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EC 1.1 Acting on the CH-OH group of donors
This subclass contains dehydrogenases that act on primary alcohols, secondary alcohols and hemi-acetals. Sub-subclasses are
based on the acceptor: NAD+ or NADP+ (EC 1.1.1), a cytochrome (EC 1.1.2), oxygen (EC 1.1.3), a disulfide (EC 1.1.4), a
quinone or similar compound (EC 1.1.5), or some other acceptor (EC 1.1.99).
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EC 1.1.1 With NAD+ or NADP+ as acceptor

EC 1.1.1.1
Accepted name: alcohol dehydrogenase

Reaction: (1) a primary alcohol + NAD+ = an aldehyde + NADH + H+

(2) a secondary alcohol + NAD+ = a ketone + NADH + H+

Other name(s): aldehyde reductase; ADH; alcohol dehydrogenase (NAD); aliphatic alcohol dehydrogenase; ethanol
dehydrogenase; NAD-dependent alcohol dehydrogenase; NAD-specific aromatic alcohol dehydroge-
nase; NADH-alcohol dehydrogenase; NADH-aldehyde dehydrogenase; primary alcohol dehydroge-
nase; yeast alcohol dehydrogenase

Systematic name: alcohol:NAD+ oxidoreductase
Comments: A zinc protein. Acts on primary or secondary alcohols or hemi-acetals with very broad specificity;

however the enzyme oxidizes methanol much more poorly than ethanol. The animal, but not the yeast,
enzyme acts also on cyclic secondary alcohols.

References: [385, 1777, 2756, 3735, 3860]

[EC 1.1.1.1 created 1961, modified 2011]

EC 1.1.1.2
Accepted name: alcohol dehydrogenase (NADP+)

Reaction: an alcohol + NADP+ = an aldehyde + NADPH + H+

Other name(s): aldehyde reductase (NADPH2); NADP-alcohol dehydrogenase; NADP+-aldehyde reductase;
NADP+-dependent aldehyde reductase; NADPH-aldehyde reductase; NADPH-dependent aldehyde
reductase; nonspecific succinic semialdehyde reductase; ALR 1; low-Km aldehyde reductase; high-Km
aldehyde reductase; alcohol dehydrogenase (NADP)

Systematic name: alcohol:NADP+ oxidoreductase
Comments: A zinc protein. Some members of this group oxidize only primary alcohols; others act also on sec-

ondary alcohols. May be identical with EC 1.1.1.19 (L-glucuronate reductase), EC 1.1.1.33 [meval-
date reductase (NADPH)] and EC 1.1.1.55 [lactaldehyde reductase (NADPH)]. Re-specific with re-
spect to NADPH.

References: [361, 790, 3156, 3768]

[EC 1.1.1.2 created 1961]

EC 1.1.1.3
Accepted name: homoserine dehydrogenase

Reaction: L-homoserine + NAD(P)+ = L-aspartate 4-semialdehyde + NAD(P)H + H+

Other name(s): HSDH; HSD
Systematic name: L-homoserine:NAD(P)+ oxidoreductase

Comments: The yeast enzyme acts most rapidly with NAD+; the Neurospora enzyme with NADP+. The enzyme
from Escherichia coli is a multi-functional protein, which also catalyses the reaction of EC 2.7.2.4
(aspartate kinase).

References: [310, 3624, 4036]

[EC 1.1.1.3 created 1961, modified 1976]

EC 1.1.1.4
Accepted name: (R,R)-butanediol dehydrogenase

Reaction: (R,R)-butane-2,3-diol + NAD+ = (R)-acetoin + NADH + H+
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Other name(s): butyleneglycol dehydrogenase; D-butanediol dehydrogenase; D-(–)-butanediol dehydrogenase; buty-
lene glycol dehydrogenase; diacetyl (acetoin) reductase; D-aminopropanol dehydrogenase; 1-amino-
2-propanol dehydrogenase; 2,3-butanediol dehydrogenase; D-1-amino-2-propanol dehydrogenase;
(R)-diacetyl reductase; (R)-2,3-butanediol dehydrogenase; D-1-amino-2-propanol:NAD+ oxidoreduc-
tase; 1-amino-2-propanol oxidoreductase; aminopropanol oxidoreductase

Systematic name: (R,R)-butane-2,3-diol:NAD+ oxidoreductase
Comments: Also converts diacetyl into acetoin with NADH as reductant.
References: [3674, 3834]

[EC 1.1.1.4 created 1961 (EC 1.1.1.74 created 1972, incorporated 1976)]

[1.1.1.5 Transferred entry. acetoin dehydrogenase. Now EC 1.1.1.303, diacetyl reductase [(R)-acetoin forming] and EC
1.1.1.304, diacetyl reductase [(S)-acetoin forming]]

[EC 1.1.1.5 created 1961, modified 1976, deleted 2010]

EC 1.1.1.6
Accepted name: glycerol dehydrogenase

Reaction: glycerol + NAD+ = glycerone + NADH + H+

Other name(s): glycerin dehydrogenase; NAD-linked glycerol dehydrogenase
Systematic name: glycerol:NAD+ 2-oxidoreductase

Comments: Also acts on propane-1,2-diol.
References: [133, 456, 2253]

[EC 1.1.1.6 created 1961]

EC 1.1.1.7
Accepted name: propanediol-phosphate dehydrogenase

Reaction: propane-1,2-diol 1-phosphate + NAD+ = hydroxyacetone phosphate + NADH + H+

Other name(s): PDP dehydrogenase; 1,2-propanediol-1-phosphate:NAD+ oxidoreductase; propanediol phosphate
dehydrogenase

Systematic name: propane-1,2-diol-1-phosphate:NAD+ oxidoreductase
References: [3439]

[EC 1.1.1.7 created 1961]

EC 1.1.1.8
Accepted name: glycerol-3-phosphate dehydrogenase (NAD+)

Reaction: sn-glycerol 3-phosphate + NAD+ = glycerone phosphate + NADH + H+

Other name(s): α-glycerol phosphate dehydrogenase (NAD+); α-glycerophosphate dehydrogenase (NAD+); glycerol
1-phosphate dehydrogenase; glycerol phosphate dehydrogenase (NAD+); glycerophosphate dehydro-
genase (NAD+); hydroglycerophosphate dehydrogenase; L-α-glycerol phosphate dehydrogenase;
L-α-glycerophosphate dehydrogenase; L-glycerol phosphate dehydrogenase; L-glycerophosphate
dehydrogenase (ambiguous); NAD+-α-glycerophosphate dehydrogenase; NAD+-dependent glyc-
erol phosphate dehydrogenase; NAD+-dependent glycerol-3-phosphate dehydrogenase; NAD+-L-
glycerol-3-phosphate dehydrogenase; NAD+-linked glycerol 3-phosphate dehydrogenase; NADH-
dihydroxyacetone phosphate reductase; glycerol-3-phosphate dehydrogenase (NAD+); L-glycerol-3-
phosphate dehydrogenase (ambiguous)

Systematic name: sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase
Comments: Also acts on propane-1,2-diol phosphate and glycerone sulfate (but with a much lower affinity).
References: [195, 411, 2836, 4133, 54, 1993]

[EC 1.1.1.8 created 1961, modified 2005]
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EC 1.1.1.9
Accepted name: D-xylulose reductase

