), and many plant pigments. The coenzyme A group is subsequently removed from the product
by EC 3.1.2.28, 1,4-dihydroxy-2-naphthoyl-CoA hydrolase.

References: [851, 674, 599, 1295]

[EC 4.1.3.36 created 1992, modified 2010]

[4.1.3.37 Transferred entry. 1-deoxy-D-xylulose 5-phosphate synthase. Now EC 2.2.1.7, 1-deoxy-D-xylulose 5-phosphate
synthase]

[EC 4.1.3.37 created 2001, deleted 2002]

EC 4.1.3.38
Accepted name: aminodeoxychorismate lyase

Reaction: 4-amino-4-deoxychorismate = 4-aminobenzoate + pyruvate
Other name(s): enzyme X; 4-amino-4-deoxychorismate lyase; 4-amino-4-deoxychorismate pyruvate-lyase

Systematic name: 4-amino-4-deoxychorismate pyruvate-lyase (4-aminobenzoate-forming)
Comments: A pyridoxal-phosphate protein. Forms part of the folate biosynthesis pathway. Acts on 4-amino-

4-deoxychorismate, the product of EC 2.6.1.85, aminodeoxychorismate synthase, to form p-
aminobenzoate.

References: [1405, 436, 919]

[EC 4.1.3.38 created 2003]

EC 4.1.3.39
Accepted name: 4-hydroxy-2-oxovalerate aldolase
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Reaction: (S)-4-hydroxy-2-oxopentanoate = acetaldehyde + pyruvate
Other name(s): 4-hydroxy-2-ketovalerate aldolase; HOA; DmpG; 4-hydroxy-2-oxovalerate pyruvate-lyase; 4-

hydroxy-2-oxopentanoate pyruvate-lyase; BphI; 4-hydroxy-2-oxopentanoate pyruvate-lyase
(acetaldehyde-forming)

Systematic name: (S)-4-hydroxy-2-oxopentanoate pyruvate-lyase (acetaldehyde-forming)
Comments: Requires Mn2+ for maximal activity [808]. The enzyme from the bacterium Pseudomonas putida

is also stimulated by NADH [808]. In some bacterial species the enzyme forms a bifunctional com-
plex with EC 1.2.1.10, acetaldehyde dehydrogenase (acetylating). The enzymes from the bacteria
Burkholderia xenovorans and Thermus thermophilus also perform the reaction of EC 4.1.3.43, 4-
hydroxy-2-oxohexanoate aldolase [62, 63].

References: [808, 1019, 807, 62, 63, 65]

[EC 4.1.3.39 created 2006, modified 2011]

EC 4.1.3.40
Accepted name: chorismate lyase

Reaction: chorismate = 4-hydroxybenzoate + pyruvate
Other name(s): CL; CPL; UbiC

Systematic name: chorismate pyruvate-lyase (4-hydroxybenzoate-forming)
Comments: This enzyme catalyses the first step in the biosynthesis of ubiquinone in Escherichia coli and other

Gram-negative bacteria [933]. The yeast Saccharomyces cerevisiae can synthesize ubiquinone from
either chorismate or tyrosine [850].

References: [933, 1183, 850]

[EC 4.1.3.40 created 2007]

EC 4.1.3.41
Accepted name: 3-hydroxy-D-aspartate aldolase

Reaction: (1) threo-3-hydroxy-D-aspartate = glycine + glyoxylate
(2) D-erythro-3-hydroxyaspartate = glycine + glyoxylate

Other name(s): D-3-hydroxyaspartate aldolase
Systematic name: 3-hydroxy-D-aspartate glyoxylate-lyase (glycine-forming)

Comments: A pyridoxal-phosphate protein. The enzyme, purified from the bacterium Paracoccus denitrificans
IFO 13301, is strictly D-specific as to the α-position of the substrate, but accepts both the threo and
erythro forms at the β-position. The erythro form is a far better substrate (about 100-fold). The en-
zyme can also accept D-allothreonine, D-threonine, erythro-3-phenyl-D-serine and threo-3-phenyl-
D-serine. Different from EC 4.1.3.14, erythro-3-hydroxy-L-aspartate aldolase. Requires a divalent
cation, such as Mg2+, Mn2+ or Co2+.

References: [769]

[EC 4.1.3.41 created 2011]

EC 4.1.3.42
Accepted name: (4S)-4-hydroxy-2-oxoglutarate aldolase

Reaction: (4S)-4-hydroxy-2-oxoglutarate = pyruvate + glyoxylate
Other name(s): 2-oxo-4-hydroxyglutarate aldolase (ambiguous); hydroxyketoglutaric aldolase (ambiguous); 4-

hydroxy-2-ketoglutaric aldolase (ambiguous); 2-keto-4-hydroxyglutaric aldolase (ambiguous); 4-
hydroxy-2-ketoglutarate aldolase (ambiguous); 2-keto-4-hydroxyglutarate aldolase (ambiguous); 2-
oxo-4-hydroxyglutaric aldolase (ambiguous); hydroxyketoglutarate aldolase (ambiguous); 2-keto-4-
hydroxybutyrate aldolase (ambiguous); 4-hydroxy-2-oxoglutarate glyoxylate-lyase (ambiguous); eda
(gene name)

Systematic name: (4S)-4-hydroxy-2-oxoglutarate glyoxylate-lyase (pyruvate-forming)
Comments: The enzyme from the bacterium Escherichia coli, which is specific for the (S)-enantiomer, is trifunc-

tional, and also catalyses the reaction of EC 4.1.2.14, 2-dehydro-3-deoxy-phosphogluconate aldolase,
and the β-decarboxylation of oxaloacetate. cf. EC 4.1.3.16, 4-hydroxy-2-oxoglutarate aldolase.
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References: [936, 980]

[EC 4.1.3.42 created 2013]

EC 4.1.3.43
Accepted name: 4-hydroxy-2-oxohexanoate aldolase

Reaction: (S)-4-hydroxy-2-oxohexanoate = propanal + pyruvate
Other name(s): BphI

Systematic name: (S)-4-hydroxy-2-oxohexanoate pyruvate-lyase (propanal-forming)
Comments: Requires Mn2+ for maximal activity [64, 1349]. The enzymes from the bacteria Burkholderia xenovo-

rans and Thermus thermophilus also perform the reaction of EC 4.1.3.39, 4-hydroxy-2-oxovalerate
aldolase [1,2,6]. The enzyme forms a bifunctional complex with EC 1.2.1.87, propanal dehydroge-
nase (CoA-propanoylating), with a tight channel connecting the two subunits [3,4,6].

References: [64, 1349, 62, 183, 65, 63]

[EC 4.1.3.43 created 2013]

EC 4.1.3.44
Accepted name: tRNA 4-demethylwyosine synthase (AdoMet-dependent)

Reaction: N1-methylguanine37 in tRNAPhe + pyruvate + S-adenosyl-L-methionine = 4-demethylwyosine37 in
tRNAPhe + L-methionine + 5′-deoxyadenosine + CO2 + H2O

Other name(s): TYW1
Systematic name: tRNAPhe N1-methylguanine,pyruvate acetaldehyde-lyase (tRNAPhe 4-demethylwyosine-forming, de-

carboxylating, dehydrating)
Comments: This enzyme, which is a member of the superfamily of S-adenosyl-L-methionine-dependent radical

(radical AdoMet) enzymes, binds two [4Fe-4S] clusters [1415, 986]. Carbons C2 and C3 from pyru-
vate are incorporated into 4-demethylwyosine [1415]. The enzyme is found in eukaryotes where it is
part of the pathway for wybutosine synthesis, and in archaea, where it is involved in the biosynthesis
of archaeal wye bases, such as wyosine, isowyosine, and methylwyosine.

References: [427, 1241, 1415, 986]

[EC 4.1.3.44 created 2013]

EC 4.1.3.45
Accepted name: 3-hydroxybenzoate synthase

Reaction: chorismate = 3-hydroxybenzoate + pyruvate
Other name(s): chorismatase/3-hydroxybenzoate synthase; hyg5 (gene name); bra8 (gene name); XanB2

Systematic name: chorismate pyruvate-lyase (3-hydroxybenzoate-forming)
Comments: The enzyme, found in several bacterial species is involved in biosynthesis of secondary products.

The enzyme from the bacterium Xanthomonas campestris pv. campestris also has the activity of EC
4.1.3.40, chorismate lyase [1464].

References: [29, 593, 1464]

[EC 4.1.3.45 created 2013]

EC 4.1.3.46
Accepted name: (R)-citramalyl-CoA lyase

Reaction: (3R)-citramalyl-CoA = acetyl-CoA + pyruvate
Other name(s): Ccl

Systematic name: (3R)-citramalyl-CoA pyruvate-lyase (acetyl-CoA-forming)
Comments: Requires Mn2+ ions for activity. The enzyme, purified from the bacterium Chloroflexus aurantiacus,

has no activity with (3S)-citramalyl-CoA (cf. EC 4.1.3.25, (S)-citramalyl-CoA lyase).
References: [381]
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[EC 4.1.3.46 created 2014]

EC 4.1.99 Other carbon-carbon lyases

EC 4.1.99.1
Accepted name: tryptophanase

Reaction: L-tryptophan + H2O = indole + pyruvate + NH3 (overall reaction)
(1a) L-tryptophan = indole + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): L-tryptophanase; L-tryptophan indole-lyase (deaminating); TNase
Systematic name: L-tryptophan indole-lyase (deaminating; pyruvate-forming)

Comments: A pyridoxal-phosphate protein, requiring K+. The enzyme cleaves a carbon-carbon bond, releas-
ing indole and an unstable enamine product that tautomerizes to an imine form, which undergoes a
hydrolytic deamination to form pyruvate and ammonia. The latter reaction, which can occur spon-
taneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase.
Also catalyses 2,3-elimination and β-replacement reactions of some indole-substituted tryptophan
analogues of L-cysteine, L-serine and other 3-substituted amino acids.

References: [156, 932, 243, 1199]

[EC 4.1.99.1 created 1972]

EC 4.1.99.2
Accepted name: tyrosine phenol-lyase

Reaction: L-tyrosine + H2O = phenol + pyruvate + NH3 (overall reaction)
(1a) L-tyrosine = phenol + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): β-tyrosinase; L-tyrosine phenol-lyase (deaminating)
Systematic name: L-tyrosine phenol-lyase (deaminating; pyruvate-forming)

Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-carbon bond, releasing phenol and an
unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deamina-
tion to form pyruvate and ammonia. The latter reaction, which can occur spontaneously, can also be
catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme also slowly
catalyses similar reactions with D-tyrosine, S-methyl-L-cysteine, L-cysteine, L-serine and D-serine.

References: [702, 703]

[EC 4.1.99.2 created 1972]

EC 4.1.99.3
Accepted name: deoxyribodipyrimidine photo-lyase

Reaction: cyclobutadipyrimidine (in DNA) = 2 pyrimidine residues (in DNA)
Other name(s): photoreactivating enzyme; DNA photolyase; DNA-photoreactivating enzyme; DNA cyclobutane

dipyrimidine photolyase; DNA photolyase; deoxyribonucleic photolyase; deoxyribodipyrimidine pho-
tolyase; photolyase; PRE; PhrB photolyase; deoxyribonucleic cyclobutane dipyrimidine photolyase;
phr A photolyase; dipyrimidine photolyase (photosensitive); deoxyribonucleate pyrimidine dimer
lyase (photosensitive)

Systematic name: deoxyribocyclobutadipyrimidine pyrimidine-lyase
Comments: A flavoprotein (FAD), containing a second chromophore group. The enzyme catalyses the reactiva-

tion by light of irradiated DNA. A similar reactivation of irradiated RNA is probably due to a separate
enzyme.

References: [330, 1107, 1169]
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[EC 4.1.99.3 created 1972]

[4.1.99.4 Transferred entry. 1-aminocyclopropane-1-carboxylate deaminase. Now EC 3.5.99.7, 1-aminocyclopropane-1-
carboxylate deaminase]

[EC 4.1.99.4 created 1981, deleted 2002]

EC 4.1.99.5
Accepted name: aldehyde oxygenase (deformylating)

Reaction: a long-chain aldehyde + O2 + 2 NADPH + 2 H+ = an alkane + formate + H2O + 2 NADP+

Other name(s): decarbonylase; aldehyde decarbonylase; octadecanal decarbonylase; octadecanal alkane-lyase
Systematic name: a long-chain aldehyde alkane-lyase

Comments: Contains a diiron center. Involved in the biosynthesis of alkanes. The enzyme from the cyanobac-
terium Nostoc punctiforme PCC 73102 is only active in vitro in the presence of ferredoxin, ferredoxin
reductase and NADPH, and produces mostly C15 and C17 alkanes [1126, 1356]. The enzyme from
pea (Pisum sativum) produces alkanes of chain length C18 to C32 and is inhibited by metal-chelating
agents [1281]. The substrate for this enzyme is formed by EC 1.2.1.80, acyl-[acyl-carrier protein] re-
ductase.

References: [1281, 1126, 1356, 747]

[EC 4.1.99.5 created 1989, modified 2011, modified 2013]

[4.1.99.6 Transferred entry. trichodiene synthase. Now EC 4.2.3.6, trichodiene synthase]

[EC 4.1.99.6 created 1989, deleted 2000]

[4.1.99.7 Transferred entry. aristolochene synthase. Now EC 4.2.3.9, aristolochene synthase]

[EC 4.1.99.7 created 1992 as EC 2.5.1.40, transferred 1999 to EC 4.1.99.7, deleted 2000]

[4.1.99.8 Transferred entry. pinene synthase. Now EC 4.2.3.14, pinene synthase]

[EC 4.1.99.8 created 2000, deleted 2000]

[4.1.99.9 Transferred entry. myrcene synthase. Now EC 4.2.3.15, myrcene synthase]

[EC 4.1.99.9 created 2000, deleted 2000]

[4.1.99.10 Transferred entry. (-)-(4S)-limonene synthase. Now EC 4.2.3.16, (4S)-limonene synthase]

[EC 4.1.99.10 created 2000, deleted 2000]

EC 4.1.99.11
Accepted name: benzylsuccinate synthase

Reaction: benzylsuccinate = toluene + fumarate
Other name(s): benzylsuccinate fumarate-lyase

Systematic name: benzylsuccinate fumarate-lyase (toluene-forming)
Comments: A glycyl radical enzyme that is inhibited by benzyl alcohol, benzaldehyde, phenylhydrazine and is

inactivated by oxygen.
References: [81, 741]

[EC 4.1.99.11 created 2000]

EC 4.1.99.12
Accepted name: 3,4-dihydroxy-2-butanone-4-phosphate synthase

Reaction: D-ribulose 5-phosphate = formate + L-3,4-dihydroxybutan-2-one 4-phosphate
Other name(s): DHBP synthase; L-3,4-dihydroxybutan-2-one-4-phosphate synthase

Systematic name: D-ribulose 5-phosphate formate-lyase (L-3,4-dihydroxybutan-2-one 4-phosphate-forming)
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Comments: Requires a divalent cation, preferably Mg2+, for activity [1330]. The reaction involves an intramolec-
ular skeletal rearrangement, with the bonds in D-ribulose 5-phosphate that connect C-3 and C-5 to
C-4 being broken, C-4 being removed as formate and reconnection of C-3 and C-5 [1330]. The phos-
phorylated four-carbon product (L-3,4-dihydroxybutan-2-one 4-phosphate) is an intermediate in the
biosynthesis of riboflavin [1330].

References: [1330, 753, 643, 754, 362, 1215, 1214, 326]

[EC 4.1.99.12 created 2007]

EC 4.1.99.13
Accepted name: (6-4)DNA photolyase

Reaction: (6-4) photoproduct (in DNA) = 2 pyrimidine residues (in DNA)
Other name(s): DNA photolyase; H64PRH; NF-10; phr (6-4); PL-(6-4); OtCPF1; (6-4) PHR; At64PHR

Systematic name: (6-4) photoproduct pyrimidine-lyase
Comments: A flavoprotein (FAD). The overall repair reaction consists of two distinct steps, one of which is light-

independent and the other one light-dependent. In the initial light-independent step, a 6-iminium ion
is thought to be generated via proton transfer induced by two histidines highly conserved among the
(6-4) photolyases. This intermediate spontaneously rearranges to form an oxetane intermediate by in-
tramolecular nucleophilic attack. In the subsequent light-driven reaction, one electron is believed to
be transferred from the fully reduced FAD cofactor (FADH−) to the oxetane intermediate thus form-
ing a neutral FADH radical and an anionic oxetane radical, which spontaneously fractures. The excess
electron is then back-transferred to the flavin radical restoring the fully reduced flavin cofactor and a
pair of pyrimidine bases [1127].

References: [520, 1127]

[EC 4.1.99.13 created 2009]

EC 4.1.99.14
Accepted name: spore photoproduct lyase

Reaction: (5R)-5,6-dihydro-5-(thymidin-7-yl)thymidine (in double-helical DNA) = thymidylyl-(3′→5′)-
thymidylate (in double-helical DNA)

Other name(s): SAM; SP lyase; SPL; SplB; SplG
Systematic name: spore photoproduct pyrimidine-lyase

Comments: This enzyme is a member of the ‘AdoMet radical’ (radical SAM) family. The enzyme binds a [4Fe-
4S] cluster. The cluster is coordinated by 3 cysteines and an exchangeable SAM molecule [150]. The
5′-deoxy-adenosine radical formed after electron transfer from the [4Fe-4S] cluster to the S-adenosyl-
L-methionine, initiates the repair by abstracting the C-6 hydrogen of the spore photoproduct lesion.
During the second part of the repair process the SAM molecule is regenerated [150].

References: [196, 1006, 150, 811, 1190]

[EC 4.1.99.14 created 2009, modified 2010]

[4.1.99.15 Deleted entry. S-specific spore photoproduct lyase. This enzyme was classified on the basis of an incorrect
reaction. The activity is covered by EC 4.1.99.14, spore photoproduct lyase]

[EC 4.1.99.15 created 2009, deleted 2010]

EC 4.1.99.16
Accepted name: geosmin synthase

Reaction: (1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol + H2O = (-)-geosmin + acetone
Systematic name: germacradienol geosmin-lyase (acetone forming)

Comments: Requires Mg2+. Geosmin is the cause of the characteristic smell of moist soil. It is a bifunctional en-
zyme. The N-terminal part of the enzyme is EC 4.2.3.22, germacradienol synthase, and forms germa-
cradienol from FPP. The C-terminal part of the enzyme catalyses the conversion of germacradienol to
geosmin via (1S,4aS,8aS)-1,4a-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene.

References: [589, 168, 590]
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[EC 4.1.99.16 created 2011]

EC 4.1.99.17
Accepted name: phosphomethylpyrimidine synthase

Reaction: 5-amino-1-(5-phospho-D-ribosyl)imidazole + S-adenosyl-L-methionine = 4-amino-2-methyl-5-
(phosphooxymethyl)pyrimidine + 5′-deoxyadenosine + L-methionine + formate + CO

Other name(s): thiC (gene name)
Systematic name: 5-amino-1-(5-phospho-D-ribosyl)imidazole formate-lyase (decarboxylating, 4-amino-2-methyl-5-

(phosphooxymethyl)pyrimidine-forming)
Comments: Binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an exchangeable S-adenosyl-L-

methionine molecule. The first stage of catalysis is reduction of the S-adenosyl-L-methionine to pro-
duce L-methionine and a 5′-deoxyadenosin-5′-yl radical that is crucial for the conversion of the sub-
strate. Part of the pathway for thiamine biosynthesis.

References: [203, 821, 202]

[EC 4.1.99.17 created 2011]

[4.1.99.18 Transferred entry. cyclic pyranopterin phosphate synthase. Now known to be catalysed by the combined effort of
EC 4.1.99.22, GTP 3,8-cyclase, and EC 4.6.1.17, cyclic pyranopterin monophosphate synthase]

[EC 4.1.99.18 created 2011, deleted 2016]

EC 4.1.99.19
Accepted name: 2-iminoacetate synthase

Reaction: L-tyrosine + S-adenosyl-L-methionine + NADPH = 2-iminoacetate + 4-methylphenol + 5′-
deoxyadenosine + L-methionine + NADP+ + H+

Other name(s): thiH (gene name)
Systematic name: L-tyrosine 4-methylphenol-lyase (2-iminoacetate-forming)

Comments: Binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an exchangeable S-adenosyl-L-
methionine molecule. The first stage of catalysis is reduction of the S-adenosyl-L-methionine to pro-
duce methionine and a 5-deoxyadenosin-5-yl radical that is crucial for the conversion of the substrate.
The reductant is assumed to be NADPH, which is provided by a flavoprotein:NADPH oxidoreductase
system [195]. Part of the pathway for thiamine biosynthesis.

References: [738, 688, 689, 195]

[EC 4.1.99.19 created 2011, modified 2014]

EC 4.1.99.20
Accepted name: 3-amino-4-hydroxybenzoate synthase

Reaction: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate = 3-amino-4-hydroxybenzoate + phosphate
+ 2 H2O

Other name(s): 3,4-AHBA synthase; griH (gene name)
Systematic name: 2-amino-4,5-dihydroxy-6-oxo-7-(phosphooxy)heptanoate hydro-lyase (cyclizing, 3-amino-4-

hydroxybenzoate-forming)
Comments: Requires Mn2+ for maximum activity. The reaction is suggested to take place in several steps. Schiff

base formation, double bond migration and dephosphorylation followed by ring opening and closing
to form a pyrrolidine ring, and finally dehydration to form the product 3-amino-4-hydroxybenzoate.
In the bacterium Streptomyces griseus the enzyme is involved in biosynthesis of grixazone, a yellow
pigment that contains a phenoxazinone chromophore.

References: [1236]

[EC 4.1.99.20 created 2013, modified 2016]

[4.1.99.21 Transferred entry. (5-formylfuran-3-yl)methyl phosphate synthase. Now EC 4.2.3.153 (5-formylfuran-3-yl)methyl
phosphate synthase.]
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[EC 4.1.99.21 created 2015, deleted 2015]

EC 4.1.99.22
Accepted name: GTP 3′,8-cyclase

Reaction: GTP + S-adenosyl-L-methionine + reduced electron acceptor = (8S)-3′,8-cyclo-7,8-dihydroguanosine
5′-triphosphate + 5′-deoxyadenosine + L-methionine + oxidized electron acceptor

Other name(s): MOCS1A (gene name); moaA (gene name); cnx2 (gene name)
Systematic name: GTP 3′,8-cyclase [(8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate-forming]

Comments: The enzyme catalyses an early step in the biosynthesis of the molybdenum cofactor (MoCo). In bac-
teria and plants the reaction is catalysed by MoaA and Cnx2, respectively. In mammals it is catalysed
by the MOCS1A domain of the bifunctional MOCS1 protein, which also catalyses EC 4.6.1.17, cyclic
pyranopterin monophosphate synthase. The enzyme belongs to the superfamily of radical S-adenosyl-
L-methionine (radical SAM) enzymes, and contains two oxygen-sensitive FeS clusters.

References: [474, 475, 476, 737, 538, 540, 539]

[EC 4.1.99.22 created 2011 as EC 4.1.99.18, part transferred 2016 to EC 4.1.99.22]

EC 4.1.99.23
Accepted name: 5-hydroxybenzimidazole synthase

Reaction: 5-amino-1-(5-phospho-β-D-ribosyl)imidazole + S-adenosyl-L-methionine + reduced acceptor = 5-
hydroxybenzimidazole + 5′-deoxyadenosine + L-methionine + formate + NH3 + phosphate + oxidized
acceptor

Other name(s): bzaF (gene name); HBI synthase
Systematic name: 5-amino-1-(5-phospho-β-D-ribosyl)imidazole formate-lyase (5-hydroxybenzimidazole-forming)

Comments: The enzyme, purified from bacteria, is part of the anaerobic pathway for cobalamin biosynthesis.
It binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an exchangeable S-adenosyl-L-
methionine molecule. The first stage of catalysis is reduction of the S-adenosyl-L-methionine to pro-
duce L-methionine and a 5′-deoxyadenosin-5′-yl radical that is crucial for the conversion of the sub-
strate.

References: [855, 491]

[EC 4.1.99.23 created 2017]

EC 4.1.99.24
Accepted name: L-tyrosine isonitrile synthase

Reaction: L-tyrosine + D-ribulose 5-phosphate = (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate + hydroxy-
acetone + formaldehyde + phosphate + H2O

Other name(s): pvcA (gene name)
Systematic name: L-tyrosine:D-ribulose-5-phosphate lyase (isonitrile-forming)

Comments: The enzymes from the bacteria Pseudomonas aeruginosa and Xenorhabdus nematophila are involved
in the biosynthesis of paerucumarin and rhabduscin, respectively. According to the proposed mech-
anism, the enzyme forms an imine intermediate composed of linked L-tyrosine and D-ribulose 5-
phosphate, followed by loss of the phosphate group and formation of a β-keto imine and keto-enol
tautomerization. This is followed by a C-C bond cleavage, the release of hydroxyacetone, and a retro
aldol type reaction that releases formaldehyde and forms the final product [197]. cf. EC 4.1.99.25,
L-tryptophan isonitrile synthase.

References: [225, 310, 197]

[EC 4.1.99.24 created 2018]

EC 4.1.99.25
Accepted name: L-tryptophan isonitrile synthase

Reaction: L-tryptophan + D-ribulose 5-phosphate = (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + hydroxyace-
tone + formaldehyde + phosphate + H2O
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Other name(s): isnA (gene name); ambI1 (gene name); well1 (gene name)
Systematic name: L-tryptophan:D-ribulose-5-phosphate lyase (isonitrile-forming)

Comments: The enzymes from cyanobacteria that belong to the Nostocales order participate in the biosynthesis of
hapalindole-type alkaloids. According to the proposed mechanism, the enzyme forms an imine inter-
mediate composed of linked L-tryptophan and D-ribulose 5-phosphate, followed by loss of the phos-
phate group and formation of a β-keto imine and keto-enol tautomerization. This is followed by a C-C
bond cleavage, the release of hydroxyacetone, and a retro aldol type reaction that releases formalde-
hyde and forms the final product [515]. cf. EC 4.1.99.24, L-tyrosine isonitrile synthase.

References: [123, 124, 515, 197]

[EC 4.1.99.25 created 2018]

EC 4.2 Carbon-oxygen lyases
This subclass contains enzymes that catalyse the breakage of a carbon-oxygen bond. Sub-subclasses are based on the group that
is eliminated: water (hydro-lyases; EC 4.2.1), an alcohol from a polysaccharide (EC 4.2.2), a phosphate (EC 4.2.3), or some
other group (EC 4.2.99).

EC 4.2.1 Hydro-lyases

EC 4.2.1.1
Accepted name: carbonic anhydrase

Reaction: H2CO3 = CO2 + H2O
Other name(s): carbonate dehydratase; anhydrase; carbonate anhydrase; carbonic acid anhydrase; carboxyanhydrase;

carbonic anhydrase A; carbonate hydro-lyase; carbonate hydro-lyase (carbon-dioxide-forming)
Systematic name: carbonic acid hydro-lyase (carbon-dioxide-forming)

Comments: The enzyme catalyses the reversible hydration of gaseous CO2 to carbonic acid, which dissociates
to give hydrogencarbonate above neutral pH. It is widespread and found in archaea, bacteria, and eu-
karyotes. Three distinct classes exist, and appear to have evolved independently. Contains zinc.

References: [641, 622, 903, 567, 1198, 250, 865]

[EC 4.2.1.1 created 1961, modified 2016]

EC 4.2.1.2
Accepted name: fumarate hydratase

Reaction: (S)-malate = fumarate + H2O
Other name(s): fumarase; L-malate hydro-lyase; (S)-malate hydro-lyase

Systematic name: (S)-malate hydro-lyase (fumarate-forming)
References: [15, 620]

[EC 4.2.1.2 created 1961]

EC 4.2.1.3
Accepted name: aconitate hydratase

Reaction: citrate = isocitrate (overall reaction)
(1a) citrate = cis-aconitate + H2O
(1b) cis-aconitate + H2O = isocitrate

Other name(s): cis-aconitase; aconitase; AcnB; 2-methylaconitate hydratase; citrate(isocitrate) hydro-lyase
Systematic name: citrate(isocitrate) hydro-lyase (cis-aconitate-forming)
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Comments: Besides interconverting citrate and cis-aconitate, it also interconverts cis-aconitate with isocitrate and,
hence, interconverts citrate and isocitrate. The equilibrium mixture is 91% citrate, 6% isocitrate and
3% aconitate. cis-Aconitate is used to designate the isomer (Z)-prop-1-ene-1,2,3-tricarboxylate. An
iron-sulfur protein, containing a [4Fe-4S] cluster to which the substrate binds.

References: [302, 894, 730]

[EC 4.2.1.3 created 1961, modified 2003]

[4.2.1.4 Deleted entry. citrate dehydratase. Now known to be a partial reaction catalysed by EC 4.2.1.3, aconitate hydratase.
]

[EC 4.2.1.4 created 1961, deleted 2013]

EC 4.2.1.5
Accepted name: arabinonate dehydratase

Reaction: D-arabinonate = 2-dehydro-3-deoxy-D-arabinonate + H2O
Other name(s): D-arabinonate hydro-lyase

Systematic name: D-arabinonate hydro-lyase (2-dehydro-3-deoxy-D-arabinonate-forming)
References: [972]

[EC 4.2.1.5 created 1961]

EC 4.2.1.6
Accepted name: galactonate dehydratase

Reaction: D-galactonate = 2-dehydro-3-deoxy-D-galactonate + H2O
Other name(s): D-galactonate dehydrase; D-galactonate dehydratase; D-galactonate hydro-lyase

Systematic name: D-galactonate hydro-lyase (2-dehydro-3-deoxy-D-galactonate-forming)
Comments: The enzyme shows no activity with D-gluconate [307]. cf. EC 4.2.1.140, gluconate/galactonate dehy-

dratase.
References: [745, 307]

[EC 4.2.1.6 created 1961]

EC 4.2.1.7
Accepted name: altronate dehydratase

Reaction: D-altronate = 2-dehydro-3-deoxy-D-gluconate + H2O
Other name(s): D-altronate hydro-lyase

Systematic name: D-altronate hydro-lyase (2-dehydro-3-deoxy-D-gluconate-forming)
References: [1194]

[EC 4.2.1.7 created 1961, deleted 1972, reinstated 1976]

EC 4.2.1.8
Accepted name: mannonate dehydratase

Reaction: D-mannonate = 2-dehydro-3-deoxy-D-gluconate + H2O
Other name(s): mannonic hydrolase; mannonate hydrolyase; altronic hydro-lyase; altronate hydrolase; D-mannonate

hydrolyase; D-mannonate hydro-lyase
Systematic name: D-mannonate hydro-lyase (2-dehydro-3-deoxy-D-gluconate-forming)

References: [44, 1081]

[EC 4.2.1.8 created 1961, modified 1976]

EC 4.2.1.9
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Accepted name: dihydroxy-acid dehydratase
Reaction: 2,3-dihydroxy-3-methylbutanoate = 3-methyl-2-oxobutanoate + H2O

Other name(s): acetohydroxyacid dehydratase; α,β-dihydroxyacid dehydratase; 2,3-dihydroxyisovalerate dehy-
dratase; α,β-dihydroxyisovalerate dehydratase; dihydroxy acid dehydrase; DHAD; 2,3-dihydroxy-
acid hydro-lyase

Systematic name: 2,3-dihydroxy-3-methylbutanoate hydro-lyase (3-methyl-2-oxobutanoate-forming)
References: [619, 908]

[EC 4.2.1.9 created 1961]

EC 4.2.1.10
Accepted name: 3-dehydroquinate dehydratase

Reaction: 3-dehydroquinate = 3-dehydroshikimate + H2O
Other name(s): 3-dehydroquinate hydrolase; DHQase; dehydroquinate dehydratase; 3-dehydroquinase; 5-

dehydroquinase; dehydroquinase; 5-dehydroquinate dehydratase; 5-dehydroquinate hydro-lyase; 3-
dehydroquinate hydro-lyase

Systematic name: 3-dehydroquinate hydro-lyase (3-dehydroshikimate-forming)
References: [880, 881]

[EC 4.2.1.10 created 1961, modified 1976]

EC 4.2.1.11
Accepted name: phosphopyruvate hydratase

Reaction: 2-phospho-D-glycerate = phosphoenolpyruvate + H2O
Other name(s): enolase; 2-phosphoglycerate dehydratase; 14-3-2-protein; nervous-system specific enolase; phos-

phoenolpyruvate hydratase; 2-phosphoglycerate dehydratase; 2-phosphoglyceric dehydratase; 2-
phosphoglycerate enolase; γ-enolase; 2-phospho-D-glycerate hydro-lyase

Systematic name: 2-phospho-D-glycerate hydro-lyase (phosphoenolpyruvate-forming)
Comments: Also acts on 3-phospho-D-erythronate.
References: [530, 806, 1364]

[EC 4.2.1.11 created 1961]

EC 4.2.1.12
Accepted name: phosphogluconate dehydratase

Reaction: 6-phospho-D-gluconate = 2-dehydro-3-deoxy-6-phospho-D-gluconate + H2O
Other name(s): 6-phosphogluconate dehydratase; 6-phosphogluconic dehydrase; gluconate-6-phosphate dehydratase;

gluconate 6-phosphate dehydratase; 6-phosphogluconate dehydrase; 6-phospho-D-gluconate hydro-
lyase

Systematic name: 6-phospho-D-gluconate hydro-lyase (2-dehydro-3-deoxy-6-phospho-D-gluconate-forming)
References: [862]

[EC 4.2.1.12 created 1961]

[4.2.1.13 Transferred entry. L-serine dehydratase. Now EC 4.3.1.17, L-serine ammonia-lyase]

[EC 4.2.1.13 created 1961, deleted 2001]

[4.2.1.14 Transferred entry. D-serine dehydratase. Now EC 4.3.1.18, D-serine ammonia-lyase]

[EC 4.2.1.14 created 1961, deleted 2001]

[4.2.1.15 Deleted entry. homoserine dehydratase. Identical with EC 4.4.1.1 cystathionine γ-lyase]

[EC 4.2.1.15 created 1961, deleted 1972]
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[4.2.1.16 Transferred entry. threonine dehydratase. Now EC 4.3.1.19, threonine ammonia-lyase]

[EC 4.2.1.16 created 1961, deleted 2001]

EC 4.2.1.17
Accepted name: enoyl-CoA hydratase

Reaction: (3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H2O
Other name(s): enoyl hydrase; unsaturated acyl-CoA hydratase; β-hydroxyacyl-CoA dehydrase; β-hydroxyacid de-

hydrase; acyl coenzyme A hydrase; crotonase; crotonyl hydrase; 2-octenoyl coenzyme A hydrase;
enoyl coenzyme A hydratase; 2-enoyl-CoA hydratase; short-chain enoyl-CoA hydratase; ECH; trans-
2-enoyl-CoA hydratase; enoyl coenzyme A hydrase (D); enoyl coenzyme A hydrase (L); short chain
enoyl coenzyme A hydratase; D-3-hydroxyacyl-CoA dehydratase; enol-CoA hydratase

Systematic name: (3S)-3-hydroxyacyl-CoA hydro-lyase
Comments: Acts in the reverse direction. With cis-compounds, yields (3R)-3-hydroxyacyl-CoA. cf. EC 4.2.1.74

long-chain-enoyl-CoA hydratase.
References: [897, 1216]

[EC 4.2.1.17 created 1961]

EC 4.2.1.18
Accepted name: methylglutaconyl-CoA hydratase

Reaction: (S)-3-hydroxy-3-methylglutaryl-CoA = trans-3-methylglutaconyl-CoA + H2O
Other name(s): methylglutaconyl coenzyme A hydratase; 3-methylglutaconyl CoA hydratase; methylglutaconase;

(S)-3-hydroxy-3-methylglutaryl-CoA hydro-lyase
Systematic name: (S)-3-hydroxy-3-methylglutaryl-CoA hydro-lyase (trans-3-methylglutaconyl-CoA-forming)

References: [516]

[EC 4.2.1.18 created 1961]

EC 4.2.1.19
Accepted name: imidazoleglycerol-phosphate dehydratase

Reaction: D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate = 3-(imidazol-4-yl)-2-oxopropyl phosphate + H2O
Other name(s): IGP dehydratase; D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate hydro-lyase

Systematic name: D-erythro-1-(imidazol-4-yl)glycerol-3-phosphate hydro-lyase [3-(imidazol-4-yl)-2-oxopropyl-
phosphate-forming]

References: [23]

[EC 4.2.1.19 created 1961]

EC 4.2.1.20
Accepted name: tryptophan synthase

Reaction: L-serine + 1-C-(indol-3-yl)glycerol 3-phosphate = L-tryptophan + D-glyceraldehyde 3-phosphate +
H2O (overall reaction)
(1a) 1-C-(indol-3-yl)glycerol 3-phosphate = indole + D-glyceraldehyde 3-phosphate
(1b) L-serine + indole = L-tryptophan + H2O

Other name(s): L-tryptophan synthetase; indoleglycerol phosphate aldolase; tryptophan desmolase; tryptophan syn-
thetase; L-serine hydro-lyase (adding indoleglycerol-phosphate); L-serine hydro-lyase [adding 1-C-
(indol-3-yl)glycerol 3-phosphate, L-tryptophan and glyceraldehyde-3-phosphate-forming]

Systematic name: L-serine hydro-lyase [adding 1-C-(indol-3-yl)glycerol 3-phosphate, L-tryptophan and D-
glyceraldehyde-3-phosphate-forming]
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Comments: A pyridoxal-phosphate protein. The α-subunit catalyses the conversion of 1-C-(indol-3-yl)glycerol
3-phosphate to indole and D-glyceraldehyde 3-phosphate (this reaction was included formerly under
EC 4.1.2.8). The indole migrates to the β-subunit where, in the presence of pyridoxal 5′-phosphate,
it is combined with L-serine to form L-tryptophan. In some organisms this enzyme is part of a multi-
functional protein that also includes one or more of the enzymes EC 2.4.2.18 (anthranilate phosphori-
bosyltransferase), EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.1.3.27 (anthranilate syn-
thase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase). In thermophilic organisms, where the
high temperature enhances diffusion and causes the loss of indole, a protein similar to the β subunit
can be found (EC 4.2.1.122). That enzyme cannot combine with the α unit of EC 4.2.1.20 to form a
complex.

References: [245, 247, 550, 552, 1376]

[EC 4.2.1.20 created 1961, modified 1976, modified 2002, modified 2011]

[4.2.1.21 Deleted entry. cystathionine β-synthase. Now EC 4.2.1.22 cystathionine β-synthase]

[EC 4.2.1.21 created 1961, deleted 1964]

EC 4.2.1.22
Accepted name: cystathionine β-synthase

Reaction: L-serine + L-homocysteine = L-cystathionine + H2O
Other name(s): serine sulfhydrase; β-thionase; methylcysteine synthase; cysteine synthase (incorrect); serine

sulfhydrylase; L-serine hydro-lyase (adding homocysteine)
Systematic name: L-serine hydro-lyase (adding homocysteine; L-cystathionine-forming)

Comments: A pyridoxal-phosphate protein. A multifunctional enzyme: catalyses β-replacement reactions be-
tween L-serine, L-cysteine, cysteine thioethers, or some other β-substituted α-L-amino acids, and a
variety of mercaptans.

References: [127, 918, 1128]

[EC 4.2.1.22 created 1961 (EC 4.2.1.21 created 1961, incorporated 1964, EC 4.2.1.23 created 1961, incorporated 1972)]

[4.2.1.23 Deleted entry. methylcysteine synthase. The reaction was due to a side-reaction of EC 4.2.1.22 cystathionine
β-synthase]

[EC 4.2.1.23 created 1961, deleted 1972]

EC 4.2.1.24
Accepted name: porphobilinogen synthase

Reaction: 2 5-aminolevulinate = porphobilinogen + 2 H2O
Other name(s): aminolevulinate dehydratase; δ-aminolevulinate dehydratase; δ-aminolevulinic acid dehydrase; δ-

aminolevulinic acid dehydratase; aminolevulinic dehydratase; δ-aminolevulinic dehydratase; 5-
levulinic acid dehydratase; 5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing);
hemB (gene name)

Systematic name: 5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing; porphobilinogen-forming)
Comments: The enzyme catalyses the asymmetric condensation and cyclization of two 5-aminolevulinate

molecules, which is the first common step in the biosynthesis of tetrapyrrole pigments such as por-
phyrin, chlorophyll, vitamin B12, siroheme, phycobilin, and cofactor F430. The enzyme is widespread,
being essential in organisms that carry out respiration, photosynthesis, or methanogenesis. The en-
zymes from most organisms utilize metal ions (Zn2+, Mg2+, K+, and Na+) as cofactors that reside at
multiple sites, including the active site and allosteric sites. Enzymes from archaea, yeast, and metazoa
(including human) contain Zn2+ at the active site. In humans, the enzyme is a primary target for the
environmental toxin Pb. The enzymes from some organisms utilize a dynamic equilibrium between
architecturally distinct multimeric assemblies as a means for allosteric regulation.

References: [410, 678, 1399, 879, 575, 1354, 576, 1279]

[EC 4.2.1.24 created 1961]
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EC 4.2.1.25
Accepted name: L-arabinonate dehydratase

Reaction: L-arabinonate = 2-dehydro-3-deoxy-L-arabinonate + H2O
Other name(s): L-arabonate dehydrase; L-arabonate dehydratase; L-arabinonate hydro-lyase

Systematic name: L-arabinonate hydro-lyase (2-dehydro-3-deoxy-L-arabinonate-forming)
References: [1360]

[EC 4.2.1.25 created 1965]

[4.2.1.26 Deleted entry. aminodeoxygluconate dehydratase. This enzyme was transferred to EC 4.3.1.21, aminodeoxyglu-
conate ammonia-lyase, which has since been deleted. The enzyme is identical to EC 4.3.1.9, glucosaminate ammonia-lyase]

[EC 4.2.1.26 created 1965, deleted 2002]

EC 4.2.1.27
Accepted name: acetylenecarboxylate hydratase

Reaction: 3-oxopropanoate = propynoate + H2O
Other name(s): acetylenemonocarboxylate hydratase; alkynoate hydratase; acetylenemonocarboxylate hydrase;

acetylenemonocarboxylic acid hydrase; malonate-semialdehyde dehydratase; 3-oxopropanoate hydro-
lyase

Systematic name: 3-oxopropanoate hydro-lyase (propynoate-forming)
Comments: The reaction is effectively irreversible, favouring oxopropanoate (malonic semialdehyde) and its tau-

tomers. Also acts on but-3-ynoate forming acetoacetate. The mechanism appears to involve hydration
of the acetylene to 3-hydroxypropenoate, which will spontaneously tautomerize to 3-oxopropanoate.
It is thus analogous to EC 4.1.1.78, acetylenedicarboxylate decarboxylase, in its mechanism.

References: [293, 1390]

[EC 4.2.1.27 created 1965, (EC 4.2.1.71 created 1978, modified 1989, modified 2000, incorporated 2004) modified 2004]

EC 4.2.1.28
Accepted name: propanediol dehydratase

Reaction: propane-1,2-diol = propanal + H2O
Other name(s): meso-2,3-butanediol dehydrase; diol dehydratase; DL-1,2-propanediol hydro-lyase; diol dehydrase;

adenosylcobalamin-dependent diol dehydratase; propanediol dehydrase; coenzyme B12-dependent
diol dehydrase; 1,2-propanediol dehydratase; dioldehydratase; propane-1,2-diol hydro-lyase

Systematic name: propane-1,2-diol hydro-lyase (propanal-forming)
Comments: Requires a cobamide coenzyme. Also dehydrates ethylene glycol to acetaldehyde.
References: [1066, 371, 732]

[EC 4.2.1.28 created 1965]

[4.2.1.29 Transferred entry. indoleacetaldoxime dehydratase. Now EC 4.99.1.6, indoleacetaldoxime dehydratase. The
enzyme was classified incorrectly as a C-O lyase when the bond broken is a N-O bond]

[EC 4.2.1.29 created 1965, deleted 2004]

EC 4.2.1.30
Accepted name: glycerol dehydratase

Reaction: glycerol = 3-hydroxypropanal + H2O
Other name(s): glycerol dehydrase; glycerol hydro-lyase

Systematic name: glycerol hydro-lyase (3-hydroxypropanal-forming)
Comments: Requires a cobamide coenzyme.
References: [371, 1140, 1141, 1196]

[EC 4.2.1.30 created 1972]
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EC 4.2.1.31
Accepted name: maleate hydratase

Reaction: (R)-malate = maleate + H2O
Other name(s): D-malate hydro-lyase; malease; (R)-malate hydro-lyase

Systematic name: (R)-malate hydro-lyase (maleate-forming)
References: [131, 1098]

[EC 4.2.1.31 created 1972]

EC 4.2.1.32
Accepted name: L(+)-tartrate dehydratase

Reaction: (R,R)-tartrate = oxaloacetate + H2O
Other name(s): tartrate dehydratase; tartaric acid dehydrase; L-tartrate dehydratase; L-(+)-tartaric acid dehydratase;

(R,R)-tartrate hydro-lyase
Systematic name: (R,R)-tartrate hydro-lyase (oxaloacetate-forming)

Comments: The enzyme exists in an inactive low-molecular-mass form, which is converted into active enzyme in
the presence of Fe2+ and thiol. cf. EC 4.2.1.81 D(-)-tartrate dehydratase.

References: [549]

[EC 4.2.1.32 created 1972, modified 1986]

EC 4.2.1.33
Accepted name: 3-isopropylmalate dehydratase

Reaction: (2R,3S)-3-isopropylmalate = (2S)-2-isopropylmalate (overall reaction)
(1a) (2R,3S)-3-isopropylmalate = 2-isopropylmaleate + H2O
(1b) 2-isopropylmaleate + H2O = (2S)-2-isopropylmalate

Other name(s): (2R,3S)-3-isopropylmalate hydro-lyase; β-isopropylmalate dehydratase; isopropylmalate isomerase;
α-isopropylmalate isomerase; 3-isopropylmalate hydro-lyase

Systematic name: (2R,3S)-3-isopropylmalate hydro-lyase (2-isopropylmaleate-forming)
Comments: Forms part of the leucine biosynthesis pathway. The enzyme brings about the interconversion of the

two isomers of isopropylmalate. It contains an iron-sulfur cluster.
References: [440, 164, 229, 580]

[EC 4.2.1.33 created 1972, modified 1976, modified 2012]

EC 4.2.1.34
Accepted name: (S)-2-methylmalate dehydratase

Reaction: (S)-2-methylmalate = 2-methylfumarate + H2O
Other name(s): mesaconate hydratase; (+)-citramalate hydro-lyase; L-citramalate hydrolase; citramalate dehydratase;

(+)-citramalic hydro-lyase; mesaconate mesaconase; mesaconase; (S)-2-methylmalate hydro-lyase
Systematic name: (S)-2-methylmalate hydro-lyase (2-methylfumarate-forming)

Comments: Also hydrates fumarate to (S)-malate.
References: [92, 1340]

[EC 4.2.1.34 created 1972]

EC 4.2.1.35
Accepted name: (R)-2-methylmalate dehydratase

Reaction: (R)-2-methylmalate = 2-methylmaleate + H2O
Other name(s): citraconate hydratase; citraconase; citramalate hydro-lyase; (-)-citramalate hydro-lyase; (R)-2-

methylmalate hydro-lyase
Systematic name: (R)-2-methylmalate hydro-lyase (2-methylmaleate-forming)

Comments: Requires Fe2+.
References: [1228, 1051]
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[EC 4.2.1.35 created 1972]

EC 4.2.1.36
Accepted name: homoaconitate hydratase

Reaction: (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate = (Z)-but-1-ene-1,2,4-tricarboxylate + H2O
Other name(s): homoaconitase; cis-homoaconitase; HACN; Lys4; LysF; 2-hydroxybutane-1,2,4-tricarboxylate hydro-

lyase (incorrect)
Systematic name: (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate hydro-lyase [(Z)-but-1-ene-1,2,4-tricarboxylate-

forming]
Comments: Requires a [4Fe-4S] cluster for activity. The enzyme from the hyperthermophilic eubacterium Ther-

mus thermophilus can catalyse the reaction shown above but cannot catalyse the previously described
reaction, i.e. formation of (R)-homocitrate by hydration of cis-homoaconitate. The enzyme respon-
sible for the conversion of cis-homoaconitate into (R)-homocitrate in T. thermophilus is unknown
at present but the reaction can be catalysed in vitro using aconitate hydratase from pig (EC 4.2.1.3)
[588].

References: [1224, 588, 1435]

[EC 4.2.1.36 created 1972, modified 2007]

[4.2.1.37 Transferred entry. trans-epoxysuccinate hydratase. Now EC 3.3.2.4, trans-epoxysuccinate hydrolase]

[EC 4.2.1.37 created 1972, deleted 1992]

[4.2.1.38 Transferred entry. erythro-3-hydroxyaspartate dehydratase. Now EC 4.3.1.20, erythro-3-hydroxyaspartate ammonia-
lyase]

[EC 4.2.1.38 created 1972, deleted 2001]

EC 4.2.1.39
Accepted name: gluconate dehydratase

Reaction: D-gluconate = 2-dehydro-3-deoxy-D-gluconate + H2O
Other name(s): D-gluconate dehydratase; D-gluconate hydro-lyase

Systematic name: D-gluconate hydro-lyase (2-dehydro-3-deoxy-D-gluconate-forming)
Comments: The enzyme shows no activity with D-galactonate [82]. cf. EC 4.2.1.140, gluconate/galactonate dehy-

dratase.
References: [30, 82]

[EC 4.2.1.39 created 1972]

EC 4.2.1.40
Accepted name: glucarate dehydratase

Reaction: D-glucarate = 5-dehydro-4-deoxy-D-glucarate + H2O
Other name(s): D-glucarate dehydratase; D-glucarate hydro-lyase

Systematic name: D-glucarate hydro-lyase (5-dehydro-4-deoxy-D-glucarate-forming)
References: [101]

[EC 4.2.1.40 created 1972]

EC 4.2.1.41
Accepted name: 5-dehydro-4-deoxyglucarate dehydratase

Reaction: 5-dehydro-4-deoxy-D-glucarate = 2,5-dioxopentanoate + H2O + CO2
Other name(s): 5-keto-4-deoxy-glucarate dehydratase; 5-keto-4-deoxy-glucarate dehydratase; deoxyketoglucarate

dehydratase; D-4-deoxy-5-ketoglucarate hydro-lyase; 5-dehydro-4-deoxy-D-glucarate hydro-lyase
(decarboxylating)

Systematic name: 5-dehydro-4-deoxy-D-glucarate hydro-lyase (decarboxylating; 2,5-dioxopentanoate-forming)
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References: [584]

[EC 4.2.1.41 created 1972]

EC 4.2.1.42
Accepted name: galactarate dehydratase

Reaction: galactarate = (2R,3S)-2,3-dihydroxy-5-oxohexanedioate + H2O
Other name(s): D-galactarate hydro-lyase; D-galactarate hydro-lyase (5-dehydro-4-deoxy-D-glucarate-forming); talrD

(gene name)/galrD (gene name); galactarate dehydratase (L-threo-forming)
Systematic name: galactarate hydro-lyase (5-dehydro-4-deoxy-D-glucarate-forming)

Comments: The enzyme from the bacterium Escherichia coli is specific for galactarate [546], while the enzyme
from Salmonella typhimurium also has activity with L-talarate (cf. EC 4.2.1.156, L-talarate dehy-
dratase) [1408]. cf. EC 4.2.1.158, galactarate dehydratase (D-threo-forming).

References: [102, 546, 1408, 1045]

[EC 4.2.1.42 created 1972, modified 2015]

EC 4.2.1.43
Accepted name: 2-dehydro-3-deoxy-L-arabinonate dehydratase

Reaction: 2-dehydro-3-deoxy-L-arabinonate = 2,5-dioxopentanoate + H2O
Other name(s): 2-keto-3-deoxy-L-arabinonate dehydratase; 2-dehydro-3-deoxy-L-arabinonate hydro-lyase

Systematic name: 2-dehydro-3-deoxy-L-arabinonate hydro-lyase (2,5-dioxopentanoate-forming)
References: [1220]

[EC 4.2.1.43 created 1972]

EC 4.2.1.44
Accepted name: myo-inosose-2 dehydratase

Reaction: 2,4,6/3,5-pentahydroxycyclohexanone = 3,5/4-trihydroxycyclohexa-1,2-dione + H2O
Other name(s): inosose 2,3-dehydratase; ketoinositol dehydratase; 2,4,6/3,5-pentahydroxycyclohexanone hydro-lyase

Systematic name: 2,4,6/3,5-pentahydroxycyclohexanone hydro-lyase (3,5/4-trihydroxycyclohexa-1,2-dione-forming)
Comments: Requires Co2+ or Mn2+.
References: [88]

[EC 4.2.1.44 created 1972]

EC 4.2.1.45
Accepted name: CDP-glucose 4,6-dehydratase

Reaction: CDP-glucose = CDP-4-dehydro-6-deoxy-D-glucose + H2O
Other name(s): cytidine diphosphoglucose oxidoreductase; CDP-glucose 4,6-hydro-lyase

Systematic name: CDP-glucose 4,6-hydro-lyase (CDP-4-dehydro-6-deoxy-D-glucose-forming)
Comments: Requires bound NAD+.
References: [510, 831, 860]

[EC 4.2.1.45 created 1972]

EC 4.2.1.46
Accepted name: dTDP-glucose 4,6-dehydratase

Reaction: dTDP-α-D-glucose = dTDP-4-dehydro-6-deoxy-α-D-glucose + H2O
Other name(s): thymidine diphosphoglucose oxidoreductase; TDP-glucose oxidoreductase; dTDP-glucose 4,6-hydro-

lyase; dTDP-glucose 4,6-hydro-lyase (dTDP-4-dehydro-6-deoxy-α-D-glucose-forming)
Systematic name: dTDP-α-D-glucose 4,6-hydro-lyase (dTDP-4-dehydro-6-deoxy-α-D-glucose-forming)
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Comments: Requires bound NAD+.
References: [413, 860, 1346, 496, 439]

[EC 4.2.1.46 created 1972]

EC 4.2.1.47
Accepted name: GDP-mannose 4,6-dehydratase

Reaction: GDP-α-D-mannose = GDP-4-dehydro-α-D-rhamnose + H2O
Other name(s): guanosine 5′-diphosphate-D-mannose oxidoreductase; guanosine diphosphomannose oxidoreductase;

guanosine diphosphomannose 4,6-dehydratase; GDP-D-mannose dehydratase; GDP-D-mannose 4,6-
dehydratase; Gmd; GDP-mannose 4,6-hydro-lyase; GDP-mannose 4,6-hydro-lyase (GDP-4-dehydro-
6-deoxy-D-mannose-forming)

Systematic name: GDP-α-D-mannose 4,6-hydro-lyase (GDP-4-dehydro-α-D-rhamnose-forming)
Comments: The bacterial enzyme requires bound NAD+. This enzyme forms the first step in the biosynthesis of

GDP-α-D-rhamnose and GDP-β-L-fucose. In Aneurinibacillus thermoaerophilus L420-91T, this en-
zyme acts as a bifunctional enzyme, catalysing the above reaction as well as the reaction catalysed by
EC 1.1.1.281, GDP-4-dehydro-6-deoxy-D-mannose reductase [665]. Belongs to the short-chain dehy-
drogenase/reductase enzyme family, having homologous structures and a conserved catalytic triad of
Lys, Tyr and Ser/Thr residues [900].

References: [332, 755, 860, 1232, 665, 900]

[EC 4.2.1.47 created 1972, modified 2004]

EC 4.2.1.48
Accepted name: D-glutamate cyclase

Reaction: D-glutamate = 5-oxo-D-proline + H2O
Other name(s): D-glutamate hydro-lyase (cyclizing)

Systematic name: D-glutamate hydro-lyase (cyclizing; 5-oxo-D-proline-forming)
Comments: Also acts on various derivatives of D-glutamate.
References: [857]

[EC 4.2.1.48 created 1972]

EC 4.2.1.49
Accepted name: urocanate hydratase

Reaction: 3-(5-oxo-4,5-dihydro-3H-imidazol-4-yl)propanoate = urocanate + H2O
Other name(s): urocanase; 3-(5-oxo-4,5-dihydro-3H-imidazol-4-yl)propanoate hydro-lyase

Systematic name: 3-(5-oxo-4,5-dihydro-3H-imidazol-4-yl)propanoate hydro-lyase (urocanate-forming)
Comments: Contains tightly bound NAD+.
References: [1065, 486, 616, 1243]

[EC 4.2.1.49 created 1972, modified 2001]

EC 4.2.1.50
Accepted name: pyrazolylalanine synthase

Reaction: L-serine + pyrazole = 3-(pyrazol-1-yl)-L-alanine + H2O
Other name(s): β-pyrazolylalaninase; β-(1-pyrazolyl)alanine synthase; L-serine hydro-lyase (adding pyrazole)

Systematic name: L-serine hydro-lyase [adding pyrazole; 3-(pyrazol-1-yl)-L-alanine-forming]
Comments: A pyridoxal-phosphate protein.
References: [318]

[EC 4.2.1.50 created 1972]
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EC 4.2.1.51
Accepted name: prephenate dehydratase

Reaction: prephenate = phenylpyruvate + H2O + CO2
Other name(s): prephenate hydro-lyase (decarboxylating)

Systematic name: prephenate hydro-lyase (decarboxylating; phenylpyruvate-forming)
Comments: This enzyme in the enteric bacteria also possesses chorismate mutase (EC 5.4.99.5) activity, and con-

verts chorismate into prephenate.
References: [194, 242, 1135]

[EC 4.2.1.51 created 1972]

[4.2.1.52 Transferred entry. dihydrodipicolinate synthase. Now EC 4.3.3.7, 4-hydroxy-2,3,4,5-tetrahydrodipicolinate syn-
thase.]

[EC 4.2.1.52 created 1972, deleted 2012]

EC 4.2.1.53
Accepted name: oleate hydratase

Reaction: (R)-10-hydroxystearate = oleate + H2O
Other name(s): (R)-10-hydroxystearate 10-hydro-lyase

Systematic name: (R)-10-hydroxystearate 10-hydro-lyase (oleate-forming)
Comments: Acts on a number of 10-hydroxy acids.
References: [280, 428, 934]

[EC 4.2.1.53 created 1972]

EC 4.2.1.54
Accepted name: lactoyl-CoA dehydratase

Reaction: (R)-lactoyl-CoA = acryloyl-CoA + H2O
Other name(s): lactoyl coenzyme A dehydratase; lactyl-coenzyme A dehydrase; lactyl CoA dehydratase; acrylyl

coenzyme A hydratase; lactoyl-CoA hydro-lyase
Systematic name: (R)-lactoyl-CoA hydro-lyase (acryloyl-CoA-forming)

Comments: A bacterial enzyme that is involved in propanoate fermentation (also known as the acrylate pathway).
References: [67, 1154, 691, 692, 526]

[EC 4.2.1.54 created 1972, modified 2012]

EC 4.2.1.55
Accepted name: 3-hydroxybutyryl-CoA dehydratase

Reaction: (3R)-3-hydroxybutanoyl-CoA = crotonoyl-CoA + H2O
Other name(s): D-3-hydroxybutyryl coenzyme A dehydratase; D-3-hydroxybutyryl-CoA dehydratase; enoyl coen-

zyme A hydrase (D); (3R)-3-hydroxybutanoyl-CoA hydro-lyase
Systematic name: (3R)-3-hydroxybutanoyl-CoA hydro-lyase (crotonoyl-CoA-forming)

Comments: Also acts on crotonoyl thioesters of pantetheine and acyl-carrier protein.
References: [897]

[EC 4.2.1.55 created 1972]

EC 4.2.1.56
Accepted name: itaconyl-CoA hydratase

Reaction: citramalyl-CoA = itaconyl-CoA + H2O
Other name(s): itaconyl coenzyme A hydratase; citramalyl-CoA hydro-lyase

Systematic name: citramalyl-CoA hydro-lyase (itaconyl-CoA-forming)
References: [239]
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[EC 4.2.1.56 created 1972]

EC 4.2.1.57
Accepted name: isohexenylglutaconyl-CoA hydratase

Reaction: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA = 3-(4-methylpent-3-en-1-yl)pent-2-enedioyl-
CoA + H2O

Other name(s): 3-hydroxy-3-isohexenylglutaryl-CoA-hydrolase; isohexenylglutaconyl coenzyme A hydratase; β-
isohexenylglutaconyl-CoA-hydratase; 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA hydro-
lyase

Systematic name: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA hydro-lyase [3-(4-methylpent-3-en-1-yl)pent-2-
enedioyl-CoA-forming]

Comments: Also acts on dimethylacryloyl-CoA and farnesoyl-CoA.
References: [1170]

[EC 4.2.1.57 created 1972]

[4.2.1.58 Deleted entry. crotonoyl-[acyl-carrier-protein] hydratase. The reaction described is covered by EC 4.2.1.59.]

[EC 4.2.1.58 created 1972, deleted 2012]

EC 4.2.1.59
Accepted name: 3-hydroxyacyl-[acyl-carrier-protein] dehydratase

Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] = a trans-2-enoyl-[acyl-carrier protein] + H2O
Other name(s): fabZ (gene name); fabA (gene name); D-3-hydroxyoctanoyl-[acyl carrier protein] dehydratase; D-

3-hydroxyoctanoyl-acyl carrier protein dehydratase; β-hydroxyoctanoyl-acyl carrier protein de-
hydrase; β-hydroxyoctanoyl thioester dehydratase; β-hydroxyoctanoyl-ACP-dehydrase; (3R)-3-
hydroxyoctanoyl-[acyl-carrier-protein] hydro-lyase; (3R)-3-hydroxyoctanoyl-[acyl-carrier-protein]
hydro-lyase (oct-2-enoyl-[acyl-carrier protein]-forming); 3-hydroxyoctanoyl-[acyl-carrier-protein]
dehydratase

Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein] hydro-lyase (trans-2-enoyl-[acyl-carrier protein]-forming)
Comments: This enzyme is responsible for the dehydration step of the dissociated (type II) fatty-acid biosynthesis

system that occurs in plants and bacteria. The enzyme uses fatty acyl thioesters of ACP in vivo. Dif-
ferent forms of the enzyme may have preferences for substrates with different chain length. For exam-
ple, the activity of FabZ, the ubiquitous enzyme in bacteria, decreases with increasing chain length.
Gram-negative bacteria that produce unsaturated fatty acids, such as Escherichia coli, have another
form (FabA) that prefers intermediate chain length, and also catalyses EC 5.3.3.14, trans-2-decenoyl-
[acyl-carrier protein] isomerase. Despite the differences both forms can catalyse all steps leading to
the synthesis of palmitate (C16:0). FabZ, but not FabA, can also accept unsaturated substrates [494].

References: [884, 1171, 887, 494]

[EC 4.2.1.59 created 1972, modified 2012]

[4.2.1.60 Deleted entry. 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase. The reaction described is covered by EC
4.2.1.59.]

[EC 4.2.1.60 created 1972, modified 2006, deleted 2012]

[4.2.1.61 Deleted entry. 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase. The reaction described is covered by EC
4.2.1.59.]

[EC 4.2.1.61 created 1972, deleted 2012]

EC 4.2.1.62
Accepted name: 5α-hydroxysteroid dehydratase

Reaction: 5α-ergosta-7,22-diene-3β,5-diol = ergosterol + H2O
Other name(s): 5α-ergosta-7,22-diene-3β,5-diol 5,6-hydro-lyase

Systematic name: 5α-ergosta-7,22-diene-3β,5-diol 5,6-hydro-lyase (ergosterol-forming)
References: [1285]
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[EC 4.2.1.62 created 1972]

[4.2.1.63 Transferred entry. epoxide hydratase. Now known to comprise two enzymes, microsomal epoxide hydrolase (EC
3.3.2.9) and soluble epoxide hydrolase (EC 3.3.2.10)]

[EC 4.2.1.63 created 1972, deleted 1978]

[4.2.1.64 Transferred entry. arene-oxide hydratase. Now known to comprise two enzymes, microsomal epoxide hydrolase
(EC 3.3.2.9) and soluble epoxide hydrolase (EC 3.3.2.10)]

[EC 4.2.1.64 created 1972, deleted 1978]

EC 4.2.1.65
Accepted name: 3-cyanoalanine hydratase

Reaction: L-asparagine = 3-cyanoalanine + H2O
Other name(s): β-cyanoalanine hydrolase; β-cyanoalanine hydratase; β-CNAla hydrolase; β-CNA nitrilase; L-

asparagine hydro-lyase
Systematic name: L-asparagine hydro-lyase (3-cyanoalanine-forming)

References: [189]

[EC 4.2.1.65 created 1976]

EC 4.2.1.66
Accepted name: cyanide hydratase

Reaction: formamide = cyanide + H2O
Other name(s): formamide dehydratase; formamide hydro-lyase

Systematic name: formamide hydro-lyase (cyanide-forming)
References: [383]

[EC 4.2.1.66 created 1976]

EC 4.2.1.67
Accepted name: D-fuconate dehydratase

Reaction: D-fuconate = 2-dehydro-3-deoxy-D-fuconate + H2O
Other name(s): D-fuconate hydro-lyase

Systematic name: D-fuconate hydro-lyase (2-dehydro-3-deoxy-D-fuconate-forming)
Comments: Also acts on L-arabinonate.
References: [268]

[EC 4.2.1.67 created 1976]

EC 4.2.1.68
Accepted name: L-fuconate dehydratase

Reaction: L-fuconate = 2-dehydro-3-deoxy-L-fuconate + H2O
Other name(s): L-fuconate hydro-lyase

Systematic name: L-fuconate hydro-lyase (2-dehydro-3-deoxy-L-fuconate-forming)
Comments: Also acts, slowly, on D-arabinonate.
References: [1432]

[EC 4.2.1.68 created 1976]

EC 4.2.1.69
Accepted name: cyanamide hydratase

Reaction: urea = cyanamide + H2O
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Other name(s): urea hydro-lyase
Systematic name: urea hydro-lyase (cyanamide-forming)

References: [1223]

[EC 4.2.1.69 created 1976]

EC 4.2.1.70
Accepted name: pseudouridylate synthase

Reaction: uracil + D-ribose 5-phosphate = pseudouridine 5′-phosphate + H2O
Other name(s): pseudouridylic acid synthetase; pseudouridine monophosphate synthetase; 5-ribosyluracil 5-

phosphate synthetase; pseudouridylate synthetase; upsilonUMP synthetase; uracil hydro-lyase (adding
D-ribose 5-phosphate); YeiN; pseudouridine-5′-phosphate glycosidase

Systematic name: uracil hydro-lyase (adding D-ribose 5-phosphate; pseudouridine-5′-phosphate-forming)
Comments: The reaction it readily reversible. While the enzymes from Tetrahymena pyriformis and Agrobac-

terium tumefaciens produce pseudouridine 5′-phosphate the enzyme from Escherichia coli functions
as a pseudouridine-5′-phosphate glycosidase in vivo [1022].

References: [497, 835, 1064, 1239, 1022]

[EC 4.2.1.70 created 1978]

[4.2.1.71 Deleted entry. acetylenecarboxylate hydratase. This enzyme is identical to EC 4.2.1.27, acetylenecarboxylate
hydratase]

[EC 4.2.1.71 created 1978, modified 1989, modified 2000, deleted 2004]

[4.2.1.72 Transferred entry. acetylenedicarboxylate hydratase. Now EC 4.1.1.78, acetylenedicarboxylate decarboxylase]

[EC 4.2.1.72 created 1978, deleted 2000]

EC 4.2.1.73
Accepted name: protoaphin-aglucone dehydratase (cyclizing)

Reaction: protoaphin aglucone = xanthoaphin + H2O
Other name(s): protoaphin dehydratase; protoaphin dehydratase (cyclizing); protoaphin-aglucone hydro-lyase (cycliz-

ing)
Systematic name: protoaphin-aglucone hydro-lyase (cyclizing; xanthoaphin-forming)

Comments: The product is converted non-enzymically to erythroaphin, an aphid pigment.
References: [165]

[EC 4.2.1.73 created 1978]

EC 4.2.1.74
Accepted name: long-chain-enoyl-CoA hydratase

Reaction: a long-chain (3S)-3-hydroxyacyl-CoA = a long-chain trans-2-enoyl-CoA + H2O
Other name(s): long-chain enoyl coenzyme A hydratase

Systematic name: long-chain-(3S)-3-hydroxyacyl-CoA hydro-lyase
Comments: Acts in the reverse direction. The best substrate is oct-3-enoyl-CoA. Unlike EC 4.2.1.17 enoyl-CoA

hydratase, it does not act on crotonoyl-CoA.
References: [370, 1151]

[EC 4.2.1.74 created 1981]

EC 4.2.1.75
Accepted name: uroporphyrinogen-III synthase

Reaction: hydroxymethylbilane = uroporphyrinogen III + H2O
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Other name(s): porphobilinogenase; uroporphyrinogen isomerase; uroporphyrinogen III cosynthase; URO-synthase;
hydroxymethylbilane hydro-lyase (cyclizing)

Systematic name: hydroxymethylbilane hydro-lyase (cyclizing; uroporphyrinogen-III-forming)
Comments: In the presence of EC 2.5.1.61, hydroxymethylbilane synthase, the enzyme forms uroporphyrinogen

III from porphobilinogen.
References: [77, 1299]

[EC 4.2.1.75 created 1982]

EC 4.2.1.76
Accepted name: UDP-glucose 4,6-dehydratase

Reaction: UDP-α-D-glucose = UDP-4-dehydro-6-deoxy-α-D-glucose + H2O
Other name(s): UDP-D-glucose-4,6-hydrolyase; UDP-D-glucose oxidoreductase; UDP-glucose 4,6-hydro-lyase

Systematic name: UDP-α-D-glucose 4,6-hydro-lyase (UDP-4-dehydro-6-deoxy-α-D-glucose-forming)
References: [617]

[EC 4.2.1.76 created 1984]

EC 4.2.1.77
Accepted name: trans-L-3-hydroxyproline dehydratase

Reaction: trans-3-hydroxy-L-proline = 1-pyrroline 2-carboxylate + H2O
Other name(s): trans-L-3-hydroxyproline hydro-lyase

Systematic name: trans-3-hydroxy-L-proline hydro-lyase (1-pyrroline-2-carboxylate-forming)
Comments: Highly specific.
References: [1047, 1328]

[EC 4.2.1.77 created 1984]

EC 4.2.1.78
Accepted name: (S)-norcoclaurine synthase

Reaction: 4-hydroxyphenylacetaldehyde + dopamine = (S)-norcoclaurine + H2O
Other name(s): (S)-norlaudanosoline synthase; 4-hydroxyphenylacetaldehyde hydro-lyase (adding dopamine)

Systematic name: 4-hydroxyphenylacetaldehyde hydro-lyase [adding dopamine; (S)-norcoclaurine-forming]
Comments: The reaction makes a six-membered ring by forming a bond between C-6 of the 3,4-dihydroxyphenyl

group of the dopamine and C-1 of the aldehyde in the imine formed between the substrates. The prod-
uct is the precursor of the benzylisoquinoline alkaloids in plants. The enzyme, formerly known as
(S)-norlaudanosoline synthase, will also catalyse the reaction of 4-(2-aminoethyl)benzene-1,2-diol +
(3,4-dihydroxyphenyl)acetaldehyde to form (S)-norlaudanosoline, but this alkaloid has not been found
to occur in plants.

References: [1207, 1208, 1106]

[EC 4.2.1.78 created 1984, modified 1999]

EC 4.2.1.79
Accepted name: 2-methylcitrate dehydratase

Reaction: (2S,3S)-2-hydroxybutane-1,2,3-tricarboxylate = (Z)-but-2-ene-1,2,3-tricarboxylate + H2O
Other name(s): 2-methylcitrate hydro-lyase; PrpD; 2-hydroxybutane-1,2,3-tricarboxylate hydro-lyase

Systematic name: (2S,3S)-2-hydroxybutane-1,2,3-tricarboxylate hydro-lyase [(Z)-but-2-ene-1,2,3-tricarboxylate-
forming]

Comments: The enzyme is specific for (2S,3S)-methylcitrate, showing no activity with (2R,3S)-methylcitrate
[133]. The enzyme can also use cis-aconitate as a substrate but more slowly [133]. Both this en-
zyme and EC 4.2.1.3, aconitate hydratase, are required to complete the isomerization of (2S,3S)-
methylcitrate to (2R,3S)-2-methylisocitrate [133].

References: [34, 133]
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[EC 4.2.1.79 created 1984]

EC 4.2.1.80
Accepted name: 2-oxopent-4-enoate hydratase

Reaction: (S)-4-hydroxy-2-oxopentanoate = (2Z)-2-hydroxypenta-2,4-dienoate + H2O
Other name(s): 2-keto-4-pentenoate hydratase; OEH; 2-keto-4-pentenoate (vinylpyruvate)hydratase; 4-hydroxy-2-

oxopentanoate hydro-lyase; 4-hydroxy-2-oxopentanoate hydro-lyase (2-oxopent-4-enoate-forming);
mhpD (gene name); ahdF (gene name); todG (gene name); cmtF (gene name); xylJ (gene name);
cnbE (gene name)

Systematic name: (S)-4-hydroxy-2-oxopentanoate hydro-lyase ((2Z)-2-hydroxypenta-2,4-dienoate-forming)
Comments: The enzyme is involved in the catechol meta-cleavage pathway, a major mechanism for degradation of

aromatic compounds. Also acts, more slowly, on cis-2-oxohex-4-enoate, but not on the trans-isomer.
The enzyme was named when it was thought that the substrate is 2-oxopent-4-enoate. However, it was
later found that the actual substrate is its tautomer (2Z)-2-hydroxypenta-2,4-dienoate. In some organ-
isms the enzyme forms a complex with EC 4.1.1.77, 2-oxo-3-hexenedioate decarboxylase (previously
named 4-oxalocrotonate decarboxylase).

References: [710, 479, 1012]

[EC 4.2.1.80 created 1984]

EC 4.2.1.81
Accepted name: D(-)-tartrate dehydratase

Reaction: (S,S)-tartrate = oxaloacetate + H2O
Other name(s): D-tartrate dehydratase; (S,S)-tartrate hydro-lyase

Systematic name: (S,S)-tartrate hydro-lyase (oxaloacetate-forming)
Comments: Requires Fe2+ or Mn2+. cf. EC 4.2.1.32 L(+)-tartrate dehydratase.
References: [1084, 1085]

[EC 4.2.1.81 created 1986]

EC 4.2.1.82
Accepted name: xylonate dehydratase

Reaction: D-xylonate = 2-dehydro-3-deoxy-D-xylonate + H2O
Other name(s): D-xylo-aldonate dehydratase; D-xylonate dehydratase; D-xylonate hydro-lyase

Systematic name: D-xylonate hydro-lyase (2-dehydro-3-deoxy-D-xylonate-forming)
References: [270, 307]

[EC 4.2.1.82 created 1986]

EC 4.2.1.83
Accepted name: 4-oxalomesaconate hydratase

Reaction: 2-hydroxy-4-oxobutane-1,2,4-tricarboxylate = (1E,3E)-4-hydroxybuta-1,3-diene-1,2,4-tricarboxylate
+ H2O

Other name(s): 4-oxalmesaconate hydratase; 4-carboxy-2-oxohexenedioate hydratase; 4-carboxy-2-oxobutane-1,2,4-
tricarboxylate 2,3-hydro-lyase; oxalmesaconate hydratase; γ-oxalmesaconate hydratase; 2-hydroxy-4-
oxobutane-1,2,4-tricarboxylate 2,3-hydro-lyase; LigJ; GalB

Systematic name: (1E,3E)-4-hydroxybuta-1,3-diene-1,2,4-tricarboxylate 1,2-hydro-lyase (2-hydroxy-4-oxobutane-1,2,4-
tricarboxylate-forming)

Comments: This enzyme participates in the degradation of 3,4-dihydroxybenzoate (via the meta-cleavage path-
way), syringate and 3,4,5-trihydroxybenzoate, catalysing the reaction in the opposite direction
[823, 824, 477]. It accepts the enol-form of 4-oxalomesaconate, 2-hydroxy-4-carboxy-hexa-2,4-
dienedioate [941].

References: [823, 824, 477, 941]
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[EC 4.2.1.83 created 1986, modified 2011]

EC 4.2.1.84
Accepted name: nitrile hydratase

Reaction: an aliphatic amide = a nitrile + H2O
Other name(s): nitrilase (ambiguous); 3-cyanopyridine hydratase; NHase; L-NHase; H-NHase; acrylonitrile hy-

dratase; aliphatic nitrile hydratase; nitrile hydro-lyase
Systematic name: aliphatic-amide hydro-lyase (nitrile-forming)

Comments: Acts on short-chain aliphatic nitriles, converting them into the corresponding amides. Does not act on
these amides or on aromatic nitriles. cf. EC 3.5.5.1 nitrilase.

References: [43]

[EC 4.2.1.84 created 1989]

EC 4.2.1.85
Accepted name: dimethylmaleate hydratase

Reaction: (2R,3S)-2,3-dimethylmalate = dimethylmaleate + H2O
Other name(s): (2R,3S)-2,3-dimethylmalate hydro-lyase

Systematic name: (2R,3S)-2,3-dimethylmalate hydro-lyase (dimethylmaleate-forming)
Comments: Requires Fe2+. Inhibited by oxygen.
References: [675]

[EC 4.2.1.85 created 1989]

[4.2.1.86 Deleted entry. 16-dehydroprogesterone hydratase (reaction is identical to that of EC 4.2.1.98, 16α-hydroxyprogesterone
dehydratase)]

[EC 4.2.1.86 created 1989, deleted 2004]

EC 4.2.1.87
Accepted name: octopamine dehydratase

Reaction: 1-(4-hydroxyphenyl)-2-aminoethanol = (4-hydroxyphenyl)acetaldehyde + NH3
Other name(s): octopamine hydrolyase; octopamine hydro-lyase (deaminating)

Systematic name: 1-(4-hydroxyphenyl)-2-aminoethanol hydro-lyase [deaminating; (4-hydroxyphenyl)acetaldehyde-
forming]

Comments: The enzyme-catalysed reaction is believed to be dehydration to an enamine, which is spontaneously
hydrolysed to an aldehyde and ammonia.

References: [261]

[EC 4.2.1.87 created 1989]

EC 4.2.1.88
Accepted name: synephrine dehydratase

Reaction: (R)-synephrine = (4-hydroxyphenyl)acetaldehyde + methylamine
Other name(s): syringinase

Systematic name: (R)-synephrine hydro-lyase (methylamine-forming)
Comments: Removal of H2O from (R)-synephrine produces a 2,3-enamine, which hydrolyses to the products

shown in the reaction above. The enzyme from Arthrobacter synephrinum is highly specific [1325].
References: [1325, 809]

[EC 4.2.1.88 created 1989, modified 2012]

[4.2.1.89 Deleted entry. carnitine dehydratase. The activity has now been shown to be due to EC 2.8.3.21, L-carnitine
CoA-transferase and EC 4.2.1.149, crotonobetainyl-CoA hydratase.]
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[EC 4.2.1.89 created 1989, deleted 2014]

EC 4.2.1.90
Accepted name: L-rhamnonate dehydratase

Reaction: L-rhamnonate = 2-dehydro-3-deoxy-L-rhamnonate + H2O
Other name(s): L-rhamnonate hydro-lyase

Systematic name: L-rhamnonate hydro-lyase (2-dehydro-3-deoxy-L-rhamnonate-forming)
References: [1070]

[EC 4.2.1.90 created 1989]

EC 4.2.1.91
Accepted name: arogenate dehydratase

Reaction: L-arogenate = L-phenylalanine + H2O + CO2
Other name(s): carboxycyclohexadienyl dehydratase; L-arogenate hydro-lyase (decarboxylating)

Systematic name: L-arogenate hydro-lyase (decarboxylating; L-phenylalanine-forming)
Comments: Also acts on prephenate and D-prephenyllactate. cf. EC 4.2.1.51, prephenate dehydratase.
References: [363, 1437, 1184]

[EC 4.2.1.91 created 1992, modified 2005]

EC 4.2.1.92
Accepted name: hydroperoxide dehydratase

Reaction: (9Z,11E,15Z)-(13S)-hydroperoxyoctadeca-9,11,15-trienoate = (9Z,15Z)-(13S)-12,13-epoxyoctadeca-
9,11,15-trienoate + H2O

Other name(s): hydroperoxide isomerase; linoleate hydroperoxide isomerase; linoleic acid hydroperoxide isomerase;
HPI; (9Z,11E,14Z)-(13S)-hydroperoxyoctadeca-9,11,14-trienoate 12,13-hydro-lyase; (9Z,11E,14Z)-
(13S)-hydroperoxyoctadeca-9,11,14-trienoate 12,13-hydro-lyase [(9Z)-(13S)-12,13-epoxyoctadeca-
9,11-dienoate-forming]; allene oxide synthase; AOS

Systematic name: (9Z,11E,15Z)-(13S)-hydroperoxyoctadeca-9,11,15-trienoate 12,13-hydro-lyase [(9Z,15Z)-(13S)-
12,13-epoxyoctadeca-9,11,15-trienoate-forming]

Comments: Acts on a number of unsaturated fatty-acid hydroperoxides, forming the corresponding allene oxides.
The product of the above reaction is unstable and is acted upon by EC 5.3.99.6, allene-oxide cyclase,
to form the cyclopentenone derivative (15Z)-12-oxophyto-10,15-dienoate (OPDA), which is the first
cyclic and biologically active metabolite in the jasmonate biosynthesis pathway [462]. The enzyme
from many plants belongs to the CYP-74 family of P-450 monooxygenases [731].

References: [343, 461, 462, 731]

[EC 4.2.1.92 created 1992, modified 2008]

EC 4.2.1.93
Accepted name: ATP-dependent NAD(P)H-hydrate dehydratase

Reaction: (1) ATP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = ADP + phosphate
+ NADH
(2) ATP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = ADP +
phosphate + NADPH

Other name(s): reduced nicotinamide adenine dinucleotide hydrate dehydratase; ATP-dependent H4NAD(P)+OH de-
hydratase; (6S)-β-6-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase(ATP-
hydrolysing); (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase
(ATP-hydrolysing; NADH-forming)

Systematic name: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing;
NADH-forming)
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Comments: Acts equally well on hydrated NADH and hydrated NADPH. NAD(P)H spontaneously hydrates to
both the (6S)- and (6R)- isomers, and these are interconverted by EC 5.1.99.6, NAD(P)H-hydrate
epimerase, to a 60:40 ratio [812]. Hence EC 4.2.1.93 together with EC 5.1.99.6 can restore the mix-
ture of hydrates into NAD(P)H [2, 812]. The enzyme from eukaryotes has no activity with ADP, con-
trary to the enzyme from bacteria (cf. EC 4.2.1.136, ADP-dependent NAD(P)H-hydrate dehydratase)
[812].

References: [856, 1322, 2, 812]

[EC 4.2.1.93 created 1992, modified 2012]

EC 4.2.1.94
Accepted name: scytalone dehydratase

Reaction: scytalone = 1,3,8-trihydroxynaphthalene + H2O
Other name(s): scytalone 7,8-hydro-lyase

Systematic name: scytalone 7,8-hydro-lyase (1,3,8-trihydroxynaphthalene-forming)
Comments: Involved, with EC 1.1.1.252 tetrahydroxynaphthalene reductase, in the biosynthesis of melanin in

pathogenic fungi.
References: [157, 1251, 1365]

[EC 4.2.1.94 created 1992]

EC 4.2.1.95
Accepted name: kievitone hydratase

Reaction: kievitone hydrate = kievitone + H2O
Other name(s): KHase; kievitone-hydrate hydro-lyase

Systematic name: kievitone-hydrate hydro-lyase (kievitone-forming)
Comments: The enzyme from Fusarium sp. hydrates the methylbutenyl sidechain of the isoflavonoid phytoalex-

ins, thus reducing their toxicity.
References: [1303]

[EC 4.2.1.95 created 1992]

EC 4.2.1.96
Accepted name: 4a-hydroxytetrahydrobiopterin dehydratase

Reaction: (6R)-6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4a-hydroxypterin = (6R)-6-(L-erythro-1,2-
dihydroxypropyl)-7,8-dihydro-6H-pterin + H2O

Other name(s): 4α-hydroxy-tetrahydropterin dehydratase; pterin-4α-carbinolamine dehydratase; 4a-
hydroxytetrahydrobiopterin hydro-lyase

Systematic name: (6R)-6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4a-hydroxypterin hydro-lyase [(6R)-6-(L-
erythro-1,2-dihydroxypropyl)-7,8-dihydro-6H-pterin-forming]

Comments: Catalyses the dehydration of 4a-hydroxytetrahydrobiopterins
References: [488]

[EC 4.2.1.96 created 1999]

EC 4.2.1.97
Accepted name: phaseollidin hydratase

Reaction: phaseollidin hydrate = phaseollidin + H2O
Other name(s): phaseollidin-hydrate hydro-lyase

Systematic name: phaseollidin-hydrate hydro-lyase (phaseollidin-forming)
Comments: The enzyme from Fusarium solani, which is distinct from kievitone hydratase (EC 4.2.1.95), hydrates

the methylbutenyl side-chain of the isoflavonoid phytoalexin, phaseollidin.
References: [1304]
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[EC 4.2.1.97 created 1999]

EC 4.2.1.98
Accepted name: 16α-hydroxyprogesterone dehydratase

Reaction: 16α-hydroxyprogesterone = 16,17-didehydroprogesterone + H2O
Other name(s): hydroxyprogesterone dehydroxylase; 16α-hydroxyprogesterone dehydroxylase; 16α-dehydroxylase;

16α-hydroxyprogesterone hydro-lyase
Systematic name: 16α-hydroxyprogesterone hydro-lyase (16,17-didehydroprogesterone-forming)

Comments: 16α-Hydroxypregnenolone is also a substrate.
References: [415]

[EC 4.2.1.98 created 1999, modified 2004 (EC 4.2.1.86 created 1989, incorporated 2004)]

EC 4.2.1.99
Accepted name: 2-methylisocitrate dehydratase

Reaction: (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate = (Z)-but-2-ene-1,2,3-tricarboxylate + H2O
Other name(s): (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate hydro-lyase

Systematic name: (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate hydro-lyase [(Z)-but-2-ene-1,2,3-tricarboxylate-
forming]

Comments: The enzyme from the fungus Yarrowia lipolytica (Saccharomycopsis) does not act on isocitrate.
References: [35, 1249]

[EC 4.2.1.99 created 1999]

EC 4.2.1.100
Accepted name: cyclohexa-1,5-dienecarbonyl-CoA hydratase

Reaction: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA = cyclohexa-1,5-diene-1-carbonyl-CoA + H2O
Other name(s): cyclohexa-1,5-diene-1-carbonyl-CoA hydratase; dienoyl-CoA hydratase; cyclohexa-1,5-

dienecarbonyl-CoA hydro-lyase (incorrect); 6-hydroxycyclohex-1-enecarbonyl-CoA hydro-lyase
(cyclohexa-1,5-dienecarbonyl-CoA-forming)

Systematic name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA hydro-lyase (cyclohexa-1,5-diene-1-carbonyl-CoA-
forming)

Comments: Forms part of the anaerobic benzoate degradation pathway, which also includes EC 1.3.8.6 [glutaryl-
CoA dehydrogenase (ETF)], EC 1.3.7.8 (benzoyl-CoA reductase) and EC 4.2.1.55 (3-hydroyxbutyryl-
CoA dehydratase).

References: [720, 481, 669]

[EC 4.2.1.100 created 2000, modified 2001]

EC 4.2.1.101
Accepted name: trans-feruloyl-CoA hydratase

Reaction: 4-hydroxy-3-methoxyphenyl-β-hydroxypropanoyl-CoA = feruloyl-CoA + H2O
Other name(s): trans-feruloyl-CoA hydro-lyase (incorrect); 4-hydroxy-3-methoxyphenyl-β-hydroxypropanoyl-CoA

hydro-lyase (trans-feruloyl-CoA-forming)
Systematic name: 4-hydroxy-3-methoxyphenyl-β-hydroxypropanoyl-CoA hydro-lyase (feruloyl-CoA-forming)

References: [926, 1013]

[EC 4.2.1.101 created 2000]

[4.2.1.102 Transferred entry. cyclohexa-1,5-dienecarbonyl-CoA hydratase. Now EC 4.2.1.100, cyclohexa-1,5-dienecarbonyl-
CoA hydratase]

[EC 4.2.1.102 created 2001, deleted 2001]
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EC 4.2.1.103
Accepted name: cyclohexyl-isocyanide hydratase

Reaction: N-cyclohexylformamide = cyclohexyl isocyanide + H2O
Other name(s): isonitrile hydratase; N-cyclohexylformamide hydro-lyase

Systematic name: N-cyclohexylformamide hydro-lyase (cyclohexyl-isocyanide-forming)
Comments: The enzyme from Pseudomonas putida strain N19-2 can also catalyse the hydration of other isoni-

triles to the corresponding N-substituted formamides. The enzyme has no metal requirements.
References: [418]

[EC 4.2.1.103 created 2001]

EC 4.2.1.104
Accepted name: cyanase

Reaction: cyanate + HCO3
− + 2 H+ = NH3 + 2 CO2 (overall reaction)

(1a) cyanate + HCO3
− + H+ = carbamate + CO2

(1b) carbamate + H+ = NH3 + CO2 (spontaneous)
Other name(s): cyanate lyase; cyanate hydrolase; cyanate aminohydrolase; cyanate C-N-lyase; cyanate hydratase

Systematic name: carbamate hydro-lyase
Comments: This enzyme, which is found in bacteria and plants, is used to decompose cyanate, which can be used

as the sole source of nitrogen [685, 1339]. Reaction (1) can be considered as the reverse of ‘carba-
mate = cyanate + H2O′, where this is assisted by reaction with bicarbonate and carbon dioxide (see
mechanism above) [602], and hence is classified in sub-subclass 4.2.1. Bicarbonate functions as a re-
cycling substrate [602].

References: [24, 602, 1265, 1266, 25, 685, 1339]

[EC 4.2.1.104 created 1972 as EC 3.5.5.3, transferred 1990 to EC 4.3.99.1, transferred 2001 to EC 4.2.1.104, modified 2007]

EC 4.2.1.105
Accepted name: 2-hydroxyisoflavanone dehydratase

Reaction: (1) 2,4′,7-trihydroxyisoflavanone = daidzein + H2O
(2) 2,4′,5,7-tetrahydroxyisoflavanone = genistein + H2O

Other name(s): 2,7,4′-trihydroxyisoflavanone hydro-lyase; 2,7,4′-trihydroxyisoflavanone hydro-lyase (daidzein-
forming)

Systematic name: 2,4′,7-trihydroxyisoflavanone hydro-lyase (daidzein-forming)
Comments: Catalyses the final step in the formation of the isoflavonoid skeleton. The reaction also occurs sponta-

neously.
References: [454]

[EC 4.2.1.105 created 2004, modified 2013]

EC 4.2.1.106
Accepted name: bile-acid 7α-dehydratase

Reaction: 7α,12α-dihydroxy-3-oxochol-4-en-24-oyl-CoA = 12α-hydroxy-3-oxochola-4,6-dien-24-oyl-CoA +
H2O

Other name(s): baiE (gene name); 7α,12α-dihydroxy-3-oxochol-4-enoate hydro-lyase; 7α,12α-dihydroxy-3-oxochol-
4-enoate hydro-lyase (12α-hydroxy-3-oxochola-4,6-dienoate-forming); BA7 α dehydratase

Systematic name: 7α,12α-dihydroxy-3-oxochol-4-enoyl-CoA hydro-lyase (12α-hydroxy-3-oxochola-4,6-dienoyl-CoA-
forming)

Comments: This enzyme, characterized from the gut bacterium Clostridium scindens (previously known as Eu-
bacterium sp. strain VPI 12708), participates in the 7-dehydroxylation process associated with bile
acid degradation.

References: [805, 283, 90]

[EC 4.2.1.106 created 2005, modified 2016]
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EC 4.2.1.107
Accepted name: 3α,7α,12α-trihydroxy-5β-cholest-24-enoyl-CoA hydratase

Reaction: (24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestanoyl-CoA = (24E)-3α,7α,12α-trihydroxy-5β-
cholest-24-enoyl-CoA + H2O

Other name(s): 46 kDa hydratase 2; (24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestanoyl-CoA hydro-lyase
Systematic name: (24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestanoyl-CoA hydro-lyase [(24E)-3α,7α,12α-

trihydroxy-5β-cholest-24-enoyl-CoA-forming]
Comments: This enzyme forms part of the rat peroxisomal multifunctional enzyme perMFE-2, which also ex-

hibits a dehydrogenase activity. The enzyme is involved in the β-oxidation of the cholesterol side
chain in the cholic-acid-biosynthesis pathway.

References: [1031, 1388, 657, 385, 715, 1093]

[EC 4.2.1.107 created 2005]

EC 4.2.1.108
Accepted name: ectoine synthase

Reaction: (2S)-4-acetamido-2-aminobutanoate = L-ectoine + H2O
Other name(s): ectC (gene name); N-acetyldiaminobutyrate dehydratase; N-acetyldiaminobutanoate dehydratase;

L-ectoine synthase; 4-N-acetyl-L-2,4-diaminobutanoate hydro-lyase (L-ectoine-forming); N4-acetyl-
L-2,4-diaminobutanoate hydro-lyase (L-ectoine-forming)

Systematic name: (2S)-4-acetamido-2-aminobutanoate (L-ectoine-forming)
Comments: Ectoine is an osmoprotectant that is found in halophilic eubacteria. This enzyme is part of the ectoine

biosynthesis pathway and only acts in the direction of ectoine formation. cf. EC 3.5.4.44, ectoine hy-
drolase.

References: [987, 959, 697, 784, 1156]

[EC 4.2.1.108 created 2006, modified 2017]

EC 4.2.1.109
Accepted name: methylthioribulose 1-phosphate dehydratase

Reaction: 5-(methylsulfanyl)-D-ribulose 1-phosphate = 5-(methylsulfanyl)-2,3-dioxopentyl phosphate + H2O
Other name(s): 1-PMT-ribulose dehydratase; S-methyl-5-thio-D-ribulose-1-phosphate hydro-lyase; S-methyl-5-thio-

D-ribulose-1-phosphate 4-hydro-lyase [5-(methylthio)-2,3-dioxopentyl-phosphate-forming]
Systematic name: 5-(methylsulfanyl)-D-ribulose-1-phosphate 4-hydro-lyase [5-(methylsulfanyl)-2,3-dioxopentyl-

phosphate-forming]
Comments: This enzyme forms part of the methionine-salvage pathway.
References: [389, 1378]

[EC 4.2.1.109 created 2006]

EC 4.2.1.110
Accepted name: aldos-2-ulose dehydratase

Reaction: 1,5-anhydro-D-fructose = 2-hydroxy-2-(hydroxymethyl)-2H-pyran-3(6H)-one + H2O (overall reac-
tion)
(1a) 1,5-anhydro-D-fructose = 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose + H2O
(1b) 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose = 2-hydroxy-2-(hydroxymethyl)-2H-pyran-
3(6H)-one

Other name(s): pyranosone dehydratase; AUDH; 1,5-anhydro-D-fructose dehydratase (microthecin-forming)
Systematic name: 1,5-anhydro-D-fructose hydro-lyase (microthecin-forming)

Comments: This enzyme catalyses two of the steps in the anhydrofructose pathway, which leads to the degra-
dation of glycogen and starch via 1,5-anhydro-D-fructose [1424, 1420]. Aldose-2-uloses such as 2-
dehydroglucose can also act as substrates, but more slowly [1,2,4]. This is a bifunctional enzyme that
acts as both a lyase and as an isomerase [1420]. Differs from EC 4.2.1.111, which can carry out only
reaction (1a), is inhibited by its product and requires metal ions for activity [1424].
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References: [1424, 1420, 132, 392, 1426]

[EC 4.2.1.110 created 2006]

EC 4.2.1.111
Accepted name: 1,5-anhydro-D-fructose dehydratase

Reaction: 1,5-anhydro-D-fructose = 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose + H2O
Other name(s): 1,5-anhydro-D-fructose 4-dehydratase; 1,5-anhydro-D-fructose hydrolyase; 1,5-anhydro-D-arabino-

hex-2-ulose dehydratase; AFDH; AF dehydratase; 1,5-anhydro-D-fructose hydro-lyase
Systematic name: 1,5-anhydro-D-fructose hydro-lyase (ascopyrone-M-forming)

Comments: This enzyme catalyses one of the steps in the anhydrofructose pathway, which leads to the degrada-
tion of glycogen and starch via 1,5-anhydro-D-fructose [1426, 1424]. The other enzymes involved
in this pathway are EC 4.2.1.110 (aldos-2-ulose dehydratase), EC 4.2.2.13 [exo-(1→4)-α-D-glucan
lyase] and EC 5.3.2.7 (ascopyrone tautomerase). Requires divalent (Ca2+ or Mg2+) or monovalent
cations (Na+) for optimal activity. Unlike EC 4.2.1.110, the enzyme is specific for 1,5-anhydro-D-
fructose as substrate and shows no activity towards aldose-2-uloses such as 2-dehydroglucose [1,2,3].
In addition, it is inhibited by its end-product ascopyrone M [1424] and it cannot convert ascopyrone
M into microthecin, as can EC 4.2.1.110.

References: [1426, 1424, 1420]

[EC 4.2.1.111 created 2006]

EC 4.2.1.112
Accepted name: acetylene hydratase

Reaction: acetaldehyde = acetylene + H2O
Other name(s): AH; acetaldehyde hydro-lyase

Systematic name: acetaldehyde hydro-lyase (acetylene-forming)
Comments: This is a non-redox-active enzyme that contains two molybdopterin guanine dinucleotide (MGD) co-

factors, a tungsten centre and a cubane type [4Fe-4S] cluster [1161].The tungsten centre binds a water
molecule that is activated by an adjacent aspartate residue, enabling it to attack acetylene bound in a
distinct hydrophobic pocket [1161]. Ethylene cannot act as a substrate [1089].

References: [1089, 1161]

[EC 4.2.1.112 created 2007]

EC 4.2.1.113
Accepted name: o-succinylbenzoate synthase

Reaction: (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate = 2-succinylbenzoate + H2O
Other name(s): o-succinylbenzoic acid synthase; OSB synthase; OSBS; 2-succinylbenzoate synthase; MenC

Systematic name: (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate hydro-lyase (2-succinylbenzoate-
forming)

Comments: Belongs to the enolase superfamily and requires divalent cations, preferably Mg2+ or Mn2+, for activ-
ity. Forms part of the vitamin-K-biosynthesis pathway.

References: [1172, 662, 975, 1275, 1072]

[EC 4.2.1.113 created 2007]

EC 4.2.1.114
Accepted name: methanogen homoaconitase

Reaction: (R)-2-hydroxybutane-1,2,4-tricarboxylate = (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate (overall
reaction)
(1a) (R)-2-hydroxybutane-1,2,4-tricarboxylate = (Z)-but-1-ene-1,2,4-tricarboxylate + H2O
(1b) (Z)-but-1-ene-1,2,4-tricarboxylate + H2O = (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate
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Other name(s): methanogen HACN
Systematic name: (R)-2-hydroxybutane-1,2,4-tricarboxylate hydro-lyase [(1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate-

forming]
Comments: This enzyme catalyses several reactions in the pathway of coenzyme-B biosynthesis in methanogenic

archaea. Requires a [4Fe-4S] cluster for activity. In contrast to EC 4.2.1.36, homoaconitate hydratase,
this enzyme can catalyse both the dehydration of (R)-homocitrate to form cis-homoaconitate and the
subsequent hydration reaction that forms homoisocitrate. In addition to cis-homoaconitate, the en-
zyme can also catalyse the hydration of the physiological substrates dihomocitrate and trihomocitrate
as well as the non-physiological substrate tetrahomocitrate. cis-Aconitate and threo-DL-isocitrate
cannot act as substrates, and (S)-homocitrate and trans-homoaconitate act as inhibitors of the enzyme.

References: [311]

[EC 4.2.1.114 created 2009]

EC 4.2.1.115
Accepted name: UDP-N-acetylglucosamine 4,6-dehydratase (configuration-inverting)

Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose + H2O
Other name(s): FlaA1; UDP-N-acetylglucosamine 5-inverting 4,6-dehydratase; PseB; UDP-N-acetylglucosamine

hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose-forming)
Systematic name: UDP-N-acetyl-α-D-glucosamine hydro-lyase (inverting; UDP-2-acetamido-2,6-dideoxy-β-L-arabino-

hex-4-ulose-forming)
Comments: Contains NADP+ as a cofactor. This is the first enzyme in the biosynthetic pathway of pseudaminic

acid [1144], a sialic-acid-like sugar that is unique to bacteria and is used by Helicobacter pylori to
modify its flagellin. This enzyme plays a critical role in H. pylori’s pathogenesis, being involved in
the synthesis of both functional flagella and lipopolysaccharides [564, 1125]. It is completely inhib-
ited by UDP-α-D-galactose. The reaction results in the chirality of the C-5 atom being inverted. It is
thought that Lys-133 acts sequentially as a catalytic acid, protonating the C-6 hydroxy group and as a
catalytic base, abstracting the C-5 proton, resulting in the elimination of water. This enzyme belongs
to the short-chain dehydrogenase/reductase family of enzymes.

References: [564, 1125, 1144]

[EC 4.2.1.115 created 2009]

EC 4.2.1.116
Accepted name: 3-hydroxypropionyl-CoA dehydratase

Reaction: 3-hydroxypropanoyl-CoA = acryloyl-CoA + H2O
Other name(s): 3-hydroxypropionyl-CoA hydro-lyase; 3-hydroxypropanoyl-CoA dehydratase

Systematic name: 3-hydroxypropanoyl-CoA hydro-lyase
Comments: Catalyses a step in the 3-hydroxypropanoate/4-hydroxybutanoate cycle, an autotrophic CO2 fixation

pathway found in some thermoacidophilic archaea [87]. The enzyme from Metallosphaera sedula
acts nearly equally as well on (S)-3-hydroxybutanoyl-CoA but not (R)-3-hydroxybutanoyl-CoA
[1269].

References: [87, 1269]

[EC 4.2.1.116 created 2009]

EC 4.2.1.117
Accepted name: 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming)

Reaction: (2S,3S)-2-methylcitrate = 2-methyl-trans-aconitate + H2O
Systematic name: (2S,3S)-2-hydroxybutane-1,2,3-tricarboxylate hydro-lyase (2-methyl-trans-aconitate forming)

Comments: Catalyses the dehydration of (2S,3S)-2-methylcitrate, forming the trans isomer of 2-methyl-aconitate
(unlike EC 4.2.1.79, which forms only the cis isomer). Part of a propionate degradation pathway.
The enzyme from Shewanella oneidensis can also accept citrate and cis-aconitate, but activity with
(2S,3S)-2-methylcitrate was approximately 2.5-fold higher. 2-methylisocitrate and isocitrate were not
substrates [438]. An iron-sulfur protein.
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References: [438]

[EC 4.2.1.117 created 2009]

EC 4.2.1.118
Accepted name: 3-dehydroshikimate dehydratase

Reaction: 3-dehydro-shikimate = 3,4-dihydroxybenzoate + H2O
Systematic name: 3-dehydroshikimate hydro-lyase

Comments: Catalyses an early step in the biosynthesis of petrobactin, a siderophore produced by many bacteria,
including the human pathogen Bacillus anthracis. Requires divalent ions, with a preference for Mn2+.

References: [373, 996]

[EC 4.2.1.118 created 2009]

EC 4.2.1.119
Accepted name: enoyl-CoA hydratase 2

Reaction: (3R)-3-hydroxyacyl-CoA = (2E)-2-enoyl-CoA + H2O
Other name(s): 2-enoyl-CoA hydratase 2; AtECH2; ECH2; MaoC; MFE-2; PhaJAc; D-3-hydroxyacyl-CoA hydro-

lyase; D-specific 2-trans-enoyl-CoA hydratase
Systematic name: (3R)-3-hydroxyacyl-CoA hydro-lyase

Comments: This enzyme catalyses a hydration step in peroxisomal β-oxidation. The human multifunctional en-
zyme type 2 (MFE-2) is a 79000 Da enzyme composed of three functional units: (3R)-hydroxyacyl-
CoA dehydrogenase, 2-enoyl-CoA hydratase 2 and sterol carrier protein 2-like units [682]. The en-
zymes from Aeromonas caviae [518] and Arabidopsis thaliana [420] are monofunctional enzymes.
2-Enoyl-CoA hydratase 3 from Candida tropicalis is a part from multifunctional enzyme type 2 [683].

References: [682, 387, 683, 518, 420, 335]

[EC 4.2.1.119 created 2009]

EC 4.2.1.120
Accepted name: 4-hydroxybutanoyl-CoA dehydratase

Reaction: 4-hydroxybutanoyl-CoA = (E)-but-2-enoyl-CoA + H2O
Systematic name: 4-hydroxybutanoyl-CoA hydro-lyase

Comments: Contains FAD and a [4Fe-4S] iron-sulfur cluster. The enzyme has been characterized from sev-
eral microorganisms, including Clostridium kluyveri, where it participates in succinate fermenta-
tion [76, 1121], Clostridium aminobutyricum, where it participates in 4-aminobutyrate degrada-
tion [1120, 898], and Metallosphaera sedula, where it participates in the 3-hydroxypropionate/4-
hydroxybutyrate cycle, an autotrophic CO2 fixation pathway found in some thermoacidophilic ar-
chaea [87].