Reaction: xylitol + NAD+ = D-xylulose + NADH + H+

Other name(s): NAD+-dependent xylitol dehydrogenase; xylitol dehydrogenase (ambiguous); erythritol dehydroge-
nase; 2,3-cis-polyol(DPN) dehydrogenase (C3-5); pentitol-DPN dehydrogenase (ambiguous); xylitol-
2-dehydrogenase

Systematic name: xylitol:NAD+ 2-oxidoreductase (D-xylulose-forming)
Comments: Also acts as an L-erythrulose reductase.
References: [588, 1489, 1714]

[EC 1.1.1.9 created 1961]

EC 1.1.1.10
Accepted name: L-xylulose reductase

Reaction: xylitol + NADP+ = L-xylulose + NADPH + H+

Other name(s): xylitol dehydrogenase (ambiguous)
Systematic name: xylitol:NADP+ 4-oxidoreductase (L-xylulose-forming)

References: [861, 1489, 1544, 3917]

[EC 1.1.1.10 created 1961]

EC 1.1.1.11
Accepted name: D-arabinitol 4-dehydrogenase

Reaction: D-arabinitol + NAD+ = D-xylulose + NADH + H+

Other name(s): D-arabitol dehydrogenase; arabitol dehydrogenase
Systematic name: D-arabinitol:NAD+ 4-oxidoreductase

References: [2252, 4250]

[EC 1.1.1.11 created 1961]

EC 1.1.1.12
Accepted name: L-arabinitol 4-dehydrogenase

Reaction: L-arabinitol + NAD+ = L-xylulose + NADH + H+

Other name(s): pentitol-DPN dehydrogenase (ambiguous); L-arabitol dehydrogenase
Systematic name: L-arabinitol:NAD+ 4-oxidoreductase (L-xylulose-forming)

References: [588, 589]

[EC 1.1.1.12 created 1961]

EC 1.1.1.13
Accepted name: L-arabinitol 2-dehydrogenase

Reaction: L-arabinitol + NAD+ = L-ribulose + NADH + H+

Other name(s): L-arabinitol dehydrogenase (ribulose-forming); L-arabinitol (ribulose-forming) dehydrogenase
Systematic name: L-arabinitol:NAD+ 2-oxidoreductase (L-ribulose-forming)

References: [589]

[EC 1.1.1.13 created 1961]

EC 1.1.1.14
Accepted name: L-iditol 2-dehydrogenase

Reaction: L-iditol + NAD+ = L-sorbose + NADH + H+
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Other name(s): polyol dehydrogenase; sorbitol dehydrogenase; L-iditol:NAD+ 5-oxidoreductase; L-iditol (sorbitol)
dehydrogenase; glucitol dehydrogenase; L-iditol:NAD+ oxidoreductase; NAD+-dependent sorbitol
dehydrogenase; NAD+-sorbitol dehydrogenase

Systematic name: L-iditol:NAD+ 2-oxidoreductase
Comments: This enzyme is widely distributed and has been described in archaea, bacteria, yeast, plants and an-

imals. It acts on a number of sugar alcohols, including (but not limited to) L-iditol, D-glucitol, D-
xylitol, and D-galactitol. Enzymes from different organisms or tissues display different substrate
specificity. The enzyme is specific to NAD+ and can not use NADP+.

References: [165, 449, 2195, 2757, 2835, 2775]

[EC 1.1.1.14 created 1961, modified 2011]

EC 1.1.1.15
Accepted name: D-iditol 2-dehydrogenase

Reaction: D-iditol + NAD+ = D-sorbose + NADH + H+

Other name(s): D-sorbitol dehydrogenase
Systematic name: D-iditol:NAD+ 2-oxidoreductase

Comments: Also converts xylitol into L-xylulose and L-glucitol into L-fructose.
References: [3466]

[EC 1.1.1.15 created 1961]

EC 1.1.1.16
Accepted name: galactitol 2-dehydrogenase

Reaction: galactitol + NAD+ = D-tagatose + NADH + H+

Other name(s): dulcitol dehydrogenase; AtuSorbD (gene name); galactitol:NAD+ 2-oxidoreductase
Systematic name: galactitol:NAD+ 2-oxidoreductase (D-tagatose-forming)

Comments: Also converts other alditols containing an L-threo-configuration adjacent to a primary alcohol group
into the corresponding sugars. The enzyme from Agrobacterium fabrum C58 is part of D-altritol and
galactitol degradation pathways.

References: [3466, 4202]

[EC 1.1.1.16 created 1961]

EC 1.1.1.17
Accepted name: mannitol-1-phosphate 5-dehydrogenase

Reaction: D-mannitol 1-phosphate + NAD+ = D-fructose 6-phosphate + NADH + H+

Other name(s): hexose reductase; mannitol 1-phosphate dehydrogenase; D-mannitol-1-phosphate dehydrogenase;
fructose 6-phosphate reductase

Systematic name: D-mannitol-1-phosphate:NAD+ 5-oxidoreductase
References: [2403, 4237, 4238]

[EC 1.1.1.17 created 1961]

EC 1.1.1.18
Accepted name: inositol 2-dehydrogenase

Reaction: myo-inositol + NAD+ = 2,4,6/3,5-pentahydroxycyclohexanone + NADH + H+

Other name(s): myo-inositol 2-dehydrogenase; myo-inositol:NAD+ oxidoreductase; inositol dehydrogenase; myo-
inositol dehydrogenase

Systematic name: myo-inositol:NAD+ 2-oxidoreductase
References: [270, 2141, 4042]

[EC 1.1.1.18 created 1961]
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EC 1.1.1.19
Accepted name: glucuronate reductase

Reaction: L-gulonate + NADP+ = D-glucuronate + NADPH + H+

Other name(s): aldehyde reductase; L-hexonate:NADP dehydrogenase; TPN-L-gulonate dehydrogenase; aldehyde
reductase II; NADP-L-gulonate dehydrogenase; D-glucuronate dehydrogenase; D-glucuronate reduc-
tase; L-glucuronate reductase (incorrect)

Systematic name: L-gulonate:NADP+ 6-oxidoreductase
Comments: Also reduces D-galacturonate. May be identical with EC 1.1.1.2 [alcohol dehydrogenase (NADP+)].
References: [3544, 4062, 4373]

[EC 1.1.1.19 created 1961]

EC 1.1.1.20
Accepted name: glucuronolactone reductase

Reaction: L-gulono-1,4-lactone + NADP+ = D-glucurono-3,6-lactone + NADPH + H+

Other name(s): GRase; gulonolactone dehydrogenase
Systematic name: L-gulono-1,4-lactone:NADP+ 1-oxidoreductase

References: [3751]

[EC 1.1.1.20 created 1961]

EC 1.1.1.21
Accepted name: aldehyde reductase

Reaction: alditol + NAD(P)+ = aldose + NAD(P)H + H+

Other name(s): aldose reductase; polyol dehydrogenase (NADP+); ALR2; alditol:NADP oxidoreductase;
alditol:NADP+ 1-oxidoreductase; NADPH-aldopentose reductase; NADPH-aldose reductase

Systematic name: alditol:NAD(P)+ 1-oxidoreductase
Comments: Has wide specificity.
References: [137, 334, 1481, 3360]

[EC 1.1.1.21 created 1961 (EC 1.1.1.139 created 1972, incorporated 1978)]

EC 1.1.1.22
Accepted name: UDP-glucose 6-dehydrogenase

Reaction: UDP-α-D-glucose + 2 NAD+ + H2O = UDP-α-D-glucuronate + 2 NADH + 2 H+

Other name(s): UDP-glucose dehydrogenase; uridine diphosphoglucose dehydrogenase; UDPG dehydrogenase;
UDPG:NAD oxidoreductase; UDP-α-D-glucose:NAD oxidoreductase; UDP-glucose:NAD+ oxi-
doreductase; uridine diphosphate glucose dehydrogenase; UDP-D-glucose dehydrogenase; uridine
diphosphate D-glucose dehydrogenase

Systematic name: UDP-α-D-glucose:NAD+ 6-oxidoreductase
Comments: Also acts on UDP-α-D-2-deoxyglucose.
References: [875, 2471, 3687, 3688]

[EC 1.1.1.22 created 1961]

EC 1.1.1.23
Accepted name: histidinol dehydrogenase

Reaction: L-histidinol + 2 NAD+ + H2O = L-histidine + 2 NADH + 3 H+

Other name(s): L-histidinol dehydrogenase
Systematic name: L-histidinol:NAD+ oxidoreductase

Comments: Also oxidizes L-histidinal. The Neurospora enzyme also catalyses the reactions of EC 3.5.4.19
(phosphoribosyl-AMP cyclohydrolase) and EC 3.6.1.31 (phosphoribosyl-ATP diphosphatase).

References: [18, 19, 2296, 4396]
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[EC 1.1.1.23 created 1961]

EC 1.1.1.24
Accepted name: quinate dehydrogenase

Reaction: L-quinate + NAD+ = 3-dehydroquinate + NADH + H+

Other name(s): quinic dehydrogenase; quinate:NAD oxidoreductase; quinate 5-dehydrogenase; quinate:NAD+ 5-
oxidoreductase

Systematic name: L-quinate:NAD+ 3-oxidoreductase
Comments: The enzyme is specific for quinate as substrate; phenylpyruvate, phenylalanine, cinnamate and shiki-

mate will not act as substrates. NAD+ cannot be replaced by NADP+.
References: [1148, 2566]

[EC 1.1.1.24 created 1961, modified 1976, modified 2004]

EC 1.1.1.25
Accepted name: shikimate dehydrogenase

Reaction: shikimate + NADP+ = 3-dehydroshikimate + NADPH + H+

Other name(s): dehydroshikimic reductase; shikimate oxidoreductase; shikimate:NADP+ oxidoreductase; 5-
dehydroshikimate reductase; shikimate 5-dehydrogenase; 5-dehydroshikimic reductase; DHS reduc-
tase; shikimate:NADP+ 5-oxidoreductase; AroE

Systematic name: shikimate:NADP+ 3-oxidoreductase
Comments: NAD+ cannot replace NADP+ [4347]. In higher organisms, this enzyme forms part of a multienzyme

complex with EC 4.2.1.10, 3-dehydroquinate dehydratase [557].
References: [181, 2566, 4347, 557, 98, 4354]

[EC 1.1.1.25 created 1961, modified 1976, modified 2004]

EC 1.1.1.26
Accepted name: glyoxylate reductase

Reaction: glycolate + NAD+ = glyoxylate + NADH + H+

Other name(s): NADH-glyoxylate reductase; glyoxylic acid reductase; NADH-dependent glyoxylate reductase
Systematic name: glycolate:NAD+ oxidoreductase

Comments: Reduces glyoxylate to glycolate or hydroxypyruvate to D-glycerate.
References: [4431, 4432]

[EC 1.1.1.26 created 1961]

EC 1.1.1.27
Accepted name: L-lactate dehydrogenase

Reaction: (S)-lactate + NAD+ = pyruvate + NADH + H+

Other name(s): lactic acid dehydrogenase; L(+)-nLDH; L-(+)-lactate dehydrogenase; L-lactic dehydrogenase; L-lactic
acid dehydrogenase; lactate dehydrogenase; lactate dehydrogenase NAD-dependent; lactic dehydro-
genase; NAD-lactate dehydrogenase

Systematic name: (S)-lactate:NAD+ oxidoreductase
Comments: Also oxidizes other (S)-2-hydroxymonocarboxylic acids. NADP+ also acts, more slowly, with the

animal, but not the bacterial, enzyme.
References: [797, 972, 1536, 3350]

[EC 1.1.1.27 created 1961]

EC 1.1.1.28
Accepted name: D-lactate dehydrogenase

10

http://www.enzyme-database.org/query.php?ec=1.1.1.24
http://www.enzyme-database.org/query.php?ec=1.1.1.25
http://www.enzyme-database.org/query.php?ec=1.1.1.26
http://www.enzyme-database.org/query.php?ec=1.1.1.27
http://www.enzyme-database.org/query.php?ec=1.1.1.28


Reaction: (R)-lactate + NAD+ = pyruvate + NADH + H+

Other name(s): lactic acid dehydrogenase; lactic acid dehydrogenase; D-specific lactic dehydrogenase; D-(-)-lactate
dehydrogenase (NAD); D-lactic acid dehydrogenase; D-lactic dehydrogenase

Systematic name: (R)-lactate:NAD+ oxidoreductase
References: [797]

[EC 1.1.1.28 created 1961]

EC 1.1.1.29
Accepted name: glycerate dehydrogenase

Reaction: D-glycerate + NAD+ = hydroxypyruvate + NADH + H+

Other name(s): D-glycerate dehydrogenase; hydroxypyruvate reductase; (R)-glycerate:NAD+ oxidoreductase
Systematic name: D-glycerate:NAD+ oxidoreductase

References: [1551, 3618]

[EC 1.1.1.29 created 1961]

EC 1.1.1.30
Accepted name: 3-hydroxybutyrate dehydrogenase

Reaction: (R)-3-hydroxybutanoate + NAD+ = acetoacetate + NADH + H+

Other name(s): NAD-β-hydroxybutyrate dehydrogenase; hydroxybutyrate oxidoreductase; β-hydroxybutyrate de-
hydrogenase; D-β-hydroxybutyrate dehydrogenase; D-3-hydroxybutyrate dehydrogenase; D-(-)-3-
hydroxybutyrate dehydrogenase; β-hydroxybutyric acid dehydrogenase; 3-D-hydroxybutyrate dehy-
drogenase; β-hydroxybutyric dehydrogenase

Systematic name: (R)-3-hydroxybutanoate:NAD+ oxidoreductase
Comments: Also oxidizes other 3-hydroxymonocarboxylic acids.
References: [268, 786, 2189]

[EC 1.1.1.30 created 1961]

EC 1.1.1.31
Accepted name: 3-hydroxyisobutyrate dehydrogenase

Reaction: 3-hydroxy-2-methylpropanoate + NAD+ = 2-methyl-3-oxopropanoate + NADH + H+

Other name(s): β-hydroxyisobutyrate dehydrogenase
Systematic name: 3-hydroxy-2-methylpropanoate:NAD+ oxidoreductase

References: [3204]

[EC 1.1.1.31 created 1961]