References: [76, 1121, 1120, 898, 87]

[EC 4.2.1.120 created 2009]

EC 4.2.1.121
Accepted name: colneleate synthase

Reaction: (9S,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate = (8E)-9-[(1E,3Z)-nona-1,3-dien-1-yloxy]non-
8-enoate + H2O

Other name(s): 9-divinyl ether synthase; 9-DES; CYP74D; CYP74D1; CYP74 cytochrome P-450; DES1; (8E)-9-
[(1E,3E)-nona-1,3-dien-1-yloxy]non-8-enoate synthase

Systematic name: (9S,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate hydro-lyase
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Comments: A heme-thiolate protein (P-450) [566]. It catalyses the selective removal of pro-R hydrogen at C-
8 in the biosynthesis of colneleic acid [463]. It forms also (8E)-9-[(1E,3Z,6Z)-nona-1,3,6-trien-
1-yloxy]non-8-enoic acid (i.e. colnelenate) from (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-
octadecatrienoate. The corresponding 13-hydroperoxides are poor substrates [1227, 351]. The divinyl
ethers colneleate and colnelenate have antimicrobial activity.

References: [1227, 566, 351, 463]

[EC 4.2.1.121 created 2011, modified 2014]

EC 4.2.1.122
Accepted name: tryptophan synthase (indole-salvaging)

Reaction: L-serine + indole = L-tryptophan + H2O
Other name(s): tryptophan synthase β2

Systematic name: L-serine hydro-lyase [adding indole, L-tryptophan-forming]
Comments: Most mesophilic bacteria have a multimeric tryptophan synthase complex (EC 4.2.1.20) that forms L-

tryptophan from L-serine and 1-C-(indol-3-yl)glycerol 3-phosphate via an indole intermediate. This
intermediate, which is formed by the α subunits, is transferred in an internal tunnel to the β units,
which convert it to tryptophan. In thermophilic organisms the high temperature enhances diffusion
and causes the loss of indole. This enzyme, which does not combine with the α unit to form a com-
plex, salvages the lost indole back to L-tryptophan. It has a much lower Km for indole than the β sub-
unit of EC 4.2.1.20.

References: [509]

[EC 4.2.1.122 created 2011]

EC 4.2.1.123
Accepted name: tetrahymanol synthase

Reaction: tetrahymanol = squalene + H2O
Other name(s): squalenetetrahymanol cyclase

Systematic name: squalene hydro-lyase (tetrahymanol forming)
Comments: The reaction occurs in the reverse direction.
References: [1097, 414]

[EC 4.2.1.123 created 2011]

EC 4.2.1.124
Accepted name: arabidiol synthase

Reaction: arabidiol = (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
Other name(s): PEN1 (gene name); (S)-squalene-2,3-epoxide hydro-lyase (arabidiol forming)

Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene hydro-lyase (arabidiol forming)
Comments: The reaction occurs in the reverse direction.
References: [1382]

[EC 4.2.1.124 created 2011]

EC 4.2.1.125
Accepted name: dammarenediol II synthase

Reaction: dammarenediol II = (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
Other name(s): dammarenediol synthase; 2,3-oxidosqualene (20S)-dammarenediol cyclase; DDS; (S)-squalene-2,3-

epoxide hydro-lyase (dammarenediol-II forming)
Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene hydro-lyase (dammarenediol-II forming)

Comments: The reaction occurs in the reverse direction.
References: [1263, 465]
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[EC 4.2.1.125 created 2011]

EC 4.2.1.126
Accepted name: N-acetylmuramic acid 6-phosphate etherase

Reaction: (R)-lactate + N-acetyl-D-glucosamine 6-phosphate = N-acetylmuramate 6-phosphate + H2O
Other name(s): MurNAc-6-P etherase; MurQ

Systematic name: (R)-lactate hydro-lyase (adding N-acetyl-D-glucosamine 6-phosphate; N-acetylmuramate 6-
phosphate-forming)

Comments: This enzyme, along with EC 2.7.1.170, anhydro-N-acetylmuramic acid kinase, is required for the uti-
lization of anhydro-N-acetylmuramic acid in proteobacteria. The substrate is either imported from the
medium or derived from the bacterium’s own cell wall murein during cell wall recycling.

References: [573, 1312, 1311, 452, 574]

[EC 4.2.1.126 created 2011]

EC 4.2.1.127
Accepted name: linalool dehydratase

Reaction: (3S)-linalool = myrcene + H2O
Other name(s): linalool hydro-lyase (myrcene-forming)

Systematic name: (3S)-linalool hydro-lyase (myrcene-forming)
Comments: In absence of oxygen the bifunctional linalool dehydratase-isomerase can catalyse in vitro two reac-

tions, the hydration of myrcene to (3S)-linalool and the isomerization of (3S)-linalool to geraniol, the
latter activity being classified as EC 5.4.4.4, geraniol isomerase.

References: [134, 792]

[EC 4.2.1.127 created 2011, modified 2012]

EC 4.2.1.128
Accepted name: lupan-3β,20-diol synthase

Reaction: lupan-3β,20-diol = (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O
Other name(s): LUP1 (gene name)

Systematic name: (3S)-2,3-epoxy-2,3-dihydrosqualene hydro-lyase (lupan-3β,20-diol forming)
Comments: The reaction occurs in the reverse direction. The recombinant enzyme from Arabidopsis thaliana

gives a 1:1 mixture of lupeol and lupan-3β,20-diol with small amounts of β-amyrin, germanicol,
taraxasterol and ψ-taraxasterol. See EC 5.4.99.41 (lupeol synthase).

References: [1159, 716]

[EC 4.2.1.128 created 2011]

EC 4.2.1.129
Accepted name: squalene—hopanol cyclase

Reaction: hopan-22-ol = squalene + H2O
Other name(s): squalene—hopene cyclase (ambiguous)

Systematic name: hopan-22-ol hydro-lyase
Comments: The enzyme produces the cyclization products hopene (cf. EC 5.4.99.17) and hopanol from squalene

at a constant ratio of 5:1.
References: [537, 1109]

[EC 4.2.1.129 created 2011]

EC 4.2.1.130
Accepted name: D-lactate dehydratase

78

http://www.enzyme-database.org/query.php?ec=4.2.1.126
http://www.enzyme-database.org/query.php?ec=4.2.1.127
http://www.enzyme-database.org/query.php?ec=4.2.1.128
http://www.enzyme-database.org/query.php?ec=4.2.1.129
http://www.enzyme-database.org/query.php?ec=4.2.1.130


Reaction: (R)-lactate = 2-oxopropanal + H2O
Other name(s): glyoxylase III; GLO3

Systematic name: (R)-lactate hydro-lyase
Comments: The enzyme, described from the fungi Candida albicans and Schizosaccharomyces pombe, converts

2-oxopropanal to (R)-lactate in a single glutathione (GSH)-independent step. The other known route
for this conversion is the two-step GSH-dependent pathway catalysed by EC 4.4.1.5 (lactoylglu-
tathione lyase) and EC 3.1.2.6 (hydroxyacylglutathione hydrolase).

References: [485, 1460]

[EC 4.2.1.130 created 2011]

EC 4.2.1.131
Accepted name: carotenoid 1,2-hydratase

Reaction: (1) 1-hydroxy-1,2-dihydrolycopene = lycopene + H2O
(2) 1,1′-dihydroxy-1,1′,2,2′-tetrahydrolycopene = 1-hydroxy-1,2-dihydrolycopene + H2O

Other name(s): CrtC
Systematic name: lycopene hydro-lyase (1-hydroxy-1,2-dihydrolycopene-forming)

Comments: In Rubrivivax gelatinosus [1213] and Thiocapsa roseopersicina [519] both products are formed,
whereas Rhodobacter capsulatus [1213] only gives 1-hydroxy-1,2-dihydrolycopene. Also acts on
neurosporene giving 1-hydroxy-1,2-dihydroneurosporene with both organism but 1,1′-dihydroxy-
1,1′,2,2′-tetrahydroneurosporene only with Rubrivivax gelatinosus.

References: [1213, 519]

[EC 4.2.1.131 created 2011]

EC 4.2.1.132
Accepted name: 2-hydroxyhexa-2,4-dienoate hydratase

Reaction: 4-hydroxy-2-oxohexanoate = (2Z,4Z)-2-hydroxyhexa-2,4-dienoate + H2O
Other name(s): tesE (gene name); hsaE (gene name)

Systematic name: 4-hydroxy-2-oxohexanoate hydro-lyase [(2Z,4Z)-2-hydroxyhexa-2,4-dienoate-forming]
Comments: This enzyme catalyses a late step in the bacterial steroid degradation pathway. The product, 4-

hydroxy-2-oxohexanoate, forms a 2-hydroxy-4-hex-2-enolactone under acidic conditions.
References: [535]

[EC 4.2.1.132 created 2012]

EC 4.2.1.133
Accepted name: copal-8-ol diphosphate hydratase

Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = geranylgeranyl diphosphate + H2O
Other name(s): CcCLS

Systematic name: geranylgeranyl-diphosphate hydro-lyase [(13E)-8α-hydroxylabd-13-en-15-yl diphosphate forming]
Comments: Requires Mg2+. The enzyme was characterized from the plant Cistus creticus subsp. creticus.
References: [347]

[EC 4.2.1.133 created 2012]

EC 4.2.1.134
Accepted name: very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase

Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA = a very-long-chain trans-2,3-dehydroacyl-CoA + H2O
Other name(s): PHS1 (gene name); PAS2 (gene name)

Systematic name: very-long-chain (3R)-3-hydroxyacyl-CoA hydro-lyase
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Comments: This is the third component of the elongase, a microsomal protein complex responsible for extending
palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long chain acyl CoAs. cf. EC
2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA
reductase, and EC 1.3.1.93, very-long-chain enoyl-CoA reductase.

References: [50, 649]

[EC 4.2.1.134 created 2012, modified 2014]

EC 4.2.1.135
Accepted name: UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining)

Reaction: UDP-N-acetyl-α-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose + H2O
Other name(s): PglF

Systematic name: UDP-N-acetyl-α-D-glucosamine hydro-lyase (configuration-retaining; UDP-2-acetamido-2,6-
dideoxy-α-D-xylo-hex-4-ulose-forming)

Comments: Contains NAD+ as a cofactor [955]. This is the first enzyme in the biosynthetic pathway of N,N′-
diacetylbacillosamine [1145], the first carbohydrate in the glycoprotein N-linked heptasaccharide in
Campylobacter jejuni. This enzyme belongs to the short-chain dehydrogenase/reductase family of
enzymes.

References: [1145, 955]

[EC 4.2.1.135 created 2012]

EC 4.2.1.136
Accepted name: ADP-dependent NAD(P)H-hydrate dehydratase

Reaction: (1) ADP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide = AMP + phosphate
+ NADH
(2) ADP + (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate = AMP +
phosphate + NADPH

Other name(s): (6S)-β-6-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase(ADP-
hydrolysing); (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase
(ADP-hydrolysing; NADH-forming)

Systematic name: (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ADP-
hydrolysing; NADH-forming)

Comments: Acts equally well on hydrated NADH and hydrated NADPH. NAD(P)H spontaneously hydrates to
both the (6S)- and (6R)- isomers. The enzyme from bacteria consists of two domains, one of which
acts as an NAD(P)H-hydrate epimerase that interconverts the two isomers to a 60:40 ratio (cf. EC
5.1.99.6), while the other catalyses the dehydration. Hence the enzyme can restore the complete mix-
ture of isomers into NAD(P)H. The enzyme has no activity with ATP, contrary to the enzyme from
eukaryotes (cf. EC 4.2.1.93, ATP-dependent NAD(P)H-hydrate dehydratase).

References: [812]

[EC 4.2.1.136 created 2012]

EC 4.2.1.137
Accepted name: sporulenol synthase

Reaction: sporulenol = tetraprenyl-β-curcumene + H2O
Other name(s): sqhC (gene name)

Systematic name: tetraprenyl-β-curcumene—sporulenol cyclase
Comments: The reaction occurs in the reverse direction. Isolated from Bacillus subtilis. Similar sesquarterpenoids

are present in a number of Bacillus species.
References: [1111]

[EC 4.2.1.137 created 2012]
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EC 4.2.1.138
Accepted name: (+)-caryolan-1-ol synthase

Reaction: (+)-β-caryophyllene + H2O = (+)-caryolan-1-ol
Other name(s): GcoA

Systematic name: (+)-β-caryophyllene hydrolase [cyclizing, (+)-caryolan-1-ol-forming]
Comments: A multifunctional enzyme which also forms (+)-β-caryophyllene from farnesyl diphosphate [EC

4.2.3.89, (+)-β-caryophyllene synthase].
References: [920]

[EC 4.2.1.138 created 2011 as EC 3.7.1.15, transferred 2013 to EC 4.2.1.138]

EC 4.2.1.139
Accepted name: medicarpin synthase

Reaction: 4′-methoxyisoflavan-2′,4,7-triol = (–)-medicarpin + H2O
Other name(s): medicarpan synthase; 7,2′-dihydroxy-4′-methoxyisoflavanol dehydratase; 2′,7-dihydroxy-4′-

methoxyisoflavanol dehydratase; DMI dehydratase; DMID
Systematic name: 4′-methoxyisoflavan-2′,4,7-triol hydro-lyase [(–)-medicarpin-forming]

Comments: Isolated from the plant Medicago sativa (alfalfa). Catalyses the final step in the biosynthesis of medi-
carpin, the main pterocarpan phytoalexin in alfalfa.

References: [448, 447]

[EC 4.2.1.139 created 2013]

EC 4.2.1.140
Accepted name: gluconate/galactonate dehydratase

Reaction: (1) D-gluconate = 2-dehydro-3-deoxy-D-gluconate + H2O
(2) D-galactonate = 2-dehydro-3-deoxy-D-galactonate + H2O

Other name(s): gluconate dehydratase (ambiguous); Sso3198 (gene name); Pto0485 (gene name)
Systematic name: D-gluconate/D-galactonate hydro-lyase

Comments: The enzyme is involved in glucose and galactose catabolism via the nonphosphorylative variant of the
Entner-Doudoroff pathway in Picrophilus torridus [1061] and via the branched variant of the Entner-
Doudoroff pathway in Sulfolobus solfataricus [723, 8]. In vitro it utilizes D-gluconate with 6-10 fold
higher catalytic efficiency than D-galactonate [723, 1061]. It requires Mg2+ for activity [723, 8]. cf.
EC 4.2.1.6, galactonate dehydratase, and EC 4.2.1.39, gluconate dehydratase.

References: [723, 8, 1061]

[EC 4.2.1.140 created 2013]

EC 4.2.1.141
Accepted name: 2-dehydro-3-deoxy-D-arabinonate dehydratase

Reaction: 2-dehydro-3-deoxy-D-arabinonate = 2,5-dioxopentanoate + H2O
Systematic name: 2-dehydro-3-deoxy-D-arabinonate hydro-lyase (2,5-dioxopentanoate-forming)

Comments: The enzyme participates in pentose oxidation pathways that convert pentose sugars to the tricar-
boxylic acid cycle intermediate 2-oxoglutarate.

References: [136, 135, 598]

[EC 4.2.1.141 created 2013]

EC 4.2.1.142
Accepted name: 5′-oxoaverantin cyclase

Reaction: 5′-oxoaverantin = (1′S,5′S)-averufin + H2O
Other name(s): OAVN cyclase; 5′-oxoaverantin hydro-lyase [(2′S,5′S)-averufin forming]

Systematic name: 5′-oxoaverantin hydro-lyase [(1′S,5′S)-averufin forming]
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Comments: Isolated from the aflatoxin-producing mold Aspergillus parasiticus. The enzyme also catalyses the
conversion of versiconal to versicolorin B (EC 4.2.1.143, versicolorin B synthase). Involved in afla-
toxin biosynthesis.

References: [1103, 1102]

[EC 4.2.1.142 created 2013]

EC 4.2.1.143
Accepted name: versicolorin B synthase

Reaction: versiconal = versicolorin B + H2O
Other name(s): versiconal cyclase; VBS

Systematic name: versiconal hydro-lyase (versicolorin-B forming)
Comments: Isolated from the aflatoxin-producing mold Aspergillus parasiticus. Involved in aflatoxin biosynthe-

sis.
References: [759, 847, 1185, 1186]

[EC 4.2.1.143 created 2013]

EC 4.2.1.144
Accepted name: 3-amino-5-hydroxybenzoate synthase

Reaction: 5-amino-5-deoxy-3-dehydroshikimate = 3-amino-5-hydroxybenzoate + H2O
Other name(s): AHBA synthase; rifK (gene name)

Systematic name: 5-amino-5-deoxy-3-dehydroshikimate hydro-lyase (3-amino-5-hydroxybenzoate-forming)
Comments: A pyridoxal 5′-phosphate enzyme. The enzyme from the bacterium Amycolatopsis mediterranei par-

ticipates in the pathway for rifamycin B biosynthesis. The enzyme also functions as a transaminase
earlier in the pathway, producing UDP-α-D-kanosamine [369].

References: [650, 322, 369]

[EC 4.2.1.144 created 2013]

EC 4.2.1.145
Accepted name: capreomycidine synthase

Reaction: (2S,3S)-3-hydroxyarginine = (2S,3R)-capreomycidine + H2O
Other name(s): VioD (ambiguous)

Systematic name: (2S,3S)-3-hydroxyarginine hydro-lyase (cyclizing, (2S,3R)-capreomycidine-forming)
Comments: A pyridoxal 5′-phosphate protein. The enzyme is involved in the biosynthesis of the cyclic pentapep-

tide antibiotic viomycin.
References: [1410, 608]

[EC 4.2.1.145 created 2013]

EC 4.2.1.146
Accepted name: L-galactonate dehydratase

Reaction: L-galactonate = 2-dehydro-3-deoxy-L-galactonate + H2O
Other name(s): LGD1

Systematic name: L-galactonate hydro-lyase (2-dehydro-3-deoxy-L-galactonate-forming)
Comments: The enzyme takes part in a D-galacturonate degradation pathway in the fungi Trichoderma reesei

(Hypocrea jecorina) and Aspergillus niger.
References: [711, 815]

[EC 4.2.1.146 created 2013]
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EC 4.2.1.147
Accepted name: 5,6,7,8-tetrahydromethanopterin hydro-lyase

Reaction: 5,6,7,8-tetrahydromethanopterin + formaldehyde = 5,10-methylenetetrahydromethanopterin + H2O
Other name(s): formaldehyde-activating enzyme

Systematic name: 5,6,7,8-tetrahydromethanopterin hydro-lyase (formaldehyde-adding, tetrahydromethanopterin-
forming)

Comments: Found in methylotrophic bacteria and methanogenic archaea.
References: [1332, 1]

[EC 4.2.1.147 created 2014]

EC 4.2.1.148
Accepted name: 2-methylfumaryl-CoA hydratase

Reaction: (2R,3S)-2-methylmalyl-CoA = 2-methylfumaryl-CoA + H2O
Other name(s): Mcd; erythro-β-methylmalonyl-CoA hydrolyase; mesaconyl-coenzyme A hydratase (ambiguous);

mesaconyl-C1-CoA hydratase
Systematic name: (2R,3S)-2-methylmalyl-CoA hydro-lyase (2-methylfumaryl-CoA-forming)

Comments: The enzyme from the bacterium Chloroflexus aurantiacus is part of the 3-hydroxypropanoate cycle
for carbon assimilation.

References: [1439]

[EC 4.2.1.148 created 2014]

EC 4.2.1.149
Accepted name: crotonobetainyl-CoA hydratase

Reaction: L-carnitinyl-CoA = (E)-4-(trimethylammonio)but-2-enoyl-CoA + H2O
Other name(s): CaiD; L-carnityl-CoA dehydratase

Systematic name: L-carnitinyl-CoA hydro-lyase [(E)-4-(trimethylammonio)but-2-enoyl-CoA-forming]
Comments: The enzyme is also able to use crotonyl-CoA as substrate, with low efficiency [334].
References: [337, 334, 338]

[EC 4.2.1.149 created 2014]

EC 4.2.1.150
Accepted name: short-chain-enoyl-CoA hydratase

Reaction: a short-chain (3S)-3-hydroxyacyl-CoA = a short-chain trans-2-enoyl-CoA + H2O
Other name(s): 3-hydroxybutyryl-CoA dehydratase; crotonase; crt (gene name)

Systematic name: short-chain-(3S)-3-hydroxyacyl-CoA hydro-lyase
Comments: The enzyme from the bacterium Clostridium acetobutylicum is part of the central fermentation path-

way and plays a key role in the production of both acids and solvents. It is specific for short, C4-C6,
chain length substrates and exhibits an extremely high turnover number for crotonyl-CoA. cf. EC
4.2.1.17, enoyl-CoA hydratase and EC 4.2.1.74, long-chain-enoyl-CoA hydratase.

References: [1357, 1358, 120]

[EC 4.2.1.150 created 2014]

EC 4.2.1.151
Accepted name: chorismate dehydratase

Reaction: chorismate = 3-[(1-carboxyvinyl)oxy]benzoate + H2O
Other name(s): MqnA

Systematic name: chorismate hydro-lyase (3-[(1-carboxyvinyl)oxy]benzoate-forming)
Comments: The enzyme, found in several bacterial species, is part of the futalosine pathway for menaquinone

biosynthesis.
References: [802]
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[EC 4.2.1.151 created 2014]

EC 4.2.1.152
Accepted name: hydroperoxy icosatetraenoate dehydratase

Reaction: a hydroperoxyicosatetraenoate = an oxoicosatetraenoate + H2O
Other name(s): epidermal lipoxygenase-3 (ambiguous); eLOX3 (ambiguous)

Systematic name: hydroperoxyicosatetraenoate hydro-lyase (oxoicosatetraenoate-forming)
Comments: Binds Fe2+. The mammalian enzymes accept a range of hydroperoxyicosatetraenoates (HPETE). The

human enzyme has highest activity with (12R)-HPETE, followed by (12S)-HPETE and (15R)-HPETE
with much lower efficiency. The murine enzyme has highest activity with (8R)-HPETE followed by
(8S)-HPETE. All HPETE isoforms are converted to the corresponding oxoicosatetraenoate forms
(KETE) [1429]. The enzymes also catalyse the reaction of EC 5.4.4.7, hydroperoxy icosatetraenoate
isomerase.

References: [1430, 1429, 1462]

[EC 4.2.1.152 created 2014]

EC 4.2.1.153
Accepted name: 3-methylfumaryl-CoA hydratase

Reaction: (S)-citramalyl-CoA = 3-methylfumaryl-CoA + H2O
Other name(s): Meh; mesaconyl-C4-CoA hydratase; mesaconyl-coenzyme A hydratase (ambiguous)

Systematic name: (S)-citramalyl-CoA hydro-lyase (3-methylfumaryl-CoA-forming)
Comments: The enzyme from the bacterium Chloroflexus aurantiacus is part of the 3-hydroxypropanoate cycle

for carbon assimilation.
References: [1438]

[EC 4.2.1.153 created 2014]

EC 4.2.1.154
Accepted name: tetracenomycin F2 cyclase

Reaction: tetracenomycin F2 = tetracenomycin F1 + H2O
Other name(s): tcmI (gene name)

Systematic name: tetracenomycin F2 hydro-lyase (tetracenomycin-F1-forming)
Comments: The enzyme is involved in biosynthesis of the anthracycline antibiotic tetracenomycin C by the bac-

terium Streptomyces glaucescens.
References: [1173, 1276]

[EC 4.2.1.154 created 2014]

EC 4.2.1.155
Accepted name: (methylthio)acryloyl-CoA hydratase

Reaction: 3-(methylsulfanyl)acryloyl-CoA + 2 H2O = acetaldehyde + methanethiol + CoA + CO2 (overall reac-
tion)
(1a) 3-(methylsulfanyl)acryloyl-CoA + H2O = 3-hydroxy-3-(methylsulfanyl)propanoyl-CoA
(1b) 3-hydroxy-3-(methylsulfanyl)propanoyl-CoA = 3-oxopropanoyl-CoA + methanethiol
(1c) 3-oxopropanoyl-CoA + H2O = 3-oxopropanoate + CoA
(1d) 3-oxopropanoate = acetaldehyde + CO2

Other name(s): DmdD
Systematic name: 3-(methylsulfanyl)prop-2-enoyl-CoA hydro-lyase (acetaldehyde-forming)

Comments: The enzyme is involved in the degradation of 3-(dimethylsulfonio)propanoate, an osmolyte produced
by marine phytoplankton. Isolated from the bacterium Ruegeria pomeroyi.

References: [1259]
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[EC 4.2.1.155 created 2015]

EC 4.2.1.156
Accepted name: L-talarate dehydratase

Reaction: L-altarate = 5-dehydro-4-deoxy-D-glucarate + H2O
Other name(s): L-talarate hydro-lyase

Systematic name: L-altarate hydro-lyase (5-dehydro-4-deoxy-D-glucarate-forming)
Comments: Requires Mg2+. The enzyme, isolated from the bacteria Salmonella typhimurium and Polaromonas

sp. JS666, also has activity with galactarate (cf. EC 4.2.1.42, galactarate dehydratase).
References: [1408]

[EC 4.2.1.156 created 2015]

EC 4.2.1.157
Accepted name: (R)-2-hydroxyisocaproyl-CoA dehydratase

Reaction: (R)-2-hydroxy-4-methylpentanoyl-CoA = 4-methylpent-2-enoyl-CoA + H2O
Other name(s): 2-hydroxyisocaproyl-CoA dehydratase; HadBC

Systematic name: (R)-2-hydroxy-4-methylpentanoyl-CoA hydro-lyase
Comments: The enzyme, isolated from the bacterium Peptoclostridium difficile, is involved in the reductive

branch of L-leucine fermentation. It catalyses an α/β-dehydration, which depends on the reductive
formation of ketyl radicals on the substrate generated by injection of a single electron from the ATP-
dependent activator protein HadI.

References: [652, 664]

[EC 4.2.1.157 created 2015]

EC 4.2.1.158
Accepted name: galactarate dehydratase (D-threo-forming)

Reaction: galactarate = (2S,3R)-2,3-dihydroxy-5-oxohexanedioate + H2O
Systematic name: galactarate hydro-lyase (3-deoxy-D-threo-hex-2-ulosarate-forming)

Comments: The enzyme has been characterized from the bacterium Oceanobacillus iheyensis. cf. EC 4.2.1.42,
galactarate dehydratase.

References: [1045]

[EC 4.2.1.158 created 2015]

EC 4.2.1.159
Accepted name: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose 2,3-dehydratase

Reaction: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose = dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose +
H2O (overall reaction)
(1a) dTDP-4-dehydro-6-deoxy-α-D-glucopyranose = dTDP-2,6-dideoxy-D-glycero-hex-2-enos-4-
ulose + H2O
(1b) dTDP-2,6-dideoxy-D-glycero-hex-2-enos-4-ulose = dTDP-3,4-didehydro-2,6-dideoxy-α-D-
glucose (spontaneous)

Other name(s): jadO (gene name); evaA (gene name); megBVI (gene name); eryBV (gene name); mtmV (gene name);
oleV (gene name); spnO (gene name); TDP-4-keto-6-deoxy-D-glucose 2,3-dehydratase; dTDP-
4-dehydro-6-deoxy-α-D-glucopyranose hydro-lyase (dTDP-(2R,6S)-2,4-dihydroxy-6-methyl-2,6-
dihydropyran-3-one-forming)

Systematic name: dTDP-4-dehydro-6-deoxy-α-D-glucopyranose hydro-lyase (dTDP-2,6-dideoxy-D-glycero-hex-2-enos-
4-ulose-forming)

Comments: The enzyme participates in the biosynthesis of several deoxysugars, including β-L-4-epi-vancosamine,
α-L-megosamine, L- and D-olivose, D-oliose, D-mycarose, forosamine and β-L-digitoxose. In vitro the
intermediate can undergo a spontaneous decomposition to maltol [206, 421].

References: [6, 206, 421, 1344, 532, 1315]
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[EC 4.2.1.159 created 2015]

EC 4.2.1.160
Accepted name: 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one isomerase/dehydratase

Reaction: 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one = 7,8-dihydroneopterin 3′-phosphate
+ H2O

Systematic name: 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one cyclohydrolase
Comments: The enzyme participates in a folate biosynthesis pathway in Chlamydia.
References: [3]

[EC 4.2.1.160 created 2015]

EC 4.2.1.161
Accepted name: bisanhydrobacterioruberin hydratase

Reaction: bacterioruberin = bisanhydrobacterioruberin + 2 H2O (overall reaction)
(1a) bacterioruberin = monoanhydrobacterioruberin + H2O
(1b) monoanhydrobacterioruberin = bisanhydrobacterioruberin + H2O

Other name(s): CruF; C50 carotenoid 2′′,3′′-hydratase
Systematic name: bacterioruberin hydro-lyase (bisanhydrobacterioruberin-forming)

Comments: The enzyme, isolated from the archaeon Haloarcula japonica, is involved in the biosynthesis of the
C50 carotenoid bacterioruberin. In this pathway it catalyses the introduction of hydroxyl groups to
C3′′ and C3′′′ of bisanhydrobacterioruberin to generate bacterioruberin.

References: [1403]

[EC 4.2.1.161 created 2015]

EC 4.2.1.162
Accepted name: 6-deoxy-6-sulfo-D-gluconate dehydratase

Reaction: 6-deoxy-6-sulfo-D-gluconate = 2-dehydro-3,6-dideoxy-6-sulfo-D-gluconate + H2O
Other name(s): SG dehydratase

Systematic name: 6-deoxy-6-sulfo-D-gluconate hydro-lyase (2-dehydro-3,6-dideoxy-6-sulfo-D-gluconate-forming)
Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfo-

quinovose degradation pathway.
References: [356]

[EC 4.2.1.162 created 2016]

EC 4.2.1.163
Accepted name: 2-oxo-hept-4-ene-1,7-dioate hydratase

Reaction: (4Z)-2-oxohept-4-enedioate + H2O = (4S)-4-hydroxy-2-oxoheptanedioate
Other name(s): HpcG

Systematic name: (4S)-4-hydroxy-2-oxoheptanedioate hydro-lyase [(4Z)-2-oxohept-4-enedioate-forming]
Comments: Requires Mg2+ [570]. Part of a 4-hydroxyphenylacetate degradation pathway in Escherichia coli C.
References: [154, 570]

[EC 4.2.1.163 created 2016]

EC 4.2.1.164
Accepted name: dTDP-4-dehydro-2,6-dideoxy-D-glucose 3-dehydratase

Reaction: dTDP-4-dehydro-2,6-dideoxy-α-D-glucose + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ =
dTDP-4-dehydro-2,3,6-trideoxy-α-D-hexopyranose + H2O + 2 oxidized ferredoxin [iron-sulfur] clus-
ter
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Other name(s): SpnQ; TDP-4-keto-2,6-dideoxy-D-glucose 3-dehydrase
Systematic name: dTDP-4-dehydro-2,6-dideoxy-α-D-glucose hydro-lyase (dTDP-2,3,6-trideoxy-α-D-hexopyranose-

forming)
Comments: A pyridoxal 5′-phosphate protein. The enzyme, isolated from the bacterium Saccharopolyspora

spinosa, participates in the biosynthesis of forosamine. Requires ferredoxin/ferredoxin reductase or
flavodoxin/flavodoxin reductase [531].

References: [531, 532]

[EC 4.2.1.164 created 2016]

EC 4.2.1.165
Accepted name: chlorophyllide a 31-hydratase

Reaction: (1) 3-devinyl-3-(1-hydroxyethyl)chlorophyllide a = chlorophyllide a + H2O
(2) 3-deacetyl-3-(1-hydroxyethyl)bacteriochlorophyllide a = 3-deacetyl-3-vinylbacteriochlorophyllide
a + H2O

Other name(s): bchF (gene name)
Systematic name: chlorophyllide-a 31-hydro-lyase

Comments: The enzyme, together with EC 1.3.7.15, chlorophyllide-a reductase, and EC 1.1.1.396,
bacteriochlorophyllide-a dehydrogenase, is involved in the conversion of chlorophyllide a to bacte-
riochlorophyllide a. The enzymes can act in multiple orders, resulting in the formation of different
intermediates, but the final product of the cumulative action of the three enzymes is always bacteri-
ochlorophyllide a. The enzyme catalyses the hydration of a vinyl group on ring A, converting it to a
hydroxyethyl group.

References: [1028, 152, 728, 478]

[EC 4.2.1.165 created 2016]

EC 4.2.1.166
Accepted name: phosphinomethylmalate isomerase

Reaction: 2-(hydroxyphosphonoylmethyl)malate = 3-(hydroxyphosphonoylmethyl)malate (overall reaction)
(1a) 2-(hydroxyphosphonoylmethyl)malate = 2-(phosphinatomethylidene)butanedioate + H2O
(1b) 2-(phosphinatomethylidene)butanedioate + H2O = 3-(hydroxyphosphonoylmethyl)malate

Other name(s): pmi (gene name)
Systematic name: 2-(phosphinomethyl)malate hydro-lyase [3-(phosphinomethyl)malate-forming]

Comments: The enzyme, characterized from the bacterium Streptomyces viridochromogenes, is involved in
bialaphos biosynthesis. The enzyme from the bacterium Kitasatospora phosalacinea participates in
the biosynthesis of the related compound phosalacine. Both compounds contain the nonproteinogenic
amino acid L-phosphinothricin that acts as a potent inhibitor of EC 6.3.1.2, glutamine synthetase. The
similar enzyme EC 4.2.1.3, aconitate hydratase, cannot catalyse this reaction.

References: [498]

[EC 4.2.1.166 created 2016]

EC 4.2.1.167
Accepted name: (R)-2-hydroxyglutaryl-CoA dehydratase

Reaction: (R)-2-hydroxyglutaryl-CoA = (E)-glutaconyl-CoA + H2O
Other name(s): hgdAB (gene names)

Systematic name: (R)-2-hydroxyglutaryl-CoA hydro-lyase ((E)-glutaconyl-CoA-forming)
Comments: The enzymes from the bacteria Acidaminococcus fermentans and Clostridium symbiosum are involved

in the fermentation of L-glutamate. The enzyme contains [4F-4S] clusters, FMNH2 and riboflavin. It
must be activated by an activator protein. Once activated, it can catalyse many turnovers.

References: [145, 1155, 901, 471, 777, 978]
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[EC 4.2.1.167 created 2016]

EC 4.2.1.168
Accepted name: GDP-4-dehydro-6-deoxy-α-D-mannose 3-dehydratase

Reaction: GDP-4-dehydro-α-D-rhamnose + L-glutamate = GDP-4-dehydro-3,6-dideoxy-α-D-mannose + 2-
oxoglutarate + NH3 (overall reaction)
(1a) GDP-4-dehydro-α-D-rhamnose + L-glutamate = 2-GDP-[(2S,3S,6R)-5-amino-6-methyl-3,6-
dihydro-2H-pyran-3-ol] + 2-oxoglutarate + H2O
(1b) 2-GDP-[(2S,3S,6R)-5-amino-6-methyl-3,6-dihydro-2H-pyran-3-ol] = 2-GDP-[(2S,3S,6R)-5-
imino-6-methyloxan-3-ol] (spontaneous)
(1c) GDP-2-[(2S,3S,6R)-5-imino-6-methyloxan-3-ol] + H2O = GDP-4-dehydro-3,6-dideoxy-α-D-
mannose + NH3 (spontaneous)

Other name(s): colD (gene name)
Systematic name: GDP-4-dehydro-α-D-rhamnose 3-hydro-lyase

Comments: This enzyme, involved in β-L-colitose biosynthesis, is a unique vitamin-B6-dependent enzyme. In
the first step of catalysis, the bound pyridoxal phosphate (PLP) cafactor is transaminated to the pyri-
doxamine 5′-phosphate (PMP) form of vitamin B6, using L-glutamate as the amino group donor. The
PMP cofactor then forms a Schiff base with the sugar substrate and the resulting adduct undergoes a
1,4-dehydration to eliminate the 3-OH group. Hydrolysis of the product from the enzyme restores the
PLP cofactor and results in the release of an unstable enamine intermediate. This intermediate tau-
tomerizes to form an imine form, which hydrolyses spontaneously, releasing ammonia and forming
the final product.

References: [11, 233]

[EC 4.2.1.168 created 2016]

EC 4.2.1.169
Accepted name: 3-vinyl bacteriochlorophyllide d 31-hydratase

Reaction: a 3-(1-hydroxyethyl) bacteriochlorophyllide d = a 3-vinyl bacteriochlorophyllide d + H2O
Other name(s): bchV (gene name)

Systematic name: 3-vinylbacteriochlorophyllide-d 31-hydro-lyase
Comments: This enzyme, found in green sulfur bacteria (Chlorobiaceae) and green flimentous bacteria (Chlo-

roflexaceae), is involved in the biosynthesis of bacteriochlorophylls c, d and e. It acts in the direction
of hydration, and the hydroxyl group that is formed is essential for the ability of the resulting bacteri-
ochlorophylls to self-aggregate in the chlorosomes, unique light-harvesting antenna structures found
in these organisms. The product is formed preferentially in the (R)-configuration.

References: [382, 478]

[EC 4.2.1.169 created 2016]

EC 4.2.1.170
Accepted name: 2-(ω-methylthio)alkylmalate dehydratase

Reaction: (1) a 2-[(ω-methylsulfanyl)alkyl]malate = a 2-[(ω-methylsulfanyl)alkyl]maleate + H2O
(2) a 3-[(ω-methylsulfanyl)alkyl]malate = a 2-[(ω-methylsulfanyl)alkyl]maleate + H2O

Other name(s): IPMI (gene name); 2-[(ω-methylthio)alkyl]malate hydro-lyase (2-[(ω-methylthio)alkyl]maleate-
forming)

Systematic name: 2-[(ω-methylsulfanyl)alkyl]malate hydro-lyase (2-[(ω-methylsulfanyl)alkyl]maleate-forming)
Comments: The enzyme, characterized from the plant Arabidopsis thaliana, is involved in the L-methionine side-

chain elongation pathway, forming substrates for the biosynthesis of aliphatic glucosinolates. By
catalysing a dehydration of a 2-[(ω-methylsulfanyl)alkyl]maleate, followed by a hydration at a dif-
ferent position, the enzyme achieves the isomerization of its substrates. The enzyme is a heterodimer
comprising a large and a small subunits. The large subunit can also bind to an alternative small sub-
unit, forming EC 4.2.1.33, 3-isopropylmalate dehydratase, which participates in L-leucine biosynthe-
sis.

References: [666]
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[EC 4.2.1.170 created 2016]

EC 4.2.1.171
Accepted name: cis-L-3-hydroxyproline dehydratase

Reaction: cis-3-hydroxy-L-proline = 1-pyrroline-2-carboxylate + H2O
Other name(s): cis-L-3-hydroxyproline hydro-lyase; c3LHypD

Systematic name: cis-3-hydroxy-L-proline hydro-lyase (1-pyrroline-2-carboxylate-forming)
References: [1450]

[EC 4.2.1.171 created 2017]

EC 4.2.1.172
Accepted name: trans-4-hydroxy-L-proline dehydratase

Reaction: trans-4-hydroxy-L-proline = (S)-1-pyrroline-5-carboxylate + H2O
Systematic name: trans-4-hydroxy-L-proline hydro-lyase

Comments: The enzyme has been characterized from the bacterium Peptoclostridium difficile. The active form
contains a glycyl radical that is generated by a dedicated activating enzyme via chemistry involving
S-adenosyl-L-methionine (SAM) and a [4Fe-4S] cluster.

References: [742]

[EC 4.2.1.172 created 2017]

EC 4.2.1.173
Accepted name: ent-8α-hydroxylabd-13-en-15-yl diphosphate synthase

Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = geranylgeranyl diphosphate + H2O
Other name(s): SmCPS4

Systematic name: geranylgeranyl-diphosphate hydro-lyase (ent-8α-hydroxylabd-13-en-15-yl diphosphate forming)
Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
References: [260]

[EC 4.2.1.173 created 2017]

EC 4.2.1.174
Accepted name: peregrinol diphosphate synthase

Reaction: peregrinol diphosphate = geranylgeranyl diphosphate + H2O
Other name(s): MvCPS1

Systematic name: geranylgeranyl-diphosphate hydro-lyase (peregrinol diphosphate forming)
Comments: Isolated from the plant Marrubium vulgare (white horehound). Involved in marrubiin biosynthesis.
References: [1441]

[EC 4.2.1.174 created 2017]

EC 4.2.2 Acting on polysaccharides

EC 4.2.2.1
Accepted name: hyaluronate lyase

Reaction: Cleaves hyaluronate chains at a β-D-GlcNAc-(1→4)-β-D-GlcA bond, ultimately breaking the polysac-
charide down to 3-(4-deoxy-β-D-gluc-4-enuronosyl)-N-acetyl-D-glucosamine.

Other name(s): hyaluronidase (ambiguous); glucuronoglycosaminoglycan lyase (ambiguous); spreading factor; muci-
nase (ambiguous)

Systematic name: hyaluronate lyase
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Comments: The enzyme catalyses the degradation of hyaluronan by a β-elimination reaction. Also acts
on chondroitin. The product is more systematically known as 3-(4-deoxy-α-L-threo-hex-4-
enopyranosyluronic acid)-2-acetamido-2-deoxy-D-glucose

References: [764, 868, 889]

[EC 4.2.2.1 created 1961 as EC 4.2.99.1, transferred 1972 to EC 4.2.2.1, modified 2001]

EC 4.2.2.2
Accepted name: pectate lyase

Reaction: Eliminative cleavage of (1→4)-α-D-galacturonan to give oligosaccharides with 4-deoxy-α-D-galact-
4-enuronosyl groups at their non-reducing ends

Other name(s): polygalacturonic transeliminase; pectic acid transeliminase; polygalacturonate lyase; endopectin
methyltranseliminase; pectate transeliminase; endogalacturonate transeliminase; pectic acid
lyase; pectic lyase; α-1,4-D-endopolygalacturonic acid lyase; PGA lyase; PPase-N; endo-α-1,4-
polygalacturonic acid lyase; polygalacturonic acid lyase; pectin trans-eliminase; Polygalacturonic
acid trans-eliminase

Systematic name: (1→4)-α-D-galacturonan lyase
Comments: Favours pectate, the anion, over pectin, the methyl ester (which is the preferred substrate of EC

4.2.2.10, pectin lyase).
References: [13, 328, 327, 915, 927, 837]

[EC 4.2.2.2 created 1965 as EC 4.2.99.3, transferred 1972 to EC 4.2.2.2, modified 2002]

EC 4.2.2.3
Accepted name: mannuronate-specific alginate lyase

Reaction: Eliminative cleavage of alginate to give oligosaccharides with 4-deoxy-α-L-erythro-hex-4-enuronosyl
groups at their non-reducing ends and β-D-mannuronate at their reducing end.

Other name(s): alginate lyase I; alginate lyase; alginase I; alginase II; alginase; poly(β-D-1,4-mannuronide) lyase;
poly(β-D-mannuronate) lyase; aly (gene name) (ambiguous); poly[(1→4)-β-D-mannuronide] lyase

Systematic name: alginate β-D-mannuronate—uronate lyase
Comments: The enzyme catalyses the degradation of alginate by a β-elimination reaction. It cleaves the (1→4)

bond between β-D-mannuronate and either α-L-guluronate or β-D-mannuronate, generating oligosac-
charides with 4-deoxy-α-L-erythro-hex-4-enuronosyl groups at their non-reducing ends and β-D-
mannuronate at the reducing end. Depending on the composition of the substrate, the enzyme pro-
duces oligosaccharides ranging from two to four residues, with preference for shorter products. cf. EC
4.2.2.11, guluronate-specific alginate lyase.

References: [276, 916, 1020]

[EC 4.2.2.3 created 1965 as EC 4.2.99.4, transferred 1972 to EC 4.2.2.3, modified 1990, modified 2015]

[4.2.2.4 Transferred entry. chondroitin ABC lyase. Now known to comprise two enzymes: EC 4.2.2.20, chondroitin-sulfate-
ABC endolyase and EC 4.2.2.21, chondroitin-sulfate-ABC exolyase]

[EC 4.2.2.4 created 1972 (EC 4.2.99.6 created 1965, part incorporated 1976), deleted 2006]

EC 4.2.2.5
Accepted name: chondroitin AC lyase

Reaction: Eliminative degradation of polysaccharides containing 1,4-β-D-hexosaminyl and 1,3-β-D-
glucuronosyl linkages to disaccharides containing 4-deoxy-β-D-gluc-4-enuronosyl groups

Other name(s): chondroitinase (ambiguous); chondroitin sulfate lyase; chondroitin AC eliminase; chondroitinase AC;
ChnAC

Systematic name: chondroitin AC lyase
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Comments: Acts on chondroitin 4-sulfate and chondroitin 6-sulfate, but less well on hyaluronate. In general,
chondroitin sulfate (CS) and dermatan sulfate (DS) chains comprise a linkage region, a chain cap and
a repeat region. The repeat region of CS is a repeating disaccharide of glucuronic acid (GlcA) and
N-acetylgalactosamine (GalNAc) [-4)GlcA(β1-3)GalNAc(β1-]n, which may be O-sulfated on the C-
4 and/or C-6 of GalNAc and C-2 of GlcA. GlcA residues of CS may be epimerized to iduronic acid
(IdoA) forming the repeating disaccharide [-4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentra-
tions and locations of sulfate-ester substituents vary with glucosaminoglycan source [548].

References: [917, 1011, 358, 548]

[EC 4.2.2.5 created 1972 (EC 4.2.99.6 created 1965, part incorporated 1976)]

EC 4.2.2.6
Accepted name: oligogalacturonide lyase

Reaction: 4-(4-deoxy-α-D-galact-4-enuronosyl)-D-galacturonate = 2 5-dehydro-4-deoxy-D-glucuronate
Other name(s): oligogalacturonate lyase; unsaturated oligogalacturonate transeliminase; OGTE

Systematic name: oligogalacturonide lyase
Comments: Also catalyses eliminative removal of unsaturated terminal residues from oligosaccharides of D-

galacturonate.
References: [890]

[EC 4.2.2.6 created 1972, modified 2010]

EC 4.2.2.7
Accepted name: heparin lyase

Reaction: Eliminative cleavage of polysaccharides containing (1→4)-linked D-glucuronate or L-iduronate
residues and (1→4)-α-linked 2-sulfoamino-2-deoxy-6-sulfo-D-glucose residues to give oligosaccha-
rides with terminal 4-deoxy-α-D-gluc-4-enuronosyl groups at their non-reducing ends

Other name(s): heparin eliminase; heparinase
Systematic name: heparin lyase

References: [541]

[EC 4.2.2.7 created 1972]

EC 4.2.2.8
Accepted name: heparin-sulfate lyase

Reaction: Elimination of sulfate; appears to act on linkages between N-acetyl-D-glucosamine and uronate. Prod-
uct is an unsaturated sugar.

Other name(s): heparin-sulfate eliminase; heparitin-sulfate lyase; heparitinase I; heparitinase II
Systematic name: heparin-sulfate lyase

Comments: Does not act on N,O-desulfated glucosamine or N-acetyl-O-sulfated glucosamine linkages.
References: [541]

[EC 4.2.2.8 created 1972]

EC 4.2.2.9
Accepted name: pectate disaccharide-lyase

Reaction: (1,4-α-D-galacturonosyl)n = (1,4-α-D-galacturonosyl)n−2 + 4-(4-deoxy-α-D-galact-4-enuronosyl)-D-
galacturonate

Other name(s): pectate exo-lyase; exopectic acid transeliminase; exopectate lyase; exopolygalacturonic acid-trans-
eliminase; PATE; exo-PATE; exo-PGL; exopolygalacturonate lyase (ambiguous); pelW (gene name);
pelX (gene name)

Systematic name: (1→4)-α-D-galacturonan reducing-end-disaccharide-lyase
Comments: The enzyme catalyses the eliminative cleavage of an unsaturated disaccharide from the reducing end

of homogalacturonan (the backbone of smooth regions of pectate, also known as de-esterified pectin).
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References: [797, 1175, 1174]

[EC 4.2.2.9 created 1972, modified 2002]

EC 4.2.2.10
Accepted name: pectin lyase

Reaction: Eliminative cleavage of (1→4)-α-D-galacturonan methyl ester to give oligosaccharides with 4-deoxy-
6-O-methyl-α-D-galact-4-enuronosyl groups at their non-reducing ends

Other name(s): pectin trans-eliminase; endo-pectin lyase; polymethylgalacturonic transeliminase; pectin methyl-
transeliminase; pectolyase; PL; PNL; PMGL

Systematic name: (1→4)-6-O-methyl-α-D-galacturonan lyase
Comments: Favours pectin, the methyl ester, over pectate, the anion (which is the preferred substrate of EC

4.2.2.2, pectate lyase). Demethylation progressively slows its action; it can nevertheless cleave on
either side of a demethylated residue if the residue at the other end of the scissile bond is methylated.

References: [14, 837, 645, 904]

[EC 4.2.2.10 created 1972, modified 2002]

EC 4.2.2.11
Accepted name: guluronate-specific alginate lyase

Reaction: Eliminative cleavage of alginate to give oligosaccharides with 4-deoxy-α-L-erythro-hex-4-enuronosyl
groups at their non-reducing ends and α-L-guluronate at their reducing end.

Other name(s): alginase II; guluronate lyase; L-guluronan lyase; L-guluronate lyase; poly-α-L-guluronate lyase;
polyguluronate-specific alginate lyase; poly(α-L-1,4-guluronide) exo-lyase; poly(α-L-guluronate)
lyase; poly[(1→4)-α-L-guluronide] exo-lyase

Systematic name: alginate α-L-guluronate—uronate lyase
Comments: The enzyme catalyses the degradation of alginate by a β-elimination reaction. It cleaves the (1→4)

bond between α-L-guluronate and either α-L-guluronate or β-D-mannuronate, generating oligosac-
charides with 4-deoxy-α-L-erythro-hex-4-enuronosyl groups at their non-reducing ends and α-L-
guluronate at the reducing end. Depending on the composition of the substrate, the enzyme pro-
duces oligosaccharides ranging from two to six residues, with preference for shorter products. cf. EC
4.2.2.3, mannuronate-specific alginate lyase.

References: [119, 277]

[EC 4.2.2.11 created 1990, modified 2015]

EC 4.2.2.12
Accepted name: xanthan lyase

Reaction: Eliminative cleavage of the terminal β-D-mannosyl-(1→4)-β-D-glucuronosyl linkage of the side-chain
of the polysaccharide xanthan, leaving a 4-deoxy-α-L-threo-hex-4-enuronosyl group at the terminus
of the side-chain

Systematic name: xanthan lyase
References: [1234]

[EC 4.2.2.12 created 1990]

EC 4.2.2.13
Accepted name: exo-(1→4)-α-D-glucan lyase

Reaction: linear α-glucan = (n-1) 1,5-anhydro-D-fructose + D-glucose
Other name(s): α-(1→4)-glucan 1,5-anhydro-D-fructose eliminase; α-1,4-glucan exo-lyase; α-1,4-glucan lyase;

GLase
Systematic name: (1→4)-α-D-glucan exo-4-lyase (1,5-anhydro-D-fructose-forming)
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Comments: The enzyme catalyses the sequential degradation of (1→4)-α-D-glucans from the non-reducing end
with the release of 1,5-anhydro-D-fructose. Thus, for an α-glucan containing n (1→4)-linked glucose
units, the final products are 1 glucose plus (n-1) 1,5-anhydro-D-fructose. Maltose, maltosaccharides
and amylose are all completely degraded. It does not degrade (1→6)-α-glucosidic bonds and thus the
degradation of a branched glucan, such as amylopectin or glycogen, will result in the formation of
1,5-anhydro-D-fructose plus a limit dextrin. Other enzymes involved in the anhydrofructose pathway
are EC 4.2.1.110 (aldos-2-ulose dehydratase), EC 4.2.1.111 (1,5-anhydro-D-fructose dehydratase) and
EC 5.3.2.7 (ascopyrone tautomerase).

References: [1425, 1419, 1421, 1423, 1422, 735, 736]

[EC 4.2.2.13 created 1999]

EC 4.2.2.14
Accepted name: glucuronan lyase

Reaction: Eliminative cleavage of (1→4)-β-D-glucuronans to give oligosaccharides with 4-deoxy-β-D-gluc-4-
enuronosyl groups at their non-reducing ends. Complete degradation of glucuronans results in the
formation of tetrasaccharides.

Other name(s): (1,4)-β-D-glucuronan lyase
Systematic name: (1→4)-β-D-glucuronan lyase

References: [869]

[EC 4.2.2.14 created 2000]

EC 4.2.2.15
Accepted name: anhydrosialidase

Reaction: Elimination of α-sialyl groups in N-acetylneuraminic acid glycosides, releasing 2,7-anhydro-α-N-
acetylneuraminate

Other name(s): anhydroneuraminidase; sialglycoconjugate N-acylneuraminylhydrolase (2,7-cyclizing); sialidase L
Systematic name: glycoconjugate sialyl-lyase (2,7-cyclizing)

Comments: Also acts on N-glycolylneuraminate glycosides. cf. EC 3.2.1.18 (exo-α-sialidase) and EC 3.2.1.129
(endo-α-sialidase).