EC 1.1.1.32
Accepted name: mevaldate reductase

Reaction: (R)-mevalonate + NAD+ = mevaldate + NADH + H+

Other name(s): mevalonic dehydrogenase
Systematic name: (R)-mevalonate:NAD+ oxidoreductase

References: [3371]

[EC 1.1.1.32 created 1961]

EC 1.1.1.33
Accepted name: mevaldate reductase (NADPH)

Reaction: (R)-mevalonate + NADP+ = mevaldate + NADPH + H+

Other name(s): mevaldate (reduced nicotinamide adenine dinucleotide phosphate) reductase; mevaldate reductase
(NADPH2)
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Systematic name: (R)-mevalonate:NADP+ oxidoreductase
Comments: May be identical with EC 1.1.1.2 [alcohol dehydrogenase (NADP+)].
References: [653, 4062]

[EC 1.1.1.33 created 1961]

EC 1.1.1.34
Accepted name: hydroxymethylglutaryl-CoA reductase (NADPH)

Reaction: (R)-mevalonate + CoA + 2 NADP+ = (S)-3-hydroxy-3-methylglutaryl-CoA + 2 NADPH + 2 H+

Other name(s): hydroxymethylglutaryl coenzyme A reductase (reduced nicotinamide adenine dinucleotide phos-
phate); 3-hydroxy-3-methylglutaryl-CoA reductase; β-hydroxy-β-methylglutaryl coenzyme A re-
ductase; hydroxymethylglutaryl CoA reductase (NADPH); S-3-hydroxy-3-methylglutaryl-CoA re-
ductase; NADPH-hydroxymethylglutaryl-CoA reductase; HMGCoA reductase-mevalonate:NADP-
oxidoreductase (acetylating-CoA); 3-hydroxy-3-methylglutaryl CoA reductase (NADPH);
hydroxymethylglutaryl-CoA reductase (NADPH2)

Systematic name: (R)-mevalonate:NADP+ oxidoreductase (CoA-acylating)
Comments: The enzyme is inactivated by EC 2.7.11.31 [hydroxymethylglutaryl-CoA reductase (NADPH)] kinase

and reactivated by EC 3.1.3.47 [hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphatase.
References: [439, 893, 1856]

[EC 1.1.1.34 created 1961]

EC 1.1.1.35
Accepted name: 3-hydroxyacyl-CoA dehydrogenase

Reaction: (S)-3-hydroxyacyl-CoA + NAD+ = 3-oxoacyl-CoA + NADH + H+

Other name(s): β-hydroxyacyl dehydrogenase; β-keto-reductase; 3-keto reductase; 3-hydroxyacyl coenzyme A de-
hydrogenase; β-hydroxyacyl-coenzyme A synthetase; β-hydroxyacylcoenzyme A dehydrogenase;
β-hydroxybutyrylcoenzyme A dehydrogenase; 3-hydroxyacetyl-coenzyme A dehydrogenase; L-3-
hydroxyacyl coenzyme A dehydrogenase; L-3-hydroxyacyl CoA dehydrogenase; β-hydroxyacyl CoA
dehydrogenase; 3β-hydroxyacyl coenzyme A dehydrogenase; 3-hydroxybutyryl-CoA dehydrogenase;
β-ketoacyl-CoA reductase; β-hydroxy acid dehydrogenase; 3-L-hydroxyacyl-CoA dehydrogenase;
3-hydroxyisobutyryl-CoA dehydrogenase; 1-specific DPN-linked β-hydroxybutyric dehydrogenase

Systematic name: (S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase
Comments: Also oxidizes S-3-hydroxyacyl-N-acylthioethanolamine and S-3-hydroxyacyl-hydrolipoate. Some en-

zymes act, more slowly, with NADP+. Broad specificity to acyl chain-length (cf. EC 1.1.1.211 [long-
chain-3-hydroxyacyl-CoA dehydrogenase]).

References: [1504, 2188, 3641, 4083]

[EC 1.1.1.35 created 1961]

EC 1.1.1.36
Accepted name: acetoacetyl-CoA reductase

Reaction: (R)-3-hydroxyacyl-CoA + NADP+ = 3-oxoacyl-CoA + NADPH + H+

Other name(s): acetoacetyl coenzyme A reductase; hydroxyacyl coenzyme-A dehydrogenase; NADP-linked ace-
toacetyl CoA reductase; NADPH:acetoacetyl-CoA reductase; D(–)-β-hydroxybutyryl CoA-NADP
oxidoreductase; short chain β-ketoacetyl(acetoacetyl)-CoA reductase; β-ketoacyl-CoA reductase; D-
3-hydroxyacyl-CoA reductase; (R)-3-hydroxyacyl-CoA dehydrogenase

Systematic name: (R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase
References: [4082]

[EC 1.1.1.36 created 1961]

EC 1.1.1.37
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Accepted name: malate dehydrogenase
Reaction: (S)-malate + NAD+ = oxaloacetate + NADH + H+

Other name(s): malic dehydrogenase; L-malate dehydrogenase; NAD-L-malate dehydrogenase; malic acid dehydro-
genase; NAD-dependent malic dehydrogenase; NAD-malate dehydrogenase; NAD-malic dehydro-
genase; malate (NAD) dehydrogenase; NAD-dependent malate dehydrogenase; NAD-specific malate
dehydrogenase; NAD-linked malate dehydrogenase; MDH; L-malate-NAD+ oxidoreductase

Systematic name: (S)-malate:NAD+ oxidoreductase
Comments: Also oxidizes some other 2-hydroxydicarboxylic acids.
References: [188, 1309, 2492, 4239]

[EC 1.1.1.37 created 1961]

EC 1.1.1.38
Accepted name: malate dehydrogenase (oxaloacetate-decarboxylating)

Reaction: (1) (S)-malate + NAD+ = pyruvate + CO2 + NADH
(2) oxaloacetate = pyruvate + CO2

Other name(s): ‘malic’ enzyme (ambiguous); pyruvic-malic carboxylase (ambiguous); NAD+-specific malic enzyme;
NAD+-malic enzyme; NAD+-linked malic enzyme

Systematic name: (S)-malate:NAD+ oxidoreductase (oxaloacetate-decarboxylating)
Comments: Unlike EC 1.1.1.39, malate dehydrogenase (decarboxylating), this enzyme can also decarboxylate

oxaloacetate. cf. EC 1.1.1.40, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+).
References: [1853, 4305]

[EC 1.1.1.38 created 1961]

EC 1.1.1.39
Accepted name: malate dehydrogenase (decarboxylating)

Reaction: (S)-malate + NAD+ = pyruvate + CO2 + NADH
Other name(s): ‘malic’ enzyme (ambiguous); pyruvic-malic carboxylase (ambiguous); NAD-specific malic enzyme

(ambiguous); NAD-malic enzyme (ambiguous); malate dehydrogenase (decarboxylating) (ambigu-
ous)

Systematic name: (S)-malate:NAD+ oxidoreductase (decarboxylating)
Comments: There are several forms of malate dehydrogenases that differ in their use of substrates and cofactors.

This particular form is found only in the plant kingdom. Unlike EC 1.1.1.38, which catalyses a sim-
ilar reaction, this enzyme can not bind oxaloacetate, and thus does not decarboxylate exogeneously-
added oxaloacetate. cf. EC 1.1.1.37, malate dehydrogenase; EC 1.1.1.38, malate dehydrogenase
(oxaloacetate-decarboxylating); and EC 1.1.1.83, D-malate dehydrogenase (decarboxylating).

References: [2350, 1304, 4156, 4155]

[EC 1.1.1.39 created 1961]

EC 1.1.1.40
Accepted name: malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)

Reaction: (1) (S)-malate + NADP+ = pyruvate + CO2 + NADPH
(2) oxaloacetate = pyruvate + CO2

Other name(s): ‘malic’ enzyme (ambiguous); pyruvic-malic carboxylase (ambiguous); malate dehydrogenase (de-
carboxylating, NADP+); NADP+-linked decarboxylating malic enzyme; NADP+-malic enzyme;
NADP+-specific malic enzyme; NADP+-specific malate dehydrogenase; malate dehydrogenase
(NADP+, decarboxylating); L-malate:NADP+ oxidoreductase

Systematic name: (S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating)
Comments: The enzyme catalyses the oxidative decarboxylation of (S)-malate in the presence of NADP+ and di-

valent metal ions, and the decarboxylation of oxaloacetate. cf. EC 1.1.1.38, malate dehydrogenase
(oxaloacetate-decarboxylating), and EC 1.1.1.39, malate dehydrogenase (decarboxylating).

References: [1392, 2839, 3265, 3645, 3646, 4086]
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[EC 1.1.1.40 created 1961, modified 1976]

EC 1.1.1.41
Accepted name: isocitrate dehydrogenase (NAD+)

Reaction: isocitrate + NAD+ = 2-oxoglutarate + CO2 + NADH
Other name(s): isocitric dehydrogenase; β-ketoglutaric-isocitric carboxylase; isocitric acid dehydrogenase; NAD de-

pendent isocitrate dehydrogenase; NAD isocitrate dehydrogenase; NAD-linked isocitrate dehydroge-
nase; NAD-specific isocitrate dehydrogenase; NAD isocitric dehydrogenase; isocitrate dehydrogenase
(NAD); IDH (ambiguous); nicotinamide adenine dinucleotide isocitrate dehydrogenase

Systematic name: isocitrate:NAD+ oxidoreductase (decarboxylating)
Comments: Requires Mn2+ or Mg2+ for activity. Unlike EC 1.1.1.42, isocitrate dehydrogenase (NADP+), oxalo-

succinate cannot be used as a substrate. In eukaryotes, isocitrate dehydrogenase exists in two forms:
an NAD+-linked enzyme found only in mitochondria and displaying allosteric properties, and a non-
allosteric, NADP+-linked enzyme that is found in both mitochondria and cytoplasm [481]. The en-
zyme from some species can also use NADP+ but much more slowly [1651].

References: [1421, 2035, 3021, 3022, 3116, 4040, 481, 1926, 1651]

[EC 1.1.1.41 created 1961, modified 2005]

EC 1.1.1.42
Accepted name: isocitrate dehydrogenase (NADP+)

Reaction: isocitrate + NADP+ = 2-oxoglutarate + CO2 + NADPH + H+ (overall reaction)
(1a) isocitrate + NADP+ = oxalosuccinate + NADPH + H+

(1b) oxalosuccinate = 2-oxoglutarate + CO2
Other name(s): oxalosuccinate decarboxylase; oxalsuccinic decarboxylase; isocitrate (NADP) dehydrogenase; isoc-

itrate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; NADP-specific isocitrate de-
hydrogenase; NADP-linked isocitrate dehydrogenase; NADP-dependent isocitrate dehydrogenase;
NADP isocitric dehydrogenase; isocitrate dehydrogenase (NADP-dependent); NADP-dependent isoc-
itric dehydrogenase; triphosphopyridine nucleotide-linked isocitrate dehydrogenase-oxalosuccinate
carboxylase; NADP+-linked isocitrate dehydrogenase; IDH (ambiguous); dual-cofactor-specific isoci-
trate dehydrogenase; NADP+-ICDH; NADP+-IDH; IDP; IDP1; IDP2; IDP3

Systematic name: isocitrate:NADP+ oxidoreductase (decarboxylating)
Comments: Requires Mn2+ or Mg2+ for activity. Unlike EC 1.1.1.41, isocitrate dehydrogenase (NAD+), oxalo-

succinate can be used as a substrate. In eukaryotes, isocitrate dehydrogenase exists in two forms: an
NAD+-linked enzyme found only in mitochondria and displaying allosteric properties, and a non-
allosteric, NADP+-linked enzyme that is found in both mitochondria and cytoplasm [481]. The en-
zyme from some species can also use NAD+ but much more slowly [481, 3627].

References: [34, 2643, 3021, 3527, 4040, 481, 3627, 2001, 527]

[EC 1.1.1.42 created 1961, modified 2005]

EC 1.1.1.43
Accepted name: phosphogluconate 2-dehydrogenase

Reaction: 6-phospho-D-gluconate + NAD(P)+ = 6-phospho-2-dehydro-D-gluconate + NAD(P)H + H+

Other name(s): 6-phosphogluconic dehydrogenase; phosphogluconate dehydrogenase; gluconate 6-phosphate dehy-
drogenase; 6-phosphogluconate dehydrogenase (NAD); 2-keto-6-phosphogluconate reductase

Systematic name: 6-phospho-D-gluconate:NAD(P)+ 2-oxidoreductase
References: [1049]

[EC 1.1.1.43 created 1961]

EC 1.1.1.44
Accepted name: phosphogluconate dehydrogenase (NADP+-dependent, decarboxylating)
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Reaction: 6-phospho-D-gluconate + NADP+ = D-ribulose 5-phosphate + CO2 + NADPH + H+

Other name(s): phosphogluconic acid dehydrogenase; 6-phosphogluconic dehydrogenase; 6-phosphogluconic car-
boxylase; 6-phosphogluconate dehydrogenase (decarboxylating); 6-phospho-D-gluconate dehydroge-
nase

Systematic name: 6-phospho-D-gluconate:NADP+ 2-oxidoreductase (decarboxylating)
Comments: The enzyme participates in the oxidative branch of the pentose phosphate pathway, whose main pur-

pose is to produce NADPH and pentose for biosynthetic reactions. Highly specific for NADP+. cf.
EC 1.1.1.343, phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating).