References: [751]

[EC 4.2.2.15 created 1992 as EC 3.2.1.138, transferred 2003 to EC 4.2.2.15]

EC 4.2.2.16
Accepted name: levan fructotransferase (DFA-IV-forming)

Reaction: Produces di-β-D-fructofuranose 2,6′:2′,6-dianhydride (DFA IV) by successively eliminating the di-
minishing (2→6)-β-D-fructan (levan) chain from the terminal D-fructosyl-D-fructosyl disaccharide

Other name(s): 2,6-β-D-fructan D-fructosyl-D-fructosyltransferase (forming di-β-D-fructofuranose 2,6′:2′,6-
dianhydride); levan fructotransferase; 2,6-β-D-fructan lyase (di-β-D-fructofuranose-2,6′:2′,6-
dianhydride-forming)

Systematic name: (2→6)-β-D-fructan lyase (di-β-D-fructofuranose-2,6′:2′,6-dianhydride-forming)
Comments: This enzyme, like EC 4.2.2.17 [inulin fructotransferase (DFA-I-forming)] and EC 4.2.2.18 [inulin

fructotransferase (DFA-III-forming)] eliminates the fructan chain from the terminal disaccharide leav-
ing a difructose dianhydride. These enzymes have long been known as fructotransferases, so this is
retained in the accepted name. Since the transfer is intramolecular, the reaction is an elimination and,
hence, the enzyme is a lyase, belonging in EC 4.

References: [1203, 579, 1101]

[EC 4.2.2.16 created 2004]

EC 4.2.2.17
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Accepted name: inulin fructotransferase (DFA-I-forming)
Reaction: Produces α-D-fructofuranose β-D-fructofuranose 1,2′:2,1′-dianhydride (DFA I) by successively elim-

inating the diminishing (2→1)-β-D-fructan (inulin) chain from the terminal D-fructosyl-D-fructosyl
disaccharide.

Other name(s): inulin fructotransferase (DFA-I-producing); inulin fructotransferase (depolymerizing,
difructofuranose-1,2′:2′,1-dianhydride-forming); inulin D-fructosyl-D-fructosyltransferase (1,2′:1′,2-
dianhydride-forming); inulin D-fructosyl-D-fructosyltransferase (forming α-D-fructofuranose β-D-
fructofuranose 1,2′:1′,2-dianhydride); 2,1-β-D-fructan lyase (α-D-fructofuranose-β-D-fructofuranose-
1,2′:2,1′-dianhydride-forming)

Systematic name: (2→1)-β-D-fructan lyase (α-D-fructofuranose-β-D-fructofuranose-1,2′:2,1′-dianhydride-forming)
Comments: This enzyme, like EC 4.2.2.16 [levan fructotransferase (DFA-IV-forming)] and EC 4.2.2.18 [inulin

fructotransferase (DFA-III-forming)] eliminates the fructan chain from the terminal disaccharide leav-
ing a difructose dianhydride. These enzymes have long been known as fructotransferases, so this is
retained in the accepted name. Since the transfer is intramolecular, the reaction is an elimination and,
hence, the enzyme is a lyase, belonging in EC 4.

References: [1163]

[EC 4.2.2.17 created 1992 as EC 2.4.1.200, transferred 2004 to EC 4.2.2.17]

EC 4.2.2.18
Accepted name: inulin fructotransferase (DFA-III-forming)

Reaction: Produces α-D-fructofuranose β-D-fructofuranose 1,2′:2,3′-dianhydride (DFA III) by successively
eliminating the diminishing (2→1)-β-D-fructan (inulin) chain from the terminal D-fructosyl-D-
fructosyl disaccharide.

Other name(s): inulin fructotransferase (DFA-III-producing); inulin fructotransferase (depolymerizing); inulase II; in-
ulinase II; inulin fructotransferase (depolymerizing, difructofuranose-1,2′:2,3′-dianhydride-forming);
inulin D-fructosyl-D-fructosyltransferase (1,2′:2,3′-dianhydride-forming); inulin D-fructosyl-D-
fructosyltransferase (forming α-D-fructofuranose β-D-fructofuranose 1,2′:2,3′-dianhydride); 2,1-β-
D-fructan lyase (α-D-fructofuranose-β-D-fructofuranose-1,2′:2,3′-dianhydride-forming)

Systematic name: (2→1)-β-D-fructan lyase (α-D-fructofuranose-β-D-fructofuranose-1,2′:2,3′-dianhydride-forming)
Comments: This enzyme, like EC 4.2.2.16 [levan fructotransferase (DFA-IV-forming)] and EC 4.2.2.17 [inulin

fructotransferase (DFA-I-forming)] eliminates the fructan chain from the terminal disaccharide leav-
ing a difructose dianhydride. These enzymes have long been known as fructotransferases, so this is
retained in the accepted name. Since the transfer is intramolecular, the reaction is an elimination and,
hence, the enzyme is a lyase, belonging in EC 4.

References: [1306, 1307]

[EC 4.2.2.18 created 1976 as EC 2.4.1.93, transferred 2004 to EC 4.2.2.18]

EC 4.2.2.19
Accepted name: chondroitin B lyase

Reaction: Eliminative cleavage of dermatan sulfate containing (1→4)-β-D-hexosaminyl and (1→3)-β-D-
glucurosonyl or (1→3)-α-L-iduronosyl linkages to disaccharides containing 4-deoxy-β-D-gluc-4-
enuronosyl groups to yield a 4,5-unsaturated dermatan-sulfate disaccharide (∆UA-GalNAc-4S).

Other name(s): chondroitinase B; ChonB; ChnB
Systematic name: chondroitin B lyase

Comments: This is the only lyase that is known to be specific for dermatan sulfate as substrate. The minimum
substrate length required for catalysis is a tetrasaccharide [1010]. In general, chondroitin sulfate (CS)
and dermatan sulfate (DS) chains comprise a linkage region, a chain cap and a repeat region. The re-
peat region of CS is a repeating disaccharide of glucuronic acid (GlcA) and N-acetylgalactosamine
(GalNAc) [-4)GlcA(β1-3)GalNAc(β1-]n, which may be O-sulfated on the C-4 and/or C-6 of GalNAc
and C-2 of GlcA. GlcA residues of CS may be epimerized to iduronic acid (IdoA) forming the re-
peating disaccharide [-4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentrations and locations of
sulfate-ester substituents vary with glucosaminoglycan source [967].

References: [441, 1010, 1011, 1237, 967, 1280, 870, 750, 544, 548]
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[EC 4.2.2.19 created 2005]

EC 4.2.2.20
Accepted name: chondroitin-sulfate-ABC endolyase

Reaction: Endolytic cleavage of (1→4)-β-galactosaminic bonds between N-acetylgalactosamine and either D-
glucuronic acid or L-iduronic acid to produce a mixture of ∆4-unsaturated oligosaccharides of differ-
ent sizes that are ultimately degraded to ∆4-unsaturated tetra- and disaccharides

Other name(s): chondroitinase (ambiguous); chondroitin ABC eliminase (ambiguous); chondroitinase ABC (ambigu-
ous); chondroitin ABC lyase (ambiguous); chondroitin sulfate ABC lyase (ambiguous); ChS ABC
lyase (ambiguous); chondroitin sulfate ABC endoeliminase; chondroitin sulfate ABC endolyase; ChS
ABC lyase I

Systematic name: chondroitin-sulfate-ABC endolyase
Comments: This enzyme degrades a variety of glycosaminoglycans of the chondroitin-sulfate- and dermatan-

sulfate type. Chondroitin sulfate, chondroitin-sulfate proteoglycan and dermatan sulfate are the best
substrates but the enzyme can also act on hyaluronan at a much lower rate. Keratan sulfate, heparan
sulfate and heparin are not substrates. In general, chondroitin sulfate (CS) and dermatan sulfate (DS)
chains comprise a linkage region, a chain cap and a repeat region. The repeat region of CS is a re-
peating disaccharide of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) [-4)GlcA(β1-
3)GalNAc(β1-]n, which may be O-sulfated on the C-4 and/or C-6 of GalNAc and C-2 of GlcA. GlcA
residues of CS may be epimerized to iduronic acid (IdoA) forming the repeating disaccharide [-
4)IdoA(α1-3)GalNAc(β1-]n of DS. Both the concentrations and locations of sulfate-ester substituents
vary with glucosaminoglycan source [548]. The related enzyme EC 4.2.2.21, chondroitin-sulfate-
ABC exolyase, has the same substrate specificity but removes disaccharide residues from the non-
reducing ends of both polymeric chondroitin sulfates and their oligosaccharide fragments produced by
EC 4.2.2.20 [459].

References: [1396, 1100, 1238, 459, 548]

[EC 4.2.2.20 created 2006 (EC 4.2.2.4 created 1972, part-incorporated 2006 (EC 4.2.99.6 created 1965, part incorporated 1976))]

EC 4.2.2.21
Accepted name: chondroitin-sulfate-ABC exolyase

Reaction: Exolytic removal of ∆4-unsaturated disaccharide residues from the non-reducing ends of both poly-
meric chondroitin/dermatan sulfates and their oligosaccharide fragments.

Other name(s): chondroitinase (ambiguous); chondroitin ABC eliminase (ambiguous); chondroitinase ABC (ambigu-
ous); chondroitin ABC lyase (ambiguous); chondroitin sulfate ABC lyase (ambiguous); ChS ABC
lyase (ambiguous); chondroitin sulfate ABC exoeliminase; chondroitin sulfate ABC exolyase; ChS
ABC lyase II

Systematic name: chondroitin-sulfate-ABC exolyase
Comments: This enzyme degrades a variety of glycosaminoglycans of the chondroitin-sulfate- and dermatan-

sulfate type. Chondroitin sulfate, chondroitin-sulfate proteoglycan and dermatan sulfate are the best
substrates but the enzyme can also act on hyaluronan at a much lower rate. Keratan sulfate, heparan
sulfate and heparin are not substrates. The related enzyme EC 4.2.2.20, chondroitin-sulfate-ABC
endolyase, has the same substrate specificity but produces a mixture of oligosaccharides of differ-
ent sizes that are ultimately degraded to tetra- and disaccharides [459]. Both enzymes act by the re-
moval of a relatively acidic C-5 proton of the uronic acid followed by the elimination of a 4-linked
hexosamine, resulting in the formation of an unsaturated C4—C5 bond on the hexuronic acid moiety
of the products [459, 1452].

References: [1396, 1100, 1238, 459, 548, 1452]

[EC 4.2.2.21 created 2006 (EC 4.2.2.4 created 1972, part-incorporated 2006 (EC 4.2.99.6 created 1965, part incorporated 1976)), modified
2010]

EC 4.2.2.22
Accepted name: pectate trisaccharide-lyase
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Reaction: eliminative cleavage of unsaturated trigalacturonate as the major product from the reducing end of
polygalacturonic acid/pectate

Other name(s): exopectate-lyase; pectate lyase A; PelA
Systematic name: (1→4)-α-D-galacturonan reducing-end-trisaccharide-lyase

Comments: Differs in specificity from EC 4.2.2.9, pectate disaccharide-lyase, as the predominant action is re-
moval of a trisaccharide rather than a disaccharide from the reducing end. Disaccharides and tetrasac-
charides may also be removed [1256].

References: [663, 1256, 86]

[EC 4.2.2.22 created 2007]

EC 4.2.2.23
Accepted name: rhamnogalacturonan endolyase

Reaction: Endotype eliminative cleavage of L-α-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronic
acid bonds of rhamnogalacturonan I domains in ramified hairy regions of pectin leaving L-
rhamnopyranose at the reducing end and 4-deoxy-4,5-unsaturated D-galactopyranosyluronic acid at
the non-reducing end.

Other name(s): rhamnogalacturonase B; α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronide lyase; Rgase
B; rhamnogalacturonan α-L-rhamnopyranosyl-(1,4)-α-D-galactopyranosyluronide lyase; RG-lyase;
YesW; RGL4; Rgl11A; Rgl11Y; RhiE

Systematic name: α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronate endolyase
Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Bacillus subtilis strain 168

and Aspergillus aculeatus.
References: [907, 49, 906, 611, 719, 969, 949, 586]

[EC 4.2.2.23 created 2011]

EC 4.2.2.24
Accepted name: rhamnogalacturonan exolyase

Reaction: Exotype eliminative cleavage of α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronic acid
bonds of rhamnogalacturonan I oligosaccharides containing α-L-rhamnopyranose at the reducing
end and 4-deoxy-4,5-unsaturated D-galactopyranosyluronic acid at the non-reducing end. The prod-
ucts are the disaccharide 2-O-(4-deoxy-β-L-threo-hex-4-enopyranuronosyl)-α-L-rhamnopyranose
and the shortened rhamnogalacturonan oligosaccharide containing one 4-deoxy-4,5-unsaturated D-
galactopyranosyluronic acid at the non-reducing end.

Other name(s): YesX
Systematic name: α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronate exolyase

Comments: The enzyme is part of the degradation system for rhamnogalacturonan I in Bacillus subtilis strain 168.
References: [948, 947]

[EC 4.2.2.24 created 2011]

EC 4.2.2.25
Accepted name: gellan lyase

Reaction: Eliminative cleavage of β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyluronate bonds of gellan back-
bone releasing tetrasaccharides containing a 4-deoxy-4,5-unsaturated D-glucopyranosyluronic acid
at the non-reducing end. The tetrasaccharide produced from deacetylated gellan is β-D-4-deoxy-∆4-
GlcAp-(1→4)-β-D-Glcp-(1→4)-α-L-Rhap-(1→3)-β-D-Glcp.

Systematic name: gellan β-D-glucopyranosyl-(1→4)-D-glucopyranosyluronate lyase
Comments: The enzyme is highly specific to gellan, especially deacetylated gellan.
References: [482, 484, 882]

[EC 4.2.2.25 created 2011]
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EC 4.2.2.26
Accepted name: oligo-alginate lyase

Reaction: Cleavage of poly(4-deoxy-α-L-erythro-hexopyranuronoside) oligosaccharides with 4-deoxy-α-L-
erythro-hex-4-enopyranuronosyl groups at their non-reducing ends into 4-deoxy-α-L-erythro-hex-
4-enopyranuronate monosaccharides.

Other name(s): aly (gene name) (ambiguous); oalS17 (gene name); oligoalginate lyase; exo-oligoalginate lyase
Systematic name: alginate oligosaccharide 4-deoxy-α-L-erythro-hex-4-enopyranuronate-(1→4)-hexananopyranuronate

lyase
Comments: The enzyme degrades unsaturated oligosaccharides produced by the action of alginate lyases (EC

4.2.2.3 and EC 4.2.2.11) on alginate, by repeatedly removing the unsaturated residue from the non-
reducing end until only unsaturated monosaccharides are left. The enzyme catalyses a β-elimination
reaction, generating a new unsaturated non-reducing end after removal of the pre-existing one.

References: [483, 651, 577, 1343]

[EC 4.2.2.26 created 2015]

EC 4.2.3 Acting on phosphates

EC 4.2.3.1
Accepted name: threonine synthase

Reaction: O-phospho-L-homoserine + H2O = L-threonine + phosphate
Other name(s): threonine synthetase; O-phospho-L-homoserine phospho-lyase (adding water)

Systematic name: O-phospho-L-homoserine phosphate-lyase (adding water; L-threonine-forming)
Comments: A pyridoxal-phosphate protein.
References: [366]

[EC 4.2.3.1 created 1961 as EC 4.2.99.2, transferred 2000 to EC 4.2.3.1]

EC 4.2.3.2
Accepted name: ethanolamine-phosphate phospho-lyase

Reaction: ethanolamine phosphate + H2O = acetaldehyde + NH3 + phosphate
Other name(s): O-phosphoethanolamine-phospholyase; amino alcohol O-phosphate phospholyase; O-

phosphorylethanol-amine phospho-lyase; ethanolamine-phosphate phospho-lyase (deaminating)
Systematic name: ethanolamine-phosphate phosphate-lyase (deaminating; acetaldehyde-forming)

Comments: A pyridoxal-phosphate protein. Also acts on D(or L)-1-aminopropan-2-ol O-phosphate.
References: [368, 603]

[EC 4.2.3.2 created 1972 as EC 4.2.99.7, transferred 2000 to EC 4.2.3.2]

EC 4.2.3.3
Accepted name: methylglyoxal synthase

Reaction: glycerone phosphate = 2-oxopropanal + phosphate
Other name(s): methylglyoxal synthetase; glycerone-phosphate phospho-lyase

Systematic name: glycerone-phosphate phosphate-lyase (methylglyoxal-forming)
Comments: Does not act on D-glyceraldehyde 3-phosphate.
References: [238, 533, 1057]

[EC 4.2.3.3 created 1972 as EC 4.2.99.11, transferred 2000 to EC 4.2.3.3]

EC 4.2.3.4
Accepted name: 3-dehydroquinate synthase

Reaction: 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate = 3-dehydroquinate + phosphate
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Other name(s): 5-dehydroquinate synthase; 5-dehydroquinic acid synthetase; dehydroquinate synthase; 3-
dehydroquinate synthetase; 3-deoxy-arabino-heptulosonate-7-phosphate phosphate-lyase (cyclizing);
3-deoxy-arabino-heptulonate-7-phosphate phosphate-lyase (cyclizing); 3-deoxy-arabino-heptulonate-
7-phosphate phosphate-lyase (cyclizing; 3-dehydroquinate-forming)

Systematic name: 3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate phosphate-lyase (cyclizing; 3-dehydroquinate-
forming)

Comments: Requires Co2+ and bound NAD+. The hydrogen atoms on C-7 of the substrate are retained on C-2 of
the product.

References: [1090, 1206, 83, 185]

[EC 4.2.3.4 created 1978 as EC 4.6.1.3, transferred 2000 to EC 4.2.3.4, modified 2002]

EC 4.2.3.5
Accepted name: chorismate synthase

Reaction: 5-O-(1-carboxyvinyl)-3-phosphoshikimate = chorismate + phosphate
Other name(s): 5-O-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase

Systematic name: 5-O-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase (chorismate-forming)
Comments: Requires FMN. The reaction goes via a radical mechanism that involves reduced FMN and its

semiquinone (FMNH·). Shikimate is numbered so that the double-bond is between C-1 and C-2, but
some earlier papers numbered the ring in the reverse direction.

References: [393, 891, 1362, 111, 112, 965]

[EC 4.2.3.5 created 1978 as EC 4.6.1.4, modified 1983, transferred 2000 to EC 4.2.3.5, modified 2002]

EC 4.2.3.6
Accepted name: trichodiene synthase

Reaction: (2E,6E)-farnesyl diphosphate = trichodiene + diphosphate
Other name(s): trichodiene synthetase; sesquiterpene cyclase; trans,trans-farnesyl-diphosphate sesquiterpenoid-lyase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, trichodiene-forming)
References: [529, 527, 1096]

[EC 4.2.3.6 created 1989 as EC 4.1.99.6, transferred 2000 to EC 4.2.3.6]

EC 4.2.3.7
Accepted name: pentalenene synthase

Reaction: (2E,6E)-farnesyl diphosphate = pentalenene + diphosphate
Other name(s): pentalenene synthetase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, pentalenene-forming)
Comments: Isolated from Streptomyces avermitilis. The enzyme is involved in the biosynthesis of pentalenolac-

tone and related antibiotics. The 9si hydrogen of farnesyl diphosphate undergoes a 1,2-hydride shift
where it becomes the 1α hydrogen of pentalenene.

References: [166, 175, 171, 167, 740, 1468]

[EC 4.2.3.7 created 1989 as EC 4.6.1.5, transferred 2000 to EC 4.2.3.7]

EC 4.2.3.8
Accepted name: casbene synthase

Reaction: geranylgeranyl diphosphate = casbene + diphosphate
Other name(s): casbene synthetase; geranylgeranyl-diphosphate diphosphate-lyase (cyclizing)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, casbene-forming)
Comments: The enzyme from castor bean (Ricinus communis) produces the antifungal diterpene casbene.
References: [885]
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[EC 4.2.3.8 created 1989 as EC 4.6.1.7, transferred 2000 to EC 4.2.3.8]

EC 4.2.3.9
Accepted name: aristolochene synthase

Reaction: (2E,6E)-farnesyl diphosphate = aristolochene + diphosphate
Other name(s): sesquiterpene cyclase; trans,trans-farnesyl diphosphate aristolochene-lyase; trans,trans-farnesyl-

diphosphate diphosphate-lyase (cyclizing, aristolochene-forming)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, aristolochene-forming)

Comments: The initial internal cyclization produces the monocyclic intermediate germacrene A; further cycliza-
tion and methyl transfer converts the intermediate into aristolochene. While in some species germa-
crene A remains as an enzyme-bound intermediate, it has been shown to be a minor product of the
reaction in Penicillium roqueforti [163] (see also EC 4.2.3.23, germacrene-A synthase). The enzyme
from Penicillium roqueforti requires Mg2+. Mn2+ can partially substitute, at low concentrations.
Aristolochene is the likely parent compound for a number of sesquiterpenes produced by filamentous
fungi.

References: [169, 170, 528, 1024, 163]

[EC 4.2.3.9 created 1992 as EC 2.5.1.40, transferred 1999 to EC 4.1.99.7, transferred 2000 to EC 4.2.3.9, modified 2006]

EC 4.2.3.10
Accepted name: (-)-endo-fenchol synthase

Reaction: geranyl diphosphate + H2O = (-)-endo-fenchol + diphosphate
Other name(s): (-)-endo-fenchol cyclase; geranyl pyrophosphate:(-)-endo-fenchol cyclase

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-endo-fenchol-forming]
Comments: (3R)-Linalyl diphosphate is an intermediate in the reaction
References: [252, 256]

[EC 4.2.3.10 created 1992 as EC 4.6.1.8, transferred 2000 to EC 4.2.3.10]

EC 4.2.3.11
Accepted name: sabinene-hydrate synthase

Reaction: geranyl diphosphate + H2O = sabinene hydrate + diphosphate
Other name(s): sabinene hydrate cyclase

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, sabinene-hydrate-forming)
Comments: Both cis- and trans- isomers of sabinene hydrate are formed. (3R)-Linalyl diphosphate is an interme-

diate in the reaction
References: [457, 458]

[EC 4.2.3.11 created 1992 as EC 4.6.1.9, transferred 2000 to EC 4.2.3.11]

EC 4.2.3.12
Accepted name: 6-pyruvoyltetrahydropterin synthase

Reaction: 7,8-dihydroneopterin 3′-triphosphate = 6-pyruvoyl-5,6,7,8-tetrahydropterin + triphosphate
Other name(s): 2-amino-4-oxo-6-[(1S,2R)-1,2-dihydroxy-3-triphosphooxypropyl]-7,8-dihydroxypteridine triphos-

phate lyase; 6-[(1S,2R)-1,2-dihydroxy-3-triphosphooxypropyl]-7,8-dihydropterin triphosphate-lyase
(6-pyruvoyl-5,6,7,8-tetrahydropterin-forming)

Systematic name: 7,8-dihydroneopterin 3′-triphosphate triphosphate-lyase (6-pyruvoyl-5,6,7,8-tetrahydropterin-
forming)

Comments: Catalyses triphosphate elimination and an intramolecular redox reaction in the presence of Mg2+. It
has been identified in human liver. This enzyme is involved in the de novo synthesis of tetrahydro-
biopterin from GTP, with the other enzymes involved being EC 1.1.1.153 (sepiapterin reductase) and
EC 3.5.4.16 (GTP cyclohydrolase I) [1233].

References: [878, 1277, 1233]
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[EC 4.2.3.12 created 1999 as EC 4.6.1.10, transferred 2000 to EC 4.2.3.12, modified 2001]

EC 4.2.3.13
Accepted name: (+)-δ-cadinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-δ-cadinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-δ-cadinene-forming)

Comments: The sesquiterpenoid (+)-δ-cadinene is an intermediate in phytoalexin biosynthesis. Mg2+ is required
for activity.

References: [209, 279, 281]

[EC 4.2.3.13 created 1999 as EC 4.6.1.11, transferred 2000 to EC 4.2.3.13, modified 2011]

[4.2.3.14 Deleted entry. pinene synthase. Now covered by EC 4.2.3.119, (-)-α-pinene synthase, and EC 4.2.3.120, (-)-β-
pinene synthase]

[EC 4.2.3.14 created 2000 as EC 4.1.99.8, transferred 2000 to EC 4.2.3.14, deleted 2012]

EC 4.2.3.15
Accepted name: myrcene synthase

Reaction: geranyl diphosphate = myrcene + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase (myrcene-forming)

Comments: A recombinant enzyme (also known as a monoterpene synthase or cyclase) from the grand fir (Abies
grandis) requires Mn2+ and K+ for activity. Mg2+ is essentially ineffective as the divalent metal ion
cofactor.

References: [108]

[EC 4.2.3.15 created 2000 as EC 4.1.99.9, transferred 2000 to EC 4.2.3.15]

EC 4.2.3.16
Accepted name: (4S)-limonene synthase

Reaction: geranyl diphosphate = (S)-limonene + diphosphate
Other name(s): (-)-(4S)-limonene synthase; 4S-(-)-limonene synthase; geranyldiphosphate diphosphate lyase

(limonene forming); geranyldiphosphate diphosphate lyase [cyclizing, (4S)-limonene-forming];
geranyl-diphosphate diphosphate-lyase [cyclizing; (-)-(4S)-limonene-forming]

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing; (S)-limonene-forming]
Comments: A recombinant enzyme (also known as a monoterpene synthase or cyclase) from the grand fir (Abies

grandis) requires Mn2+ and K+ for activity. Mg2+ is essentially ineffective as the divalent metal ion
cofactor.

References: [108, 231, 1431]

[EC 4.2.3.16 created 2000 as EC 4.1.99.10, transferred 2000 to EC 4.2.3.16, modified 2003]

EC 4.2.3.17
Accepted name: taxadiene synthase

Reaction: geranylgeranyl diphosphate = taxa-4,11-diene + diphosphate
Other name(s): geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, taxadiene-forming)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing; taxa-4,11-diene-forming)
Comments: This is the committed step in the biosynthesis of the diterpenoid antineoplastic drug Taxol (pacli-

taxel). The cyclization involves a 1,5-hydride shift.
References: [670, 512, 762, 511, 1370]

[EC 4.2.3.17 created 2002]
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EC 4.2.3.18
Accepted name: abieta-7,13-diene synthase

Reaction: (+)-copalyl diphosphate = abieta-7,13-diene + diphosphate
Other name(s): copalyl-diphosphate diphosphate-lyase (cyclizing) (ambiguous); abietadiene synthase (ambiguous)

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [cyclizing, abieta-7,13-diene-forming]
Comments: Part of a bifunctional enzyme involved in the biosynthesis of abietadiene. See also EC 5.5.1.12, copa-

lyl diphosphate synthase. Requires Mg2+.
References: [991, 992, 989, 988, 1056]

[EC 4.2.3.18 created 2002, modified 2012]

EC 4.2.3.19
Accepted name: ent-kaurene synthase

Reaction: ent-copalyl diphosphate = ent-kaurene + diphosphate
Other name(s): ent-kaurene synthase B; ent-kaurene synthetase B, ent-copalyl-diphosphate diphosphate-lyase (cycliz-

ing)
Systematic name: ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-kaurene-forming)

Comments: Part of a bifunctional enzyme involved in the biosynthesis of ent-kaurene. See also EC 5.5.1.13 (ent-
copalyl diphosphate synthase)

References: [350, 1397, 638, 1289]

[EC 4.2.3.19 created 2002]

EC 4.2.3.20
Accepted name: (R)-limonene synthase

Reaction: geranyl diphosphate = (R)-limonene + diphosphate
Other name(s): (+)-limonene synthase; geranyldiphosphate diphosphate lyase [(+)-(R)-limonene-forming]; geranyl-

diphosphate diphosphate-lyase [cyclizing, (+)-(4R)-limonene-forming]
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (R)-limonene-forming]

Comments: Forms the first step of carvone biosynthesis in caraway. The enzyme from Carum carvi (caraway)
seeds requires a divalent metal ion (preferably Mn2+) for catalysis. This enzyme occurs in Citrus,
Carum (caraway) and Anethum (dill); (-)-limonene, however, is made in the fir, Abies, and mint, Men-
tha, by EC 4.2.3.16, (4S)-limonene synthase.

References: [113, 791, 827]

[EC 4.2.3.20 created 2003]

EC 4.2.3.21
Accepted name: vetispiradiene synthase

Reaction: (2E,6E)-farnesyl diphosphate = vetispiradiene + diphosphate
Other name(s): vetispiradiene-forming farnesyl pyrophosphate cyclase; pemnaspirodiene synthase; HVS; vetispiradi-

ene cyclase
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, vetispiradiene-forming)

Comments: The initial internal cyclization produces the monocyclic intermediate germacrene A.
References: [53, 642, 829, 1414, 820]

[EC 4.2.3.21 created 2004, modified 2011]

EC 4.2.3.22
Accepted name: germacradienol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol + diphosphate
Other name(s): germacradienol/germacrene-D synthase; 2-trans,6-trans-farnesyl-diphosphate diphosphate-lyase

[(1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol-forming]
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Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(1E,4S,5E,7R)-germacra-1(10),5-dien-11-ol-
forming]

Comments: Requires Mg2+ for activity. H-1si of farnesyl diphosphate is lost in the formation of (1E,4S,5E,7R)-
germacra-1(10),5-dien-11-ol. Formation of (-)-germacrene D involves a stereospecific 1,3-hydride
shift of H-1si of farnesyl diphosphate. Both products are formed from a common intermediate [492].
Other enzymes produce germacrene D as the sole product using a different mechanism. The enzyme
mediates a key step in the biosynthesis of geosmin (see EC 4.1.99.16 geosmin synthase), a widely
occurring metabolite of many streptomycetes, bacteria and fungi [492]. Also catalyses the reaction of
EC 4.2.3.75, (-)-germacrene D synthase.

References: [176, 492, 450]

[EC 4.2.3.22 created 2006, modified 2011]

EC 4.2.3.23
Accepted name: germacrene-A synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-(R)-gemacrene A + diphosphate
Other name(s): germacrene A synthase; (+)-germacrene A synthase; (+)-(10R)-germacrene A synthase; GAS; 2-

trans,6-trans-farnesyl-diphosphate diphosphate-lyase (germacrene-A-forming)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-(R)-germacrene-A-forming]

Comments: Requires Mg2+ for activity. While germacrene A is an enzyme-bound intermediate in the biosynthe-
sis of a number of phytoalexins, e.g. EC 4.2.3.9 (aristolochene synthase) from some species and EC
4.2.3.21 (vetispiradiene synthase), it is the sole sesquiterpenoid product formed in chicory [114].

References: [114, 1026, 286, 163, 198]

[EC 4.2.3.23 created 2006]

EC 4.2.3.24
Accepted name: amorpha-4,11-diene synthase

Reaction: (2E,6E)-farnesyl diphosphate = amorpha-4,11-diene + diphosphate
Other name(s): amorphadiene synthase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (amorpha-4,11-diene-forming)
Comments: Requires Mg2+ and Mn2+ for activity. This is a key enzyme in the biosynthesis of the antimalarial

endoperoxide artemisinin [116]. Catalyses the formation of both olefinic [e.g. amorpha-4,11-diene,
amorpha-4,7(11)-diene, γ-humulene and β-sesquiphellandrene] and oxygenated (e.g. amorpha-4-en-
7-ol) sesquiterpenes, with amorpha-4,11-diene being the major product. When geranyl diphosphate is
used as a substrate, no monoterpenes are produced [863].

References: [1337, 863, 116, 199, 819, 1002]

[EC 4.2.3.24 created 2006]

EC 4.2.3.25
Accepted name: S-linalool synthase

Reaction: geranyl diphosphate + H2O = (3S)-linalool + diphosphate
Other name(s): LIS; Lis; 3S-linalool synthase

Systematic name: geranyl-diphosphate diphosphate-lyase [(3S)-linalool-forming]
Comments: Requires Mn2+ or Mg2+ for activity. Neither (S)- nor (R)-linalyl diphosphate can act as substrate for

the enzyme from the flower Clarkia breweri [1004]. Unlike many other monoterpene synthases, only
a single product, (3S)-linalool, is formed.

References: [1004, 789, 315]

[EC 4.2.3.25 created 2006]

EC 4.2.3.26
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Accepted name: R-linalool synthase
Reaction: geranyl diphosphate + H2O = (3R)-linalool + diphosphate

Other name(s): (3R)-linalool synthase; (-)-3R-linalool synthase
Systematic name: geranyl-diphosphate diphosphate-lyase [(3R)-linalool-forming]

Comments: Geranyl diphosphate cannot be replaced by isopentenyl diphosphate, dimethylallyl diphosphate, far-
nesyl diphosphate or geranylgeranyl diphosphate as substrate [587]. Requires Mg2+ or Mn2+ for ac-
tivity. Unlike many other monoterpene synthases, only a single product, (3R)-linalool, is formed.

References: [587, 258]

[EC 4.2.3.26 created 2006]

EC 4.2.3.27
Accepted name: isoprene synthase

Reaction: dimethylallyl diphosphate = isoprene + diphosphate
Other name(s): ISPC; ISPS

Systematic name: dimethylallyl-diphosphate diphosphate-lyase (isoprene-forming)
Comments: Requires Mg2+ or Mn2+ for activity. This enzyme is located in the chloroplast of isoprene-emitting

plants, such as poplar and aspen, and may be activitated by light-dependent changes in chloroplast pH
and Mg2+ concentration [1189, 1142].

References: [1188, 1189, 1369, 1143, 874, 1193, 1108, 1142]

[EC 4.2.3.27 created 2007]

EC 4.2.3.28
Accepted name: ent-cassa-12,15-diene synthase

Reaction: ent-copalyl diphosphate = ent-cassa-12,15-diene + diphosphate
Other name(s): OsDTC1; OsKS7

Systematic name: ent-copalyl-diphosphate diphosphate-lyase (ent-cassa-12,15-diene-forming)
Comments: This class I diterpene cyclase produces ent-cassa-12,15-diene, a precursor of the rice phytoalexins (-

)-phytocassanes A-E. Phytoalexins are diterpenoid secondary metabolites that are involved in the de-
fense mechanism of the plant, and are produced in response to pathogen attack through the perception
of elicitor signal molecules such as chitin oligosaccharide, or after exposure to UV irradiation.

References: [214]

[EC 4.2.3.28 created 2008]

EC 4.2.3.29
Accepted name: ent-sandaracopimaradiene synthase

Reaction: ent-copalyl diphosphate = ent-sandaracopimara-8(14),15-diene + diphosphate
Other name(s): OsKS10; ent-sandaracopimara-8(14),15-diene synthase

Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-sandaracopimara-8(14),15-diene-forming]
Comments: ent-Sandaracopimaradiene is a precursor of the rice oryzalexins A-F. Phytoalexins are diterpenoid

secondary metabolites that are involved in the defense mechanism of the plant, and are produced
in response to pathogen attack through the perception of elicitor signal molecules such as chitin
oligosaccharide, or after exposure to UV irradiation. As a minor product, this enzyme also forms ent-
pimara-8(14),15-diene, which is the sole product of EC 4.2.3.30, ent-pimara-8(14),15-diene synthase.
ent-Pimara-8(14),15-diene is not a precursor in the biosynthesis of either gibberellins or phytoalexins
[623].

References: [966, 623]

[EC 4.2.3.29 created 2008]

EC 4.2.3.30
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Accepted name: ent-pimara-8(14),15-diene synthase
Reaction: ent-copalyl diphosphate = ent-pimara-8(14),15-diene + diphosphate

Other name(s): OsKS5
Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-pimara-8(14),15-diene-forming]

Comments: Unlike EC 4.2.3.29, ent-sandaracopimaradiene synthase, which can produce both ent-
sandaracopimaradiene and ent-pimara-8(14),15-diene, this diterpene cyclase produces only ent-
pimara-8(14),15-diene. ent-Pimara-8(14),15-diene is not a precursor in the biosynthesis of either gib-
berellins or phytoalexins.

References: [623]

[EC 4.2.3.30 created 2008]

EC 4.2.3.31
Accepted name: ent-pimara-9(11),15-diene synthase

Reaction: ent-copalyl diphosphate = ent-pimara-9(11),15-diene + diphosphate
Other name(s): PMD synthase

Systematic name: ent-copalyl-diphosphate diphosphate-lyase [ent-pimara-9(11),15-diene-forming]
Comments: This enzyme is involved in the biosynthesis of the diterpenoid viguiepinol and requires Mg2+, Co2+,

Zn2+ or Ni2+ for activity.
References: [558]

[EC 4.2.3.31 created 2008]

EC 4.2.3.32
Accepted name: levopimaradiene synthase

Reaction: (+)-copalyl diphosphate = abieta-8(14),12-diene + diphosphate
Other name(s): PtTPS-LAS; LPS; copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [abieta-8(14),12-diene-forming]
Comments: In Ginkgo, the enzyme catalyses the initial cyclization step in the biosynthesis of ginkgolides, a struc-

turally unique family of diterpenoids that are highly specific platelet-activating-factor receptor antago-
nists [1119]. Levopimaradiene is widely distributed in higher plants. In some species the enzyme also
forms abietadiene, palustradiene, and neoabietadiene [1079].

References: [1119, 1079]

[EC 4.2.3.32 created 2008, modified 2012]

EC 4.2.3.33
Accepted name: stemar-13-ene synthase

Reaction: 9α-copalyl diphosphate = stemar-13-ene + diphosphate
Other name(s): OsDTC2; OsK8; OsKL8; OsKS8; stemarene synthase; syn-stemar-13-ene synthase

Systematic name: 9α-copalyl-diphosphate diphosphate-lyase (stemar-13-ene-forming)
Comments: This diterpene cyclase produces stemar-13-ene, a putative precursor of the rice phytoalexin oryzalexin

S. Phytoalexins are diterpenoid secondary metabolites that are involved in the defense mechanism of
the plant, and are produced in response to pathogen attack through the perception of elicitor signal
molecules such as chitin oligosaccharide, or after exposure to UV irradiation.

References: [886, 930]

[EC 4.2.3.33 created 2008]

EC 4.2.3.34
Accepted name: stemod-13(17)-ene synthase

Reaction: 9α-copalyl diphosphate = stemod-13(17)-ene + diphosphate
Other name(s): OsKSL11; stemodene synthase
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Systematic name: 9α-copalyl-diphosphate diphosphate-lyase [stemod-13(17)-ene-forming]
Comments: This enzyme catalyses the committed step in the biosynthesis of the stemodane family of diterpenoid

secondary metabolites, some of which possess mild antiviral activity. The enzyme also produces
stemod-12-ene and stemar-13-ene as minor products.

References: [896]

[EC 4.2.3.34 created 2008]

EC 4.2.3.35
Accepted name: syn-pimara-7,15-diene synthase

Reaction: 9α-copalyl diphosphate = 9β-pimara-7,15-diene + diphosphate
Other name(s): 9β-pimara-7,15-diene synthase; OsDTS2; OsKS4

Systematic name: 9α-copalyl-diphosphate diphosphate-lyase (9β-pimara-7,15-diene-forming)
Comments: This enzyme is a class I terpene synthase [1368]. 9β-Pimara-7,15-diene is a precursor of momilac-

tones A and B, rice diterpenoid phytoalexins that are produced in response to attack (by a pathogen,
elicitor or UV irradiation) and are involved in the defense mechanism of the plant. Momilactone B
can also act as an allochemical, being constitutively produced in the root of the plant and secreted
to the rhizosphere where it suppresses the growth of neighbouring plants and soil microorganisms
[1368].

References: [1368, 966]

[EC 4.2.3.35 created 2008]

EC 4.2.3.36
Accepted name: terpentetriene synthase

Reaction: terpentedienyl diphosphate = terpentetriene + diphosphate
Other name(s): Cyc2

Systematic name: terpentedienyl-diphosphate diphosphate-lyase (terpentetriene-forming)
Comments: Requires Mg2+ for maximal activity but can use Mn2+, Fe2+ or Co2+ to a lesser extent [460]. Follow-

ing on from EC 5.5.1.15, terpentedienyl-diphosphate synthase, this enzyme completes the transfor-
mation of geranylgeranyl diphosphate (GGDP) into terpentetriene, which is a precursor of the diter-
penoid antibiotic terpentecin. Farnesyl diphosphate can also act as a substrate.

References: [273, 460, 329]

[EC 4.2.3.36 created 2008]

EC 4.2.3.37
Accepted name: epi-isozizaene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-epi-isozizaene + diphosphate
Other name(s): SCO5222 protein

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-epi-isozizaene-forming]
Comments: Requires Mg2+ for activity. The displacement of the diphosphate group of farnesyl diphosphate oc-

curs with retention of configuration [763]. In the soil-dwelling bacterium Streptomyces coelicolor
A3(2), the product of this reaction is used by EC 1.14.13.106, epi-isozizaene 5-monooxygenase, to
produce the sesquiterpene antibiotic albaflavenone [1454].

References: [763, 1454]

[EC 4.2.3.37 created 2008]

EC 4.2.3.38
Accepted name: α-bisabolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (E)-α-bisabolene + diphosphate
Other name(s): bisabolene synthase
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Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E)-α-bisabolene-forming]
Comments: This cytosolic sesquiterpenoid synthase requires a divalent cation cofactor (Mg2+ or, to a lesser ex-

tent, Mn2+) to neutralize the negative charge of the diphosphate leaving group. While unlikely to en-
counter geranyl diphosphate (GDP) in vivo as it is localized to plastids, the enzyme can use GDP as
a substrate in vitro to produce (+)-(4R)-limonene [cf. EC 4.2.3.20, (R)-limonene synthase]. The en-
zyme is induced as part of a defense mechanism in the grand fir Abies grandis as a response to stem
wounding.

References: [105]

[EC 4.2.3.38 created 2009]

EC 4.2.3.39
Accepted name: epi-cedrol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 8-epi-cedrol + diphosphate
Other name(s): 8-epicedrol synthase; epicedrol synthase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (8-epi-cedrol-forming)
Comments: The enzyme is activated by Mg2+ [543]. Similar to many other plant terpenoid synthases, this enzyme

produces many products from a single substrate. The predominant product is the cyclic sesquiter-
penoid alcohol, 8-epi-cedrol, with minor products including cedrol and the olefins α-cedrene, β-
cedrene, (E)-β-farnesene and (E)-α-bisabolene [864].

References: [864, 543]

[EC 4.2.3.39 created 2009]

EC 4.2.3.40
Accepted name: (Z)-γ-bisabolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (Z)-γ-bisabolene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(Z)-γ-bisabolene-forming]

Comments: This sesquiterpenoid enzyme is constitutively expressed in the root, hydathodes and stigma of the
plant Arabidopsis thaliana. If the leaves of the plant are wounded, e.g. by cutting, the enzyme is also
induced close to the wound site. The sesquiterpenoids (E)-nerolidol and α-bisabolol are also pro-
duced by this enzyme as minor products.

References: [1080]

[EC 4.2.3.40 created 2009]

EC 4.2.3.41
Accepted name: elisabethatriene synthase

Reaction: geranylgeranyl diphosphate = elisabethatriene + diphosphate
Other name(s): elisabethatriene cyclase

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (elisabethatriene-forming)
Comments: Requires Mg2+ or less efficiently Mn2+. The enzyme is also able to use farnesyl diphosphate and ger-

anyl diphosphate.
References: [672, 140]

[EC 4.2.3.41 created 2009]

EC 4.2.3.42
Accepted name: aphidicolan-16β-ol synthase

Reaction: 9α-copalyl diphosphate + H2O = aphidicolan-16β-ol + diphosphate
Other name(s): PbACS

Systematic name: 9α-copalyl-diphosphate diphosphate-lyase (aphidicolan-16β-ol-forming)
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Comments: This is a bifunctional enzyme which also has EC 5.5.1.14 syn-copalyl diphosphate synthase activ-
ity. Aphidicolan-16β-ol is a precursor of aphidicolin, a specific inhibitor of DNA polymerase α (EC
2.7.7.7).

References: [952, 1290]

[EC 4.2.3.42 created 2009]

EC 4.2.3.43
Accepted name: fusicocca-2,10(14)-diene synthase

Reaction: geranylgeranyl diphosphate = fusicocca-2,10(14)-diene + diphosphate
Other name(s): fusicoccadiene synthase; PaFS; PaDC4

Systematic name: geranylgeranyl diphosphate-lyase (fusicocca-2,10(14)-diene-forming)
Comments: A multifunctional enzyme with EC 2.5.1.29 farnesyltranstransferase activity.
References: [1292]

[EC 4.2.3.43 created 2009]

EC 4.2.3.44
Accepted name: isopimara-7,15-diene synthase

Reaction: (+)-copalyl diphosphate = isopimara-7,15-diene + diphosphate
Other name(s): PaTPS-Iso; copalyl diphosphate-lyase (isopimara-7,15-diene-forming)

Systematic name: (+)-copalyl diphosphate-lyase (isopimara-7,15-diene-forming)
Comments: The enzyme only gave isopimara-7,15-diene.
References: [817]

[EC 4.2.3.44 created 2009]

EC 4.2.3.45
Accepted name: phyllocladan-16α-ol synthase

Reaction: (+)-copalyl diphosphate + H2O = phyllocladan-16α-ol + diphosphate
Other name(s): PaDC1

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase (phyllocladan-16α-ol-forming)
Comments: The adjacent gene PaDC2 codes EC 5.5.1.12 copalyl diphosphate synthase.
References: [1291]

[EC 4.2.3.45 created 2009]

EC 4.2.3.46
Accepted name: α-farnesene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (3E,6E)-α-farnesene + diphosphate
Other name(s): (E,E)-α-farnesene synthase; AFS1; MdAFS1

Systematic name: (2E,6E)-farnesyl-diphosphate lyase [(3E,6E)-α-farnesene-forming]
References: [983, 437, 935]

[EC 4.2.3.46 created 2010]

EC 4.2.3.47
Accepted name: β-farnesene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (E)-β-farnesene + diphosphate
Other name(s): farnesene synthase; terpene synthase 10; terpene synthase 10-B73; TPS10

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E)-β-farnesene-forming]
References: [1453, 1001, 676, 1139, 826, 248, 1138, 547]
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[EC 4.2.3.47 created 2010]

EC 4.2.3.48
Accepted name: (3S,6E)-nerolidol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (3S,6E)-nerolidol + diphosphate
Other name(s): (E)-nerolidol synthase; nerolidol synthase; (3S)-(E)-nerolidol synthase; FaNES1

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(3S,6E)-nerolidol-forming]
Comments: The enzyme catalyses a step in the formation of (3E)-4,8-dimethylnona-1,3,7-triene, a key signal

molecule in induced plant defense mediated by the attraction of enemies of herbivores [115]. Neroli-
dol is a naturally occurring sesquiterpene found in the essential oils of many types of plants.

References: [7, 115, 291, 37]

[EC 4.2.3.48 created 2010]

EC 4.2.3.49
Accepted name: (3R,6E)-nerolidol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (3R,6E)-nerolidol + diphosphate
Other name(s): terpene synthase 1

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(3R,6E)-nerolidol-forming]
Comments: The enzyme catalyses a step in the formation of (3E)-4,8-dimethylnona-1,3,7-triene, a key signal

molecule in induced plant defense mediated by the attraction of enemies of herbivores [1138]. Neroli-
dol is a naturally occurring sesquiterpene found in the essential oils of many types of plants.

References: [1138]

[EC 4.2.3.49 created 2010]

EC 4.2.3.50
Accepted name: (+)-α-santalene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]

Reaction: (2Z,6Z)-farnesyl diphosphate = (+)-α-santalene + diphosphate
Other name(s): SBS (ambiguous)

Systematic name: (2Z,6Z)-farnesyl diphosphate lyase [cyclizing; (+)-α-santalene-forming]
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2Z,6Z)-farnesyl diphosphate. Follow-

ing dephosphorylation of (2Z,6Z)-farnesyl diphosphate, the (2Z,6Z)-farnesyl carbocation is converted
to either the (6R)- or the (6S)-bisabolyl cations depending on the stereochemistry of the 6,1 closure.
The (6R)-bisabolyl cation will then lead to the formation of (+)-α-santalene (EC 4.2.3.50), while the
(6S)-bisabolyl cation will give rise to (+)-endo-β-bergamotene (see EC 4.2.3.53) as well as (-)-endo-
α-bergamotene (see EC 4.2.3.54). Small amounts of (-)-epi-β-santalene are also formed from the
(6R)-bisabolyl cation and small amounts of (-)-exo-α-bergamotene are formed from the (6S)-bisabolyl
cation [1105].

References: [1105]

[EC 4.2.3.50 created 2010]

EC 4.2.3.51
Accepted name: β-phellandrene synthase (neryl-diphosphate-cyclizing)

Reaction: neryl diphosphate = β-phellandrene + diphosphate
Other name(s): phellandrene synthase 1; PHS1; monoterpene synthase PHS1

Systematic name: neryl-diphosphate diphosphate-lyase [cyclizing; β-phellandrene-forming]
Comments: The enzyme from Solanum lycopersicum has very poor affinity with geranyl diphosphate as sub-

strate. Catalyses the formation of the acyclic myrcene and ocimene as major products in addition to
β-phellandrene [1124].

References: [1124]
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[EC 4.2.3.51 created 2010]

EC 4.2.3.52
Accepted name: (4S)-β-phellandrene synthase (geranyl-diphosphate-cyclizing)

Reaction: geranyl diphosphate = (4S)-β-phellandrene + diphosphate
Other name(s): phellandrene synthase; (-)-β-phellandrene synthase; (-)-(4S)-β-phellandrene synthase

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing; (4S)-β-phellandrene-forming]
Comments: Requires Mn2+. Mg2+ is not effective [1115]. Some (-)-α-phellandrene is also formed [1335]. The

reaction involves a 1,3-hydride shift [721].
References: [1115, 106, 1335, 721]

[EC 4.2.3.52 created 2010]

EC 4.2.3.53
Accepted name: (+)-endo-β-bergamotene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]

Reaction: (2Z,6Z)-farnesyl diphosphate = (+)-endo-β-bergamotene + diphosphate
Other name(s): SBS (ambiguous)

Systematic name: (2Z,6Z)-farnesyl diphosphate lyase (cyclizing; (+)-endo-β-bergamotene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2Z,6Z)-farnesyl diphosphate. Following

dephosphorylation of (2Z,6Z)-farnesyl diphosphate, the (2Z,6Z)-farnesyl carbocation is converted to
either the (6R)- or the (6S)-bisabolyl cations depending on the stereochemistry of the 6,1 closure. The
(6R)-bisabolyl cation will then lead to the formation of (+)-α-santalene (see EC 4.2.3.50), while the
(6S)-bisabolyl cation will give rise to (-)-endo-α-bergamotene (see EC 4.2.3.54), as well as (+)-endo-
β-bergamotene. Small amounts of (-)-epi-β-santalene are also formed from the (6R)-bisabolyl cation
and small amounts of (-)-exo-α-bergamotene are formed from the (6S)-bisabolyl cation [1105].

References: [1105]

[EC 4.2.3.53 created 2010]

EC 4.2.3.54
Accepted name: (-)-endo-α-bergamotene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]

Reaction: (2Z,6Z)-farnesyl diphosphate = (-)-endo-α-bergamotene + diphosphate
Other name(s): SBS (ambiguous)

Systematic name: (2Z,6Z)-farnesyl diphosphate lyase [cyclizing; (-)-endo-α-bergamotene-forming]
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2Z,6Z)-farnesyl diphosphate. Following

dephosphorylation of (2Z,6Z)-farnesyl diphosphate, the (2Z,6Z)-farnesyl carbocation is converted to
either the (6R)- or the (6S)-bisabolyl cations depending on the stereochemistry of the 6,1 closure. The
(6R)-bisabolyl cation will then lead to the formation of (+)-α-santalene (see EC 4.2.3.50), while the
(6S)-bisabolyl cation will give rise to (+)-endo-β-bergamotene (EC 4.2.3.53) as well as (-)-endo-α-
bergamotene. Small amounts of (-)-epi-β-santalene are also formed from the (6R)-bisabolyl cation
and small amounts of (-)-exo-α-bergamotene are formed from the (6S)-bisabolyl cation [1105].

References: [1105]

[EC 4.2.3.54 created 2010]

EC 4.2.3.55
Accepted name: (S)-β-bisabolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (S)-β-bisabolene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(S)-β-bisabolene-forming]

Comments: The synthesis of (S)-β-macrocarpene from (2E,6E)-farnesyl diphosphate proceeds in two steps.
The first step is the cyclization to (S)-β-bisabolene. The second step is the isomerization to (S)-β-
macrocarpene (cf. EC 5.5.1.17, (S)-β-macrocarpene synthase). The enzyme requires Mg2+ or Mn2+

for activity.
References: [386]
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[EC 4.2.3.55 created 2011]

EC 4.2.3.56
Accepted name: γ-humulene synthase

Reaction: (2E,6E)-farnesyl diphosphate = γ-humulene + diphosphate
Other name(s): humulene cyclase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (γ-humulene-forming)
References: [1212, 768]

[EC 4.2.3.56 created 2011]

EC 4.2.3.57
Accepted name: (-)-β-caryophyllene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-β-caryophyllene + diphosphate
Other name(s): β-caryophyllene synthase; (2E,6E)-farnesyl-diphosphate diphosphate-lyase (caryophyllene-forming)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(-)-β-caryophyllene-forming]
Comments: Widely distributed in higher plants, cf. EC 4.2.3.89 (+)-β-caryophyllene synthase.
References: [161]

[EC 4.2.3.57 created 2011, modified 2011]

EC 4.2.3.58
Accepted name: longifolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = longifolene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (longifolene-forming)

Comments: As well as 61% longifolene the enzyme gives 15% of α-longipinene, 6% longicyclene and traces of
other sesquiterpenoids.