References: [816, 3038, 3416, 3417, 400, 4371, 4423]

[EC 1.1.1.44 created 1961, modified 2013]

EC 1.1.1.45
Accepted name: L-gulonate 3-dehydrogenase

Reaction: L-gulonate + NAD+ = 3-dehydro-L-gulonate + NADH + H+

Other name(s): L-3-aldonate dehydrogenase; L-3-aldonic dehydrogenase; L-gulonic acid dehydrogenase; L-β-
hydroxyacid dehydrogenase; L-β-hydroxy-acid-NAD-oxidoreductase; L-3-hydroxyacid dehydroge-
nase

Systematic name: L-gulonate:NAD+ 3-oxidoreductase
Comments: Also oxidizes other L-3-hydroxyacids.
References: [896, 3555]

[EC 1.1.1.45 created 1961]

EC 1.1.1.46
Accepted name: L-arabinose 1-dehydrogenase

Reaction: L-arabinose + NAD+ = L-arabinono-1,4-lactone + NADH + H+

Systematic name: L-arabinose:NAD+ 1-oxidoreductase
References: [4164]

[EC 1.1.1.46 created 1961]

EC 1.1.1.47
Accepted name: glucose 1-dehydrogenase [NAD(P)+]

Reaction: D-glucose + NAD(P)+ = D-glucono-1,5-lactone + NAD(P)H + H+

Other name(s): D-glucose dehydrogenase (NAD(P)+); hexose phosphate dehydrogenase; β-D-glucose:NAD(P)+ 1-
oxidoreductase; glucose 1-dehydrogenase

Systematic name: D-glucose:NAD(P)+ 1-oxidoreductase
Comments: This enzyme has similar activity with either NAD+ or NADP+. cf. EC 1.1.1.118, glucose 1-

dehydrogenase (NAD+) and EC 1.1.1.119, glucose 1-dehydrogenase (NADP+).
References: [189, 401, 2966, 3675, 3877, 1101]

[EC 1.1.1.47 created 1961, modified 2013]

EC 1.1.1.48
Accepted name: D-galactose 1-dehydrogenase

Reaction: D-galactose + NAD+ = D-galactono-1,4-lactone + NADH + H+

Other name(s): D-galactose dehydrogenase; β-galactose dehydrogenase (ambiguous); NAD+-dependent D-galactose
dehydrogenase

Systematic name: D-galactose:NAD+ 1-oxidoreductase
Comments: This enzyme is part of the De Ley-Doudoroff pathway, which is used by some bacteria during growth

on D-galactose.
References: [2220, 1588]
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[EC 1.1.1.48 created 1961, modified 2011]

EC 1.1.1.49
Accepted name: glucose-6-phosphate dehydrogenase (NADP+)

Reaction: D-glucose 6-phosphate + NADP+ = 6-phospho-D-glucono-1,5-lactone + NADPH + H+

Other name(s): NADP-glucose-6-phosphate dehydrogenase; Zwischenferment; D-glucose 6-phosphate dehydroge-
nase; glucose 6-phosphate dehydrogenase (NADP); NADP-dependent glucose 6-phosphate dehy-
drogenase; 6-phosphoglucose dehydrogenase; Entner-Doudoroff enzyme; glucose-6-phosphate 1-
dehydrogenase; G6PDH; GPD; glucose-6-phosphate dehydrogenase

Systematic name: D-glucose-6-phosphate:NADP+ 1-oxidoreductase
Comments: The enzyme catalyses a step of the pentose phosphate pathway. The enzyme is specific for NADP+.

cf. EC 1.1.1.363, glucose-6-phosphate dehydrogenase [NAD(P)+] and EC 1.1.1.388, glucose-6-
phosphate dehydrogenase (NAD+).

References: [949, 1219, 1783, 2812, 2528, 2870, 1375, 1624, 1697, 606]

[EC 1.1.1.49 created 1961, modified 2013, modified 2015]

EC 1.1.1.50
Accepted name: 3α-hydroxysteroid 3-dehydrogenase (Si-specific)

Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+

Other name(s): hydroxyprostaglandin dehydrogenase; 3α-hydroxysteroid oxidoreductase; sterognost 3α; 3α-
hydroxysteroid dehydrogenase (B-specific); 3α-hydroxysteroid 3-dehydrogenase (B-specific); 3α-
hydroxysteroid:NAD(P)+ 3-oxidoreductase (B-specific)

Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (Si-specific)
Comments: The enzyme acts on androsterone and other 3α-hydroxysteroids and on 9-, 11- and 15-

hydroxyprostaglandin. Si-specific with respect to NAD+ or NADP+. cf. EC 1.1.1.213, 3α-
hydroxysteroid 3-dehydrogenase (Re-specific).

References: [1724, 1986, 2395, 2979]

[EC 1.1.1.50 created 1961, modified 1986, modified 1990, modified 2012, modified 2013]

EC 1.1.1.51
Accepted name: 3(or 17)β-hydroxysteroid dehydrogenase

Reaction: testosterone + NAD(P)+ = androstenedione + NAD(P)H + H+

Other name(s): β-hydroxy steroid dehydrogenase; 17-ketoreductase; 17β-hydroxy steroid dehydrogenase; 3β-
hydroxysteroid dehydrogenase; 3β-hydroxy steroid dehydrogenase

Systematic name: 3(or 17)β-hydroxysteroid:NAD(P)+ oxidoreductase
Comments: Also acts on other 3β- or 17β-hydroxysteroids. cf. EC 1.1.1.209 3(or 17)α-hydroxysteroid dehydroge-

nase.
References: [720, 2326, 2395, 3400, 3798]

[EC 1.1.1.51 created 1961]

EC 1.1.1.52
Accepted name: 3α-hydroxycholanate dehydrogenase (NAD+)

Reaction: lithocholate + NAD+ = 3-oxo-5β-cholan-24-oate + NADH + H+

Other name(s): α-hydroxy-cholanate dehydrogenase; lithocholate:NAD+ oxidoreductase; 3α-hydroxycholanate dehy-
drogenase

Systematic name: lithocholate:NAD+ 3-oxidoreductase
Comments: Also acts on other 3α-hydroxysteroids with an acidic side-chain. cf. EC 1.1.1.392, 3α-

hydroxycholanate dehydrogenase (NADP+).
References: [1434]
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[EC 1.1.1.52 created 1961, modified 1976, modified 2016]

EC 1.1.1.53
Accepted name: 3α(or 20β)-hydroxysteroid dehydrogenase

Reaction: androstan-3α,17β-diol + NAD+ = 17β-hydroxyandrostan-3-one + NADH + H+

Other name(s): cortisone reductase; (R)-20-hydroxysteroid dehydrogenase; dehydrogenase, 20β-hydroxy steroid;
∆4-3-ketosteroid hydrogenase; 20β-hydroxysteroid dehydrogenase; 3α,20β-hydroxysteroid:NAD+-
oxidoreductase; NADH-20β-hydroxysteroid dehydrogenase; 20β-HSD

Systematic name: 3α(or 20β)-hydroxysteroid:NAD+ oxidoreductase
Comments: The 3α-hydroxy group or 20β-hydroxy group of pregnane and androstane steroids can act as donor.
References: [923, 1600, 1601, 2326, 3679, 3762]

[EC 1.1.1.53 created 1961, modified 1986]

EC 1.1.1.54
Accepted name: allyl-alcohol dehydrogenase

Reaction: allyl alcohol + NADP+ = acrolein + NADPH + H+

Systematic name: allyl-alcohol:NADP+ oxidoreductase
Comments: Also acts on saturated primary alcohols.
References: [2910]

[EC 1.1.1.54 created 1965]

EC 1.1.1.55
Accepted name: lactaldehyde reductase (NADPH)

Reaction: propane-1,2-diol + NADP+ = L-lactaldehyde + NADPH + H+

Other name(s): lactaldehyde (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADP-1,2-
propanediol dehydrogenase; propanediol dehydrogenase; 1,2-propanediol:NADP+ oxidoreductase;
lactaldehyde reductase (NADPH2)

Systematic name: propane-1,2-diol:NADP+ oxidoreductase
Comments: May be identical with EC 1.1.1.2 alcohol dehydrogenase (NADP+).
References: [1319]