References: [817]

[EC 4.2.3.58 created 2011]

EC 4.2.3.59
Accepted name: (E)-γ-bisabolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (E)-γ-bisabolene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E)-γ-bisabolene-forming]

References: [547]

[EC 4.2.3.59 created 2011]

EC 4.2.3.60
Accepted name: germacrene C synthase

Reaction: (2E,6E)-farnesyl diphosphate = germacrene C + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (germacrene-C-forming)

References: [228]

[EC 4.2.3.60 created 2011]

EC 4.2.3.61
Accepted name: 5-epiaristolochene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-5-epiaristolochene + diphosphate
Other name(s): 5-epi-aristolochene synthase; tobacco epiaristolochene synthase; farnesyl pyrophosphate cyclase (am-

biguous); EAS; TEAS
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Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-5-epiaristolochene-forming]
Comments: Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released to the

medium.
References: [55, 1211, 54, 1077, 107, 956]

[EC 4.2.3.61 created 2011]

EC 4.2.3.62
Accepted name: (-)-γ-cadinene synthase [(2Z,6E)-farnesyl diphosphate cyclizing]

Reaction: (2Z,6E)-farnesyl diphosphate = (-)-γ-cadinene + diphosphate
Other name(s): (-)-γ-cadinene cyclase

Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase [(-)-γ-cadinene-forming]
Comments: Isolated from the liverwort Heteroscyphus planus. cf EC 4.2.3.92 (+)-γ-cadinene synthase.
References: [910]

[EC 4.2.3.62 created 2011, modified 2011]

EC 4.2.3.63
Accepted name: (+)-cubenene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-cubenene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-cubenene-forming]

Comments: Requires Mg2+.
References: [911, 910]

[EC 4.2.3.63 created 2011]

EC 4.2.3.64
Accepted name: (+)-epicubenol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epicubenol + diphosphate
Other name(s): farnesyl pyrophosphate cyclase (ambiguous)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-epicubenol-forming]
Comments: Requires Mg2+. In the bacteria Streptomyces and the liverwort Heteroscyphus the (+)-isomer is

formed in contrast to higher plants where the (-)-isomer is formed.
References: [172, 173, 174, 911, 910]

[EC 4.2.3.64 created 2011]

EC 4.2.3.65
Accepted name: zingiberene synthase

Reaction: (2E,6E)-farnesyl diphosphate = zingiberene + diphosphate
Other name(s): α-zingiberene synthase; ZIS

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (zingiberene-forming)
References: [275]

[EC 4.2.3.65 created 2011]

EC 4.2.3.66
Accepted name: β-selinene cyclase

Reaction: (2E,6E)-farnesyl diphosphate = β-selinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (β-selinene-forming)

Comments: Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released to the
medium.

References: [80]
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[EC 4.2.3.66 created 2011]

EC 4.2.3.67
Accepted name: cis-muuroladiene synthase

Reaction: (1) (2E,6E)-farnesyl diphosphate = cis-muurola-3,5-diene + diphosphate
(2) (2E,6E)-farnesyl diphosphate = cis-muurola-4(14),5-diene + diphosphate

Other name(s): MxpSS1
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cis-muuroladiene-forming)

Comments: The recombinant enzyme from black peppermint (Mentha x piperita) gave a mixture of cis-muurola-
3,5-diene (45%) and cis-muurola-4(14),5-diene (43%).

References: [1027]

[EC 4.2.3.67 created 2011]

EC 4.2.3.68
Accepted name: β-eudesmol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = β-eudesmol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (β-eudesmol-forming)

Comments: The recombinant enzyme from ginger (Zingiber zerumbet) gives 62.6% β-eudesmol, 16.8% 10-epi-
γ-eudesmol (cf. EC 4.2.3.84, 10-epi-γ-eudesmol synthase), 10% α-eudesmol (cf. EC 4.2.3.85, α-
eudesmol synthase), and 5.6% aristolene.

References: [1417]

[EC 4.2.3.68 created 2011, modified 2011, modified 2012]

EC 4.2.3.69
Accepted name: (+)-α-barbatene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-α-barbatene + diphosphate
Other name(s): AtBS

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-α-barbatene-forming]
Comments: The recombinant enzyme from the plant Arabidopsis thaliana produces 27.3% α-barbatene, 17.8%

thujopsene (cf. EC 4.2.3.79, thujopsene synthase) and 9.9% β-chamigrene (cf. EC 4.2.3.78, β-
chamigrene synthase) [1379] plus traces of other sesquiterpenoids [1271].

References: [1379, 1271]

[EC 4.2.3.69 created 2011, modified 2012]

EC 4.2.3.70
Accepted name: patchoulol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = patchoulol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (patchoulol-forming)

References: [253, 902, 354]

[EC 4.2.3.70 created 2011]

EC 4.2.3.71
Accepted name: (E,E)-germacrene B synthase

Reaction: (2E,6E)-farnesyl diphosphate = (E,E)-germacrene B + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(E,E)-germacrene-B-forming]

References: [1316]

[EC 4.2.3.71 created 2011]
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EC 4.2.3.72
Accepted name: α-gurjunene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-gurjunene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(-)-α-gurjunene-forming]

Comments: Initial cyclization probably gives biyclogermacrene in an enzyme bound form which is not released
to the medium. The enzyme from Solidago canadensis also forms a small amount of (+)-γ-gurjunene
[1133].

References: [1133]

[EC 4.2.3.72 created 2011]

EC 4.2.3.73
Accepted name: valencene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-valencene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (valencene-forming)

Comments: The recombinant enzyme from Vitis vinifera gave 49.5% (+)-valencene and 35.5% (-)-7-epi-α-
selinene. Initial cyclization gives (+)-germacrene A in an enzyme bound form which is not released
to the medium.

References: [790]

[EC 4.2.3.73 created 2011]

EC 4.2.3.74
Accepted name: presilphiperfolanol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = presilphiperfolan-8β-ol + diphosphate
Other name(s): BcBOT2, CND15

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphohydrolase (presilphiperfolan-8β-ol-forming)
Comments: Requires Mg2+. Presilphiperfolan-8β-ol is the precursor of botrydial, a phytotoxic sesquiterpene

metabolite secreted by the fungus Botryotinia fuckeliana (Botrytis cinerea), the causal agent of gray
mold disease in plants.

References: [1007, 1342]

[EC 4.2.3.74 created 2011]

EC 4.2.3.75
Accepted name: (-)-germacrene D synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-germacrene D + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(-)-germacrene-D-forming]

Comments: In Solidago canadensis the biosynthesis results in the pro-R hydrogen at C-1 of the farnesy diphos-
phate ending up at C-11 of the (-)-germacrene D [1134]. With Streptomyces coelicolor the pro-S hy-
drogen at C-1 ends up at C-11 of the (-)-germacrene D [492].

References: [1134, 492, 790, 1025]

[EC 4.2.3.75 created 2011]

EC 4.2.3.76
Accepted name: (+)-δ-selinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-δ-selinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-δ-selinene-forming]

Comments: Initial cyclization gives germacrene C in an enzyme bound form which is not released to the medium.
References: [1212, 768]

[EC 4.2.3.76 created 2011]

113

http://www.enzyme-database.org/query.php?ec=4.2.3.72
http://www.enzyme-database.org/query.php?ec=4.2.3.73
http://www.enzyme-database.org/query.php?ec=4.2.3.74
http://www.enzyme-database.org/query.php?ec=4.2.3.75
http://www.enzyme-database.org/query.php?ec=4.2.3.76


EC 4.2.3.77
Accepted name: (+)-germacrene D synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-germacrene D + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-germacrene-D-forming]

Comments: Requires Mg2+, Mn2+, Ni2+ or Co2+. The formation of (+)-germacrene D involves a 1,2-hydride
shift whereas for (-)-germacrene D there is a 1,3-hydride shift (see EC 4.2.3.75).

References: [1003]

[EC 4.2.3.77 created 2011]

EC 4.2.3.78
Accepted name: β-chamigrene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-β-chamigrene + diphosphate
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (+)-β-chamigrene-forming)

Comments: The recombinant enzyme from the plant Arabidopsis thaliana produces 27.3% (+)-α-barbatene,
17.8% (+)-thujopsene and 9.9% (+)-β-chamigrene [1379] plus traces of other sesquiterpenoids
[1271]. See EC 4.2.3.69 (+)-α-barbatene synthase, and EC 4.2.3.79 thujopsene synthase.

References: [1379, 1271]

[EC 4.2.3.78 created 2011]

EC 4.2.3.79
Accepted name: thujopsene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-thujopsene + diphosphate
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (+)-thujopsene-forming)

Comments: The recombinant enzyme from the plant Arabidopsis thaliana produces 27.3% (+)-α-barbatene,
17.8% (+)-thujopsene and 9.9% (+)-β-chamigrene [1379] plus traces of other sesquiterpenoids
[1271]. See EC 4.2.3.69 (+)-α-barbatene synthase, and EC 4.2.3.78 β-chamigrene synthase.

References: [1379, 1271]

[EC 4.2.3.79 created 2011]

EC 4.2.3.80
Accepted name: α-longipinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = α-longipinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (α-longipinene-forming)

Comments: The enzyme from Norway spruce produces longifolene as the main product (cf. EC 4.2.3.58, longifo-
lene synthase). α-Longipinene constitutes about 15% of the total products.

References: [817, 681]

[EC 4.2.3.80 created 2011]

EC 4.2.3.81
Accepted name: exo-α-bergamotene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-exo-α-bergamotene + diphosphate
Other name(s): trans-α-bergamotene synthase; LaBERS (gene name)

Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (-)-exo-α-bergamotene-forming)
Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well

as (-)-exo-α-bergamotene (74%) there were (E)-nerolidol (10%), (Z)-α-bisabolene (6%), (E)-β-
farnesene (5%) and β-sesquiphellandrene (1%).

References: [1139, 726]

[EC 4.2.3.81 created 2011]
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EC 4.2.3.82
Accepted name: α-santalene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-α-santalene + diphosphate
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (+)-α-santalene-forming)

Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well
as (+)-α-santalene, (-)-β-santalene and (-)-exo-α-bergamotene are formed with traces of (+)-epi-β-
santalene. See EC 4.2.3.83 [(-)-β-santalene synthase], and EC 4.2.3.81 [(-)-exo-α-bergamotene syn-
thase]. cf. EC 4.2.3.50 α-santalene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]

References: [605]

[EC 4.2.3.82 created 2011]

EC 4.2.3.83
Accepted name: β-santalene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-β-santalene + diphosphate
Systematic name: (2E,6E)-farnesyl diphosphate lyase (cyclizing, (-)-β-santalene-forming)

Comments: The enzyme synthesizes a mixture of sesquiterpenoids from (2E,6E)-farnesyl diphosphate. As well
as (-)-β-santalene (+)-α-santalene and (-)-exo-α-bergamotene are formed with traces of (+)-epi-β-
santalene. See EC 4.2.3.82 [(+)-α-santalene synthase], and EC 4.2.3.81 [(-)-exo-α-bergamotene syn-
thase].

References: [605]

[EC 4.2.3.83 created 2011]

EC 4.2.3.84
Accepted name: 10-epi-γ-eudesmol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 10-epi-γ-eudesmol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (10-epi-γ-eudesmol-forming)

Comments: The recombinant enzyme from ginger (Zingiber zerumbet) gives 62.6% β-eudesmol, 16.8% 10-epi-
γ-eudesmol, 10% α-eudesmol, and 5.6% aristolene. cf. EC 4.2.3.68 (β-eudesmol synthase) and EC
4.2.3.85 (α-eudesmol synthase)

References: [1417]

[EC 4.2.3.84 created 2011]

EC 4.2.3.85
Accepted name: α-eudesmol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = α-eudesmol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (α-eudesmol-forming)

Comments: The recombinant enzyme from ginger (Zingiber zerumbet) gives 62.6% β-eudesmol, 16.8% 10-epi-
γ-eudesmol, 10% α-eudesmol, and 5.6% aristolene. cf. EC 4.2.3.68 (β-eudesmol synthase) and EC
4.2.3.84 (10-epi-γ-eudesmol synthase)

References: [1417]

[EC 4.2.3.85 created 2011]

EC 4.2.3.86
Accepted name: 7-epi-α-selinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = 7-epi-α-selinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (7-epi-α-selinene-forming)

Comments: The recombinant enzyme from Vitis vinifera forms 49.5% (+)-valencene (cf. EC 4.2.3.73, valencene
synthase) and 35.5% (-)-7-epi-α-selinene. Initial cyclization gives (+)-germacrene A in an enzyme
bound form which is not released to the medium.

References: [790, 818]
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[EC 4.2.3.86 created 2011]

EC 4.2.3.87
Accepted name: α-guaiene synthase

Reaction: (2E,6E)-farnesyl diphosphate = α-guaiene + diphosphate
Other name(s): PatTps177 (gene name)

Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-guaiene-forming)
Comments: Requires Mg2+. The enzyme from Pogostemon cablin gives 13% α-guaiene as well as 37% (-)-

patchoulol (see EC 4.2.3.70), 13% δ-guaiene (see EC 4.2.3.93), and traces of at least ten other
sesquiterpenoids [292]. In Aquilaria crassna three clones of the enzyme gave about 80% δ-guaiene
and 20% α-guaiene, with traces of α-humulene. A fourth clone gave 54% δ-guaiene and 45% α-
guaiene [708].

References: [292, 708]

[EC 4.2.3.87 created 2011]

EC 4.2.3.88
Accepted name: viridiflorene synthase

Reaction: (2E,6E)-farnesyl diphosphate = viridiflorene + diphosphate
Other name(s): TPS31

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (viridiflorene-forming)
Comments: Viridiflorene is the only product of this enzyme from Solanum lycopersicum.
References: [95]

[EC 4.2.3.88 created 2011]

EC 4.2.3.89
Accepted name: (+)-β-caryophyllene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-β-caryophyllene + diphosphate
Other name(s): GcoA

Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-β-caryophyllene-forming]
Comments: A multifunctional enzyme which also converts the (+)-β-caryophyllene to (+)-caryolan-1-ol (see EC

4.2.1.138, (+)-caryolan-1-ol synthase). cf. EC 4.2.3.57 (–)-β-caryophyllene synthase.
References: [920]

[EC 4.2.3.89 created 2011]

EC 4.2.3.90
Accepted name: 5-epi-α-selinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = 5-epi-α-selinene + diphosphate
Other name(s): 8a-epi-α-selinene synthase; NP1

Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 5-epi-α-selinene-forming)
Comments: Requires Mg2+. The enzyme forms 5-epi-α-selinene possibly via germecrene A or a 1,6-hydride shift

mechanism.
References: [5]

[EC 4.2.3.90 created 2011]

EC 4.2.3.91
Accepted name: cubebol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = cubebol + diphosphate
Other name(s): Cop4
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Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, cubebol-forming)
Comments: Requires Mg2+. The enzyme gives 28% cubebol, 29% (-)-germacrene D, 10% (+)-δ-cadinene and

traces of several other sesquiterpenoids. See also EC 4.2.3.75 ()-germacrene D synthase and EC
4.2.3.13 (+)-δ-cadinene synthase.

References: [780]

[EC 4.2.3.91 created 2011]

EC 4.2.3.92
Accepted name: (+)-γ-cadinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-γ-cadinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-γ-cadinene-forming]

Comments: The cloned enzyme from the melon, Cucumis melo, gave mainly δ- and γ-cadinene with traces of sev-
eral other sesquiterpenoids cf. EC 4.2.3.62 (-)-γ-cadinene synthase [(2Z,6E)-farnesyl diphosphate cy-
clizing]; EC 4.2.3.13 (+)-δ-cadinene synthase.

References: [555, 1017]

[EC 4.2.3.92 created 2011]

EC 4.2.3.93
Accepted name: δ-guaiene synthase

Reaction: (2E,6E)-farnesyl diphosphate = δ-guaiene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, δ-guaiene-forming)

Comments: Requires Mg2+. In Aquilaria crassna three clones of the enzyme gave about 80% δ-guaiene and 20%
α-guaiene (see also EC 4.2.3.87). A fourth clone gave 54% δ-guaiene and 45% α-guaiene [708].
The enzyme from Pogostemon cablin gives 13% δ-guaiene as well as 37% (-)-patchoulol (see EC
4.2.3.70), 13% α-guaiene (see EC 4.2.3.87), and traces of at least ten other sesquiterpenoids [292].

References: [292, 708]

[EC 4.2.3.93 created 2011]

EC 4.2.3.94
Accepted name: γ-curcumene synthase

Reaction: (2E,6E)-farnesyl diphosphate = γ-curcumene + diphosphate
Other name(s): PatTpsA (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, γ-curcumene-forming)
Comments: One of five sesquiterpenoid synthases in Pogostemon cablin (patchouli).
References: [292]

[EC 4.2.3.94 created 2012]

EC 4.2.3.95
Accepted name: (-)-α-cuprenene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-cuprenene + diphosphate
Other name(s): Cop6

Systematic name: (-)-α-cuprenene hydrolase [cyclizing, (-)-α-cuprenene-forming]
Comments: The enzyme from the fungus Coprinopsis cinerea produces (-)-α-cuprenene with high selectivity.
References: [780]

[EC 4.2.3.95 created 2012]

EC 4.2.3.96
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Accepted name: avermitilol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = avermitilol + diphosphate

Systematic name: avermitilol hydrolase (cyclizing, avermitilol-forming)
Comments: Requires Mg2+. The recombinent enzyme gives avermitilol (85%) plus traces of germacrene A, ger-

macrene B and viridiflorol. The (1S)-hydrogen of farnesyl diphosphate is retained.
References: [218]

[EC 4.2.3.96 created 2012]

EC 4.2.3.97
Accepted name: (-)-δ-cadinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-δ-cadinene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (-)-δ-cadinene-forming)

Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthoger-
macradienyl cation. Following a 1,3-hydride shift of the original 1-pro-S hydrogen of (2E,6E)-
farnesyl diphosphate, cyclization and deprotonation gives (-)-δ-cadinene.

References: [542]

[EC 4.2.3.97 created 2012]

EC 4.2.3.98
Accepted name: (+)-T-muurolol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-T-muurolol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-T-muurolol-forming)

Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthoger-
macradienyl cation. After a 1,3-hydride shift of the original 1-pro-S hydrogen of farnesyl diphos-
phate, cyclization and deprotonation result in (+)-T-muurolol.

References: [542]

[EC 4.2.3.98 created 2012]

EC 4.2.3.99
Accepted name: labdatriene synthase

Reaction: 9α-copalyl diphosphate = (12E)-9α-labda-8(17),12,14-triene + diphosphate
Other name(s): OsKSL10 (gene name)

Systematic name: 9α-copalyl-diphosphate diphosphate-lyase [(12E)-9α-labda-8(17),12,14-triene-forming]
Comments: The enzyme from rice (Oryza sativa), expressed in Escherichia coli, also produces ent-

sandaracopimara-8(14),15-diene from ent-copalyl diphosphate, another naturally occuring copalyl
isomer in rice (cf. ent-sandaracopimaradiene synthase, EC 4.2.3.29).

References: [895]

[EC 4.2.3.99 created 2012]

EC 4.2.3.100
Accepted name: bicyclogermacrene synthase

Reaction: (2E,6E)-farnesyl diphosphate = bicyclogermacrene + diphosphate
Other name(s): Ov-TPS4

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (bicyclogermacrene-forming)
Comments: The enzyme from oregano (Origanum vulgare) gives mainly bicyclogermacrene with Mn2+ as a co-

factor. With Mg2+ a more complex mixture is produced.
References: [249]

[EC 4.2.3.100 created 2012]
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EC 4.2.3.101
Accepted name: 7-epi-sesquithujene synthase

Reaction: (2E,6E)-farnesyl diphosphate = 7-epi-sesquithujene + diphosphate
Other name(s): TPS4-B73

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (7-epi-sesquithujene-forming)
Comments: The enzyme from Zea mays, variety B73, gives mainly 7-epi-sesquithujene with (S)-β-bisabolene

and traces of other sesquiterpenoids, cf. EC 4.2.3.55 (S)-β-bisabolene synthase. It requires Mg2+ or
Mn2+. The product ratio is dependent on which metal ion is present. 7-epi-Sesquithujene is an attrac-
tant for the emerald ash borer beetle.

References: [677]

[EC 4.2.3.101 created 2012]

EC 4.2.3.102
Accepted name: sesquithujene synthase

Reaction: (2E,6E)-farnesyl diphosphate = sesquithujene + diphosphate
Other name(s): TPS5-Del1

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (sesquithujene-forming)
Comments: The enzyme from Zea mays, variety Delprim, gives mainly sesquithujene with (S)-β-bisabolene and

(E)-β-farnesene plus traces of other sesquiterpenoids, cf. EC 4.2.3.55 [(S)-β-bisabolene synthase] and
EC 4.2.3.47 (β-farnesene synthase). It requires Mg2+ or Mn2+. The exact product ratio is dependent
on which metal ion is present.

References: [677]

[EC 4.2.3.102 created 2012]

EC 4.2.3.103
Accepted name: ent-isokaurene synthase

Reaction: ent-copalyl diphosphate = ent-isokaurene + diphosphate
Other name(s): OsKSL5i; OsKSL6

Systematic name: ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-isokaurene-forming)
Comments: Two enzymes of the rice sub-species Oryza sativa ssp. indica, OsKSL5 and OsKSL6, produce ent-

isokaurene. A variant of OsKSL5 from the sub-species Oryza sativa ssp. japonica produces ent-
pimara-8(14),15-diene instead [cf. EC 4.2.3.30, ent-pimara-8(14),15-diene synthase].

References: [1386, 1387]

[EC 4.2.3.103 created 2012]

EC 4.2.3.104
Accepted name: α-humulene synthase

Reaction: (2E,6E)-farnesyl diphosphate = α-humulene + diphosphate
Other name(s): ZSS1

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (α-humulene-forming)
Comments: The enzyme from Zingiber zerumbet, shampoo ginger, also gives traces of β-caryophyllene.
References: [1418]

[EC 4.2.3.104 created 2012]

EC 4.2.3.105
Accepted name: tricyclene synthase

Reaction: geranyl diphosphate = tricyclene + diphosphate
Other name(s): TPS3

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing; tricyclene-forming)
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Comments: The enzyme from Solanum lycopersicum (tomato) gives a mixture of tricyclene, camphene, β-
myrcene, limonene, and traces of several other monoterpenoids. See EC 4.2.3.117. (-)-camphene syn-
thase, EC 4.2.3.15, myrcene synthase and EC 4.2.3.16, (4S)-limonene synthase.

References: [346]

[EC 4.2.3.105 created 2012]

EC 4.2.3.106
Accepted name: (E)-β-ocimene synthase

Reaction: geranyl diphosphate = (E)-β-ocimene + diphosphate
Other name(s): β-ocimene synthase; AtTPS03; ama0a23; LjEβOS; MtEBOS

Systematic name: geranyl-diphosphate diphosphate-lyase [(E)-β-ocimene-forming]
Comments: Widely distributed in plants, which release β-ocimene when attacked by herbivorous insects.
References: [348, 316, 38, 929]

[EC 4.2.3.106 created 2012]

EC 4.2.3.107
Accepted name: (+)-car-3-ene synthase

Reaction: geranyl diphosphate = (+)-car-3-ene + diphosphate
Other name(s): 3-carene cyclase; 3-carene synthase; 3CAR; (+)-3-carene synthase

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-car-3-ene-forming]
Comments: The enzyme reacts with (3S)-linalyl diphosphate twice as rapidly as geranyl diphosphate, but 25 times

as rapidly as (3R)-linalyl diphosphate. It is assumed that (3S)-linalyl diphosphate is normally formed
as an enzyme bound intermediate in the reaction. In the reaction the 5-pro-R hydrogen of geranyl
diphosphate is eliminated during cyclopropane ring formation [1114, 1116]. In Picea abies (Norway
spruce) and Picea sitchensis (Sitka spruce) terpinolene is also formed [349, 455]. See EC 4.2.3.113
terpinolene synthase. (+)-Car-3-ene is associated with resistance of Picea sitchensis (Sitka spruce) to
white pine weevil [455].

References: [1114, 1116, 1115, 349, 464, 455]

[EC 4.2.3.107 created 2012]

EC 4.2.3.108
Accepted name: 1,8-cineole synthase

Reaction: geranyl diphosphate + H2O = 1,8-cineole + diphosphate
Other name(s): 1,8-cineole cyclase; geranyl pyrophoshate:1,8-cineole cyclase; 1,8-cineole synthetase

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, 1,8-cineole-forming)
Comments: Requires Mn2+ or Zn2+. Mg2+ is less effective than either. 1,8-Cineole is the main product from the

enzyme with just traces of other monoterpenoids. The oxygen atom is derived from water. The re-
action proceeds via linalyl diphosphate and α-terpineol, the stereochemistry of both depends on the
organism. However neither intermediate can substitute for geranyl diphosphate. The reaction in Salvia
officinalis (sage) proceeds via (–)-(3R)-linalyl diphosphate [251, 1374, 990] while that in Arabidopsis
(rock cress) proceeds via (+)-(3S)-linalyl diphosphate [205].

References: [251, 1374, 990, 205, 646]

[EC 4.2.3.108 created 2012]

EC 4.2.3.109
Accepted name: (-)-sabinene synthase

Reaction: geranyl diphosphate = (-)-sabinene + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-sabinene-forming]

Comments: Requires Mg2+. Isolated from Pinus contorta (lodgepole pine) as cyclase I [1115] and from Cono-
cephalum conicum (liverwort) [990].
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References: [1115, 990]

[EC 4.2.3.109 created 2012]

EC 4.2.3.110
Accepted name: (+)-sabinene synthase

Reaction: geranyl diphosphate = (+)-sabinene + diphosphate
Other name(s): SS

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-sabinene-forming]
Comments: Isolated from Salvia officinalis (sage). The recombinant enzyme gave 63% (+)-sabinene, 21% γ-

terpinene, and traces of other monoterpenoids. See EC 4.2.3.114 γ-terpinene synthase.
References: [1374, 990]

[EC 4.2.3.110 created 2012]

EC 4.2.3.111
Accepted name: (-)-α-terpineol synthase

Reaction: geranyl diphosphate + H2O = (-)-α-terpineol + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-α-terpineol-forming]

Comments: The enzyme has been characterized from Vitis vinifera (grape). Also forms some 1,8-cineole and
traces of other monoterpenoids.

References: [816, 790]

[EC 4.2.3.111 created 2012]

EC 4.2.3.112
Accepted name: (+)-α-terpineol synthase

Reaction: geranyl diphosphate + H2O = (+)-α-terpineol + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-α-terpineol-forming]

Comments: The enzyme has been characterized from Santalum album (sandalwood). Also forms some (-)-
limonene and traces of other monoterpenoids. See EC 4.2.3.16 (4S)-limonene synthase.

References: [604]

[EC 4.2.3.112 created 2012]

EC 4.2.3.113
Accepted name: terpinolene synthase

Reaction: geranyl diphosphate = terpinolene + diphosphate
Other name(s): ag9; PmeTPS2; LaLIMS RR

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, terpinolene-forming)
Comments: Requires Mg2+. Mn2+ is less effective and product ratio changes. Forms traces of other monoter-

penoids.
References: [254, 106, 349, 547, 726]

[EC 4.2.3.113 created 2012]

EC 4.2.3.114
Accepted name: γ-terpinene synthase

Reaction: geranyl diphosphate = γ-terpinene + diphosphate
Other name(s): OvTPS2; ClcTS

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, γ-terpinene-forming)
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Comments: Isolated from Thymus vulgaris (thyme) [21, 721], Citrus limon (lemon) [791], Citrus unshiu (sat-
suma) [1242] and Origanum vulgare (oregano) [249]. Requires Mg2+. Mn2+ less effective. The re-
action involves a 1,2-hydride shift. The 5-pro-S hydrogen of geranyl diphosphate is lost. Traces of
several other monoterpenoids are formed in addition to γ-terpinene.

References: [21, 721, 791, 1242, 249]

[EC 4.2.3.114 created 2012]

EC 4.2.3.115
Accepted name: α-terpinene synthase

Reaction: geranyl diphosphate = α-terpinene + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, α-terpinene-forming)

Comments: The enzyme has been characterized from Dysphania ambrosioides (American wormseed). Requires
Mg2+. Mn2+ is less effective. The enzyme will also use (3R)-linalyl diphosphate. The reaction in-
volves a 1,2-hydride shift. The 1-pro-S hydrogen of geranyl diphosphate is lost.

References: [1018, 721]

[EC 4.2.3.115 created 2012]

EC 4.2.3.116
Accepted name: (+)-camphene synthase

Reaction: geranyl diphosphate = (+)-camphene + diphosphate
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-camphene-forming]

Comments: Cyclase I of Salvia officinalis (sage) gives about equal parts (+)-camphene and (+)-α-pinene. (3R)-
Linalyl diphosphate can also be used by the enzyme in preference to (3S)-linalyl diphosphate. Re-
quires Mg2+ (preferred to Mn2+). See also EC 4.2.3.121 (+)-α-pinene synthase.

References: [396, 255, 1336, 1030]

[EC 4.2.3.116 created 2012]

EC 4.2.3.117
Accepted name: (-)-camphene synthase

Reaction: geranyl diphosphate = (-)-camphene + diphosphate
Other name(s): CS

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-camphene-forming]
Comments: (-)-Camphene is the major product in Abies grandis (grand fir) with traces of other monoterpenoids

[106]. In Pseudotsuga menziesii (Douglas-fir) there are about equal parts of (-)-camphene and (-)-
α-pinene with traces of four other monoterpenoids [547, 551]. In Solanum lycopersicum (tomato)
tricyclene, β-myrcene, limonene, and traces of several other monoterpenoids are also formed [346].
See also EC 4.2.3.15 myrcene synthase, EC 4.2.3.16 (4S)-limonene synthase, EC 4.2.3.119 (-)-α-
pinene synthase and EC 4.2.3.105 tricyclene synthase.

References: [106, 547, 551, 346]

[EC 4.2.3.117 created 2012]

EC 4.2.3.118
Accepted name: 2-methylisoborneol synthase

Reaction: (E)-2-methylgeranyl diphosphate + H2O = 2-methylisoborneol + diphosphate
Other name(s): sco7700; 2-MIB cyclase; MIB synthase; MIBS

Systematic name: (E)-2-methylgeranyl-diphosphate diphosphate-lyase (cyclizing, 2-methylisoborneol-forming)
Comments: The product, 2-methylisoborneol, is a characteristc odiferous compound with a musty smell produced

by soil microorganisms.
References: [1341, 679, 411]
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[EC 4.2.3.118 created 2012]

EC 4.2.3.119
Accepted name: (-)-α-pinene synthase

Reaction: geranyl diphosphate = (-)-α-pinene + diphosphate
Other name(s): (-)-α-pinene/(-)-camphene synthase; (-)-α-pinene cyclase

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-α-pinene-forming]
Comments: Cyclase II of Salvia officinalis (sage) gives about equal parts (-)-α-pinene, (-)-β-pinene and (-)-

camphene, plus traces of other monoterpenoids. (3S)-Linalyl diphosphate can also be used by the
enzyme in preference to (3R)-linalyl diphosphate. The 4-pro-S-hydrogen of geranyl diphosphate is
lost. Requires Mg2+ (preferred to Mn2+) [396, 257, 255, 254, 1030, 788]. The enzyme from Abies
grandis (grand fir) gives roughly equal parts (-)-α-pinene and (-)-β-pinene. However the clone ag11
gave 35% (-)-limonene, 24% (-)-α-pinene and 20% (-)-β-phellandrene. It requires Mn2+ and K+

(Mg2+ is ineffective) [744, 108, 106, 551]. Synthase I from Pinus taeda (loblolly pine) produces (-)-
α-pinene with traces of (-)-β-pinene and requires Mn2+ (preferred to Mg2+) [998, 999]. The enzyme
from Picea sitchensis (Sika spruce) forms 70% (-)-α-pinene and 30% (-)-β-pinene [849]. The recom-
binant PmeTPS1 enzyme from Pseudotsuga menziesii (Douglas fir) gave roughly equal proportions
of (-)-α-pinene and (-)-camphene plus traces of other monoterpenoids [547]. See also EC 4.2.3.120,
(-)-β-pinene synthase; EC 4.2.3.117, (-)-camphene synthase; EC 4.2.3.16, (-)-limonene synthase; and
EC 4.2.3.52, (-)-β-phellandrene synthase.

References: [396, 257, 255, 254, 1030, 788, 744, 108, 106, 551, 998, 999, 849, 547]

[EC 4.2.3.119 created 2012]

EC 4.2.3.120
Accepted name: (-)-β-pinene synthase

Reaction: geranyl diphosphate = (-)-β-pinene + diphosphate
Other name(s): β-geraniolene synthase; (-)-(1S,5S)-pinene synthase; geranyldiphosphate diphosphate lyase (pinene

forming)
Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (-)-β-pinene-forming]

Comments: Cyclase II of Salvia officinalis (sage) produces about equal parts (-)-α-pinene, (-)-β-pinene and (-
)-camphene, plus traces of other monoterpenoids. The enzyme, which requires Mg2+ (preferred to
Mn2+), can also use (3S)-Linalyl diphosphate (preferred to (3R)-linalyl diphosphate) [257, 254, 255,
1030]. The enzyme from Abies grandis (grand fir) produces roughly equal parts of (-)-α-pinene and
(-)-β-pinene [412, 744, 108, 551]. Cyclase IV from Pinus contorta (lodgepole pine) produces 63%
(-)-β-pinene, 26% 3-carene, and traces of α-pinene [1116]. Synthase III from Pinus taeda (loblolly
pine) forms (-)-β-pinene with traces of α-pinene and requires Mn2+ and K+ (Mg2+ is ineffective)
[998]. A cloned enzyme from Artemisia annua (sweet wormwood) gave (-)-β-pinene with traces of
(-)-α-pinene [788]. The enzyme from Picea sitchensis (Sika spruce) forms 30% (-)-β-pinene and 70%
(-)-α-pinene [849]. See also EC 4.2.3.119, (-)-α-pinene synthase, EC 4.2.3.117, (-)-camphene syn-
thase, and EC 4.2.3.107 (+)-3-carene synthase.

References: [257, 254, 255, 1030, 788, 412, 744, 108, 551, 1116, 998, 849]

[EC 4.2.3.120 created 2012]

EC 4.2.3.121
Accepted name: (+)-α-pinene synthase

Reaction: geranyl diphosphate = (+)-α-pinene + diphosphate
Other name(s): (+)-α-pinene cyclase; cyclase I

Systematic name: geranyl-diphosphate diphosphate-lyase [cyclizing, (+)-α-pinene-forming]
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Comments: Cyclase I of Salvia officinalis (sage) gives about equal parts (+)-α-pinene and (+)-camphene, whereas
cyclase III gives about equal parts of (+)-α-pinene and (+)-β-pinene. (3R)-Linalyl diphosphate can
also be used by the enzyme in preference to (3S)-linalyl diphosphate. The 4-pro-R-hydrogen of ger-
anyl diphosphate is lost. Requires Mg2+ (preferred to Mn2+) [396, 255, 1336, 1030]. With synthase
II of Pinus taeda (loblolly pine) (+)-α-pinene was the only product [998, 999]. Requires Mn2+ (pre-
ferred to Mg2+). See also EC 4.2.3.122, (+)-β-pinene synthase, and EC 4.2.3.116, (+)-camphene syn-
thase.

References: [396, 255, 1336, 1030, 998, 999]

[EC 4.2.3.121 created 2012]

EC 4.2.3.122
Accepted name: (+)-β-pinene synthase

Reaction: geranyl diphosphate = (+)-β-pinene + diphosphate
Other name(s): (+)-pinene cyclase; cyclase III

Systematic name: geranyl-diphosphate diphosphate-lyase [(+)-β-pinene-forming]
Comments: Cyclase III from Salvia officinalis (sage) gives roughly equal parts of (+)-β-pinene and (+)-α-pinene.

See EC 4.2.3.121, (+)-α-pinene synthase.
References: [1336, 1030]

[EC 4.2.3.122 created 2012]

EC 4.2.3.123
Accepted name: β-sesquiphellandrene synthase

Reaction: (2E,6E)-farnesyl diphosphate = β-sesquiphellandrene + diphosphate
Other name(s): Tps1; Os08g07100 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, β-sesquiphellandrene-forming)
References: [1467]

[EC 4.2.3.123 created 2012]

EC 4.2.3.124
Accepted name: 2-deoxy-scyllo-inosose synthase

Reaction: D-glucose 6-phosphate = 2-deoxy-L-scyllo-inosose + phosphate
Other name(s): btrC (gene name); neoC (gene name); kanC (gene name)

Systematic name: D-glucose-6-phosphate phosphate-lyase (2-deoxy-L-scyllo-inosose-forming)
Comments: Requires Co2+ [693]. Involved in the biosynthetic pathways of several clinically important aminocy-

clitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Requires an NAD+

cofactor, which is transiently reduced during the reaction [696, 545]. The enzyme from the bacterium
Bacillus circulans forms a complex with the glutamine amidotransferase subunit of pyridoxal 5′-
phosphate synthase (EC 4.3.3.6), which appears to stabilize the complex [1257, 1258].

References: [696, 693, 695, 545, 1278, 1257, 1258]

[EC 4.2.3.124 created 2012]

EC 4.2.3.125
Accepted name: α-muurolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = α-muurolene + diphosphate
Other name(s): Cop3

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-muurolene-forming)
Comments: The enzyme has been characterized from the fungus Coprinus cinereus. Also gives germacrene A and

γ-muurolene, see EC 4.2.3.23, germacrene-A synthase and EC 4.2.3.126, γ-muurolene synthase.
References: [4, 781]
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[EC 4.2.3.125 created 2012]

EC 4.2.3.126
Accepted name: γ-muurolene synthase

Reaction: (2E,6E)-farnesyl diphosphate = γ-muurolene + diphosphate
Other name(s): Cop3

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lase (cyclizing, γ-muurolene-forming)
Comments: The enzyme has been characterized from the fungus Coprinus cinereus. Also gives germacrene A and

α-muurolene, see EC 4.2.3.23, germacrene-A synthase and EC 4.2.3.125, α-muurolene synthase.
References: [4, 781]

[EC 4.2.3.126 created 2012]

EC 4.2.3.127
Accepted name: β-copaene synthase

Reaction: (2E,6E)-farnesyl diphosphate = β-copaene + diphosphate
Other name(s): cop4

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, β-copaene-forming)
Comments: Isolated from the fungus Coprinus cinereus. The enzyme also forms (+)-δ-cadinene, β-cubebene,

(+)-sativene and traces of several other sequiterpenoids [4, 780, 781]. β-Copaene is formed in the
presence of Mg2+ but not Mn2+ [780]. See EC 4.2.3.13, (+)-δ-cadinene synthase, EC 4.2.3.128, β-
cubebene synthase, and EC 4.2.3.129, (+)-sativene synthase.

References: [4, 780, 781]

[EC 4.2.3.127 created 2012]

EC 4.2.3.128
Accepted name: β-cubebene synthase

Reaction: (2E,6E)-farnesyl diphosphate = β-cubebene + diphosphate
Other name(s): cop4; Mg25

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, β-cubebene-forming)
Comments: Isolated from the fungus Coprinus cinereus. The enzyme also forms (+)-δ-cadinene, β-copaene,

(+)-sativene and traces of several other sequiterpenoids [4, 780, 781]. It is found in many higher
plants such as Magnolia grandiflora (Southern Magnolia) together with germacrene A [734]. See EC
4.2.3.13, (+)-δ-cadinene synthase, EC 4.2.3.127, β-copaene synthase, EC 4.2.3.129, (+)-sativene syn-
thase, and EC 4.2.3.23, germacrene A synthase.

References: [734, 4, 780, 781]

[EC 4.2.3.128 created 2012]

EC 4.2.3.129
Accepted name: (+)-sativene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-sativene + diphosphate
Other name(s): cop4

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-sativene-forming)
Comments: Isolated from the fungus Coprinus cinereus. The enzyme also forms (+)-δ-cadinene, β-copaene, β-

cubebene, and traces of several other sequiterpenoids. See EC 4.2.3.13, (+)-δ-cadinene synthase, EC
4.2.3.127, β-copaene synthase, and EC 4.2.3.128, β-cubebene synthase.

References: [4, 780, 781]

[EC 4.2.3.129 created 2012]

EC 4.2.3.130
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Accepted name: tetraprenyl-β-curcumene synthase
Reaction: all-trans-heptaprenyl diphosphate = tetraprenyl-β-curcumene + diphosphate

Other name(s): ytpB (gene name)
Systematic name: all-trans-heptaprenyl-diphosphate diphosphate-lyase (cyclizing, tetraprenyl-β-curcumene-forming)

Comments: Isolated from Bacillus subtilis. This sesquarterpene is present in a number of Bacillus species.
References: [1111]

[EC 4.2.3.130 created 2012]

EC 4.2.3.131
Accepted name: miltiradiene synthase

Reaction: (+)-copalyl diphosphate = miltiradiene + diphosphate
Other name(s): SmMDS; SmiKSL; RoKSL

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase (cyclizing, miltiradiene-forming)
Comments: Isolated from the plants Rosmarinus officinalis (rosemary) and Salvia miltiorrhiza. The enzyme from

the plant Selaginella moellendorffii is mutifunctional and also catalyses EC 5.5.1.12, copalyl diphos-
phate synthase [1230].

References: [397, 1230, 141]

[EC 4.2.3.131 created 2012]

EC 4.2.3.132
Accepted name: neoabietadiene synthase

Reaction: (+)-copalyl diphosphate = neoabietadiene + diphosphate
Other name(s): AgAS; PtTPS-LAS

Systematic name: (+)-copaly-diphosphate diphosphate-lyase (cyclizing, neoabietadiene-forming)
Comments: Isolated from Abies grandis (grand fir) [991]. This class I enzyme forms about equal proportions

of abietadiene, levopimaradiene and neoabietadiene. See also EC 4.2.3.18, abieta-7,13-diene syn-
thase and EC 4.2.3.32, levopimaradiene synthase. An X-ray study of this multifunctional enzyme
showed that the class I activity is in the α domain, while (+)-copalyl diphosphate synthase activity
(EC 5.5.1.12, a class II activity) is in the β and γ domains [1463]. In Pinus taeda (loblolly pine) the
major product is levopimaradiene, with less abietadiene and neoabietadiene [1079].

References: [991, 1463, 1079]

[EC 4.2.3.132 created 2012]

EC 4.2.3.133
Accepted name: α-copaene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-copaene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-copaene-forming)

Comments: Isolated from Helianthus annuus (sunflower). The enzyme also produces β-caryophyllene, δ-cadinene
and traces of other sesquiterpenoids. See EC 4.2.3.13 (+)-δ-cadinene synthase, EC 4.2.3.57 (-)-β-
caryophyllene synthase.

References: [424, 1384]

[EC 4.2.3.133 created 2012]

EC 4.2.3.134
Accepted name: 5-phosphonooxy-L-lysine phospho-lyase

Reaction: (5R)-5-phosphooxy-L-lysine + H2O = (S)-2-amino-6-oxohexanoate + NH3 + phosphate
Other name(s): 5-phosphohydroxy-L-lysine ammoniophospholyase; AGXT2L2 (gene name); (5R)-5-phosphonooxy-

L-lysine phosphate-lyase (deaminating; (S)-2-amino-6-oxohexanoate-forming)
Systematic name: (5R)-5-phosphooxy-L-lysine phosphate-lyase (deaminating; (S)-2-amino-6-oxohexanoate-forming)
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Comments: A pyridoxal-phosphate protein. Has no activity with phosphoethanolamine (cf. EC 4.2.3.2,
ethanolamine-phosphate phospho-lyase).

References: [1298, 264]

[EC 4.2.3.134 created 2012]

EC 4.2.3.135
Accepted name: ∆6-protoilludene synthase

Reaction: (2E,6E)-farnesyl diphosphate = ∆6-protoilludene + diphosphate
Other name(s): 6-protoilludene synthase

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, ∆6-protoilludene-forming)
Comments: Isolated from the fungus Armillaria gallica. ∆6-Protoilludene is the first step in the biosynthesis of the

melleolides.
References: [336]

[EC 4.2.3.135 created 2012]

EC 4.2.3.136
Accepted name: α-isocomene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-isocomene + diphosphate
Other name(s): MrTPS2

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (-)-α-isocomene-forming)
Comments: Isolated from the roots of the plant Matricaria chamomilla var. recutita (chamomile). The enzyme

also produced traces of five other sesquiterpenoids.
References: [561]

[EC 4.2.3.136 created 2012]

EC 4.2.3.137
Accepted name: (E)-2-epi-β-caryophyllene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (E)-2-epi-β-caryophyllene + diphosphate
Other name(s): 2-epi-(E)-β-caryophyllene synthase; SmMTPSL26

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (E)-2-epi-β-caryophyllene-forming)
Comments: Isolated from the plant Selaginella moellendorfii. The enzyme also gives two other sesquiterpenoids.
References: [746]

[EC 4.2.3.137 created 2012]

EC 4.2.3.138
Accepted name: (+)-epi-α-bisabolol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-epi-α-bisabolol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-epi-α-bisabolol-forming)

Comments: Isolated from the plant Phyla dulcis (Aztec sweet herb). (+)-epi-α-Bisabolol is the precursor of the
sweetener hernandulcin.

References: [47]

[EC 4.2.3.138 created 2012]

EC 4.2.3.139
Accepted name: valerena-4,7(11)-diene synthase

Reaction: (2E,6E)-farnesyl diphosphate = valerena-4,7(11)-diene + diphosphate
Other name(s): VoTPS2; VoTPS7
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Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, valerena-4,7(11)-diene-forming)
Comments: Isolated from the plant Valeriana officinalis (valerian). Note that due to a different numbering system

the product is also known as valerena-1,10-diene.
References: [1029, 1407]

[EC 4.2.3.139 created 2012]

EC 4.2.3.140
Accepted name: cis-abienol synthase

Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = cis-abienol + diphosphate
Other name(s): Z-abienol synthase; CAS; ABS

Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate-lyase (cis-abienol forming)
Comments: Isolated from the plants Abies balsamea (balsam fir) [1442] and Nicotiana tabacum (tobacco) [1104].
References: [1442, 1104]

[EC 4.2.3.140 created 2012]

EC 4.2.3.141
Accepted name: sclareol synthase

Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate + H2O = sclareol + diphosphate
Other name(s): SS

Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate-lyase (sclareol forming)
Comments: Isolated from the plant Salvia sclarea (clary sage). Originally thought to be synthesized in one step

from geranylgeranyl diphosphate it is now known to require two enzymes, EC 4.2.1.133, copal-8-ol
diphosphate synthase and EC 4.2.3.141, sclareol synthase. Sclareol is used in perfumery.

References: [177]

[EC 4.2.3.141 created 2013, modified 2017]

EC 4.2.3.142
Accepted name: 7-epizingiberene synthase [(2Z,6Z)-farnesyl diphosphate cyclizing]

Reaction: (2Z,6Z)-farnesyl diphosphate = 7-epizingiberene + diphosphate
Other name(s): ShZIS (gene name)

Systematic name: (2Z,6Z)-farnesyl-diphosphate lyase (cyclizing; 7-epizingiberene-forming)
Comments: Isolated from the plant Solanum habrochaites. 7-Epizingiberene is a whitefly repellant.
References: [94]

[EC 4.2.3.142 created 2013]

EC 4.2.3.143
Accepted name: kunzeaol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = kunzeaol + diphosphate
Other name(s): TgTPS2 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (kunzeaol forming)
Comments: Isolated from the root of the plant Thapsia garganica. The enzyme also produces germacrene D, bicy-

clogermacrene and traces of other sesquiterpenoids. See EC 4.2.3.77, (+)-germacrene D synthase and
EC 4.2.3.100, bicyclogermacrene synthase.

References: [1005]

[EC 4.2.3.143 created 2013]

EC 4.2.3.144
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Accepted name: geranyllinalool synthase
Reaction: geranylgeranyl diphosphate + H2O = (6E,10E)-geranyllinalool + diphosphate

Other name(s): TPS04/GES; GES
Systematic name: geranylgeranyl diphosphate diphosphate-lyase ((E,E)-geranyllinalool-forming)

Comments: The enzyme is a component of the herbivore-induced indirect defense system. The product, (E,E)-
geranyllinalool, is a precursor to the volatile compound 4,8,12-trimethyl-1,3,7,11-tridecatetraene
(TMTT), which is released by many plants in response to damage.

References: [505, 45]

[EC 4.2.3.144 created 2013]

EC 4.2.3.145
Accepted name: ophiobolin F synthase

Reaction: (2E,6E,10E,14E)-geranylfarnesyl diphosphate + H2O = ophiobolin F + diphosphate
Systematic name: (2E,6E,10E,14E)-geranylfarnesyl-diphosphate diphosphate-lyase (cyclizing, ophiobolin-F-forming)

Comments: Isolated from the fungus Aspergillus clavatus. The product is a sesterterpenoid (C25 terpenoid).
References: [212]

[EC 4.2.3.145 created 2014]

EC 4.2.3.146
Accepted name: cyclooctat-9-en-7-ol synthase

Reaction: geranylgeranyl diphosphate + H2O = cyclooctat-9-en-7-ol + diphosphate
Other name(s): cotB2

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclooctat-9-en-7-ol-forming)
Comments: Requires Mg2+. Isolated from the bacterium Streptomyces melanosporofaciens, where it is part of the

biosynthesis of cyclooctatin, a potent inhibitor of lysophospholipase.
References: [655, 1451, 582, 852, 1284]

[EC 4.2.3.146 created 2014]

EC 4.2.3.147
Accepted name: pimaradiene synthase

Reaction: (+)-copalyl diphosphate = pimara-8(14),15-diene + diphosphate
Other name(s): PbmPIM1; PcmPIM1

Systematic name: (+)-copalyl diphosphate-lyase (pimara-8(14),15-diene-forming)
Comments: Isolated from the plants Pinus banksiana (jack pine) and Pinus contorta (lodgepole pine).
References: [456]

[EC 4.2.3.147 created 2014]

EC 4.2.3.148
Accepted name: cembrene C synthase

Reaction: geranylgeranyl diphosphate = cembrene C + diphosphate
Other name(s): DtcycA (gene name)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cembrene-C-forming)
Comments: Requires Mg2+. Isolated from the bacterium Streptomyces sp. SANK 60404. This bifunctional en-

zyme also produces (R)-nephthenol. See EC 4.2.3.149, nephthenol synthase.
References: [853]

[EC 4.2.3.148 created 2014]
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EC 4.2.3.149
Accepted name: nephthenol synthase

Reaction: geranylgeranyl diphosphate + H2O = (R)-nephthenol + diphosphate
Other name(s): DtcycA (gene name); DtcycB (gene name)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [(R)-nephthenol-forming]
Comments: Requires Mg2+. Two isozymes with this activity were isolated from the bacterium Streptomyces

sp. SANK 60404. The enzyme encoded by the DtcycA gene also produces cembrene C (see EC
4.2.3.148, cembrene C synthase), while the enzyme encoded by the DtcycB gene also produces (R)-
cembrene A and (1S,4E,8E,12E)-2,2,5,9,13-pentamethylcyclopentadeca-4,8,12-trien-1-ol (see EC
4.2.3.150, cembrene A synthase, and EC 4.2.3.151, pentamethylcyclopentadecatrienol synthase).

References: [853]

[EC 4.2.3.149 created 2014]

EC 4.2.3.150
Accepted name: cembrene A synthase

Reaction: geranylgeranyl diphosphate = (R)-cembrene A + diphosphate
Other name(s): DtcycB (gene name)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [(R)-cembrene-A-forming]
Comments: Requires Mg2+. Isolated from the bacterium Streptomyces sp. SANK 60404. This trifunctional

enzyme, which contains a [4Fe-4S] cluster, also produces (R)-nephthenol and (1S,4E,8E,12E)-
2,2,5,9,13-pentamethylcyclopentadeca-4,8,12-trien-1-ol. See EC 4.2.3.149, nephthenol synthase and
EC 4.2.3.151, pentamethylcyclopentadecatrienol synthase.

References: [853]

[EC 4.2.3.150 created 2014]

EC 4.2.3.151
Accepted name: pentamethylcyclopentadecatrienol synthase

Reaction: geranylgeranyl diphosphate + H2O = (1S,4E,8E,12E)-2,2,5,9,13-pentamethylcyclopentadeca-4,8,12-
trien-1-ol + diphosphate

Other name(s): DtcycB (gene name)
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [(1S,4E,8E,12E)-2,2,5,9,13-

pentamethylcyclopentadeca-4,8,12-trien-1-ol-forming]
Comments: Requires Mg2+. Isolated from the bacterium Streptomyces sp. SANK 60404. This trifunctional en-

zyme, which contains a [4Fe-4S] cluster, also produces (R)-nephthenol and (R)-cembrene A. See EC
4.2.3.150, cembrene A synthase and EC 4.2.3.149, nephthenol synthase.

References: [853]

[EC 4.2.3.151 created 2014]

EC 4.2.3.152
Accepted name: 2-epi-5-epi-valiolone synthase

Reaction: α-D-sedoheptulopyranose 7-phosphate = 2-epi-5-epi-valiolone + phosphate
Other name(s): AcbC; ValA; CetA; SalQ; C7-cyclitol synthase

Systematic name: α-D-sedoheptulopyranose-7-phosphate phosphate-lyase (cyclizing; 2-epi-5-epi-valiolone-forming)
Comments: The enzyme is highly specific for α-D-sedoheptulopyranose 7-phosphate. It requires a divalent metal

ion (Zn2+ or Co2+) and an NAD+ cofactor, which is transiently reduced during the reaction. The en-
zyme is involved in the biosynthesis of C7N-aminocyclitol natural products, such as the valienamine
moiety of the antidiabetic drug acarbose and the crop protectant validamycin A. cf. EC 4.2.3.155, 2-
epi-valiolone synthase and EC 4.2.3.154, demethyl-4-deoxygadusol synthase.

References: [1225, 1427, 1380, 217, 639]
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[EC 4.2.3.152 created 2015, modified 2016]

EC 4.2.3.153
Accepted name: (5-formylfuran-3-yl)methyl phosphate synthase

Reaction: 2 D-glyceraldehyde 3-phosphate = (5-formylfuran-3-yl)methyl phosphate + phosphate + 2 H2O
Other name(s): mfnB (gene name); 4-HFC-P synthase; 4-(hydroxymethyl)-2-furaldehyde phosphate synthase

Systematic name: D-glyceraldehyde-3-phosphate phosphate-lyase [D-glyceraldehyde-3-phosphate-adding; (5-
formylfuran-3-yl)methyl-phosphate-forming]

Comments: The enzyme catalyses the reaction in the direction of producing (5-formylfuran-3-yl)methyl phos-
phate, an intermediate in the biosynthesis of methanofuran. The sequence of events starts with the
removal of a phosphate group, followed by aldol condensation and cyclization. Methanofuran is a
carbon-carrier cofactor involved in the first step of the methanogenic reduction of carbon dioxide by
methanogenic archaea.

References: [875, 103, 1352]

[EC 4.2.3.153 created 2015 as EC 4.1.99.21, transferred 2015 to EC 4.2.3.153]

EC 4.2.3.154
Accepted name: demethyl-4-deoxygadusol synthase

Reaction: D-sedoheptulose 7-phosphate = demethyl-4-deoxygadusol + phosphate + H2O
Other name(s): Nos2 (gene name); Anb2 (gene name)

Systematic name: D-sedoheptulose-7-phosphate phosphate-lyase (cyclizing; demethyl-4-deoxygadusol-forming)
Comments: The enzyme, characterized from the cyanobacterium Nostoc punctiforme PCC 73102, is involved in

the biosynthesis of the sunscreen compound shinorine. It requires a divalent metal ion (Zn2+ or Co2+)
and an NAD+ cofactor, which is transiently reduced during the reaction. cf. EC 4.2.3.152, 2-epi-5-
epi-valiolone synthase and EC 4.2.3.155, 2-epi-valiolone synthase.

References: [69, 41]

[EC 4.2.3.154 created 2016]

EC 4.2.3.155
Accepted name: 2-epi-valiolone synthase

Reaction: D-sedoheptulose 7-phosphate = 2-epi-valiolone + phosphate
Systematic name: D-sedoheptulose-7-phosphate phosphate-lyase (cyclizing; 2-epi-valiolone-forming)

Comments: The enzyme, characterized from the bacteria Actinosynnema mirum and Stigmatella aurantiaca
DW4/3-1, produces 2-epi-valiolone, which is believed to function as a precursor in aminocycli-
tol biosynthesis. It requires a divalent metal ion (Zn2+ or Co2+) and an NAD+ cofactor, which is
transiently reduced during the reaction. cf. EC 4.2.3.152, 2-epi-5-epi-valiolone synthase and EC
4.2.3.154, demethyl-4-deoxygadusol synthase.

References: [41]

[EC 4.2.3.155 created 2016]

EC 4.2.3.156
Accepted name: hydroxysqualene synthase

Reaction: presqualene diphosphate + H2O = hydroxysqualene + diphosphate
Other name(s): hpnC (gene name)

Systematic name: presqualene diphosphate diphosphate-lyase (adding water; hydroxyasqualene-forming)
Comments: This enzyme, isolated from the bacteria Rhodopseudomonas palustris and Zymomonas mobilis, partic-

ipates, along with EC 2.5.1.103, presqualene diphosphate synthase, and EC 1.17.8.1, hydroxysqualene
dehydroxylase, in the conversion of all-trans-farnesyl diphosphate to squalene. Eukaryotes achieve
the same goal in a single step, catalysed by EC 2.5.1.21, squalene synthase.

References: [976]
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[EC 4.2.3.156 created 2016]

EC 4.2.3.157
Accepted name: (+)-isoafricanol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-isoafricanol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-isoafricanol-forming]

Comments: (+)-Isoafricanol is a sesquiterpene alcohol. Its synthesis has been shown to occur in the bacteria Strep-
tomyces violaceusniger and Streptomyces malaysiensis.

References: [1068, 1039]

[EC 4.2.3.157 created 2017]

EC 4.2.3.158
Accepted name: (–)-spiroviolene synthase

Reaction: geranylgeranyl diphosphate = (–)-spiroviolene + diphosphate
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (–)-spiroviolene-forming]

Comments: The enzyme, which forms the diterpene (–)-spiroviolene, has been characterized from the bacterium
Streptomyces violens.

References: [1037]

[EC 4.2.3.158 created 2017]

EC 4.2.3.159
Accepted name: tsukubadiene synthase

Reaction: geranylgeranyl diphosphate = tsukubadiene + diphosphate
Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, tsukubadiene-forming)

Comments: The synthesis of the diterpene tsukubadiene has been shown to occur in the Actinobacterium Strepto-
myces tsukubaensis.

References: [1394, 1037]

[EC 4.2.3.159 created 2017]

EC 4.2.3.160
Accepted name: (2S,3R,6S,9S)-(–)-protoillud-7-ene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (2S,3R,6S,9S)-(–)-protoillud-7-ene + diphosphate
Other name(s): TPS6 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2S,3R,6S,9S)-(–)-protoillud-7-ene-
forming]

Comments: The enzyme has been described from the slime-mould Dictyostelium discoideum. It is specific
for (2E,6E)-farnesyl diphosphate. While the major product is the sequiterpene (2S,3R,6S,9S)-(–)-
protoillud-7-ene, traces of pentalenene are also formed.

References: [208, 1038]

[EC 4.2.3.160 created 2017]

EC 4.2.3.161
Accepted name: (3S)-(+)-asterisca-2(9),6-diene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (3S)-(+)-asterisca-2(9),6-diene + diphosphate
Other name(s): TPS2 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (3S)-(+)-asterisca-2(9),6-diene-forming]
Comments: The sequiterpene (3S)-(+)-asterisca-2(9),6-diene has been shown to be synthezised in the slime-mould

Dictyostelium discoideum. The enzyme is specific for (2E,6E)-farnesyl diphosphate.
References: [208, 1038]
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[EC 4.2.3.161 created 2017]

EC 4.2.3.162
Accepted name: (–)-α-amorphene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (–)-α-amorphene + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (–)-α-amorphene-forming]

Comments: The enzyme, found in the bacterium Streptomyces viridochromogenes, is specific for (2E,6E)-farnesyl
diphosphate and produces only (–)-α-amorphene.

References: [1034, 1074, 1040]

[EC 4.2.3.162 created 2017]

EC 4.2.3.163
Accepted name: (+)-corvol ether B synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-corvol ether B + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-corvol ether B-forming]

Comments: The enzyme, which forms the sesquiterpene (+)-corvol ether B, has been reported from the bacterium
Kitasatospora setae.

References: [1036, 1035, 1074]

[EC 4.2.3.163 created 2017]

EC 4.2.3.164
Accepted name: (+)-eremophilene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (+)-eremophilene + diphosphate
Other name(s): STC3 (gene name); geoA (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-eremophilene-forming]
Comments: The enzyme has been identified in the myxobacterium Sorangium cellulosum and in the fungus

Fusarium fujikuroi.
References: [1123, 153]

[EC 4.2.3.164 created 2017]

EC 4.2.3.165
Accepted name: (1R,4R,5S)-(–)-guaia-6,10(14)-diene synthase

Reaction: (2E,6E)-farnesyl diphosphate = (1R,4R,5S)-(–)-guaia-6,10(14)-diene + diphosphate
Other name(s): STC5 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (1R,4R,5S)-(–)-guaia-6,10(14)-diene-
forming]

Comments: The original enzyme (STC5) from the fungus Fusarium fujikuroi is inactive because of a critically
naturally occuring mutation that leads to an asparagine to lysine exchange in the NSE (Asn-Ser-Glu)
triad, a highly conserved motif of type I terpene cyclases. Sequence correction by site-directed muta-
genesis (K288N) restores activity.

References: [153]

[EC 4.2.3.165 created 2017]

EC 4.2.3.166
Accepted name: (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-(1E,4E,6S,7R)-germacra-1(10),4-dien-6-ol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-(1E,4E,6S,7R)-germacra-1(10),4-

dien-6-ol-forming]
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Comments: The enzyme has been identified in the bacterium Streptomyces pratensis. It is specific for (2E,6E)-
farnesyl diphosphate.

References: [1033]

[EC 4.2.3.166 created 2017]

EC 4.2.3.167
Accepted name: dolabella-3,7-dien-18-ol synthase

Reaction: geranylgeranyl diphosphate + H2O = (3E,7E)-dolabella-3,7-dien-18-ol + diphosphate
Other name(s): TPS20 (gene name)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (3E,7E)-dolabella-3,7-dien-18-ol-forming]
Comments: Isolated from an ecotype of the plant Arabidopsis thaliana from Cape Verde Islands. The enzyme

also gives (3E,7E)-dolathalia-3,7,11-triene and traces of other terpenoids. cf. EC 4.2.3.168 dolathalia-
3,7,11-triene synthase.

References: [1345]

[EC 4.2.3.167 created 2017]

EC 4.2.3.168
Accepted name: dolathalia-3,7,11-triene synthase

Reaction: geranylgeranyl diphosphate = (3E,7E)-dolathalia-3,7,11-triene + diphosphate
Other name(s): TPS20 (gene name)

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase [cyclizing, (3E,7E)-dolathalia-3,7,11-triene-forming]
Comments: Isolated from an ecotype of the plant Arabidopsis thaliana from Cape Verde Islands. The enzyme also

gives (3E,7E)-dolabella-3,7-dien-18-ol and traces of other terpenoids. cf. EC 4.2.3.167 dolabella-3,7-
dien-18-ol synthase.

References: [1345]

[EC 4.2.3.168 created 2017]

EC 4.2.3.169
Accepted name: 7-epi-α-eudesmol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 7-epi-α-eudesmol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 7-epi-α-eudesmol-forming)

Comments: The enzyme, found in the bacterium Streptomyces viridochromogenes, is specific for (2E,6E)-farnesyl
diphosphate.

References: [1040]

[EC 4.2.3.169 created 2017]

EC 4.2.3.170
Accepted name: 4-epi-cubebol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 4-epi-cubebol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 4-epi-cubebol-forming)

Comments: The enzyme, found in the bacterium Streptosporangium roseum, is specific for (2E,6E)-farnesyl
diphosphate.

References: [1040]

[EC 4.2.3.170 created 2017]

EC 4.2.3.171
Accepted name: (+)-corvol ether A synthase
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Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-corvol ether A + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-corvol ether A-forming]

Comments: The enzyme, which forms the sesquiterpene (+)-corvol ether A, has been reported from the bacterium
Kitasatospora setae.

References: [1036, 1035, 1074]

[EC 4.2.3.171 created 2017]

EC 4.2.3.172
Accepted name: 10-epi-juneol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 10-epi-juneol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 10-epi-juneol-forming)

Comments: Isolated from the plant Inula hupehensis. The enzyme also gives gives τ-cadinol and traces of other
terpenoids, see EC 4.2.3.173, τ-cadinol synthase.

References: [429]

[EC 4.2.3.172 created 2017]

EC 4.2.3.173
Accepted name: τ-cadinol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = τ-cadinol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, τ-cadinol-forming)

Comments: Isolated from the plant Inula hupehensis. The enzyme also gives 10-epi-juneol and traces of other
terpenoids, see EC 4.2.3.172, 10-epi-juneol synthase. It has also been isolated from the plants maize
(Zea mays) and lavender (Lavandula angustifolia).

References: [429, 609, 1063]

[EC 4.2.3.173 created 2017]

EC 4.2.3.174
Accepted name: (2E,6E)-hedycaryol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2E,6E)-hedycaryol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2E,6E)-hedycaryol-forming]

Comments: Isolated from the plant Camellia brevistyla. See also EC 4.2.3.187, (2Z,6E)-hedycaryol synthase.
References: [487]

[EC 4.2.3.174 created 2017]

EC 4.2.3.175
Accepted name: 10-epi-cubebol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 10-epi-cubebol + diphosphate
Other name(s): sce6369

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 10-epi-cubebol-forming)
Comments: Isolated from the bacterium Sorangium cellulosum So ce56. The enzyme is also responsible for the

formation of trace amounts of many other sesquiterpenes, mainly cadinanes and cubebanes.
References: [1122]

[EC 4.2.3.175 created 2017]

EC 4.2.3.176
Accepted name: sesterfisherol synthase

Reaction: (2E,6E,10E,14E)-geranylfarnesyl diphosphate + H2O = sesterfisherol + diphosphate
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Other name(s): NfSS
Systematic name: (2E,6E,10E,14E)-geranylfarnesyl-diphosphate diphosphate-lyase (cyclizing, sesterfisherol-forming)

Comments: Isolated from the fungus Neosartorya fischeri.
References: [1406]

[EC 4.2.3.176 created 2017]

EC 4.2.3.177
Accepted name: β-thujene synthase

Reaction: geranyl diphosphate = β-thujene + diphosphate
Other name(s): CoTPS1

Systematic name: geranyl-diphosphate diphosphate-lyase (cyclizing, β-thujene-forming)
Comments: Isolated from the plant Cananga odorata var. fruticosa (ylang ylang). The enzyme forms roughly

equal proportions of β-thujene, sabinene, β-pinene and α-terpinene see EC 4.2.3.109/EC 4.2.3.110
sabinene synthase, EC 4.2.3.120/EC 4.2.3.122 β-pinene synthase, EC 4.2.3.115 α-terpinene synthase.

References: [596]

[EC 4.2.3.177 created 2017]

EC 4.2.3.178
Accepted name: stellata-2,6,19-triene synthase

Reaction: (2E,6E,10E,14E)-geranylfarnesyl diphosphate = stellata-2,6,19-triene + diphosphate
Systematic name: (2E,6E,10E,14E)-geranylfarnesyl-diphosphate diphosphate-lyase (cylizing, stellata-2,6,19-triene-

forming)
Comments: Isolated from the fungus Aspergillus stellatus.
References: [830]

[EC 4.2.3.178 created 2017]

EC 4.2.3.179
Accepted name: guaia-4,6-diene synthase

Reaction: (2E,6E)-farnesyl diphosphate = guaia-4,6-diene + diphosphate
Other name(s): XsTPS2

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, guaia-4,6-diene-forming)
Comments: Isolated from the plant Xanthium strumarium (rough cocklebur).
References: [748]

[EC 4.2.3.179 created 2017]

EC 4.2.3.180
Accepted name: pseudolaratriene synthase

Reaction: geranylgeranyl diphosphate = pseudolaratriene + diphosphate
Other name(s): PxaTPS8

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, pseudolaradiene-forming)
Comments: Isolated from the plant Pseudolarix amabilis (golden larch). The product is oxidized to pseudolaric

acid B, a microtubule-destabilizing agent.
References: [800]

[EC 4.2.3.180 created 2017]

EC 4.2.3.181
Accepted name: selina-4(15),7(11)-diene synthase
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Reaction: (2E,6E)-farnesyl diphosphate = selina-4(15),7(11)-diene + diphosphate
Other name(s): SdS

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, selina-4(15),7(11)-diene-forming)
Comments: Isolated from the bacteria Streptomyces pristinaespiralis and S. somaliensis.
References: [1034, 57]

[EC 4.2.3.181 created 2017]

EC 4.2.3.182
Accepted name: pristinol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-(2S,3R,9R)-pristinol + diphosphate
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (+)-(2S,3R,9R)-pristinol-forming]

Comments: Isolated from the bacterium Streptomyces pristinaespiralis.
References: [659]

[EC 4.2.3.182 created 2017]

EC 4.2.3.183
Accepted name: nezukol synthase

Reaction: (+)-copalyl diphosphate + H2O = nezukol + diphosphate
Other name(s): TPS2

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase (cyclizing, nezukol-forming)
Comments: Isolated from the plant Isodon rubescens.
References: [985]

[EC 4.2.3.183 created 2017]

EC 4.2.3.184
Accepted name: 5-hydroxy-α-gurjunene synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = 5-hydroxy-α-gurjunene + diphosphate
Other name(s): MpMTPSL4

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 5-hydroxy-α-gurjunene-forming)
Comments: Isolated from the liverwort Marchantia polymorpha.
References: [705]

[EC 4.2.3.184 created 2017]

EC 4.2.3.185
Accepted name: ent-atiserene synthase

Reaction: ent-copalyl diphosphate = ent-atiserene + diphosphate
Other name(s): IrKSL4

Systematic name: ent-copalyl-diphosphate diphosphate-lyase (cyclizing, ent-atiserine-forming)
Comments: Isolated from the plant Isodon rubescens.
References: [595]

[EC 4.2.3.185 created 2017]

EC 4.2.3.186
Accepted name: ent-13-epi-manoyl oxide synthase

Reaction: ent-8α-hydroxylabd-13-en-15-yl diphosphate = ent-13-epi-manoyl oxide + diphosphate
Other name(s): SmKSL2; ent-LDPP synthase

Systematic name: ent-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (cyclizing, ent-13-epi-manoyl-oxide-
forming)
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Comments: Isolated from the plant Salvia miltiorrhiza (red sage).
References: [260]

[EC 4.2.3.186 created 2017]

EC 4.2.3.187
Accepted name: (2Z,6E)-hedycaryol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (2Z,6E)-hedycaryol + diphosphate
Other name(s): HcS

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (2Z,6E)-hedycaryol-forming]
Comments: Isolated from the bacterium Kitasatospora setae. The stereochemistry suggests the farnesyl diphos-

phate rearranges to nerolidyl diphosphate or an equivalent intermediate before cyclization. See also
EC 4.2.3.174 (2E,6E)-hedycaryol synthase.

References: [56]

[EC 4.2.3.187 created 2017]

EC 4.2.3.188
Accepted name: β-geranylfarnesene synthase

Reaction: (1) all-trans-geranylfarnesyl diphosphate = β-geranylfarnesene + diphosphate
(2) all-trans-hexaprenyl diphosphate = β-hexaprene + diphosphate
(3) all-trans-heptaprenyl diphosphate = β-heptaprene + diphosphate

Other name(s): Bcl-TS
Systematic name: all-trans-geranylfarnesyl-diphosphate diphosphate-lyase (β-geranylfarnesene-forming)

Comments: Isolated from the bacterium Bacillus clausii. The enzyme acts on a range of polyprenyl diphosphates.
References: [1110, 1310]

[EC 4.2.3.188 created 2017]

EC 4.2.3.189
Accepted name: 9,13-epoxylabda-14-ene synthase

Reaction: peregrinol diphosphate = (13ξ)-9,13-epoxylabda-14-ene + diphosphate
Other name(s): MvELS

Systematic name: peregrinol-diphosphate diphosphate-lyase (9,13-epoxylabda-14-ene-forming)
Comments: Isolated from the plant Marrubium vulgare (white horehound). Involved in marrubiin biosynthesis.
References: [1441]

[EC 4.2.3.189 created 2017]

EC 4.2.3.190
Accepted name: manoyl oxide synthase

Reaction: (13E)-8α-hydroxylabd-13-en-15-yl diphosphate = manoyl oxide + diphosphate
Other name(s): GrTPS6; CfTPS3; CfTPS4; MvELS

Systematic name: (13E)-8α-hydroxylabd-13-en-15-yl-diphosphate diphosphate-lyase (manoyl-oxide-forming)
Comments: Manoyl oxide is found in many plants. This enzyme has been isolated from the plants, Grindelia hir-

sutula (gum weed), Plectranthus barbatus (forskohlii) and Marrubium vulgare (white horehound).
References: [1443, 979, 1441]

[EC 4.2.3.190 created 2017]

EC 4.2.3.191
Accepted name: cycloaraneosene synthase
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Reaction: geranylgeranyl diphosphate = cycloaraneosene + diphosphate
Other name(s): SdnA

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cycloaraneosene-forming)
Comments: Isolated from the fungus Sordaria araneosa. Cycloaraneosene is a precursor of the antibiotic sordarin.
References: [694]

[EC 4.2.3.191 created 2017]

EC 4.2.3.192
Accepted name: labda-7,13(16),14-triene synthase

Reaction: (13E)-labda-7,13-dienyl diphosphate = labda-7,13(16),14-triene + diphosphate
Other name(s): SCLAV p0491

Systematic name: (13E)-labda-7,13-dienyl-diphosphate diphosphate-lyase (labda-7,13(16),14-triene-forming)
Comments: Isolated from the bacterium Streptomyces clavuligerus.
References: [1395]

[EC 4.2.3.192 created 2017]

EC 4.2.3.193
Accepted name: (12E)-labda-8(17),12,14-triene synthase

Reaction: (+)-copalyl diphosphate = (12E)-labda-8(17),12,14-triene + diphosphate
Other name(s): CldD

Systematic name: (+)-copalyl-diphosphate diphosphate-lyase [(12E)-labda-8(17),12,14-triene-forming]
Comments: Isolated from the bacterium Streptomyces cyslabdanicus.
References: [1395]

[EC 4.2.3.193 created 2017]

EC 4.2.3.194
Accepted name: (–)-drimenol synthase

Reaction: (2E,6E)-farnesyl diphosphate + H2O = (–)-drimenol + diphosphate
Other name(s): PhDS; VoTPS3; farnesyl pyrophosphate:drimenol cyclase; drimenol cyclase; (2E,6E)-farnesyl-

diphosphate diphosphohydrolase (drimenol-forming)
Systematic name: (2E,6E)-farnesyl-diphosphate diphospho-lyase [cyclising, (–)-drimenol-forming]

Comments: Isolated from the plants Valeriana officinalis (valerian) and Persicaria hydropiper (water pepper). The
enzyme does not act on farnesol or drimenol diphosphate. Using 18-oxygen labelled water 18-oxygen
was incorporated suggesting involvement of a stabilised carbocation or an equivalent species.

References: [70, 718, 502]

[EC 4.2.3.194 created 2011 as EC 3.1.7.7, transferred 2017 to EC 4.2.3.194]

EC 4.2.3.195
Accepted name: rhizathalene A synthase

Reaction: geranylgeranyl diphosphate = rhizathalene A + diphosphate
Other name(s): TPS08 (gene name)

Systematic name: geranygeranyl-diphosphate diphosphate-lyase (rhizathalene A-forming)
Comments: The enzyme was identified in the roots of the plant Arabidopsis thaliana (thale cress). The product

is a semivolatile diterpene that acts as a local antifeedant in belowground direct defense against root-
feeding insects.

References: [1323]

[EC 4.2.3.195 created 2017]

139

http://www.enzyme-database.org/query.php?ec=4.2.3.192
http://www.enzyme-database.org/query.php?ec=4.2.3.193
http://www.enzyme-database.org/query.php?ec=4.2.3.194
http://www.enzyme-database.org/query.php?ec=4.2.3.195


EC 4.2.3.196
Accepted name: dolabradiene synthase

Reaction: ent-copalyl diphosphate = dolabradiene + diphosphate
Other name(s): KSL4 (gene name)

Systematic name: ent-copalyl-diphosphate diphosphate-lyase (dolabradiene-forming)
Comments: The enzyme, which has been characterized from maize, is involved in the biosynthesis of dolabralex-

ins (type of antifungal phytoalexins).
References: [799]

[EC 4.2.3.196 created 2018]

EC 4.2.3.197
Accepted name: eudesmane-5,11-diol synthase

Reaction: (2E,6E)-farnesyl diphosphate + 2 H2O = 7-epi-ent-eudesmane-5,11-diol + diphosphate
Other name(s): ZmEDS (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 7-epi-ent-eudesmane-5,11-diol-forming)
Comments: Isolated from the plant Zea mays (maize). The product is named in the reference using a different

numbering scheme for eudesmane.
References: [752]

[EC 4.2.3.197 created 2018]

EC 4.2.3.198
Accepted name: α-selinene synthase

Reaction: (2E,6E)-farnesyl diphosphate = α-selinene + diphosphate
Other name(s): LfTPS2 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, α-selinene-forming)
Comments: The enzyme from the plant Ocimum basilicum (sweet basil) also produces β-selinene while that from

Liquidambar formosana (Formosan sweet gum) also produces traces of aromadendrene.
References: [555, 223]

[EC 4.2.3.198 created 2018]

EC 4.2.3.199
Accepted name: (–)-5-epieremophilene synthase

Reaction: (2E,6E)-farnesyl-diphosphate = (–)-5-epieremophilene + diphosphate
Other name(s): STPS1 (gene name); STP2 (gene name); STP3 (gene name)

Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [cyclizing, (–)-epieremophilene-forming]
Comments: The plant Salvia miltiorrhiza (danshen) produces three different forms of the enzyme, encoded by

paralogous genes, that exhibit different spacial expression patterns and respond differently to hormone
treatment.

References: [353]

[EC 4.2.3.199 created 2018]

EC 4.2.3.200
Accepted name: β-pinacene synthase

Reaction: geranylgeranyl diphosphate = β-pinacene + diphosphate
Other name(s): PcS

Systematic name: geranylgeranyl-diphosphate diphosphate-lyase (cyclizing, β-pinacene-forming)
Comments: Isolated from the slime mould Dictyostelium discoideum. The 1-proR hydrogen atom of geranylger-

anyl diphosphate is lost in the reaction.
References: [1073]
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[EC 4.2.3.200 created 2018]

EC 4.2.99 Other carbon-oxygen lyases

[4.2.99.1 Transferred entry. hyaluronate lyase. Now EC 4.2.2.1, hyaluronate lyase]

[EC 4.2.99.1 created 1961, deleted 1972]

[4.2.99.2 Transferred entry. threonine synthase. Now EC 4.2.3.1, threonine synthase]

[EC 4.2.99.2 created 1961, deleted 2000]

[4.2.99.3 Transferred entry. pectate lyase. Now EC 4.2.2.2, pectate lyase]

[EC 4.2.99.3 created 1965, deleted 1972]

[4.2.99.4 Transferred entry. alginate lyase. Now EC 4.2.2.3, poly(β-D-mannuronate) lyase]

[EC 4.2.99.4 created 1965, deleted 1972]

[4.2.99.5 Deleted entry. polyglucuronide lyase]

[EC 4.2.99.5 created 1965, deleted 1972]

[4.2.99.6 Deleted entry. chondroitin sulfate lyase. Now included with EC 4.2.2.4 (chondroitin ABC lyase) and EC 4.2.2.5
(chondroitin AC lyase)]

[EC 4.2.99.6 created 1965, deleted 1972]

[4.2.99.7 Transferred entry. ethanolamine-phosphate phospho-lyase. Now EC 4.2.3.2, ethanolamine-phosphate phospho-
lyase]

[EC 4.2.99.7 created 1972, deleted 2000]

[4.2.99.8 Transferred entry. cysteine synthase. Now EC 2.5.1.47, cysteine synthase]

[EC 4.2.99.8 created 1972, modified 1976, modified 1990, deleted 2002]

[4.2.99.9 Transferred entry. O-succinylhomoserine (thiol)-lyase. Now EC 2.5.1.48, cystathionine γ-synthase]

[EC 4.2.99.9 created 1972, deleted 2002]

[4.2.99.10 Transferred entry. O-acetylhomoserine (thiol)-lyase. Now EC 2.5.1.49, O-acetylhomoserine aminocarboxypropy-
ltransferase]

[EC 4.2.99.10 created 1972, deleted 2002]

[4.2.99.11 Transferred entry. methylglyoxal synthase. Now EC 4.2.3.3, methylglyoxal synthase]

[EC 4.2.99.11 created 1972, deleted 2000]

EC 4.2.99.12
Accepted name: carboxymethyloxysuccinate lyase

Reaction: carboxymethyloxysuccinate = fumarate + glycolate
Other name(s): carbon-oxygen lyase; carboxymethyloxysuccinate glycolate-lyase

Systematic name: carboxymethyloxysuccinate glycolate-lyase (fumarate-forming)
References: [993]

[EC 4.2.99.12 created 1976]

[4.2.99.13 Transferred entry. β-(9-cytokinin)-alanine synthase. Now EC 2.5.1.50, zeatin 9-aminocarboxyethyltransferase]

[EC 4.2.99.13 created 1984, deleted 2002]
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[4.2.99.14 Transferred entry. β-pyrazolylalanine synthase (acetylserine). Now EC 2.5.1.51, β-pyrazolylalanine synthase]

[EC 4.2.99.14 created 1989 (EC 4.2.99.17 incorporated 1992), deleted 2002]

[4.2.99.15 Transferred entry. L-mimosine synthase. Now EC 2.5.1.52, L-mimosine synthase]

[EC 4.2.99.15 created 1989, deleted 2002]

[4.2.99.16 Transferred entry. uracilylalanine synthase. Now EC 2.5.1.53, uracilylalanine synthase]

[EC 4.2.99.16 created 1990, deleted 2002]

[4.2.99.17 Deleted entry. thermopsin. Listed as EC 2.5.1.51, β-pyrazolylalanine synthase]

[EC 4.2.99.17 created 1992, deleted 1992]

EC 4.2.99.18
Accepted name: DNA-(apurinic or apyrimidinic site) lyase

Reaction: The C-O-P bond 3′ to the apurinic or apyrimidinic site in DNA is broken by a β-elimination reaction,
leaving a 3′-terminal unsaturated sugar and a product with a terminal 5′-phosphate

Other name(s): AP lyase; AP endonuclease class I; endodeoxyribonuclease (apurinic or apyrimidinic); deoxyribonu-
clease (apurinic or apyrimidinic); E. coli endonuclease III; phage-T4 UV endonuclease; Micrococcus
luteus UV endonuclease; AP site-DNA 5′-phosphomonoester-lyase; X-ray endonuclease III

Systematic name: DNA-(apurinic or apyrimidinic site) 5′-phosphomonoester-lyase
Comments: ‘Nicking’ of the phosphodiester bond is due to a lyase-type reaction, not hydrolysis. This group of

enzymes was previously listed as endonucleases, under EC 3.1.25.2.
References: [59, 60, 61, 810]

[EC 4.2.99.18 created 1978 as EC 3.1.25.2, transferred 1992 to EC 4.2.99.18]

[4.2.99.19 Transferred entry. 2-hydroxypropyl-CoM lyase. Now EC 4.4.1.23, 2-hydroxypropyl-CoM lyase. The enzyme was
incorrectly classified as acting on a C-O bond rather than a C-S bond]

[EC 4.2.99.19 created 2001, deleted 2005]

EC 4.2.99.20
Accepted name: 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase

Reaction: 5-enolpyruvoyl-6-hydroxy-2-succinylcyclohex-3-ene-1-carboxylate = (1R,6R)-6-hydroxy-2-
succinylcyclohexa-2,4-diene-1-carboxylate + pyruvate

Other name(s): 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid synthase; 6-hydroxy-2-
succinylcyclohexa-2,4-diene-1-carboxylate synthase; SHCHC synthase; MenH; YfbB

Systematic name: 5-enolpyruvoyl-6-hydroxy-2-succinylcyclohex-3-ene-1-carboxylate pyruvate-lyase [(1R,6R)-6-
hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate-forming]

Comments: This enzyme is involved in the biosynthesis of vitamin K2 (menaquinone). In most anaerobes and all
Gram-positive aerobes, menaquinone is the sole electron transporter in the respiratory chain and is es-
sential for their survival. It had previously been thought that the reactions carried out by this enzyme
and EC 2.2.1.9, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-acid synthase, were
carried out by a single enzyme but this has since been disproved [591].

References: [592, 591]

[EC 4.2.99.20 created 2008 (EC 2.5.1.64 created 2003, part-incorporated 2008)]

EC 4.2.99.21
Accepted name: isochorismate lyase

Reaction: isochorismate = salicylate + pyruvate
Other name(s): salicylate biosynthesis protein pchB; pyochelin biosynthetic protein PchB; isochorismate pyruvate

lyase
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Systematic name: isochorismate pyruvate-lyase (salicylate-forming)
Comments: This enzyme is part of the pathway of salicylate formation from chorismate, and forms an integral

part of pathways that produce salicylate-derived siderophores, such as pyochelin and yersiniabactin.
References: [1168, 644]

[EC 4.2.99.21 created 2010]

EC 4.2.99.22
Accepted name: tuliposide A-converting enzyme

Reaction: 6-tuliposide A = tulipalin A + D-glucose
Other name(s): tuliposide-converting enzyme; 6-O-(4′-hydroxy-2′-methylenebutyryl)-D-glucose acyltransferase

(lactone-forming); TCA; TCEA
Systematic name: 6-tuliposide A D-glucose-lyase (tulipalin A forming)

Comments: Isolated from the plant Tulipa gesneriana (tulip). The reaction is an intramolecular transesterification
producing the lactone. The enzyme also has a weak activity with 6-tuliposide B and 6-O-benzoyl-D-
glucose.

References: [635, 943]

[EC 4.2.99.22 created 2013]

EC 4.2.99.23
Accepted name: tuliposide B-converting enzyme

Reaction: 6-tuliposide B = tulipalin B + D-glucose
Systematic name: 6-tuliposide B D-glucose-lyase (tulipalin B-forming)

Comments: The enzyme, characterized from pollen of the plant Tulipa gesneriana (tulip), catalyses the in-
tramolecular transesterification of 6-tuliposide B to form the antibiotic aglycon tulipalin B as a sole
product. It does not catalyse the hydrolysis of 6-tuliposide B to form a hydroxy acid. The enzyme has
marginal activity with 6-tuliposide A. cf. EC 4.2.99.22, tuliposide A-converting enzyme.

References: [942]

[EC 4.2.99.23 created 2016]

EC 4.3 Carbon-nitrogen lyases
This subclass contains the enzymes that release ammonia or one of its derivatives, with the formation of a double bond or ring.
Some catalyse the actual elimination of the ammonia, amine or amide, e.g. ¡p¿

¿CH-CH(-NH-R)-→ ¿C=CH- + NH2-R¡P¿
Others, however, catalyse elimination of another component, e.g. water, which is followed by spontaneous reactions that lead

to breakage of the C-N bond, e.g. as in EC 4.3.1.17 (L-serine ammonia-lyase), so that the overall reaction is:¡p¿
¡img src=”images/EZgif/EC43.gif”¿¡/p¿
i.e., an elimination with rearrangement. The sub-subclasses of EC 4.3 are the ammonia-lyases (EC 4.3.1), lyases acting on

amides, amidines, etc. (amidine-lyases; EC 4.3.2) and the amine-lyases (EC 4.3.3).

EC 4.3.1 Ammonia-lyases

EC 4.3.1.1
Accepted name: aspartate ammonia-lyase

Reaction: L-aspartate = fumarate + NH3
Other name(s): aspartase; fumaric aminase; L-aspartase; L-aspartate ammonia-lyase

Systematic name: L-aspartate ammonia-lyase (fumarate-forming)
References: [333]
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[EC 4.3.1.1 created 1961]

EC 4.3.1.2
Accepted name: methylaspartate ammonia-lyase

Reaction: L-threo-3-methylaspartate = mesaconate + NH3
Other name(s): β-methylaspartase; 3-methylaspartase; L-threo-3-methylaspartate ammonia-lyase

Systematic name: L-threo-3-methylaspartate ammonia-lyase (mesaconate-forming)
Comments: A cobalamin protein.
References: [73, 129]

[EC 4.3.1.2 created 1961]

EC 4.3.1.3
Accepted name: histidine ammonia-lyase

Reaction: L-histidine = urocanate + NH3
Other name(s): histidase; histidinase; histidine α-deaminase; L-histidine ammonia-lyase

Systematic name: L-histidine ammonia-lyase (urocanate-forming)
Comments: This enzyme is a member of the aromatic amino acid lyase family, other members of which are

EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC
4.3.1.25 (phenylalanine/tyrosine ammonia-lyase). The enzyme contains the cofactor 3,5-dihydro-5-
methylidene-4H-imidazol-4-one (MIO), which is common to this family [783]. This unique cofactor
is formed autocatalytically by cyclization and dehydration of the three amino-acid residues alanine,
serine and glycine [1153]. This enzyme catalyses the first step in the degradation of histidine and the
product, urocanic acid, is further metabolized to glutamate [1359, 1014].

References: [854, 1359, 1014, 783, 1153]

[EC 4.3.1.3 created 1961, modified 2008]

EC 4.3.1.4
Accepted name: formimidoyltetrahydrofolate cyclodeaminase

Reaction: 5-formimidoyltetrahydrofolate = 5,10-methenyltetrahydrofolate + NH3
Other name(s): formiminotetrahydrofolate cyclodeaminase; 5-formimidoyltetrahydrofolate ammonia-lyase (cycliz-

ing)
Systematic name: 5-formimidoyltetrahydrofolate ammonia-lyase (cyclizing; 5,10-methenyltetrahydrofolate-forming)

Comments: In eukaroytes, occurs as a bifunctional enzyme that also has glutamate formimidoyltransferase (EC
2.1.2.5) activity.

References: [1041]

[EC 4.3.1.4 created 1961, modified 2000]

[4.3.1.5 Transferred entry. phenylalanine ammonia-lyase. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC
4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)]

[EC 4.3.1.5 created 1965, deleted 2008]

EC 4.3.1.6
Accepted name: β-alanyl-CoA ammonia-lyase

Reaction: β-alanyl-CoA = acryloyl-CoA + NH3
Other name(s): β-alanyl coenzyme A ammonia-lyase

Systematic name: β-alanyl-CoA ammonia-lyase (acryloyl-CoA-forming)
Comments: The reaction has only been demonstrated in the direction of addition of ammonia.
References: [1209]

[EC 4.3.1.6 created 1965]
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EC 4.3.1.7
Accepted name: ethanolamine ammonia-lyase

Reaction: ethanolamine = acetaldehyde + NH3
Other name(s): ethanolamine deaminase

Systematic name: ethanolamine ammonia-lyase (acetaldehyde-forming)
Comments: A cobalamin protein.
References: [121, 122, 624]

[EC 4.3.1.7 created 1972]

[4.3.1.8 Transferred entry. hydroxymethylbilane synthase. Now EC 2.5.1.61, hydroxymethylbilane synthase]

[EC 4.3.1.8 created 1972, modified 1982, modified 1989, deleted 2003]

EC 4.3.1.9
Accepted name: glucosaminate ammonia-lyase

Reaction: 2-amino-2-deoxy-D-gluconate = 2-dehydro-3-deoxy-D-gluconate + NH3 (overall reaction)
(1a) 2-amino-2-deoxy-D-gluconate = (2Z,4S,5R)-2-amino-4,5,6-trihydroxyhex-2-enoate + H2O
(1b) (2Z,4S,5R)-2-amino-4,5,6-trihydroxyhex-2-enoate = (4S,5R)-4,5,6-trihydroxy-2-iminohexanoate
(spontaneous)
(1c) (4S,5R)-4,5,6-trihydroxy-2-iminohexanoate + H2O = 2-dehydro-3-deoxy-D-gluconate + NH3
(spontaneous)

Other name(s): glucosaminic dehydrase; D-glucosaminate dehydratase; D-glucosaminic acid dehydrase; amin-
odeoxygluconate dehydratase; 2-amino-2-deoxy-D-gluconate hydro-lyase (deaminating); amin-
odeoxygluconate ammonia-lyase; 2-amino-2-deoxy-D-gluconate ammonia-lyase; D-glucosaminate
ammonia-lyase; D-glucosaminate ammonia-lyase (isomerizing; 2-dehydro-3-deoxy-D-gluconate-
forming)

Systematic name: 2-amino-2-deoxy-D-gluconate ammonia-lyase (isomerizing; 2-dehydro-3-deoxy-D-gluconate-
forming)

Comments: Contains pyridoxal phosphate. The enzyme releases an unstable enamine product that tautomerizes to
an imine form, which undergoes spontaneous hydrolytic deamination to form the final product.

References: [559, 866, 568, 569]

[EC 4.3.1.9 created 1972, (EC 4.3.1.21 created 1965 as EC 4.2.1.26, transferred 2002 to EC 4.3.1.21, incorporated 2004) modified 2004]

EC 4.3.1.10
Accepted name: serine-sulfate ammonia-lyase

Reaction: L-serine O-sulfate + H2O = pyruvate + NH3 + sulfate
Other name(s): (L-SOS)lyase

Systematic name: L-serine-O-sulfate ammonia-lyase (pyruvate-forming)
References: [1272]

[EC 4.3.1.10 created 1972]

[4.3.1.11 Deleted entry. dihydroxyphenylalanine ammonia-lyase. The entry had been drafted on the basis of a single abstract
that did not provide experimental evidence of the enzyme-catalysed reaction]

[EC 4.3.1.11 created 1972, deleted 2007]

EC 4.3.1.12
Accepted name: ornithine cyclodeaminase

Reaction: L-ornithine = L-proline + NH3
Other name(s): ornithine cyclase; ornithine cyclase (deaminating); L-ornithine ammonia-lyase (cyclizing)

Systematic name: L-ornithine ammonia-lyase (cyclizing; L-proline-forming)
Comments: Requires NAD+. The enzyme is a member of the µ-crystallin protein family [423]. The reaction is

stimulated by the presence of ADP or ATP and is inhibited by O2 [905].
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References: [241, 905, 342, 423, 12]

[EC 4.3.1.12 created 1976]

EC 4.3.1.13
Accepted name: carbamoyl-serine ammonia-lyase

Reaction: O-carbamoyl-L-serine + H2O = pyruvate + 2 NH3 + CO2 (overall reaction)
(1a) O-carbamoyl-L-serine = CO2 + NH3 + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): O-carbamoyl-L-serine deaminase; carbamoylserine deaminase; O-carbamoyl-L-serine ammonia-lyase
(pyruvate-forming)

Systematic name: O-carbamoyl-L-serine ammonia-lyase (decarboxylating; pyruvate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-oxygen bond, releasing CO2, ammonia,

and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic
deamination to form pyruvate and a second ammonia molecule. The latter reaction, which can occur
spontaneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deami-
nase.

References: [237]

[EC 4.3.1.13 created 1976]

EC 4.3.1.14
Accepted name: 3-aminobutyryl-CoA ammonia-lyase

Reaction: L-3-aminobutyryl-CoA = crotonoyl-CoA + NH3
Other name(s): L-3-aminobutyryl-CoA deaminase; L-3-aminobutyryl-CoA ammonia-lyase

Systematic name: L-3-aminobutyryl-CoA ammonia-lyase (crotonoyl-CoA-forming)
Comments: Hydroxylamine can replace ammonia as a substrate. Crotonoyl-pantetheine can replace crotonoyl-

CoA but it is a poorer substrate.
References: [585, 72]

[EC 4.3.1.14 created 1999]

EC 4.3.1.15
Accepted name: diaminopropionate ammonia-lyase

Reaction: 2,3-diaminopropanoate + H2O = pyruvate + 2 NH3
Other name(s): diaminopropionatase; α,β-diaminopropionate ammonia-lyase; 2,3-diaminopropionate ammonia-

lyase; 2,3-diaminopropanoate ammonia-lyase; 2,3-diaminopropanoate ammonia-lyase (adding H2O;
pyruvate-forming)

Systematic name: 2,3-diaminopropanoate ammonia-lyase (adding water; pyruvate-forming)
Comments: A pyridoxal phosphate enzyme. Active towards both D- and L-diaminopropanoate. D- and L-serine

are poor substrates.
References: [914]

[EC 4.3.1.15 created 1999]

EC 4.3.1.16
Accepted name: threo-3-hydroxy-L-aspartate ammonia-lyase

Reaction: threo-3-hydroxy-L-aspartate = oxaloacetate + NH3
Other name(s): L-threo-3-hydroxyaspartate dehydratase; threo-3-hydroxyaspartate ammonia-lyase

Systematic name: threo-3-hydroxy-L-aspartate ammonia-lyase (oxaloacetate-forming)
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Comments: A pyridoxal-phosphate protein. The enzyme, purified from the bacterium Pseudomonas sp. T62, is
highly specific, and does not accept any other stereoisomer of 3-hydroxyaspartate. Different from EC
4.3.1.20, erythro-3-hydroxy-L-aspartate ammonia-lyase and EC 4.3.1.27, threo-3-hydroxy-D-aspartate
ammonia-lyase. Requires a divalent cation such as Mn2+, Mg2+, or Ca2+.

References: [1333]

[EC 4.3.1.16 created 2001, modified 2011]

EC 4.3.1.17
Accepted name: L-serine ammonia-lyase

Reaction: L-serine = pyruvate + NH3 (overall reaction)
(1a) L-serine = 2-aminoprop-2-enoate + H2O
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): serine deaminase; L-hydroxyaminoacid dehydratase; L-serine deaminase; L-serine dehydratase; L-
serine hydro-lyase (deaminating)

Systematic name: L-serine ammonia-lyase (pyruvate-forming)
Comments: Most enzymes that catalyse this reaction are pyridoxal-phosphate-dependent, although some enzymes

contain an iron-sulfur cluster instead [431]. The reaction catalysed by both types of enzymes involves
the initial elimination of water to form an enamine intermediate (hence the enzyme’s original clas-
sification as EC 4.2.1.13, L-serine dehydratase), followed by tautomerization to an imine form and
hydrolysis of the C-N bond. The latter reaction, which can occur spontaneously, is also be catalysed
by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. This reaction is also carried out by
EC 4.3.1.19, threonine ammonia-lyase, from a number of sources.

References: [1049, 1191, 1229, 1099, 1083, 431, 1393]

[EC 4.3.1.17 created 1961 as EC 4.2.1.13, transferred 2001 to EC 4.3.1.17, modified 2014]

EC 4.3.1.18
Accepted name: D-serine ammonia-lyase

Reaction: D-serine = pyruvate + NH3 (overall reaction)
(1a) D-serine = 2-aminoprop-2-enoate + H2O
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): D-hydroxyaminoacid dehydratase; D-serine dehydrase; D-hydroxy amino acid dehydratase; D-serine
hydrolase; D-serine dehydratase (deaminating); D-serine deaminase; D-serine hydro-lyase (deaminat-
ing)

Systematic name: D-serine ammonia-lyase (pyruvate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-oxygen bond, releasing a water

molecule (hence the enzyme’s original classification as EC 4.2.1.14, D-serine dehydratase) and an
unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deami-
nation to form pyruvate and ammonia. The latter reaction, which can occur spontaneously, can also
be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. Also acts, slowly, on
D-threonine.

References: [319, 867]

[EC 4.3.1.18 created 1961 as EC 4.2.1.14, transferred 2001 to EC 4.3.1.18]

EC 4.3.1.19
Accepted name: threonine ammonia-lyase

Reaction: L-threonine = 2-oxobutanoate + NH3 (overall reaction)
(1a) L-threonine = 2-aminobut-2-enoate + H2O
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)
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Other name(s): threonine deaminase; L-serine dehydratase; serine deaminase; L-threonine dehydratase; threonine de-
hydrase; L-threonine deaminase; threonine dehydratase; L-threonine hydro-lyase (deaminating); L-
threonine ammonia-lyase

Systematic name: L-threonine ammonia-lyase (2-oxobutanoate-forming)
Comments: Most enzymes that catalyse this reaction are pyridoxal-phosphate-dependent, although some enzymes

contain an iron-sulfur cluster instead. The reaction catalysed by both types of enzymes involves the
initial elimination of water to form an enamine intermediate (hence the enzyme’s original classifica-
tion as EC 4.2.1.16, threonine dehydratase), followed by tautomerization to an imine form and hy-
drolysis of the C-N bond [997, 725]. The latter reaction, which can occur spontaneously, is also be
catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase [725]. The enzymes from
a number of sources also act on L-serine, cf. EC 4.3.1.17, L-serine ammonia-lyase.

References: [227, 939, 997, 1181, 725]

[EC 4.3.1.19 created 1961 as EC 4.2.1.16, transferred 2001 to EC 4.3.1.19, modified 2014]

EC 4.3.1.20
Accepted name: erythro-3-hydroxy-L-aspartate ammonia-lyase

Reaction: erythro-3-hydroxy-L-aspartate = oxaloacetate + NH3
Other name(s): erythro-β-hydroxyaspartate dehydratase; erythro-3-hydroxyaspartate dehydratase; erythro-3-hydroxy-

Ls-aspartate hydro-lyase (deaminating); erythro-3-hydroxy-Ls-aspartate ammonia-lyase
Systematic name: erythro-3-hydroxy-L-aspartate ammonia-lyase (oxaloacetate-forming)

Comments: A pyridoxal-phosphate protein. The enzyme, which was characterized from the bacterium Paracoccus
denitrificans NCIMB 8944, is highly specific for the L-isomer of erythro-3-hydroxyaspartate. Differ-
ent from EC 4.3.1.16, threo-3-hydroxy-L-aspartate ammonia-lyase and EC 4.3.1.27, threo-3-hydroxy-
D-aspartate ammonia-lyase. Requires a divalent cation such as Mn2+, Mg2+, and Ca2+.

References: [409]

[EC 4.3.1.20 created 1972 as EC 4.2.1.38, transferred 2001 to EC 4.3.1.20, modified 2011]

[4.3.1.21 Deleted entry. aminodeoxygluconate ammonia-lyase. Enzyme is identical to EC 4.3.1.9, glucosaminate ammonia-
lyase]

[EC 4.3.1.21 created 1965 as EC 4.2.1.26, transferred 2002 to EC 4.3.1.21, deleted 2004]

EC 4.3.1.22
Accepted name: 3,4-dihydroxyphenylalanine reductive deaminase

Reaction: L-dopa + NADH = 3,4-dihydroxyphenylpropanoate + NAD+ + NH3
Other name(s): reductive deaminase; DOPA-reductive deaminase; DOPARDA

Systematic name: 3,4-dihydroxy-L-phenylalanine ammonia-lyase (3,4-dihydroxyphenylpropanoate-forming)
Comments: Forms part of the L-phenylalanine-catabolism pathway in the anoxygenic phototrophic bacterium

Rhodobacter sphaeroides OU5. NADPH is oxidized more slowly than NADH.
References: [1050]

[EC 4.3.1.22 created 2007]

EC 4.3.1.23
Accepted name: tyrosine ammonia-lyase

Reaction: L-tyrosine = trans-p-hydroxycinnamate + NH3
Other name(s): TAL; tyrase; L-tyrosine ammonia-lyase

Systematic name: L-tyrosine ammonia-lyase (trans-p-hydroxycinnamate-forming)
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Comments: This enzyme is a member of the aromatic amino acid lyase family, other members of which
are EC 4.3.1.3 (histidine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC
4.3.1.25 (phenylalanine/tyrosine ammonia-lyase). The enzyme contains the cofactor 3,5-dihydro-5-
methylidene-4H-imidazol-4-one (MIO), which is common to this family [783]. This unique cofactor
is formed autocatalytically by cyclization and dehydration of the three amino-acid residues alanine,
serine and glycine [1153]. The enzyme is far more active with tyrosine than with phenylalanine as
substrate, but the substrate specificity can be switched by mutation of a single amino acid (H89F) in
the enzyme from the bacterium Rhodobacter sphaeroides [783, 1359].

References: [783, 1359, 1153]

[EC 4.3.1.23 created 2008 (EC 4.3.1.5 created 1965, part-incorporated 2008)]

EC 4.3.1.24
Accepted name: phenylalanine ammonia-lyase

Reaction: L-phenylalanine = trans-cinnamate + NH3
Other name(s): phenylalanine deaminase; phenylalanine ammonium-lyase; PAL; L-phenylalanine ammonia-lyase;

Phe ammonia-lyase
Systematic name: L-phenylalanine ammonia-lyase (trans-cinnamate-forming)

Comments: This enzyme is a member of the aromatic amino acid lyase family, other members of which are EC
4.3.1.3 (histidine ammonia-lyase) and EC 4.3.1.23 (tyrosine ammonia-lyase) and EC 4.3.1.25 (pheny-
lalanine/tyrosine ammonia-lyase). The enzyme contains the cofactor 3,5-dihydro-5-methylidene-4H-
imidazol-4-one (MIO), which is common to this family [783]. This unique cofactor is formed autocat-
alytically by cyclization and dehydration of the three amino-acid residues alanine, serine and glycine
[1153]. The enzyme from some species is highly specific for phenylalanine [36, 226].