[EC 1.1.1.55 created 1965]

EC 1.1.1.56
Accepted name: ribitol 2-dehydrogenase

Reaction: ribitol + NAD+ = D-ribulose + NADH + H+

Other name(s): adonitol dehydrogenase; ribitol dehydrogenase A (wild type); ribitol dehydrogenase B (mutant en-
zyme with different properties); ribitol dehydrogenase D (mutant enzyme with different properties)

Systematic name: ribitol:NAD+ 2-oxidoreductase
References: [1544, 2817, 4250]

[EC 1.1.1.56 created 1965]

EC 1.1.1.57
Accepted name: fructuronate reductase

Reaction: D-mannonate + NAD+ = D-fructuronate + NADH + H+

Other name(s): mannonate oxidoreductase; mannonic dehydrogenase; D-mannonate dehydrogenase; D-
mannonate:NAD oxidoreductase

Systematic name: D-mannonate:NAD+ 5-oxidoreductase
Comments: Also reduces D-tagaturonate.
References: [1490, 1905]
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[EC 1.1.1.57 created 1965]

EC 1.1.1.58
Accepted name: tagaturonate reductase

Reaction: D-altronate + NAD+ = D-tagaturonate + NADH + H+

Other name(s): altronic oxidoreductase; altronate oxidoreductase; TagUAR; altronate dehydrogenase; D-tagaturonate
reductase

Systematic name: D-altronate:NAD+ 3-oxidoreductase
References: [1490]

[EC 1.1.1.58 created 1965]

EC 1.1.1.59
Accepted name: 3-hydroxypropionate dehydrogenase

Reaction: 3-hydroxypropanoate + NAD+ = 3-oxopropanoate + NADH + H+

Systematic name: 3-hydroxypropanoate:NAD+ oxidoreductase
References: [792]

[EC 1.1.1.59 created 1965]

EC 1.1.1.60
Accepted name: 2-hydroxy-3-oxopropionate reductase

Reaction: D-glycerate + NAD(P)+ = 2-hydroxy-3-oxopropanoate + NAD(P)H + H+

Other name(s): tartronate semialdehyde reductase; (R)-glycerate:NAD(P)+ oxidoreductase
Systematic name: D-glycerate:NAD(P)+ oxidoreductase

References: [1249]

[EC 1.1.1.60 created 1965]

EC 1.1.1.61
Accepted name: 4-hydroxybutyrate dehydrogenase

Reaction: 4-hydroxybutanoate + NAD+ = succinate semialdehyde + NADH + H+

Other name(s): γ-hydroxybutyrate dehydrogenase
Systematic name: 4-hydroxybutanoate:NAD+ oxidoreductase

References: [2790]

[EC 1.1.1.61 created 1965]

EC 1.1.1.62
Accepted name: 17β-estradiol 17-dehydrogenase

Reaction: 17β-estradiol + NAD(P)+ = estrone + NAD(P)H + H+

Other name(s): 20α-hydroxysteroid dehydrogenase; 17β,20α-hydroxysteroid dehydrogenase; 17β-estradiol dehydro-
genase; estradiol dehydrogenase; estrogen 17-oxidoreductase; 17β-HSD; HSD17B7

Systematic name: 17β-estradiol:NAD(P)+ 17-oxidoreductase
Comments: The enzyme oxidizes or reduces the hydroxy/keto group on C17 of estrogens and androgens in mam-

mals and regulates the biological potency of these steroids. The mammalian enzyme is bifunctional
and also catalyses EC 1.1.1.270, 3β-hydroxysteroid 3-dehydrogenase [2398]. The enzyme also acts
on (S)-20-hydroxypregn-4-en-3-one and related compounds, oxidizing the (S)-20-group, but unlike
EC 1.1.1.149, 20α-hydroxysteroid dehydrogenase, it is Si-specific with respect to NAD(P)+.

References: [1855, 2133, 2398]

[EC 1.1.1.62 created 1965, modified 1983, modified 1986, modified 2012]
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[1.1.1.63 Transferred entry. testosterone 17β-dehydrogenase. Now EC 1.1.1.239, 3α(17β)-hydroxysteroid dehydrogenase
(NAD+)]

[EC 1.1.1.63 created 1965, deleted 2012]

EC 1.1.1.64
Accepted name: testosterone 17β-dehydrogenase (NADP+)

Reaction: testosterone + NADP+ = androstenedione + NADPH + H+

Other name(s): 17-ketoreductase; NADP-dependent testosterone-17β-oxidoreductase; testosterone 17β-
dehydrogenase (NADP)

Systematic name: 17β-hydroxysteroid:NADP+ 17-oxidoreductase
Comments: Also oxidizes 3-hydroxyhexobarbital to 3-oxohexobarbital.
References: [946, 3761, 4046]

[EC 1.1.1.64 created 1965]

EC 1.1.1.65
Accepted name: pyridoxine 4-dehydrogenase

Reaction: pyridoxine + NADP+ = pyridoxal + NADPH + H+

Other name(s): pyridoxin dehydrogenase; pyridoxol dehydrogenase; pyridoxine dehydrogenase
Systematic name: pyridoxine:NADP+ 4-oxidoreductase

Comments: Also oxidizes pyridoxine phosphate.
References: [1552]

[EC 1.1.1.65 created 1965, modified 1976]

EC 1.1.1.66
Accepted name: ω-hydroxydecanoate dehydrogenase

Reaction: 10-hydroxydecanoate + NAD+ = 10-oxodecanoate + NADH + H+

Systematic name: 10-hydroxydecanoate:NAD+ 10-oxidoreductase
Comments: Also acts, more slowly, on 9-hydroxynonanoate and 11-hydroxyundecanoate.
References: [1803, 2569]

[EC 1.1.1.66 created 1965]

EC 1.1.1.67
Accepted name: mannitol 2-dehydrogenase

Reaction: D-mannitol + NAD+ = D-fructose + NADH + H+

Other name(s): D-mannitol dehydrogenase; mannitol dehydrogenase
Systematic name: D-mannitol:NAD+ 2-oxidoreductase

References: [2417]

[EC 1.1.1.67 created 1965]

[1.1.1.68 Transferred entry. 5,10-methylenetetrahydrofolate reductase. Now EC 1.5.1.20, methylenetetrahydrofolate reduc-
tase [NAD(P)H]]

[EC 1.1.1.68 created 1965, deleted 1978 [transferred to EC 1.1.99.15, deleted 1980]]

EC 1.1.1.69
Accepted name: gluconate 5-dehydrogenase

Reaction: D-gluconate + NAD(P)+ = 5-dehydro-D-gluconate + NAD(P)H + H+

Other name(s): 5-keto-D-gluconate 5-reductase; 5-keto-D-gluconate 5-reductase; 5-ketogluconate 5-reductase; 5-
ketogluconate reductase; 5-keto-D-gluconate reductase
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Systematic name: D-gluconate:NAD(P)+ 5-oxidoreductase
References: [69, 2219, 2862]

[EC 1.1.1.69 created 1965, modified 1976]

[1.1.1.70 Deleted entry. D-glucuronolactone dehydrogenase. Now included with EC 1.2.1.3 aldehyde dehydrogenase (NAD+)]