References: [684, 1416, 783, 162, 1078, 1359, 36, 226, 1153]

[EC 4.3.1.24 created 2008 (EC 4.3.1.5 created 1965, part-incorporated 2008)]

EC 4.3.1.25
Accepted name: phenylalanine/tyrosine ammonia-lyase

Reaction: (1) L-phenylalanine = trans-cinnamate + NH3
(2) L-tyrosine = trans-p-hydroxycinnamate + NH3

Other name(s): PTAL; bifunctional PAL
Systematic name: L-phenylalanine(or L-tyrosine):trans-cinnamate(or trans-p-hydroxycinnamate) ammonia-lyase

Comments: This enzyme is a member of the aromatic amino acid lyase family, other members of which are EC
4.3.1.3 (histidine ammonia-lyase), EC 4.3.1.23 (tyrosine ammonia-lyase) and EC 4.3.1.24 (phenylala-
nine ammonia-lyase). The enzyme from some monocots, including maize, and from the yeast Rho-
dosporidium toruloides, deaminate L-phenylalanine and L-tyrosine with similar catalytic efficiency
[783]. The enzyme contains the cofactor 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO),
which is common to this family [783]. This unique cofactor is formed autocatalytically by cycliza-
tion and dehydration of the three amino-acid residues alanine, serine and glycine [1153].

References: [1088, 1359, 783, 1153]

[EC 4.3.1.25 created 2008 (EC 4.3.1.5 created 1965, part-incorporated 2008)]

[4.3.1.26 Transferred entry. chromopyrrolate synthase. Now EC 1.21.3.9, dichlorochromopyrrolate synthase]

[EC 4.3.1.26 created 2010, deleted 2013]

EC 4.3.1.27
Accepted name: threo-3-hydroxy-D-aspartate ammonia-lyase

Reaction: threo-3-hydroxy-D-aspartate = oxaloacetate + NH3
Other name(s): D-threo-3-hydroxyaspartate dehydratase

Systematic name: threo-3-hydroxy-D-aspartate ammonia-lyase (oxaloacetate-forming)
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Comments: A pyridoxal-phosphate protein. The enzyme, purified from the bacterium Delftia sp. HT23, also has
activity against L-threo-3-hydroxyaspartate, L-erythro-3-hydroxyaspartate, and D-serine. Different
from EC 4.3.1.20, erythro-3-hydroxy-L-aspartate ammonia-lyase and EC 4.3.1.16, threo-3-hydroxy-
L-aspartate ammonia-lyase. Requires a divalent cation such as Mn2+, Co2+ or Ni2+.

References: [798]

[EC 4.3.1.27 created 2011]

EC 4.3.1.28
Accepted name: L-lysine cyclodeaminase

Reaction: L-lysine = L-pipecolate + NH3
Other name(s): rapL (gene name); fkbL (gene name); tubZ (gene name); visC (gene name)

Systematic name: L-lysine ammonia-lyase (cyclizing; ammonia-forming)
Comments: Requires bound NAD+. The enzyme produces the non-proteinogenic amino acid L-pipecolate, which

is incorporated into multiple secondary metabolite products, including rapamycin, tobulysin, virgini-
amycin and pristinamycin.

References: [648, 403, 1301]

[EC 4.3.1.28 created 2012]

EC 4.3.1.29
Accepted name: D-glucosaminate-6-phosphate ammonia-lyase

Reaction: 2-amino-2-deoxy-D-gluconate 6-phosphate = 2-dehydro-3-deoxy-6-phospho-D-gluconate + NH3
Other name(s): DgaE; 6-phospho-D-glucosaminate ammonia-lyase (2-dehydro-3-deoxy-6-phospho-D-gluconate-

forming)
Systematic name: 2-amino-2-deoxy-D-gluconate 6-phosphate ammonia-lyase (2-dehydro-3-deoxy-6-phospho-D-

gluconate-forming)
Comments: The enzyme, from the bacterium Salmonella typhimurium, is involved in the degradation pathway of

2-amino-2-deoxy-D-gluconate.
References: [876]

[EC 4.3.1.29 created 2013]

EC 4.3.1.30
Accepted name: dTDP-4-amino-4,6-dideoxy-D-glucose ammonia-lyase

Reaction: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose + S-adenosyl-L-methionine + reduced acceptor =
dTDP-3-dehydro-4,6-dideoxy-α-D-glucopyranose + NH3 + L-methionine + 5′-deoxyadenosine + ac-
ceptor

Other name(s): desII (gene name); eryCV (gene name); MegCV
Systematic name: dTDP-4-amino-4,6-dideoxy-α-D-glucopyranose ammonia lyase (dTDP-3-dehydro-4,6-dideoxy-α-D-

glucopyranose-forming)
Comments: The enzyme, which is a member of the ‘AdoMet radical’ (radical SAM) family, is involved in biosyn-

thesis of TDP-α-D-desosamine. The reaction starts by the transfer of an electron from the reduced
form of the enzyme’s [4Fe-4S] cluster to S-adenosyl-L-methionine, spliting it into methionine and the
radical 5-deoxyadenosin-5′-yl, which attacks the sugar substrate.

References: [1244, 1094, 1095]

[EC 4.3.1.30 created 2011]

EC 4.3.1.31
Accepted name: L-tryptophan ammonia lyase

Reaction: L-tryptophan = 3-indoleacrylate + NH3
Other name(s): WAL
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Systematic name: L-tryptophan ammonia-lyase (3-indoleacrylate-forming)
Comments: The enzyme, characterized from the bacterium Rubrivivax benzoatilyticus JA2, requires no cofactors.

It acts on L-phenylalanine and L-glutamate with about 60% of the activity with L-tryptophan, and on
L-tyrosine, glycine, and L-alanine with about 30% of the activity.

References: [707]

[EC 4.3.1.31 created 2016]

EC 4.3.1.32
Accepted name: 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase

Reaction: 5-amino-5-(4-hydroxybenzyl)-6-(D-ribitylimino)-5,6-dihydrouracil + S-adenosyl-L-methionine = 7,8-
didemethyl-8-hydroxy-5-deazariboflavin + NH3 + L-methionine + 5′-deoxyadenosine

Other name(s): FO synthase; fbiC (gene name) (ambiguous); cofG (gene name)
Systematic name: 5-amino-5-(4-hydroxybenzyl)-6-(D-ribitylimino)-5,6-dihydrouracil ammonia-lyase (7,8-didemethyl-

8-hydroxy-5-deazariboflavin-forming)
Comments: The enzyme produces the 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) precursor of the redox

cofactor coenzyme F420, which is found in methanogens and in various actinobacteria. FO is also
produced by some cyanobacteria and eukaryotes. The enzyme, which forms a complex with EC
2.5.1.147, 5-amino-6-(D-ribitylamino)uracil—L-tyrosine 4-hydroxyphenyl transferase, is a radical
SAM enzyme that uses the 5′-deoxyadenosyl radical to catalyse the condensation reaction.

References: [289, 1000]

[EC 4.3.1.32 created 2010 as EC 2.5.1.77, part transferred 2018 to EC 4.3.1.32]

EC 4.3.2 Amidine-lyases

EC 4.3.2.1
Accepted name: argininosuccinate lyase

Reaction: 2-(Nω-L-arginino)succinate = fumarate + L-arginine
Other name(s): arginosuccinase; argininosuccinic acid lyase; arginine-succinate lyase; N-(L-argininosuccinate)

arginine-lyase; ω-N-(L-arginino)succinate arginine-lyase; 2-(ω-N-L-arginino)succinate arginine-lyase
(fumarate-forming)

Systematic name: 2-(Nω-L-arginino)succinate arginine-lyase (fumarate-forming)
References: [282]

[EC 4.3.2.1 created 1961]

EC 4.3.2.2
Accepted name: adenylosuccinate lyase

Reaction: (1) N6-(1,2-dicarboxyethyl)AMP = fumarate + AMP
(2) (S)-2-[5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate = fumarate + 5-
amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide

Other name(s): adenylosuccinase; succino AMP-lyase; 6-N-(1,2-dicarboxyethyl)AMP AMP-lyase; 6-N-(1,2-
dicarboxyethyl)AMP AMP-lyase (fumarate-forming)

Systematic name: N6-(1,2-dicarboxyethyl)AMP AMP-lyase (fumarate-forming)
Comments: Also acts on 1-(5-phosphoribosyl)-4-(N-succinocarboxamide)-5-aminoimidazole.
References: [186]

[EC 4.3.2.2 created 1961, modified 2000]

EC 4.3.2.3
Accepted name: ureidoglycolate lyase

151

http://www.enzyme-database.org/query.php?ec=4.3.1.32
http://www.enzyme-database.org/query.php?ec=4.3.2.1
http://www.enzyme-database.org/query.php?ec=4.3.2.2
http://www.enzyme-database.org/query.php?ec=4.3.2.3


Reaction: (S)-ureidoglycolate = glyoxylate + urea
Other name(s): ureidoglycolatase (ambiguous); ureidoglycolase (ambiguous); ureidoglycolate hydrolase (mislead-

ing); (S)-ureidoglycolate urea-lyase
Systematic name: (S)-ureidoglycolate urea-lyase (glyoxylate-forming)

Comments: This microbial enzyme is involved in the degradation of ureidoglycolate, an intermediate of purine
degradation. Not to be confused with EC 3.5.1.116, ureidoglycolate amidohydrolase, which releases
ammonia rather than urea.

References: [1294, 1363]

[EC 4.3.2.3 created 1972, modified 2014]

EC 4.3.2.4
Accepted name: purine imidazole-ring cyclase

Reaction: DNA 4,6-diamino-5-formamidopyrimidine = DNA adenine + H2O
Other name(s): DNA-4,6-diamino-5-formamidopyrimidine 8-C,9-N-lyase (cyclizing); DNA-4,6-diamino-5-

formamidopyrimidine 8-C,9-N-lyase (cyclizing; DNA-adenine-forming)
Systematic name: DNA-4,6-diamino-5-formamidopyrimidine C8-N9-lyase (cyclizing; DNA-adenine-forming)

Comments: Also acts on 2,6-diamino-5-formamido-3,4-dihydro-4-oxopyrimidine residues. Brings about the re-
closure of the imidazole rings of purine residues damaged by γ-rays.

References: [211]

[EC 4.3.2.4 created 1989]

EC 4.3.2.5
Accepted name: peptidylamidoglycolate lyase

Reaction: peptidylamidoglycolate = peptidyl amide + glyoxylate
Other name(s): α-hydroxyglycine amidating dealkylase; peptidyl-α-hydroxyglycine α-amidating lyase; HGAD; PGL;

PAL; peptidylamidoglycolate peptidylamide-lyase
Systematic name: peptidylamidoglycolate peptidyl-amide-lyase (glyoxylate-forming)

Comments: The enzyme acts on the product of the reaction catalysed by EC 1.14.17.3 peptidylglycine monooxy-
genase, thus removing a terminal glycine residue and leaving a des-glycine peptide amide.

References: [630]

[EC 4.3.2.5 created 1992]

EC 4.3.2.6
Accepted name: γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase

Reaction: γ-L-glutamyl-butirosin B = butirosin B + 5-oxo-L-proline
Other name(s): btrG (gene name); γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase (5-oxoproline producing)

Systematic name: γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme catalyses the last step in the biosynthesis of the aminoglycoside antibiotic butirosin B.

The enzyme acts as a cyclotransferase, cleaving the amide bond via transamidation using the α-amine
of the terminal γ-L-glutamate of the side chain, releasing it as the cyclic 5-oxo-L-proline.

References: [776]

[EC 4.3.2.6 created 2012]

EC 4.3.2.7
Accepted name: glutathione-specific γ-glutamylcyclotransferase

Reaction: glutathione = L-cysteinylglycine + 5-oxo-L-proline
Other name(s): γ-GCG; CHAC (gene name); CHAC1 (gene name); CHAC2 (gene name)

Systematic name: glutathione γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
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Comments: The enzyme, found in bacteria, fungi and animals, is specific for glutathione (cf. EC 4.3.2.9, γ-
glutamylcyclotransferase). The enzyme acts as a cyclotransferase, cleaving the amide bond via
transamidation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.

References: [704, 637]

[EC 4.3.2.7 created 2017]

EC 4.3.2.8
Accepted name: γ-glutamylamine cyclotransferase

Reaction: ε-(γ-L-glutamyl)-L-lysine = L-lysine + 5-oxo-L-proline
Other name(s): GGACT

Systematic name: ε-(γ-L-glutamyl)-L-lysine γ-glutamyl cyclotransferase (5-oxo-L-proline producing)
Comments: The enzyme, found in vertebrates, has no activity toward α-(γ-L-glutamyl)-L-amino acids (cf. EC

4.3.2.9, γ-glutamylcyclotransferase). The enzyme acts as a cyclotransferase, cleaving the amide bond
via transamidation using the α-amine of the γ-L-glutamyl residue, releasing it as the cyclic 5-oxo-L-
proline.

References: [359, 945]

[EC 4.3.2.8 created 2017]

EC 4.3.2.9
Accepted name: γ-glutamylcyclotransferase

Reaction: α-(γ-L-glutamyl)-L-amino acid = α-L-amino acid + 5-oxo-L-proline
Other name(s): γ-glutamyl-amino acid cyclotransferase; γ-L-glutamylcyclotransferase; L-glutamic cyclase; (5-L-

glutamyl)-L-amino-acid 5-glutamyltransferase (cyclizing); GGCT
Systematic name: α-(γ-L-glutamyl)-L-amino-acid γ-glutamyl cyclotransferase (5-oxo-L-proline producing)

Comments: The enzyme, found in animals and plants, acts on derivatives of L-glutamate, L-2-aminobutanoate,
L-alanine and glycine. The enzyme acts as a cyclotransferase, cleaving the amide bond via transami-
dation using the α-amine of the L-glutamyl residue, releasing it as the cyclic 5-oxo-L-proline.

References: [104, 962, 946, 981]

[EC 4.3.2.9 created 1972 as EC 2.3.2.4, transferred 2017 to EC 4.3.2.9]

EC 4.3.2.10
Accepted name: imidazole glycerol-phosphate synthase

Reaction: 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-
ribosyl)imidazole-4-carboxamide + L-glutamine = 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-
carboxamide + D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate + L-glutamate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-
ribosyl)imidazole-4-carboxamide + NH3 = 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-
carboxamide + D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate + H2O

Other name(s): IGP synthase; hisFH (gene names); HIS7 (gene name)
Systematic name: 5-[(5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino]-1-(5-phospho-β-D-

ribosyl)imidazole-4-carboxamide D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate-lyase (L-
glutamine-hydrolysing; 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide-forming)

Comments: The enzyme is involved in histidine biosynthesis, as well as purine nucleotide biosynthesis. The en-
zymes from archaea and bacteria are heterodimeric. A glutaminase component (cf. EC 3.5.1.2, glu-
taminase) produces an ammonia molecule that is transferred by a 25 Å tunnel to a cyclase compo-
nent, which adds it to the imidazole ring, leading to lysis of the molecule and cyclization of one of the
products. The glutminase subunit is only active within the dimeric complex. In fungi and plants the
two subunits are combined into a single polypeptide.

References: [660, 384, 79, 308, 204]
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[EC 4.3.2.10 created 2018]

EC 4.3.3 Amine-lyases

EC 4.3.3.1
Accepted name: 3-ketovalidoxylamine C-N-lyase

Reaction: 4-nitrophenyl-3-ketovalidamine = 4-nitroaniline + 5-D-(5/6)-5-C-(hydroxymethyl)-2,6-
dihydroxycyclohex-2-en-1-one

Other name(s): 3-ketovalidoxylamine A C-N-lyase; p-nitrophenyl-3-ketovalidamine p-nitroaniline lyase; 4-
nitrophenyl-3-ketovalidamine 4-nitroaniline-lyase

Systematic name: 4-nitrophenyl-3-ketovalidamine 4-nitroaniline-lyase [5-D-(5/6)-5-C-(hydroxymethyl)-2,6-
dihydroxycyclohex-2-en-1-one-forming]

Comments: Requires Ca2+. Eliminates 4-nitroaniline from 4-nitrophenyl-3-ketovalidamine, or 4-nitrophenol from
4-nitrophenyl-α-D-3-dehydroglucoside. Involved in the degradation of the fungicide validamycin A
by Flavobacterium saccharophilum.

References: [42, 1255]

[EC 4.3.3.1 created 1989]

EC 4.3.3.2
Accepted name: strictosidine synthase

Reaction: 3-α(S)-strictosidine + H2O = tryptamine + secologanin
Other name(s): strictosidine synthetase; STR; 3-α(S)-strictosidine tryptamine-lyase

Systematic name: 3-α(S)-strictosidine tryptamine-lyase (secologanin-forming)
Comments: Catalyses a Pictet-Spengler reaction between the aldehyde group of secologanin and the amino group

of tryptamine [1092, 843]. Involved in the biosynthesis of the monoterpenoid indole alkaloids.
References: [1293, 717, 288, 1092, 843, 795]

[EC 4.3.3.2 created 1990]

EC 4.3.3.3
Accepted name: deacetylisoipecoside synthase

Reaction: deacetylisoipecoside + H2O = dopamine + secologanin
Other name(s): deacetylisoipecoside dopamine-lyase

Systematic name: deacetylisoipecoside dopamine-lyase (secologanin-forming)
Comments: The enzyme from the leaves of Alangium lamarckii differs in enantiomeric specificity from EC 4.3.3.4

deacetylipecoside synthase. The product is rapidly converted to demethylisoalangiside.
References: [290]

[EC 4.3.3.3 created 2000]

EC 4.3.3.4
Accepted name: deacetylipecoside synthase

Reaction: deacetylipecoside + H2O = dopamine + secologanin
Other name(s): deacetylipecoside dopamine-lyase

Systematic name: deacetylipecoside dopamine-lyase (secologanin-forming)
Comments: The enzyme from the leaves of Alangium lamarckii differs in enantiomeric specificity from EC 4.3.3.3

deacetylisoipecoside synthase. The product is rapidly converted to demethylalangiside.
References: [290]

[EC 4.3.3.4 created 2000]
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EC 4.3.3.5
Accepted name: 4′-demethylrebeccamycin synthase

Reaction: 4′-O-demethylrebeccamycin + H2O = dichloro-arcyriaflavin A + β-D-glucose
Other name(s): arcyriaflavin A N-glycosyltransferase; RebG

Systematic name: 4′-demethylrebeccamycin D-glucose-lyase
Comments: This enzyme catalyses a step in the biosynthesis of rebeccamycin, an indolocarbazole alkaloid pro-

duced by the bacterium Lechevalieria aerocolonigenes. The enzyme is a glycosylase, and acts in the
reverse direction to that shown. It has a wide substrate range, and was shown to glycosylate several
substrates, including the staurosporine aglycone, EJG-III-108A, J-104303, 6-N-methyl-arcyriaflavin C
and indolo-[2,3-a]-carbazole [951, 1445].

References: [951, 1445]

[EC 4.3.3.5 created 2010]

EC 4.3.3.6
Accepted name: pyridoxal 5′-phosphate synthase (glutamine hydrolysing)

Reaction: D-ribose 5-phosphate + D-glyceraldehyde 3-phosphate + L-glutamine = pyridoxal 5′-phosphate + L-
glutamate + 3 H2O + phosphate (overall reaction)
(1a) L-glutamine + H2O = L-glutamate + NH3
(1b) D-ribose 5-phosphate + D-glyceraldehyde 3-phosphate + NH3 = pyridoxal 5′-phosphate + 4 H2O
+ phosphate

Other name(s): PdxST
Systematic name: D-ribose 5-phosphate,D-glyceraldehyde 3-phosphate pyridoxal 5′-phosphate-lyase

Comments: The ammonia is provided by the glutaminase subunit and channeled to the active site of the lyase sub-
unit by a 100 Å tunnel. The enzyme can also use ribulose 5-phosphate and dihydroxyacetone phos-
phate. The enzyme complex is found in aerobic bacteria, archaea, fungi and plants.

References: [155, 1053, 1226, 1054, 469, 467, 468, 1338]

[EC 4.3.3.6 created 2011]

EC 4.3.3.7
Accepted name: 4-hydroxy-tetrahydrodipicolinate synthase

Reaction: pyruvate + L-aspartate-4-semialdehyde = (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H2O
Other name(s): dihydrodipicolinate synthase (incorrect); dihydropicolinate synthetase (incorrect); dihydrodipicolinic

acid synthase (incorrect); L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing);
dapA (gene name).

Systematic name: L-aspartate-4-semialdehyde hydro-lyase [adding pyruvate and cyclizing; (4S)-4-hydroxy-2,3,4,5-
tetrahydro-(2S)-dipicolinate-forming]

Comments: Studies of the enzyme from the bacterium Escherichia coli have shown that the reaction can be di-
vided into three consecutive steps: Schiff base formation between pyruvate and an active-site lysine,
the addition of L-aspartate-semialdehyde, and finally transimination leading to cyclization with simul-
taneous dissociation of the product.

References: [1433, 97, 301, 263]

[EC 4.3.3.7 created 1972 as EC 4.2.1.52, transferred 2012 to EC 4.3.3.7]

EC 4.3.99 Other carbon-nitrogen lyases

[4.3.99.1 Transferred entry. cyanate lyase. Now EC 4.2.1.104, cyanate hydratase]

[EC 4.3.99.1 created 1972 as EC 3.5.5.3, transferred 1990 to EC 4.3.99.1, deleted 2001]

[4.3.99.2 Transferred entry. carboxybiotin decarboxylase. Now EC 7.2.4.1, carboxybiotin decarboxylase]

[EC 4.3.99.2 created 2008, deleted 2018]
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EC 4.3.99.3
Accepted name: 7-carboxy-7-deazaguanine synthase

Reaction: 6-carboxy-5,6,7,8-tetrahydropterin = 7-carboxy-7-carbaguanine + NH3
Other name(s): 7-carboxy-7-carbaguanine synthase; queE (gene name)

Systematic name: 6-carboxy-5,6,7,8-tetrahydropterin ammonia-lyase
Comments: Requires Mg2+. The enzyme is a member of the superfamily of S-adenosyl-L-methionine-dependent

radical (radical AdoMet) enzymes. Binds a [4Fe-4S] cluster that is coordinated by 3 cysteines and an
exchangeable S-adenosyl-L-methionine molecule. The S-adenosyl-L-methionine is catalytic as it is
regenerated at the end of the reaction. The reaction is part of the biosynthesis pathway of queuosine.

References: [841, 839]

[EC 4.3.99.3 created 2012]

EC 4.3.99.4
Accepted name: choline trimethylamine-lyase

Reaction: choline = trimethylamine + acetaldehyde
Other name(s): cutC (gene name)

Systematic name: choline trimethylamine-lyase (acetaldehyde-forming)
Comments: The enzyme utilizes a glycine radical to break the C-N bond in choline. Found in choline-degrading

anaerobic bacteria.
References: [244]

[EC 4.3.99.4 created 2013]

EC 4.4 Carbon-sulfur lyases
This subclass contains the carbon-sulfur lyases in a single sub-subclass for enzymes that eliminate H2S or substituted H2S (EC
4.4.1).

EC 4.4.1 Carbon-sulfur lyases (only sub-subclass identified to date)

EC 4.4.1.1
Accepted name: cystathionine γ-lyase

Reaction: L-cystathionine + H2O = L-cysteine + 2-oxobutanoate + NH3 (overall reaction)
(1a) L-cystathionine = L-cysteine + 2-aminobut-2-enoate
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)

Other name(s): homoserine deaminase; homoserine dehydratase; cystine desulfhydrase; cysteine desulfhydrase; γ-
cystathionase; cystathionase; homoserine deaminase-cystathionase; γ-CTL; cystalysin; cysteine lyase;
L-cystathionine cysteine-lyase (deaminating); CGL

Systematic name: L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)
Comments: A multifunctional pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing

L-cysteine and an unstable enamine product that tautomerizes to an imine form, which undergoes a
hydrolytic deamination to form 2-oxobutanoate and ammonia. The latter reaction, which can occur
spontaneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deami-
nase. Also catalyses the conversion of L-homoserine to 2-oxobutanoate and ammonia, of L-cystine to
thiocysteine, pyruvate and ammonia, and of L-cysteine to pyruvate, hydrogen sulfide and ammonia.

References: [125, 126, 365, 833, 834]

[EC 4.4.1.1 created 1961 (EC 4.2.1.15 created 1961, incorporated 1972)]

EC 4.4.1.2
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Accepted name: homocysteine desulfhydrase
Reaction: L-homocysteine + H2O = hydrogen sulfide + NH3 + 2-oxobutanoate (overall reaction)

(1a) L-homocysteine = hydrogen sulfide + 2-aminobut-2-enoate
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)

Other name(s): homocysteine desulfurase; L-homocysteine hydrogen-sulfide-lyase (deaminating)
Systematic name: L-homocysteine hydrogen-sulfide-lyase (deaminating; 2-oxobutanoate-forming)

Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing hydrogen sulfide
and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic
deamination to form 2-oxobutanoate and ammonia. The latter reaction, which can occur sponta-
neously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase

References: [613]

[EC 4.4.1.2 created 1961]

EC 4.4.1.3
Accepted name: dimethylpropiothetin dethiomethylase

Reaction: S,S-dimethyl-β-propiothetin = dimethyl sulfide + acrylate
Other name(s): desulfhydrase; S,S-dimethyl-β-propiothetin dimethyl-sulfide-lyase

Systematic name: S,S-dimethyl-β-propiothetin dimethyl-sulfide-lyase (acrylate-forming)
References: [182]

[EC 4.4.1.3 created 1961]

EC 4.4.1.4
Accepted name: alliin lyase

Reaction: an S-alkyl-L-cysteine S-oxide = an alkyl sulfenate + 2-aminoacrylate
Other name(s): alliinase; cysteine sulfoxide lyase; alkylcysteine sulfoxide lyase; S-alkylcysteine sulfoxide lyase; L-

cysteine sulfoxide lyase; S-alkyl-L-cysteine sulfoxide lyase; alliin alkyl-sulfenate-lyase
Systematic name: S-alkyl-L-cysteine S-oxide alkyl-sulfenate-lyase (2-aminoacrylate-forming)

Comments: A pyridoxal-phosphate protein.
References: [320, 425, 572]

[EC 4.4.1.4 created 1961]

EC 4.4.1.5
Accepted name: lactoylglutathione lyase

Reaction: (R)-S-lactoylglutathione = glutathione + 2-oxopropanal
Other name(s): methylglyoxalase; aldoketomutase; ketone-aldehyde mutase; glyoxylase I; (R)-S-lactoylglutathione

methylglyoxal-lyase (isomerizing)
Systematic name: (R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing; glutathione-forming)

Comments: Also acts on 3-phosphoglycerol-glutathione.
References: [331, 1042]

[EC 4.4.1.5 created 1961]

[4.4.1.6 Transferred entry. S-alkylcysteine lyase. Now included in EC 4.4.1.13, cysteine-S-conjugate β-lyase]

[EC 4.4.1.6 created 1965, deleted 1972, reinstated 1976, deleted 2018]

[4.4.1.7 Deleted entry. S-(hydroxyalkyl)glutathione lyase. Now included with EC 2.5.1.18 glutathione transferase]

[EC 4.4.1.7 created 1972, deleted 1976]

[4.4.1.8 Transferred entry. cystathionine β-lyase. Now included in EC 4.4.1.13, cysteine-S-conjugate β-lyase]
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[EC 4.4.1.8 created 1972, deleted 2018]
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EC 4.4.1.9
Accepted name: L-3-cyanoalanine synthase

Reaction: L-cysteine + hydrogen cyanide = L-3-cyanoalanine + hydrogen sulfide
Other name(s): β-cyanoalanine synthase; β-cyanoalanine synthetase; β-cyano-L-alanine synthase; L-cysteine

hydrogen-sulfide-lyase (adding HCN)
Systematic name: L-cysteine hydrogen-sulfide-lyase (adding hydrogen cyanide; L-3-cyanoalanine-forming)

Comments: Contains pyridoxal phospate.
References: [9, 188, 499, 500]

[EC 4.4.1.9 created 1972, deleted 1976, reinstated 1978]

EC 4.4.1.10
Accepted name: cysteine lyase

Reaction: L-cysteine + sulfite = L-cysteate + hydrogen sulfide
Other name(s): cysteine (sulfite) lyase; L-cysteine hydrogen-sulfide-lyase (adding sulfite)

Systematic name: L-cysteine hydrogen-sulfide-lyase (adding sulfite; L-cysteate-forming)
Comments: A pyridoxal-phosphate protein. Can use a second molecule of cysteine (producing lanthionine), or

other alkyl thiols, as a replacing agent.
References: [1282]

[EC 4.4.1.10 created 1972]

EC 4.4.1.11
Accepted name: methionine γ-lyase

Reaction: L-methionine + H2O = methanethiol + NH3 + 2-oxobutanoate (overall reaction)
(1a) L-methionine = methanethiol + 2-aminobut-2-enoate
(1b) 2-aminobut-2-enoate = 2-iminobutanoate (spontaneous)
(1c) 2-iminobutanoate + H2O = 2-oxobutanoate + NH3 (spontaneous)

Other name(s): L-methioninase; methionine lyase; methioninase; methionine dethiomethylase; L-methionine γ-lyase;
L-methionine methanethiol-lyase (deaminating)

Systematic name: L-methionine methanethiol-lyase (deaminating; 2-oxobutanoate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing methanethiol and

an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deami-
nation to form 2-oxobutanoate and ammonia. The latter reaction, which can occur spontaneously, can
also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme is
involved in L-methionine catabolism.

References: [687]

[EC 4.4.1.11 created 1976]

[4.4.1.12 Deleted entry. sulfoacetaldehyde lyase. Activity due to EC 2.3.3.15, sulfoacetaldehyde acetyltransferase]

[EC 4.4.1.12 created 1976, deleted 2003]

EC 4.4.1.13
Accepted name: cysteine-S-conjugate β-lyase

Reaction: an L-cysteine-S-conjugate + H2O = a thiol + NH3 + pyruvate (overall reaction)
(1a) an L-cysteine-S-conjugate = a thiol + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)
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Other name(s): cysteine conjugate β-lyase; glutamine transaminase K/cysteine conjugate β-lyase; L-cysteine-S-
conjugate thiol-lyase (deaminating); cystathionine β-lyase; β-cystathionase; cystine lyase; cystathion-
ine L-homocysteine-lyase (deaminating); L-cystathionine L-homocysteine-lyase (deaminating); CBL;
S-alkylcysteine lyase; S-alkylcysteinase; alkylcysteine lyase; S-alkyl-L-cysteine sulfoxide lyase; S-
alkyl-L-cysteine lyase; S-alkyl-L-cysteinase; alkyl cysteine lyase; S-alkyl-L-cysteine alkylthiol-lyase
(deaminating)

Systematic name: L-cysteine-S-conjugate thiol-lyase (deaminating; 2-aminoprop-2-enoate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme is promiscuous regarding the moiety conjugated to L-

cysteine, and can accept both aliphatic and aromatic substitutions. The enzyme cleaves a carbon-
sulfur bond, releasing a thiol and an unstable enamine product that tautomerizes to an imine form,
which undergoes a hydrolytic deamination to form pyruvate and ammonia. While bacteria and plants
have dedicated enzymes, all of the animal enzymes discovered thus far are bifunctional, most of
which also act as aminotransferases.

References: [367, 1264, 1217, 1218, 402, 235, 234, 928, 236]

[EC 4.4.1.13 created 1981, modified 2018 (EC 4.4.1.6 created 1965, deleted 1972, reinstated 1976, incorporated 2018) (EC 4.4.1.8 created
1972, incorporated 2018)]

EC 4.4.1.14
Accepted name: 1-aminocyclopropane-1-carboxylate synthase

Reaction: S-adenosyl-L-methionine = 1-aminocyclopropane-1-carboxylate + methylthioadenosine
Other name(s): 1-aminocyclopropanecarboxylate synthase; 1-aminocyclopropane-1-carboxylic acid synthase; 1-

aminocyclopropane-1-carboxylate synthetase; aminocyclopropanecarboxylic acid synthase; aminocy-
clopropanecarboxylate synthase; ACC synthase; S-adenosyl-L-methionine methylthioadenosine-lyase

Systematic name: S-adenosyl-L-methionine methylthioadenosine-lyase (1-aminocyclopropane-1-carboxylate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme catalyses an α,γ-elimination.
References: [109, 1428]

[EC 4.4.1.14 created 1984]

EC 4.4.1.15
Accepted name: D-cysteine desulfhydrase

Reaction: D-cysteine + H2O = sulfide + NH3 + pyruvate
Other name(s): D-cysteine lyase; D-cysteine sulfide-lyase (deaminating)

Systematic name: D-cysteine sulfide-lyase (deaminating; pyruvate-forming)
References: [912, 1130, 1131]

[EC 4.4.1.15 created 1986]

EC 4.4.1.16
Accepted name: selenocysteine lyase

Reaction: L-selenocysteine + reduced acceptor = selenide + L-alanine + acceptor
Other name(s): selenocysteine reductase; selenocysteine β-lyase

Systematic name: L-selenocysteine selenide-lyase (L-alanine-forming)
Comments: A pyridoxal-phosphate protein. Dithiothreitol or 2-mercaptoethanol can act as the reducing agent in

the reaction. The enzyme from animals does not act on cysteine, serine or chloroalanine [341, 957],
while the enzyme from bacteria shows activity with cysteine (cf. EC 2.8.1.7, cysteine desulfurase)
[873].

References: [341, 873, 957]

[EC 4.4.1.16 created 1986]

EC 4.4.1.17
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Accepted name: holocytochrome-c synthase
Reaction: holocytochrome c = apocytochrome c + heme

Other name(s): cytochrome c heme-lyase; holocytochrome c synthetase; holocytochrome-c apocytochrome-c-lyase
Systematic name: holocytochrome-c apocytochrome-c-lyase (heme-forming)

Comments: In the reverse direction, the enzyme catalyses the attachment of heme to two cysteine residues in the
protein, forming thioether links.

References: [317]

[EC 4.4.1.17 created 1990]

[4.4.1.18 Transferred entry. prenylcysteine lyase. Now EC 1.8.3.5, prenylcysteine oxidase]

[EC 4.4.1.18 created 2000, deleted 2002]

EC 4.4.1.19
Accepted name: phosphosulfolactate synthase

Reaction: (2R)-2-O-phospho-3-sulfolactate = phosphoenolpyruvate + sulfite
Other name(s): (2R)-phospho-3-sulfolactate synthase; (2R)-O-phospho-3-sulfolactate sulfo-lyase

Systematic name: (2R)-2-O-phospho-3-sulfolactate hydrogen-sulfite-lyase (phosphoenolpyruvate-forming)
Comments: Requires Mg2+. The enzyme from the archaeon Methanococcus jannaschii catalyses the Michael

addition of sulfite to phosphoenolpyruvate. It specifically requires phosphoenolpyruvate and its broad
alkaline pH optimum suggests that it uses sulfite rather than hydrogensulfite.

References: [433]

[EC 4.4.1.19 created 2003]

EC 4.4.1.20
Accepted name: leukotriene-C4 synthase

Reaction: leukotriene C4 = leukotriene A4 + glutathione
Other name(s): leukotriene C4 synthetase; LTC4 synthase; LTC4 synthetase; leukotriene A4:glutathione S-

leukotrienyltransferase; (7E,9E,11Z,14Z)-(5S,6R)-5,6-epoxyicosa-7,9,11,14-tetraenoate:glutathione
leukotriene-transferase (epoxide-ring-opening); (7E,9E,11Z,14Z)-(5S,6R)-6-(glutathion-S-yl)-5-
hydroxyicosa-7,9,11,14-tetraenoate glutathione-lyase (epoxide-forming)

Systematic name: leukotriene-C4 glutathione-lyase (leukotriene-A4-forming)
Comments: The reaction proceeds in the direction of addition. Not identical with EC 2.5.1.18, glutathione trans-

ferase.
References: [51, 1178, 722, 222]

[EC 4.4.1.20 created 1989 as EC 2.5.1.37, transferred 2004 to EC 4.4.1.20]

EC 4.4.1.21
Accepted name: S-ribosylhomocysteine lyase

Reaction: S-(5-deoxy-D-ribos-5-yl)-L-homocysteine = L-homocysteine + (4S)-4,5-dihydroxypentan-2,3-dione
Other name(s): S-ribosylhomocysteinase; LuxS

Systematic name: S-(5-deoxy-D-ribos-5-yl)-L-homocysteine L-homocysteine-lyase [(4S)-4,5-dihydroxypentan-2,3-
dione-forming]

Comments: Contains Fe2+. The 4,5-dihydroxypentan-2,3-dione formed spontaneously cyclizes and combines
with borate to form an autoinducer (AI-2) in the bacterial quorum-sensing mechanism, which is used
by many bacteria to control gene expression in response to cell density [877].

References: [1466, 877]

[EC 4.4.1.21 created 2004]

EC 4.4.1.22
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Accepted name: S-(hydroxymethyl)glutathione synthase
Reaction: S-(hydroxymethyl)glutathione = glutathione + formaldehyde

Other name(s): glutathione-dependent formaldehyde-activating enzyme; Gfa; S-(hydroxymethyl)glutathione
formaldehyde-lyase

Systematic name: S-(hydroxymethyl)glutathione formaldehyde-lyase (glutathione-forming)
Comments: The enzyme from Paracoccus denitrificans accelerates the spontaneous reaction in which

the adduct of formaldehyde and glutathione is formed, i.e. the substrate for EC 1.1.1.284, S-
(hydroxymethyl)glutathione dehydrogenase, in the formaldehyde-detoxification pathway.

References: [419]

[EC 4.4.1.22 created 2005 (EC 1.2.1.1 created 1961, modified 1982, modified 2002, part transferred 2005 to EC 4.4.1.22)]

EC 4.4.1.23
Accepted name: 2-hydroxypropyl-CoM lyase

Reaction: (1) (R)-2-hydroxypropyl-CoM = (R)-1,2-epoxypropane + HS-CoM
(2) (S)-2-hydroxypropyl-CoM = (S)-1,2-epoxypropane + HS-CoM

Other name(s): epoxyalkane:coenzyme M transferase; epoxyalkane:CoM transferase; epoxyalkane:2-
mercaptoethanesulfonate transferase; coenzyme M-epoxyalkane ligase; epoxyalkyl:CoM transferase;
epoxypropane:coenzyme M transferase; epoxypropyl:CoM transferase; EaCoMT; 2-hydroxypropyl-
CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming); (R)-2-hydroxypropyl-CoM 2-
mercaptoethanesulfonate lyase (cyclizing; (R)-1,2-epoxypropane-forming)

Systematic name: (R)-[or (S)-]2-hydroxypropyl-CoM:2-mercaptoethanesulfonate lyase (epoxyalkane-ring-forming)
Comments: Requires zinc. Acts on both enantiomers of chiral epoxyalkanes to form the corresponding (R)-

and (S)-2-hydroxyalkyl-CoM adducts. The enzyme will function with some other thiols (e.g., 2-
sulfanylethanol) as the nucleophile. Uses short-chain epoxyalkanes from C2 (epoxyethane) to C6
(1,2-epoxyhexane). This enzyme forms component I of a four-component enzyme system compris-
ing EC 4.4.1.23 (2-hydroxypropyl-CoM lyase; component I), EC 1.8.1.5 [2-oxopropyl-CoM reductase
(carboxylating); component II], EC 1.1.1.268 [2-(R)-hydroxypropyl-CoM dehydrogenase; component
III] and EC 1.1.1.269 [2-(S)-hydroxypropyl-CoM dehydrogenase; component IV] that is involved in
epoxyalkane carboxylation in Xanthobacter sp. strain Py2.

References: [20, 690, 230]

[EC 4.4.1.23 created 2001 as EC 4.2.99.19, transferred 2005 to EC 4.4.1.23]

EC 4.4.1.24
Accepted name: (2R)-sulfolactate sulfo-lyase

Reaction: (2R)-3-sulfolactate = pyruvate + hydrogensulfite
Other name(s): Suy; SuyAB; 3-sulfolactate bisulfite-lyase; sulfolactate sulfo-lyase (ambigious); (2R)-3-sulfolactate

bisulfite-lyase (pyruvate-forming)
Systematic name: (2R)-3-sulfolactate hydrogensulfite-lyase (pyruvate-forming)

Comments: Requires iron(II). This inducible enzyme participates in cysteate degradation by the bacterium Para-
coccus pantotrophus NKNCYSA and in 3-sulfolactate degradation by the bacterium Chromohalobac-
ter salexigens. The enzyme is specific for the (R) isomer of its substrate.

References: [432, 1062, 295]

[EC 4.4.1.24 created 2006, modified 2011]

EC 4.4.1.25
Accepted name: L-cysteate sulfo-lyase

Reaction: L-cysteate + H2O = hydrogensulfite + pyruvate + NH3 (overall reaction)
(1a) L-cysteate = hydrogensulfite + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)
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Other name(s): L-cysteate sulfo-lyase (deaminating); CuyA; L-cysteate bisulfite-lyase (deaminating; pyruvate-
forming)

Systematic name: L-cysteate hydrogensulfite-lyase (deaminating; pyruvate-forming)
Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing hydrogensulfite

and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic
deamination to form pyruvate and ammonia. The latter reaction, which can occur spontaneously, can
also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. D-Cysteine can
also act as a substrate, but more slowly. It is converted into hydrogen sulfide, pyruvate, and ammo-
nia. This inducible enzyme from the marine bacterium Silicibacter pomeroyi DSS-3 forms part of the
cysteate-degradation pathway.

References: [296]

[EC 4.4.1.25 created 2006]

EC 4.4.1.26
Accepted name: olivetolic acid cyclase

Reaction: 3,5,7-trioxododecanoyl-CoA = CoA + 2,4-dihydroxy-6-pentylbenzoate
Other name(s): OAC

Systematic name: 3,5,7-trioxododecanoyl-CoA CoA-lyase (2,4-dihydroxy-6-pentylbenzoate-forming)
Comments: Part of the cannabinoids biosynthetic pathway in the plant Cannabis sativa.
References: [394]

[EC 4.4.1.26 created 2012]

[4.4.1.27 Transferred entry. carbon disulfide lyase. Now EC 3.13.1.5, carbon disulfide hydrolase]

[EC 4.4.1.27 created 2013, deleted 2017]

EC 4.4.1.28
Accepted name: L-cysteine desulfidase

Reaction: L-cysteine + H2O = sulfide + NH3 + pyruvate (overall reaction)
(1a) L-cysteine = 2-aminoprop-2-enoate + sulfide
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): L-cysteine desulfhydrase
Systematic name: L-cysteine sulfide-lyase (deaminating; pyruvate-forming)

Comments: The enzyme from the archaeon Methanocaldococcus jannaschii contains a [4Fe-4S] cluster and is
specific for L-cysteine (cf. EC 4.4.1.1, cystathionine γ-lyase). It cleaves a carbon-sulfur bond releasing
sulfide and the unstable enamine product 2-aminoprop-2-enoate that tautomerizes to an imine form,
which undergoes a hydrolytic deamination to form pyruvate and ammonia. The same reaction can
also be catalysed by some pyridoxal-phosphate proteins (cf. EC 4.4.1.1, cystathionine γ-lyase).

References: [1268]

[EC 4.4.1.28 created 2014]

EC 4.4.1.29
Accepted name: phycobiliprotein cysteine-84 phycobilin lyase

Reaction: (1) [C-phycocyanin β-subunit]-Cys84-phycocyanobilin = apo-[C-phycocyanin β-subunit] + (2R,3E)-
phycocyanobilin
(2) [phycoerythrocyanin β-subunit]-Cys84-phycocyanobilin = apo-[phycoerythrocyanin β-subunit] +
(2R,3E)-phycocyanobilin
(3) [allophycocyanin α-subunit]-Cys84-phycocyanobilin = apo-[allophycocyanin α-subunit] + (2R,3E)-
phycocyanobilin
(4) [allophycocyanin β-subunit]-Cys84-phycocyanobilin = apo-[allophycocyanin β-subunit] + (2R,3E)-
phycocyanobilin
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(5) [C-phycoerythrin α-subunit]-Cys84-phycoerythrobilin = apo-[C-phycoerythrin α-subunit] +
(2R,3E)-phycoerythrobilin
(6) [C-phycoerythrin β-subunit]-Cys84-phycoerythrobilin = apo-[C-phycoerythrin β-subunit] +
(2R,3E)-phycoerythrobilin

Other name(s): cpcS (gene name); cpeS (gene name); cpcS1 (gene name); cpcU (gene name); phycocyanobilin:Cys-
β84-phycobiliprotein lyase

Systematic name: [phycobiliprotein]-Cys84-phycobilin:phycobilin lyase
Comments: The enzyme, found in cyanobacteria and red algae, catalyses the attachment of phycobilin chro-

mophores to cysteine 84 of several phycobiliproteins (the numbering used here corresponds to the
enzyme from Anabaena, in other organisms the number may vary slightly). It can attach phyco-
cyanobilin to the β subunits of C-phycocyanin and phycoerythrocyanin and to both subunits of allo-
phycocyanin. In addition, it can attach phycoerythrobilin to both subunits of C-phycoerythrin.

References: [1456, 1457, 1113, 712]

[EC 4.4.1.29 created 2015]

EC 4.4.1.30
Accepted name: phycobiliprotein β-cysteine-155 phycobilin lyase

Reaction: (1) [C-phycocyanin β-subunit]-Cys155-phycocyanobilin = apo-[C-phycocyanin β-subunit] + (2R,3E)-
phycocyanobilin
(2) [phycoerythrocyanin β-subunit]-Cys155-phycocyanobilin = apo-[phycoerythrocyanin β-subunit] +
(2R,3E)-phycocyanobilin

Other name(s): cpcT (gene name); cpeT1 (gene name); cpcT1 (gene name)
Systematic name: [phycobiliprotein β-subunit]-Cys155-phycocyanobilin:phycocyanobilin lyase

Comments: The enzyme, found in cyanobacteria and red algae, catalyses the attachment of the phycobilin chro-
mophore phycocyanobilin to cysteine 155 of the β subunits of the phycobiliproteins C-phycocyanin
and phycoerythrocyanin. The numbering used here corresponds to the enzyme from Anabaena, and
could vary slightly in other organisms.

References: [1459, 1448, 1465]

[EC 4.4.1.30 created 2015]

EC 4.4.1.31
Accepted name: phycoerythrocyanin α-cysteine-84 phycoviolobilin lyase/isomerase

Reaction: [phycoerythrocyanin α-subunit]-Cys84-phycoviolobilin = apo-[phycoerythrocyanin α-subunit] +
(2R,3E)-phycocyanobilin

Other name(s): pecE (gene name); pecF (gene name); phycoviolobilin phycoerythrocyanin-α84-cystein-lyase;
PecE/PecF; PEC-Cys-R84 PCB lyase/isomerase

Systematic name: [phycoerythrocyanin α-subunit]-Cys84-phycoviolobilin:(2R,3E)-phycocyanobilin lyase/isomerase
Comments: The enzyme, characterized from the cyanobacteria Nostoc sp. PCC 7120 and Mastigocladus

laminosus, catalyses the covalent attachment of the phycobilin chromophore phycocyanobilin to cys-
teine 84 of the β subunit of the phycobiliprotein phycoerythrocyanin and its isomerization to phycovi-
olobilin.

References: [610, 1455, 1221, 1458]

[EC 4.4.1.31 created 2015]

EC 4.4.1.32
Accepted name: C-phycocyanin α-cysteine-84 phycocyanobilin lyase

Reaction: [C-phycocyanin α-subunit]-Cys84-phycocyanobilin = apo-[C-phycocyanin α-subunit] + (2R,3E)-
phycocyanobilin

Other name(s): cpcE (gene name); cpcF (gene name)
Systematic name: [C-phycocyanin α-subunit]-Cys84-phycocyanobilin:(2R,3E)-phycocyanobilin lyase
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Comments: The enzyme, characterized from the cyanobacterium Synechococcus elongatus PCC 7942, catalyses
the covalent attachment of the phycobilin chromophore phycocyanobilin to cysteine 84 of the α sub-
unit of the phycobiliprotein C-phycocyanin.

References: [345, 344, 89]

[EC 4.4.1.32 created 2015]

EC 4.4.1.33
Accepted name: R-phycocyanin α-cysteine-84 phycourobilin lyase/isomerase

Reaction: [R-phycocyanin α-subunit]-Cys84-phycourobilin = apo-[R-phycocyanin α-subunit] + (2R,3E)-
phycoerythrobilin

Other name(s): rpcG (gene name)
Systematic name: [R-phycocyanin α-subunit]-Cys84-phycourobilin:(2R,3E)-phycoerythrobilin lyase/isomerase

Comments: The enzyme, characterized from the cyanobacterium Synechococcus sp. WH8102, catalyses the co-
valent attachment of the phycobilin chromophore phycoerythrobilin to cysteine 84 of the α subunit of
the phycobiliprotein R-phycocyanin and its isomerization to phycourobilin.

References: [100]

[EC 4.4.1.33 created 2015]

EC 4.4.1.34
Accepted name: isoprene-epoxide—glutathione S-transferase

Reaction: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol = (3R)-3,4-epoxy-3-methylbut-1-ene + glutathione
Other name(s): isoI (gene name)

Systematic name: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol lyase [(3R)-3,4-epoxy-3-methylbut-1-ene forming]
Comments: The enzyme, characterized from the bacterium Rhodococcus sp. AD45, is involved in isoprene degra-

dation. The enzyme can catalyse the glutathione-dependent ring opening of various epoxides, but
the highest activity is with (3R)-3,4-epoxy-3-methylbut-1-ene, which is derived from isoprene by EC
1.14.13.69, alkene monooxygenase.

References: [1318, 1317]

[EC 4.4.1.34 created 2016]

EC 4.4.1.35
Accepted name: L-cystine β-lyase

Reaction: L-cystine + H2O = L-thiocysteine + pyruvate + NH3 (overall reaction)
(1a) L-cystine = L-thiocysteine + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): CORI3 (gene name)
Systematic name: L-cystine thiocysteine-lyase (deaminating; pyruvate-forming)

Comments: A pyridoxal 5′-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing L-thiocysteine
and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic
deamination to form pyruvate and ammonia. The latter reaction, which can occur spontaneously, can
also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme
from Brassica oleracea var. italica (broccoli) does not act on cysteine or cystathionine.

References: [1313, 607]

[EC 4.4.1.35 created 2017]

EC 4.4.1.36
Accepted name: hercynylcysteine S-oxide lyase

Reaction: S-(hercyn-2-yl)-L-cysteine S-oxide + reduced acceptor = ergothioneine + pyruvate + NH3 + acceptor
(overall reaction)
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(1a) S-(hercyn-2-yl)-L-cysteine S-oxide + H2O = 2-(hydroxysulfanyl)hercynine + pyruvate + NH3
(1b) 2-(hydroxysulfanyl)hercynine + reduced acceptor = ergothioneine + acceptor + H2O (spontaneous)

Other name(s): egtE (gene name)
Systematic name: S-(hercyn-2-yl)-L-cysteine ergothioneine-hydroxysulfanolate-lyase

Comments: Contains pyridoxal 5′-phosphate. The enzyme, characterized from the bacterium Mycobacterium
smegmatis, cayalyses the last step in the pathway of ergothioneine biosynthesis. The enzyme forms
a 2-(hydroxysulfanyl)hercynine intermediate, which is reduced to ergothioneine non-enzymically by a
thiol. In vitro, DTT can serve this function.

References: [1157, 1009, 1202]

[EC 4.4.1.36 created 2017]

EC 4.4.1.37
Accepted name: pyridinium-3,5-bisthiocarboxylic acid mononucleotide synthase

Reaction: (1) [LarE]-L-cysteine + pyridin-1-ium-3,5-dicarboxylate mononucleotide + ATP = [LarE]-
dehydroalanine + pyridin-1-ium-3-carboxylate-5-thiocarboxylate mononucleotide + AMP + diphos-
phate (overall reaction)
(1a) ATP + pyridin-1-ium-3,5-dicarboxylate mononucleotide = diphosphate + 5-carboxy-1-(5-O-
phospho-β-D-ribofuranosyl)pyridin-1-ium-3-carbonyl adenylate
(1b) 5-carboxy-1-(5-O-phospho-β-D-ribofuranosyl)pyridin-1-ium-3-carbonyl adenylate + [LarE]-
L-cysteine = AMP + [LarE]-S-[5-carboxy-1-(5-O-phosphono-β-D-ribofuranosyl)pyridin-1-ium-3-
carbonyl]-L-cysteine
(1c) [LarE]-S-[5-carboxy-1-(5-O-phosphono-β-D-ribofuranosyl)pyridin-1-ium-3-carbonyl]-L-cysteine
= [LarE]-dehydroalanine + pyridin-1-ium-3-carboxylate-5-thiocarboxylate mononucleotide
(2) [LarE]-L-cysteine + pyridin-1-ium-3-carboxylate-5-thiocarboxylate mononucleotide + ATP =
[LarE]-dehydroalanine + pyridin-1-ium-3,5-bisthiocarboxylate mononucleotide + AMP + diphosphate
(overall reaction)
(2a) ATP + pyridin-1-ium-3-carboxylate-5-thiocarboxylate mononucleotide = diphosphate + 1-(5-O-
phospho-β-D-ribofuranosyl)-5-(sulfanylcarbonyl)pyridin-1-ium-3-carbonyl adenylate
(2b) 1-(5-O-phospho-β-D-ribofuranosyl)-5-(sulfanylcarbonyl)pyridin-1-ium-3-carbonyl adeny-
late + [LarE]-L-cysteine = AMP + [LarE]-S-[1-(5-O-phosphono-β-D-ribofuranosyl)-5-
(sulfanylcarbonyl)pyridin-1-ium-3-carbonyl]-L-cysteine
(2c) [LarE]-S-[1-(5-O-phosphono-β-D-ribofuranosyl)-5-(sulfanylcarbonyl)pyridin-1-ium-3-carbonyl]-
L-cysteine = [LarE]-dehydroalanine + pyridin-1-ium-3,5-bisthiocarboxylate mononucleotide

Other name(s): LarE; P2CMN sulfurtransferase; pyridinium-3,5-biscarboxylic acid mononucleotide sulfurtransferase;
P2TMN synthase

Systematic name: [LarE]-S-[1-(5-O-phosphono-β-D-ribofuranosyl)-5-(sulfanylcarbonyl)pyridin-1-ium-3-carbonyl]-L-
cysteine pyridin-1-ium-3,5-dicarbothioate-mononucleotide-lyase (ATP-consuming)

Comments: This enzyme, found in Lactobacillus plantarum, is involved in the biosynthesis of a nickel-pincer
cofactor. The process starts when one enzyme molecule adenylates pyridinium-3,5-dicarboxylate
mononucleotide (P2CMN) and covalently binds the adenylated product to an intrinsic cysteine
residue. Next, the enzyme cleaves the carbon-sulfur bond, liberating pyridinium-3-carboxylate-
5-thiocarboxylate mononucleotide (PCTMN) and leaving a 2-aminoprop-2-enoate (dehydroala-
nine) residue attached to the protein. Since the cysteine residue is not regenerated in vivo, the en-
zyme is inactivated during the process. A second enzyme molecule then repeats the process with
PCTMN, adenylating it and covalently binding it to the same cysteine residue, followed by liberation
of pyridinium-3,5-bisthiocarboxylate mononucleotide (P2TMN) and the inactivation of the second
enzyme molecule.

References: [299, 300, 355]

[EC 4.4.1.37 created 2018]

EC 4.5 Carbon-halide lyases
This subclass contains a single sub-subclass for enzymes that eliminate chloride (carbon-halide lyases; EC 4.5.1).

166

http://www.enzyme-database.org/query.php?ec=4.4.1.37


EC 4.5.1 Carbon-halide lyases (only sub-subclass identified to date)

EC 4.5.1.1
Accepted name: DDT-dehydrochlorinase

Reaction: 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane = 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene + chlo-
ride

Other name(s): DDT-ase; 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane chloride-lyase; DDTase
Systematic name: 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane chloride-lyase [1,1-dichloro-2,2-bis(4-

chlorophenyl)ethylene-forming]
References: [766, 767, 888]

[EC 4.5.1.1 created 1961]

EC 4.5.1.2
Accepted name: 3-chloro-D-alanine dehydrochlorinase

Reaction: 3-chloro-D-alanine + H2O = pyruvate + chloride + NH3 (overall reaction)
(1a) 3-chloro-D-alanine = chloride + 2-aminoprop-2-enoate
(1b) 2-aminoprop-2-enoate = 2-iminopropanoate (spontaneous)
(1c) 2-iminopropanoate + H2O = pyruvate + NH3 (spontaneous)

Other name(s): β-chloro-D-alanine dehydrochlorinase; 3-chloro-D-alanine chloride-lyase (deaminating)
Systematic name: 3-chloro-D-alanine chloride-lyase (deaminating; pyruvate-forming)

Comments: A pyridoxal-phosphate protein. The enzyme cleaves a carbon-chlorine bond, releasing a chloride and
an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deam-
ination to form pyruvate and ammonia. The latter reaction, which can occur spontaneously, can also
be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme’s activ-
ity can also result in β-replacement reactions, e.g. in the presence of hydrogen sulfide it can convert
3-chloro-D-alanine into D-cysteine and chloride.

References: [913, 1392]

[EC 4.5.1.2 created 1984]

EC 4.5.1.3
Accepted name: dichloromethane dehalogenase

Reaction: dichloromethane + H2O = formaldehyde + 2 chloride
Other name(s): dichloromethane chloride-lyase (chloride-hydrolysing)

Systematic name: dichloromethane chloride-lyase (adding H2O; chloride-hydrolysing; formaldehyde-forming)
Comments: Requires glutathione.
References: [673]

[EC 4.5.1.3 created 1989]

EC 4.5.1.4
Accepted name: L-2-amino-4-chloropent-4-enoate dehydrochlorinase

Reaction: L-2-amino-4-chloropent-4-enoate + H2O = 2-oxopent-4-enoate + chloride + NH3
Other name(s): L-2-amino-4-chloro-4-pentenoate dehalogenase; L-2-amino-4-chloropent-4-enoate chloride-lyase

(deaminating); L-2-amino-4-chloropent-4-enoate chloride-lyase (adding H2O; deaminating; 2-
oxopent-4-enoate-forming)

Systematic name: L-2-amino-4-chloropent-4-enoate chloride-lyase (adding water; deaminating; 2-oxopent-4-enoate-
forming)

References: [892]

[EC 4.5.1.4 created 1990]
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EC 4.5.1.5
Accepted name: S-carboxymethylcysteine synthase

Reaction: 3-chloro-L-alanine + thioglycolate = S-carboxymethyl-L-cysteine + chloride
Other name(s): S-carboxymethyl-L-cysteine synthase

Systematic name: 3-chloro-L-alanine chloride-lyase (adding thioglycolate; S-carboxymethyl-L-cysteine-forming)
Comments: A pyridoxal-phosphate protein.
References: [701]

[EC 4.5.1.5 created 1992]

EC 4.6 Phosphorus-oxygen lyases
This subclass contains a single sub-subclass (phosphorus-oxygenase lyases; EC 4.6.1). The so-called ‘nucleotidyl-cyclases’ are
included here, on the grounds that diphosphate is eliminated from the nucleoside triphosphate.

EC 4.6.1 Phosphorus-oxygen lyases (only sub-subclass identified to date)

EC 4.6.1.1
Accepted name: adenylate cyclase

Reaction: ATP = 3′,5′-cyclic AMP + diphosphate
Other name(s): adenylylcyclase; adenyl cyclase; 3′,5′-cyclic AMP synthetase; ATP diphosphate-lyase (cyclizing)

Systematic name: ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming)
Comments: Also acts on dATP to form 3′,5′-cyclic dAMP. Requires pyruvate. Activated by NAD+ in the presence

of EC 2.4.2.31 NAD(P)+—arginine ADP-ribosyltransferase.
References: [517]

[EC 4.6.1.1 created 1972]

EC 4.6.1.2
Accepted name: guanylate cyclase

Reaction: GTP = 3′,5′-cyclic GMP + diphosphate
Other name(s): guanylyl cyclase; guanyl cyclase; GTP diphosphate-lyase (cyclizing)

Systematic name: GTP diphosphate-lyase (cyclizing; 3′,5′-cyclic-GMP-forming)
Comments: Also acts on ITP and dGTP.
References: [398, 480]

[EC 4.6.1.2 created 1972]

[4.6.1.3 Transferred entry. 3-dehydroquinate synthase. Now EC 4.2.3.4, 3-dehydroquinate synthase]

[EC 4.6.1.3 created 1978, deleted 2000]

[4.6.1.4 Transferred entry. chorismate synthase. Now EC 4.2.3.5, chorismate synthase]

[EC 4.6.1.4 created 1978, modified 1983, deleted 2000]

[4.6.1.5 Transferred entry. pentalenene synthase. Now EC 4.2.3.7, pentalenene synthase]

[EC 4.6.1.5 created 1989, deleted 2000]

EC 4.6.1.6
Accepted name: cytidylate cyclase

Reaction: CTP = 3′,5′-cyclic CMP + diphosphate
Other name(s): 3′,5′-cyclic-CMP synthase; cytidylyl cyclase; cytidyl cyclase; CTP diphosphate-lyase (cyclizing)

Systematic name: CTP diphosphate-lyase (cyclizing; 3′,5′-cyclic-CMP-forming)
References: [191, 931] 168
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[EC 4.6.1.6 created 1989]

[4.6.1.7 Transferred entry. casbene synthase. Now EC 4.2.3.8, casbene synthase]

[EC 4.6.1.7 created 1989, deleted 2000]

[4.6.1.8 Transferred entry. (-)-endo-fenchol synthase. Now EC 4.2.3.10, (-)-endo-fenchol synthase]

[EC 4.6.1.8 created 1992, deleted 2000]

[4.6.1.9 Transferred entry. sabinene-hydrate synthase. Now EC 4.2.3.11, sabinene-hydrate synthase]

[EC 4.6.1.9 created 1992, deleted 2000]

[4.6.1.10 Transferred entry. 6-pyruvoyltetrahydropterin synthase. Now EC 4.2.3.12, 6-pyruvoyltetrahydropterin synthase]

[EC 4.6.1.10 created 1999, deleted 2000]

[4.6.1.11 Transferred entry. (+)-δ-cadinene synthase. Now EC 4.2.3.13, (+)-δ-cadinene synthase]

[EC 4.6.1.11 created 1999, deleted 2000]

EC 4.6.1.12
Accepted name: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase

Reaction: 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol = 2-C-methyl-D-erythritol 2,4-
cyclodiphosphate + CMP

Other name(s): MECDP-synthase; 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol CMP-lyase (cycliz-
ing)

Systematic name: 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol CMP-lyase (cyclizing; 2-C-methyl-D-
erythritol 2,4-cyclodiphosphate-forming)

Comments: The enzyme from Escherichia coli requires Mg2+ or Mn2+. Forms part of an alternative nonmeval-
onate pathway for terpenoid biosynthesis (for diagram, click here).

References: [508, 1252]

[EC 4.6.1.12 created 2001]

EC 4.6.1.13
Accepted name: phosphatidylinositol diacylglycerol-lyase

Reaction: 1-phosphatidyl-1D-myo-inositol = 1D-myo-inositol 1,2-cyclic phosphate + 1,2-diacyl-sn-glycerol
Other name(s): monophosphatidylinositol phosphodiesterase; phosphatidylinositol phospholipase C; 1-

phosphatidylinositol phosphodiesterase; 1-phosphatidyl-D-myo-inositol inositolphosphohydro-
lase (cyclic-phosphate-forming); 1-phosphatidyl-1D-myo-inositol diacylglycerol-lyase (1,2-cyclic-
phosphate-forming)

Systematic name: 1-phosphatidyl-1D-myo-inositol 1,2-diacyl-sn-glycerol-lyase (1D-myo-inositol-1,2-cyclic-phosphate-
forming)

Comments: This enzyme is bacterial. Activity is also found in animals, but this activity is due to the presence of
EC 3.1.4.11, phosphoinositide phospholipase C.

References: [19, 380, 562, 871, 787, 501]

[EC 4.6.1.13 created 1972 as EC 3.1.4.10, modified 1976, transferred 2002 to EC 4.6.1.13]

EC 4.6.1.14
Accepted name: glycosylphosphatidylinositol diacylglycerol-lyase

Reaction: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol = 6-(α-D-glucosaminyl)-1D-myo-inositol 1,2-
cyclic phosphate + 1,2-diacyl-sn-glycerol
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Other name(s): (glycosyl)phosphatidylinositol-specific phospholipase C; GPI-PLC; GPI-specific phos-
pholipase C; VSG-lipase; glycosyl inositol phospholipid anchor-hydrolyzing enzyme;
glycosylphosphatidylinositol-phospholipase C; glycosylphosphatidylinositol-specific phospholipase
C; variant-surface-glycoprotein phospholipase C; 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-
inositol diacylglycerol-lyase (1,2-cyclic-phosphate-forming)

Systematic name: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol 1,2-diacyl-sn-glycerol-lyase [6-(α-D-
glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate-forming]

Comments: This enzyme is also active when O-4 of the glucosamine is substituted by carrying the oligosaccharide
that can link a protein to the structure. It therefore cleaves proteins from the lipid part of the glyco-
sylphostphatidylinositol (GPI) anchors. In some cases, the long-chain acyl group at the sn-1 position
of glycerol is replaced by an alkyl or alk-1-enyl group. In other cases, the diacylglycerol is replaced
by ceramide (see Lip-1.4 and Lip-1.5 for definition). The only characterized enzyme with this speci-
ficity is from Trypanosoma brucei, where the acyl groups are myristoyl, but the function of the try-
panosome enzyme is unknown. Substitution on O-2 of the inositol blocks action of this enzyme. It is
not identical with EC 3.1.4.50, glycosylphosphatidylinositol phospholipase D.

References: [506, 184, 39]

[EC 4.6.1.14 created 1989 as EC 3.1.4.47, transferred 2002 to EC 4.6.1.14]

EC 4.6.1.15
Accepted name: FAD-AMP lyase (cyclizing)

Reaction: FAD = AMP + riboflavin cyclic-4′,5′-phosphate
Other name(s): FMN cyclase; FAD AMP-lyase (cyclic-FMN-forming)

Systematic name: FAD AMP-lyase (riboflavin-cyclic-4′,5′-phosphate-forming)
Comments: Requires Mn2+ or Co2+. While FAD was the best substrate tested [159], the enzyme also splits ri-

bonucleoside diphosphate-X compounds in which X is an acyclic or cyclic monosaccharide or deriva-
tive bearing an X-OH group that is able to attack internally the proximal phosphorus with the geom-
etry necessary to form a P=X product; either a five-atom monocyclic phosphodiester or a cis-bicyclic
phosphodiester-pyranose fusion. The reaction is strongly inhibited by ADP or ATP but is unaffected
by the presence of the product, cFMN.

References: [374, 159]

[EC 4.6.1.15 created 2002]

EC 4.6.1.16
Accepted name: tRNA-intron lyase

Reaction: pretRNA = a 3′-half-tRNA molecule with a 5′-OH end + a 5′-half-tRNA molecule with a 2′,3′-cyclic
phosphate end + an intron with a 2′,3′-cyclic phosphate and a 5′-hydroxyl terminus

Other name(s): transfer ribonucleate intron endoribonuclease; tRNA splicing endonuclease; splicing endonuclease;
tRNATRPintron endonuclease; transfer splicing endonuclease

Systematic name: pretRNA lyase (intron-removing; cyclic-2′,3′-phosphate-forming)
Comments: The enzyme catalyses the final stage in the maturation of tRNA molecules.
References: [46, 984, 1273, 1274]

[EC 4.6.1.16 created 1992 as EC 3.1.27.9, transferred 2014 to EC 4.6.1.16]

EC 4.6.1.17
Accepted name: cyclic pyranopterin monophosphate synthase

Reaction: (8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate = cyclic pyranopterin phosphate + diphosphate
Other name(s): MOCS1B (gene name); moaC (gene name); cnx3 (gene name)

Systematic name: (8S)-3′,8-cyclo-7,8-dihydroguanosine 5′-triphosphate lyase (cyclic pyranopterin phosphate-forming)
Comments: The enzyme catalyses an early step in the biosynthesis of the molybdenum cofactor (MoCo). In bac-

teria and plants the reaction is catalysed by MoaC and Cnx3, respectively. In mammals the reaction
is catalysed by the MOCS1B domain of the bifuctional MOCS1 protein, which also catalyses EC
4.1.99.22, GTP 3′,8-cyclase.
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References: [1069, 1381, 539]

[EC 4.6.1.17 created 2011 as EC 4.1.99.18, part transferred 2016 to EC 4.6.1.17]

EC 4.6.1.18
Accepted name: pancreatic ribonuclease

Reaction: (1) an [RNA] containing cytidine + H2O = an [RNA]-3′-cytidine-3′-phosphate + a 5′-hydroxy-
ribonucleotide-3′-[RNA] (overall reaction)
(1a) an [RNA] containing cytidine = an [RNA]-3′-cytidine-2′,3′-cyclophosphate + a 5′-hydroxy-
ribonucleotide-3′-[RNA]
(1b) an [RNA]-3′-cytidine-2′,3′-cyclophosphate + H2O = an [RNA]-3′-cytidine-3′-phosphate
(2) an [RNA] containing uridine + H2O = an [RNA]-3′-uridine-3′-phosphate + a 5′-hydroxy-
ribonucleotide-3′-[RNA]
(2a) an [RNA] containing uridine = an [RNA]-3′-uridine-2′,3′-cyclophosphate + a 5′-hydroxy-
ribonucleotide-3′-[RNA]
(2b) an [RNA]-3′-uridine-2′,3′-cyclophosphate + H2O = an [RNA]-3′-uridine-3′-phosphate

Other name(s): RNase; RNase I; RNase A; pancreatic RNase; ribonuclease I; endoribonuclease I; ribonucleic phos-
phatase; alkaline ribonuclease; ribonuclease; gene S glycoproteins; Ceratitis capitata alkaline ribonu-
clease; SLSG glycoproteins; gene S locus-specific glycoproteins; S-genotype-asssocd. glycoproteins;
ribonucleate 3′-pyrimidino-oligonucleotidohydrolase

Systematic name: RNA lyase ([RNA]-3′-cytidine/uridine-3′-phosphate and 5′-hydroxy-ribonucleotide-3′-[RNA] produc-
ing)

Comments: Specifically cleaves at the 3′-side of pyrimidine (uracil or cytosine) phosphate bonds in RNA. The re-
action takes place in two steps, with the 2′,3′-cyclic phosphodiester intermediates released from the
enzyme at the completion of the first step. Hydrolysis of these cyclic compounds occurs at a much
slower rate through a reversal of the first step, in which the -OH group of water substitutes for the
2′-OH group of the ribose used in the first step, and does not take place until essentially all the suscep-
tible 3′,5′-phosphodiester bonds have been cyclised. The enzyme can act as an endo- or exo ribonu-
clease.

References: [190, 78, 181, 259, 786]

[EC 4.6.1.18 created 1972 as EC 3.1.4.22, transferred 1978 to EC 3.1.27.5, modified 1981, transferred 2018 to EC 4.6.1.18]

EC 4.6.1.19
Accepted name: ribonuclease T2

Reaction: RNA + H2O = an [RNA fragment]-3′-nucleoside-3′-phosphate + a 5′-hydroxy-ribonucleotide-3′-
[RNA fragment] (overall reaction)
(1a) RNA = an [RNA fragment]-3′-nucleoside-2′,3′-cyclophosphate + a 5′-hydroxy-ribonucleotide-3′-
[RNA fragment]
(1b) an [RNA fragment]-3′-nucleoside-2′,3′-cyclophosphate + H2O = an [RNA fragment]-3′-
nucleoside-3′-phosphate

Other name(s): ribonuclease II; base-non-specific ribonuclease; nonbase-specific RNase; RNase (non-base specific);
non-base specific ribonuclease; nonspecific RNase; RNase Ms; RNase M; RNase II; Escherichia coli
ribonuclease II; ribonucleate nucleotido-2′-transferase (cyclizing); acid ribonuclease; RNAase CL;
Escherichia coli ribonuclease I′ ribonuclease PP2; ribonuclease N2; ribonuclease M; acid RNase; ri-
bonnuclease (non-base specific); ribonuclease (non-base specific); RNase T2; ribonuclease PP3; ri-
bonucleate 3′-oligonucleotide hydrolase; ribonuclease U4

Systematic name: [RNA] 5′-hydroxy-ribonucleotide-3′-[RNA fragment]-lyase (cyclicizing; [RNA fragment]-3′-
nucleoside-2′,3′-cyclophosphate-forming and hydrolysing)
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Comments: A widely distributed family of related enzymes found in protozoans, plants, bacteria, animals and
viruses that cleave ssRNA 3′-phosphate group with little base specificity. The enzyme catalyses a
two-stage endonucleolytic cleavage. The first reaction produces 5′-hydroxy-phosphooligonucletides
and 3′-phosphooligonucleotides ending with a 2′,3′-cyclic phosphodiester, which are released from
the enzyme. The enzyme then hydrolyses the cyclic products in a second reaction that takes place
only when all the susceptible 3′,5′-phosphodiester bonds have been cyclised. The second reaction is
a reversal of the first reaction using the hydroxyl group of water instead of the 5′-hydroxyl group of
ribose. The overall process is that of a phosphorus-oxygen lyase followed by hydrolysis to form the
3′-nucleotides.

References: [399, 503, 1060, 1305, 560, 793]

[EC 4.6.1.19 created 1972 as EC 3.1.4.23, transferred 1978 to EC 3.1.27.1, modified 1981, transferred 2018 to EC 4.6.1.19]

EC 4.6.1.20
Accepted name: ribonuclease U2

Reaction: (1) [RNA] containing adenosine + H2O = an [RNA fragment]-3′-adenosine-3′-phosphate + a 5′-
hydroxy-ribonucleotide-3′-[RNA fragment] (overall reaction)
(1a) [RNA] containing adenosine = an [RNA fragment]-3′-adenosine-2′,3′-cyclophosphate + a 5′-
hydroxy-ribonucleotide-3′-[RNA fragment]
(1b) an [RNA fragment]-3′-adenosine-2′,3′-cyclophosphate + H2O = an [RNA fragment]-3′-adenosine
-3′-phosphate
(2) [RNA] containing guanosine + H2O = an [RNA fragment]-3′-guanosine-3′-phosphate + a 5′-
hydroxy-ribonucleotide-3′-[RNA fragment] (overall reaction)
(2a) [RNA] containing guanosine = an [RNA fragment]-3′-guanosine-2′,3′-cyclophosphate + a 5′-
hydroxy-ribonucleotide-3′-[RNA fragment]
(2b) an [RNA fragment]-3′-guanosine-2′,3′-cyclophosphate + H2O = an [RNA fragment]-3′-
guanosine-3′-phosphate

Other name(s): purine specific endoribonuclease; ribonuclease U3; RNase U3; RNase U2; purine-specific ribonucle-
ase; purine-specific RNase; Pleospora RNase; Trichoderma koningi RNase III; ribonuclease (purine)

Systematic name: [RNA]-purine 5′-hydroxy-ribonucleotide-3′-[RNA fragment]-lyase (cyclicizing; [RNA fragment]-3′-
purine-nucleoside -2′,3′-cyclophosphate-forming and hydrolysing)

Comments: The enzyme secreted by the fungus Ustilago sphaerogena cleaves at the 3′-phosphate group of
purines, and catalyses a two-stage endonucleolytic cleavage. The first reaction produces 5′-hydroxy-
phosphooligonucletides and 3′-phosphooligonucleotides ending in Ap or Gp with 2′,3′-cyclic phos-
phodiester, which are released from the enzyme. The enzyme then hydrolyses these cyclic compounds
in a second reaction that takes place only when all the susceptible 3′,5′-phosphodiester bonds have
been cyclised. The second reaction is a reversal of the first reaction using the hydroxyl group of water
instead of the 5′-hydroxyl group of ribose. The overall process is that of a phosphorus-oxygen lyase
followed by hydrolysis to form the 3′-nucleotides.

References: [416, 417, 1245, 822]

[EC 4.6.1.20 created 1978 as 3.1.27.4, modified 1981, transferred 2018 to EC 4.6.1.20]

EC 4.6.1.21
Accepted name: Enterobacter ribonuclease

Reaction: RNA containing adenosine-cytidine + H2O = an [RNA fragment]-3′-cytidine-3′-phosphate + a 5′-a
hydroxy-adenosine -3′-[RNA fragment] (overall reaction)
(1a) RNA containing adenosine-cytidine = an [RNA fragment]-3′-cytidine-2′,3′-cyclophosphate + a
5′-a hydroxy-adenosine -3′-[RNA fragment]
(1b) an [RNA fragment]-3′-cytidine-2′,3′-cyclophosphate + H2O = an [RNA fragment]-3′-cytidine-3′-
phosphate

Systematic name: [RNA]-adenosine-cytidine 5′-hydroxy-adenosoine ribonucleotide-3′-[RNA fragment]-lyase (cycliciz-
ing; [RNA fragment]-3′-cytidine-2′,3′-cyclophosphate-forming and hydrolysing)
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Comments: Preference for cleavage at Cp-A bonds. Homopolymers of A, U or G are not hydrolysed. CpG bonds
are hydrolysed less well and there is no detectable hydrolysis between two purines or two pyrim-
idines. The enzyme catalyses a two-stage endonucleolytic cleavage. The first reaction produces 5′-
hydroxy-phosphooligonucletides and 3′-phosphooligonucleotides ending a with 2′,3′-cyclic phospho-
diester, which are released from the enzyme. The enzyme then hydrolyses these cyclic compounds
in a second reaction that takes place only when all the susceptible 3′,5′-phosphodiester bonds have
been cyclised. The second reaction is a reversal of the first reaction using the hydroxyl group of water
instead of the 5′-hydroxyl group of ribose. The overall process is that of a phosphorus-oxygen lyase
followed by hydrolysis to form the 3′-nucleotides.

References: [743, 814]

[EC 4.6.1.21 created 1978 as EC 3.1.27.6, modified 1981, transferred 2018 to 4.6.1.21]

EC 4.6.1.22
Accepted name: Bacillus subtilis ribonuclease

Reaction: RNA = a 5′-hydroxy-ribonucleotide + n nucleoside-2′,3′-cyclophosphates
Other name(s): Proteus mirabilis RNase; ribonucleate nucleotido-2′-transferase (cyclizing); bacterial RNA lyase;

Bacillus subtilis intracellular ribonuclease
Systematic name: [RNA] 5′-hydroxy-ribonucleotide-3′-[RNA fragment]-lyase (cyclicizing; [RNA fragment]-3′- nucleo-

side -2′,3′-cyclophosphate-forming)
Comments: This enzyme catalyses endonucleolytic cleavage to 2′,3′-cyclic nucleotides. The cyclic products may

be hydrolysed to the corresponding 3′-phosphates by 2′,3′-cyclic-nucleotide 2′-phosphodiesterase (EC
3.1.4.16). The enzyme from B. subtilis is inhibited by ATP.

References: [938, 1400, 1401, 193]

[EC 4.6.1.22 created 1978 as EC 3.1.27.2, transferred 2028 to EC 4.6.1.22]

EC 4.7 carbon-phosphorus lyases

EC 4.7.1 carbon-phosphorus lyases (only sub-subclass identified to date)

EC 4.7.1.1
Accepted name: α-D-ribose 1-methylphosphonate 5-phosphate C-P-lyase

Reaction: α-D-ribose 1-methylphosphonate 5-phosphate + S-adenosyl-L-methionine + reduced electron acceptor
= α-D-ribose 1,2-cyclic phosphate 5-phosphate + methane + L-methionine + 5′-deoxyadenosine +
oxidized electron acceptor

Other name(s): phnJ (gene name)
Systematic name: α-D-ribose-1-methylphosphonate-5-phosphate C-P-lyase (methane forming)

Comments: This radical SAM (AdoMet) enzyme is part of the C-P lyase complex, which is responsible for pro-
cessing phophonates into usable phosphate. Contains an [4Fe-4S] cluster. The enzyme from the bac-
terium Escherichia coli can act on additional α-D-ribose phosphonate substrates with different sub-
stituents attached to the phosphonate phosphorus (e.g. α-D-ribose-1-[N-(phosphonomethyl)glycine]-
5-phosphate and α-D-ribose-1-(2-N-acetamidomethylphosphonate)-5-phosphate).

References: [614, 597, 1447]

[EC 4.7.1.1 created 2013, modified 2016]

EC 4.99 Other lyases
This subclass contains miscellaneous enzymes in a single sub-subclass (EC 4.99.1).
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EC 4.99.1 Sole sub-subclass for lyases that do not belong in the other subclasses

EC 4.99.1.1
Accepted name: protoporphyrin ferrochelatase

Reaction: protoheme + 2 H+ = protoporphyrin + Fe2+

Other name(s): ferro-protoporphyrin chelatase; iron chelatase (ambiguous); heme synthetase (ambiguous); heme syn-
thase (ambiguous); protoheme ferro-lyase; ferrochelatase (ambiguous)

Systematic name: protoheme ferro-lyase (protoporphyrin-forming)
Comments: The enzyme catalyses the terminal step in the heme biosynthesis pathways of eukaryotes and Gram-

negative bacteria.
References: [99, 1015, 1016]

[EC 4.99.1.1 created 1965, modified 2016]

EC 4.99.1.2
Accepted name: alkylmercury lyase

Reaction: an alkylmercury + H+ = an alkane + Hg2+

Other name(s): organomercury lyase; organomercurial lyase; alkylmercury mercuric-lyase
Systematic name: alkylmercury mercury(II)-lyase (alkane-forming)

Comments: Acts on CH3Hg+ and a number of other alkylmercury compounds, in the presence of cysteine or
other thiols, liberating mercury as a mercaptide.

References: [1270]

[EC 4.99.1.2 created 1978]

EC 4.99.1.3
Accepted name: sirohydrochlorin cobaltochelatase

Reaction: cobalt-sirohydrochlorin + 2 H+ = sirohydrochlorin + Co2+

Other name(s): CbiK; CbiX; CbiXS; anaerobic cobalt chelatase; cobaltochelatase [ambiguous]; sirohydrochlorin
cobalt-lyase (incorrect)

Systematic name: cobalt-sirohydrochlorin cobalt-lyase (sirohydrochlorin-forming)
Comments: This enzyme is a type II chelatase, being either a monomer (CbiX) or a homodimer (CibK) and being

ATP-independent. CbiK from Salmonella enterica uses precorrin-2 as the substrate to yield cobalt-
precorrin-2. The enzyme contains two histidines at the active site that are thought to be involved in
the deprotonation of the tetrapyrrole substrate as well as in metal binding. CbiX from Bacillus mega-
terium inserts cobalt at the level of sirohydrochlorin (factor-II) rather than precorrin-2.

References: [1149, 130, 1355]

[EC 4.99.1.3 created 2004]

EC 4.99.1.4
Accepted name: sirohydrochlorin ferrochelatase

Reaction: siroheme + 2 H+ = sirohydrochlorin + Fe2+

Other name(s): CysG; Met8P; SirB; sirohydrochlorin ferro-lyase (incorrect)
Systematic name: siroheme ferro-lyase (sirohydrochlorin-forming)
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Comments: This enzyme catalyses the third of three steps leading to the formation of siroheme from uropor-
phyrinogen III. The first step involves the donation of two S-adenosyl-L-methionine-derived methyl
groups to carbons 2 and 7 of uroporphyrinogen III to form precorrin-2 (EC 2.1.1.107, uroporphyrin-
III C-methyltransferase) and the second step involves an NAD+-dependent dehydrogenation to form
sirohydrochlorin from precorrin-2 (EC 1.3.1.76, precorrin-2 dehydrogenase). In Saccharomyces cere-
visiae, the last two steps are carried out by a single bifunctional enzyme, Met8p. In some bacteria,
steps 1-3 are catalysed by a single multifunctional protein called CysG, whereas in Bacillus mega-
terium, three separate enzymes carry out each of the steps, with SirB being responsible for the above
reaction.

References: [1148, 1355]

[EC 4.99.1.4 created 2004]

EC 4.99.1.5
Accepted name: aliphatic aldoxime dehydratase

Reaction: an aliphatic aldoxime = an aliphatic nitrile + H2O
Other name(s): OxdA; aliphatic aldoxime hydro-lyase

Systematic name: aliphatic aldoxime hydro-lyase (aliphatic-nitrile-forming)
Comments: The enzyme from Pseudomonas chlororaphis contains Ca2+ and protoheme IX, the iron of which

must be in the form Fe(II) for activity. The enzyme exhibits a strong preference for aliphatic al-
doximes, such as butyraldoxime and acetaldoxime, over aromatic aldoximes, such as pyridine-2-
aldoxime, which is a poor substrate. No activity was found with the aromatic aldoximes benzal-
doxime and pyridine-4-aldoxime.

References: [953, 1383, 636]

[EC 4.99.1.5 created 2004]

EC 4.99.1.6
Accepted name: indoleacetaldoxime dehydratase

Reaction: (indol-3-yl)acetaldehyde oxime = (indol-3-yl)acetonitrile + H2O
Other name(s): indoleacetaldoxime hydro-lyase; 3-indoleacetaldoxime hydro-lyase; indole-3-acetaldoxime hydro-

lyase; indole-3-acetaldehyde-oxime hydro-lyase; (indol-3-yl)acetaldehyde-oxime hydro-lyase
Systematic name: (indol-3-yl)acetaldehyde-oxime hydro-lyase [(indol-3-yl)acetonitrile-forming]

References: [706, 801]

[EC 4.99.1.6 created 1965 as EC 4.2.1.29, transferred 2004 to EC 4.99.1.6]

EC 4.99.1.7
Accepted name: phenylacetaldoxime dehydratase

Reaction: (Z)-phenylacetaldehyde oxime = phenylacetonitrile + H2O
Other name(s): PAOx dehydratase; arylacetaldoxime dehydratase; OxdB; (Z)-phenylacetaldehyde-oxime hydro-lyase

Systematic name: (Z)-phenylacetaldehyde-oxime hydro-lyase (phenylacetonitrile-forming)
Comments: The enzyme from Bacillus sp. OxB-1 contains protoheme IX, the iron of which must be in the form

iron(II) for activity. (Z)-Phenylacetaldoxime binds to ferric heme (the iron(III) form) via the oxy-
gen atom whereas it binds to the active ferrous form via the nitrogen atom. In this way, the oxida-
tion state of the heme controls the coordination stucture of the substrate—heme complex, which
regulates enzyme activity [667]. The enzyme is active towards several (Z)-arylacetaldoximes and
(E/Z)-alkylaldoximes as well as towards arylalkylaldoximes such as 3-phenylpropionaldoxime and
4-phenylbutyraldoxime. However, it is inactive with phenylacetaldoximes that have a substituent
group at an α-site of an oxime group, for example, with (E/Z)-2-phenylpropionaldoxime and (E/Z)-
mandelaldoxime. The activity of the enzyme is inhibited completely by the heavy-metal cations Cu+,
Cu2+, Ag+ and Hg+ whereas Fe2+ and Sn2+ have an activatory effect.

References: [634, 667]

175

http://www.enzyme-database.org/query.php?ec=4.99.1.5
http://www.enzyme-database.org/query.php?ec=4.99.1.6
http://www.enzyme-database.org/query.php?ec=4.99.1.7


[EC 4.99.1.7 created 2005]

EC 4.99.1.8
Accepted name: heme ligase

Reaction: 2 ferriprotoporphyrin IX = β-hematin
Other name(s): heme detoxification protein; HDP; hemozoin synthase

Systematic name: Fe3+:ferriprotoporphyrin IX ligase (β-hematin-forming)
Comments: This heme detoxifying enzyme is found in Plasmodium parasites and converts toxic heme to crys-

talline hemozoin. These organisms lack the mammalian heme oxygenase for elimination of heme.
References: [581]

[EC 4.99.1.8 created 2009]

EC 4.99.1.9
Accepted name: coproporphyrin ferrochelatase

Reaction: Fe-coproporphyrin III + 2 H+ = coproporphyrin III + Fe2+

Other name(s): hemH (gene name)
Systematic name: protoheme ferro-lyase (protoporphyrin-forming)

Comments: The enzyme, present in Gram-positive bacteria, participates in heme biosynthesis. It can also catalyse
the reaction of EC 4.99.1.1, protoporphyrin IX ferrochelatase, at a much lower level.

References: [472, 10, 473, 271]

[EC 4.99.1.9 created 2016]

EC 4.99.1.10
Accepted name: magnesium dechelatase

Reaction: (1) chlorophyll a + 2 H+ = pheophytin a + Mg2+

(2) chlorophyllide a + 2 H+ = pheophorbide a + Mg2+

Other name(s): SGR (gene name); SGRL (gene name); Mg-dechelatase
Systematic name: chlorophyll a magnesium lyase

Comments: Inhibited by Ca2+, Mg2+ and especially Hg2+. SGR has very low activity with chlorophyllide a and
none with chlorophyll b. It acts on chlorophyll a both in its free form and in protein complex. SGRL,
on the other hand, is more active with chlorophyllide a than with chlorophyll a. The magnesium
formed is scavenged by MCS (metal-chelating substance).

References: [1260, 240, 1348, 1240, 709, 1179]

[EC 4.99.1.10 created 2017]

EC 4.99.1.11
Accepted name: sirohydrochlorin nickelchelatase

Reaction: Ni-sirohydrochlorin + 2 H+ = sirohydrochlorin + Ni2+

Other name(s): cfbA (gene name)
Systematic name: Ni-sirohydrochlorin nickel-lyase (sirohydrochlorin-forming)

Comments: The enzyme, studied from the methanogenic archaeon Methanosarcina acetivorans, participates in the
biosynthesis of the nickel-containing tetrapyrrole cofactor coenzyme F430, which is required by EC
2.8.4.1, coenzyme-B sulfoethylthiotransferase. It catalyses the insertion of the nickel ion into sirohy-
drochlorin.

References: [1461]

[EC 4.99.1.11 created 2017]

EC 4.99.1.12
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Accepted name: pyridinium-3,5-bisthiocarboxylic acid mononucleotide nickel chelatase
Reaction: Ni(II)-pyridinium-3,5-bisthiocarboxylate mononucleotide = pyridinium-3,5-bisthiocarboxylate

mononucleotide + Ni2+

Other name(s): LarC; P2TMN nickel chelatase
Systematic name: Ni(II)-pyridinium-3,5-bisthiocarboxylate mononucleotide nickel-lyase (pyridinium-3,5-

bisthiocarboxylate-mononucleotide forming)
Comments: This enzyme, found in Lactobacillus plantarum, is involved in the biosynthesis of a nickel-pincer co-

factor. It catalyses the insertion of Ni2+ into the cofactor forming a covalent bond between a carbon
atom and the nickel atom.

References: [299, 300]

[EC 4.99.1.12 created 2017]
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[378] M. Frey, C. Stettner, P.W. Paré, E.A. Schmelz, J.H. Tumlinson, and A. Gierl. An herbivore elicitor activates the gene for
indole emission in maize. Proc. Natl. Acad. Sci. USA, 97:14801–14806, 2000.

[379] J. Fricke, F. Blei, and D. Hoffmeister. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. Engl., 56:12352–12355,
2017.

[380] R.O. Friedel, J.D. Brown, and J. Durell. Monophosphatidyl inositol inositolphosphohydrolase in guinea-pig brain.
Biochim. Biophys. Acta, 144:684–686, 1967.

[381] S. Friedmann, B.E. Alber, and G. Fuchs. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic
3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol., 189:2906–2914, 2007.

[382] N.U. Frigaard, A.G. Chew, H. Li, J.A. Maresca, and D.A. Bryant. Chlorobium tepidum: insights into the structure,
physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth. Res.,
78:93–117, 2003.

[383] W.E. Fry and R.L. Millar. Cyanide degradion by an enzyme from Stemphylium loti. Arch. Biochem. Biophys., 151:468–
474, 1972.

[384] K. Fujimori and D. Ohta. An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses
the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett., 428:229–234, 1998.

[385] Y. Fujimoto, T. Kinoshita, I. Oya, K. Kakinuma, S.M. Ismail, Y. Sonoda, Y. Sato, and M. Morisaki. Non-stereoselective
conversion of the four diastereoisomers at the C-24 and C-25 positions of 3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-
oic acid and cholic acid. Chem. Pharm. Bull., 36:142–145, 1988.

197



[386] M. Fujisawa, H. Harada, H. Kenmoku, S. Mizutani, and N. Misawa. Cloning and characterization of a novel gene that
encodes (S)-β-bisabolene synthase from ginger, Zingiber officinale. Planta, 232:121–130, 2010.

[387] T. Fukui, N. Shiomi, and Y. Doi. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved
in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol., 180:667–673, 1998.

[388] K. Fukumaga. Metabolism of dihydroxyfumarate, hydroxypyruvate, and their related compounds. I. Enzymic formation
of xylulose in liver. J. Biochem. (Tokyo), 47:741–754, 1960.

[389] E.S. Furfine and R.H. Abeles. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella
pneumoniae. J. Biol. Chem., 263:9598–9606, 1988.

[390] B. Furie, B.A. Bouchard, and B.C. Furie. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood, 93:1798–
1808, 1999.

[391] S. Furuyoshi, N. Kawabata, H. Tanaka, and K. Soda. Enzymatic production of D-glycerate from L-tartrate. Agric. Biol.
Chem., 53:2101–2105, 1989.

[392] J. Gabriel, J. Volc, P. Sedmera, G. Daniel, and E. Kubátová. Pyranosone dehydratase from the basidiomycete Phane-
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[1201] K. Soda and M. Moriguchi. Crystalline lysine decarboxylase. Biochem. Biophys. Res. Commun., 34:34–39, 1969.

[1202] H. Song, W. Hu, N. Naowarojna, A.S. Her, S. Wang, R. Desai, L. Qin, X. Chen, and P. Liu. Mechanistic studies of a
novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate. Sci Rep, 5:11870–11870,
2015.

[1203] K.B. Song, K.S. Bae, Y.B. Lee, K.Y. Lee, and S.K. Rhee. Characteristics of levan fructotransferase from Arthrobacter
ureafaciens K2032 and difructose anhydride IV formation from levan. Enzyme Microb. Technol., 27:212–218, 2000.

[1204] D. Sorigue, B. Legeret, S. Cuine, S. Blangy, S. Moulin, E. Billon, P. Richaud, S. Brugiere, Y. Coute, D. Nurizzo, P. Muller,
K. Brettel, D. Pignol, P. Arnoux, Y. Li-Beisson, G. Peltier, and F. Beisson. An algal photoenzyme converts fatty acids to
hydrocarbons. Science, 357:903–907, 2017.

[1205] S. Spaepen, W. Versees, D. Gocke, M. Pohl, J. Steyaert, and J. Vanderleyden. Characterization of phenylpyruvate
decarboxylase, involved in auxin production of Azospirillum brasilense. J. Bacteriol., 189:7626–7633, 2007.

[1206] P.R. Srinivasan, J. Rothschild, and D.B. Sprinson. The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid
7-phosphate to 5-dehydroquinate. J. Biol. Chem., 238:3176–3182, 1963.

[1207] R. Stadler, , and M.H. A revision of the generally accepted pathway for the biosynthesis of the benzyltetrahydroisoquino-
line reticuline. Liebigs Ann. Chem., pages 555–562, 1990.

[1208] R. Stadler, T.M. Kutchan, , and M.H. (S)-Norcoclaurine is the central intermediate in benzylisoquinoline alkaloid biosyn-
thesis. Phytochemistry, 28:1083–1086, 1989.

[1209] E.R. Stadtman. The enzymic synthesis of β-alanyl coenzyme A. J. Am. Chem. Soc., 77:5765–5766, 1955.

[1210] T.M. Stanley, W.H. Johnson, Burks Jr., Whitman E.A., Hwang C.P., Cook C.C., and P.F. Expression and stereochemical
and isotope effect studies of active 4-oxalocrotonate decarboxylase. Biochemistry, 39:718–726, 2000.

[1211] C.M. Starks, K. Back, J. Chappell, and J.P. Noel. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-
aristolochene synthase. Science, 277:1815–1820, 1997.

[1212] C.L. Steele, J. Crock, J. Bohlmann, and R. Croteau. Sesquiterpene synthases from grand fir (Abies grandis). Comparison
of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene
synthase and γ-humulene synthase. J. Biol. Chem., 273:2078–2089, 1998.

240



[1213] S. Steiger, A. Mazet, and G. Sandmann. Heterologous expression, purification, and enzymatic characterization of the
acyclic carotenoid 1,2-hydratase from Rubrivivax gelatinosus. Arch. Biochem. Biophys., 414:51–58, 2003.

[1214] S. Steinbacher, S. Schiffmann, A. Bacher, and M. Fischer. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate syn-
thase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. Acta Crystallogr. D Biol.
Crystallogr., 60:1338–1340, 2004.

[1215] S. Steinbacher, S. Schiffmann, G. Richter, R. Huber, A. Bacher, and M. Fischer. Structure of 3,4-dihydroxy-2-butanone
4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose
5-phosphate: implications for the catalytic mechanism. J. Biol. Chem., 278:42256–42265, 2003.

[1216] J.R. Stern. Thioltranscrotylase and β-hydroxybutyryl CoA racemase activities of crystalline crotonase. Biochim. Biophys.
Acta, 26:641–643, 1957.

[1217] J.L. Stevens. Isolation and characterization of a rat liver enzyme with both cysteine conjugate β-lyase and kynureninase
activity. J. Biol. Chem., 260:7945–7950, 1985.

[1218] J.L. Stevens, J.D. Robbins, and R.A. Byrd. A purified cysteine conjugate β-lyase from rat kidney cytosol. Requirement
for an α-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K. J. Biol.
Chem., 261:15529–15537, 1986.

[1219] W. Stoffel, D. Le Kim, and G. Sticht. Distribution and properties of dihydrosphingosine-1-phosphate aldolase
(sphinganine-1-phosphate alkanal-lyase). Hoppe-Seyler’s Z. Physiol. Chem., 350:1233–1241, 1969.

[1220] A.C. Stoolmiller and R.H. Abeles. Formation of α-ketoglutaric semialdehyde from L-2-keto-3-deoxyarabonic acid and
isolation of L-2-keto-3-deoxyarabonate dehydratase from Pseudomonas saccharophila. J. Biol. Chem., 241:5764–5771,
1966.

[1221] M. Storf, A. Parbel, M. Meyer, B. Strohmann, H. Scheer, M.G. Deng, M. Zheng, M. Zhou, and K.H. Zhao. Chromophore
attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-cys-α 84-phycoviolobilin
chromophore of phycoerythrocyanin. Biochemistry, 40:12444–12456, 2001.

[1222] F.C. Størmer. Isolation of crystalline pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. J. Biol. Chem.,
242:1756–1759, 1967.

[1223] H. Stransky and A. Amberger. Isolation and properties of a cyanamide hydratase (EC 4.2.1) from Myrothecium verru-
caria. Z. Pflanzenphysiol., 70:74–87, 1973.

[1224] M. Strassman and L.N. Ceci. Enzymatic formation of cis-homoaconitic acid, an intermediate in lysine biosynthesis in
yeast. J. Biol. Chem., 241:5401–5407, 1966.

[1225] A. Stratmann, T. Mahmud, S. Lee, J. Distler, H.G. Floss, and W. Piepersberg. The AcbC protein from Actinoplanes
species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the α-
glucosidase inhibitor acarbose. J. Biol. Chem., 274:10889–10896, 1999.

[1226] M. Strohmeier, T. Raschle, J. Mazurkiewicz, K. Rippe, I. Sinning, T.B. Fitzpatrick, and I. Tews. Structure of a bacterial
pyridoxal 5′-phosphate synthase complex. Proc. Natl. Acad. Sci. USA, 103:19284–19289, 2006.

[1227] M. Stumpe, R. Kandzia, C. Gobel, S. Rosahl, and I. Feussner. A pathogen-inducible divinyl ether synthase (CYP74D)
from elicitor-treated potato suspension cells. FEBS Lett., 507:371–376, 2001.

[1228] S.S. Subramanian and M.R. Raghavendra Rao. Purification and properties of citraconase. J. Biol. Chem., 243:2367–2372,
1968.

[1229] M. Suda and H. Nakagawa. L-Serine dehydratase (rat liver). Methods Enzymol., 17B:346–351, 1971.

[1230] Y. Sugai, Y. Ueno, K. Hayashi, S. Oogami, T. Toyomasu, S. Matsumoto, M. Natsume, H. Nozaki, and H. Kawaide. En-
zymatic 13C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase
in Selaginella moellendorffii. J. Biol. Chem., 286:42840–42847, 2011.

[1231] H. Sugimoto, M. Taniguchi, A. Nakagawa, I. Tanaka, M. Suzuki, and J. Nishihira. Crystal structure of human D-
dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å resolution. Biochemistry,
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166
pyridoxal 5′-phosphate synthase (glutamine hydrolysing), 155
o-pyrocatechuate decarboxylase, 11
pyrrole-2-carboxylate decarboxylase, 21
pyruvate decarboxylase, 2
6-pyruvoyltetrahydropterin synthase, 99

R-phycocyanin α-cysteine-84 phycourobilin lyase/isomerase,
165

γ-resorcylate decarboxylase, 23
rhamnogalacturonan endolyase, 96
rhamnogalacturonan exolyase, 96
L-rhamnonate dehydratase, 69
rhamnulose-1-phosphate aldolase, 29
rhizathalene A synthase, 139
ribonuclease T2, 171
ribonuclease U2, 172
S-ribosylhomocysteine lyase, 161
ribulose-bisphosphate carboxylase, 9

sabinene-hydrate synthase, 99
salicylate decarboxylase, 21
ent-sandaracopimaradiene synthase, 103
α-santalene synthase, 115
β-santalene synthase, 115
sclareol synthase, 128
scytalone dehydratase, 70
selenocysteine lyase, 160
selina-4(15),7(11)-diene synthase, 136
β-selinene cyclase, 111
α-selinene synthase, 140
D-serine ammonia-lyase, 147
L-serine ammonia-lyase, 147
serine-sulfate ammonia-lyase, 145
β-sesquiphellandrene synthase, 124
sesquithujene synthase, 119
sesterfisherol synthase, 135
short-chain-enoyl-CoA hydratase, 83
siroheme decarboxylase, 25
sirohydrochlorin cobaltochelatase, 174
sirohydrochlorin ferrochelatase, 174
sirohydrochlorin nickelchelatase, 176
sphinganine-1-phosphate aldolase, 31
(–)-spiroviolene synthase, 132
spore photoproduct lyase, 49
sporulenol synthase, 80
squalene—hopanol cyclase, 78
stellata-2,6,19-triene synthase, 136
stemar-13-ene synthase, 104
stemod-13(17)-ene synthase, 104
stipitatonate decarboxylase, 14
strictosidine synthase, 154
2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase,

142
o-succinylbenzoate synthase, 74
sulfinoalanine decarboxylase, 7
sulfofructosephosphate aldolase, 38
(2R)-sulfolactate sulfo-lyase, 162
sulfopyruvate decarboxylase, 18
synephrine dehydratase, 68

tagatose-bisphosphate aldolase, 33
L-talarate dehydratase, 85
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tartrate decarboxylase, 16
tartronate-semialdehyde synthase, 11
taxadiene synthase, 100
terpentetriene synthase, 105
α-terpinene synthase, 122
γ-terpinene synthase, 121
terpinolene synthase, 121
tetracenomycin F2 cyclase, 84
5,6,7,8-tetrahydromethanopterin hydro-lyase, 83
tetrahymanol synthase, 77
tetraprenyl-β-curcumene synthase, 126
D-threonine aldolase, 34
L-threonine aldolase, 27
threonine ammonia-lyase, 147
threonine synthase, 97
threonine-phosphate decarboxylase, 18
β-thujene synthase, 136
thujopsene synthase, 114
trichodiene synthase, 98
tricyclene synthase, 119
3α,7α,12α-trihydroxy-5β-cholest-24-enoyl-CoA hydratase, 73
trimethylamine-oxide aldolase, 32
tRNA 4-demethylwyosine synthase (AdoMet-dependent), 46
tRNA-intron lyase, 170
L-tryptophan ammonia lyase, 150
L-tryptophan decarboxylase, 24
L-tryptophan isonitrile synthase, 51
tryptophan synthase, 55
tryptophan synthase (indole-salvaging), 77
tryptophanase, 47
tsukubadiene synthase, 132
tuliposide A-converting enzyme, 143
tuliposide B-converting enzyme, 143
tyrosine ammonia-lyase, 148
tyrosine decarboxylase, 6
L-tyrosine isonitrile synthase, 51
tyrosine phenol-lyase, 47

UDP-N-acetylglucosamine 4,6-dehydratase (configuration-inverting),
75

UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining),
80

UDP-galacturonate decarboxylase, 15
UDP-glucose 4,6-dehydratase, 66
UDP-glucuronate decarboxylase, 8
uracil-5-carboxylate decarboxylase, 15
ureidoglycolate lyase, 151
urocanate hydratase, 61
uroporphyrinogen decarboxylase, 9
uroporphyrinogen-III synthase, 65

valencene synthase, 113
valerena-4,7(11)-diene synthase, 127
valine decarboxylase, 4
vanillin synthase, 33
versicolorin B synthase, 82

very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase, 79
vetispiradiene synthase, 101
3-vinyl bacteriochlorophyllide d 31-hydratase, 88
viridiflorene synthase, 116

xanthan lyase, 92
xylonate dehydratase, 67

zingiberene synthase, 111
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