[EC 1.1.1.70 created 1965, deleted 1978]

EC 1.1.1.71
Accepted name: alcohol dehydrogenase [NAD(P)+]

Reaction: an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+

Other name(s): retinal reductase (ambiguous); aldehyde reductase (NADPH/NADH); alcohol dehydrogenase
[NAD(P)]

Systematic name: alcohol:NAD(P)+ oxidoreductase
Comments: Reduces aliphatic aldehydes of carbon chain length from 2 to 14, with greatest activity on C4, C6 and

C8 aldehydes; also reduces retinal to retinol.
References: [1009]

[EC 1.1.1.71 created 1972]

EC 1.1.1.72
Accepted name: glycerol dehydrogenase (NADP+)

Reaction: glycerol + NADP+ = D-glyceraldehyde + NADPH + H+

Other name(s): glycerol dehydrogenase (NADP)
Systematic name: glycerol:NADP+ oxidoreductase

References: [2034, 3900]

[EC 1.1.1.72 created 1972]

EC 1.1.1.73
Accepted name: octanol dehydrogenase

Reaction: octan-1-ol + NAD+ = octanal + NADH + H+

Other name(s): 1-octanol dehydrogenase; octanol:NAD+ oxidoreductase
Systematic name: octan-1-ol:NAD+ oxidoreductase

Comments: Acts, less rapidly, on other long-chain alcohols.
References: [3206]

[EC 1.1.1.73 created 1972]

[1.1.1.74 Deleted entry. D-aminopropanol dehydrogenase (reaction due to EC 1.1.1.4 (R,R)-butanediol dehydrogenase)]

[EC 1.1.1.74 created 1972, deleted 1976]

EC 1.1.1.75
Accepted name: (R)-aminopropanol dehydrogenase

Reaction: (R)-1-aminopropan-2-ol + NAD+ = aminoacetone + NADH + H+

Other name(s): L-aminopropanol dehydrogenase; 1-aminopropan-2-ol-NAD+ dehydrogenase; L(+)-1-aminopropan-
2-ol:NAD+ oxidoreductase; 1-aminopropan-2-ol-dehydrogenase; DL-1-aminopropan-2-ol: NAD+

dehydrogenase; L(+)-1-aminopropan-2-ol-NAD/NADP oxidoreductase
Systematic name: (R)-1-aminopropan-2-ol:NAD+ oxidoreductase

Comments: Requires K+.
References: [781, 3950, 3951]
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[EC 1.1.1.75 created 1972]

EC 1.1.1.76
Accepted name: (S,S)-butanediol dehydrogenase

Reaction: (2S,3S)-butane-2,3-diol + NAD+ = (S)-acetoin + NADH + H+

Other name(s): L-butanediol dehydrogenase; L-BDH; L(+)-2,3-butanediol dehydrogenase (L-acetoin forming); (S)-
acetoin reductase [(S,S)-butane-2,3-diol forming]

Systematic name: (S,S)-butane-2,3-diol:NAD+ oxidoreductase
Comments: This enzyme catalyses the reversible reduction of (S)-acetoin to (S,S)-butane-2,3-diol. It can also

catalyse the irreversible reduction of diacetyl to (S)-acetoin.
References: [3834, 501, 3797]

[EC 1.1.1.76 created 1972, modified 2010]

EC 1.1.1.77
Accepted name: lactaldehyde reductase

Reaction: (R)[or (S)]-propane-1,2-diol + NAD+ = (R)[or (S)]-lactaldehyde + NADH + H+

Other name(s): propanediol:nicotinamide adenine dinucleotide (NAD) oxidoreductase; L-lactaldehyde:propanediol
oxidoreductase

Systematic name: (R)[or (S)]-propane-1,2-diol:NAD+ oxidoreductase
References: [3893]

[EC 1.1.1.77 created 1972]

EC 1.1.1.78
Accepted name: methylglyoxal reductase (NADH)

Reaction: (R)-lactaldehyde + NAD+ = 2-oxopropanal + NADH + H+

Other name(s): methylglyoxal reductase; D-lactaldehyde dehydrogenase; methylglyoxal reductase (NADH-
dependent)

Systematic name: (R)-lactaldehyde:NAD+ oxidoreductase
Comments: This mammalian enzyme differs from the yeast enzyme, EC 1.1.1.283, methylglyoxal reductase

(NADPH-dependent), by its coenzyme requirement, reaction direction, and enantiomeric preference.
References: [3892, 3140]

[EC 1.1.1.78 created 1972, modified 2005, modified 2013]

EC 1.1.1.79
Accepted name: glyoxylate reductase (NADP+)

Reaction: glycolate + NADP+ = glyoxylate + NADPH + H+

Other name(s): NADPH-glyoxylate reductase; glyoxylate reductase (NADP)
Systematic name: glycolate:NADP+ oxidoreductase

Comments: Also reduces hydroxypyruvate to glycerate; has some affinity for NAD+.
References: [514, 1962]

[EC 1.1.1.79 created 1972]

EC 1.1.1.80
Accepted name: isopropanol dehydrogenase (NADP+)

Reaction: propan-2-ol + NADP+ = acetone + NADPH + H+

Other name(s): isopropanol dehydrogenase (NADP)
Systematic name: propan-2-ol:NADP+ oxidoreductase

Comments: Also acts on other short-chain secondary alcohols and, slowly, on primary alcohols.
References: [1577, 1578]
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[EC 1.1.1.80 created 1972]

EC 1.1.1.81
Accepted name: hydroxypyruvate reductase

Reaction: D-glycerate + NAD(P)+ = hydroxypyruvate + NAD(P)H + H+

Other name(s): β-hydroxypyruvate reductase; NADH:hydroxypyruvate reductase; D-glycerate dehydrogenase
Systematic name: D-glycerate:NADP+ 2-oxidoreductase

References: [1960, 1961, 2006]

[EC 1.1.1.81 created 1972]

EC 1.1.1.82
Accepted name: malate dehydrogenase (NADP+)

Reaction: (S)-malate + NADP+ = oxaloacetate + NADPH + H+

Other name(s): NADP-malic enzyme; NADP-malate dehydrogenase; malic dehydrogenase (nicotinamide adenine
dinucleotide phosphate); malate NADP dehydrogenase; NADP malate dehydrogenase; NADP-linked
malate dehydrogenase; malate dehydrogenase (NADP)

Systematic name: (S)-malate:NADP+ oxidoreductase
Comments: Activated by light.
References: [649, 1758, 1759]

[EC 1.1.1.82 created 1972]

EC 1.1.1.83
Accepted name: D-malate dehydrogenase (decarboxylating)

Reaction: (R)-malate + NAD+ = pyruvate + CO2 + NADH
Other name(s): D-malate dehydrogenase; D-malic enzyme; bifunctional L(+)-tartrate dehydrogenase-D(+)-malate (de-

carboxylating)
Systematic name: (R)-malate:NAD+ oxidoreductase (decarboxylating)

References: [3642]

[EC 1.1.1.83 created 1972]

EC 1.1.1.84
Accepted name: dimethylmalate dehydrogenase

Reaction: (R)-3,3-dimethylmalate + NAD+ = 3-methyl-2-oxobutanoate + CO2 + NADH
Other name(s): β,β-dimethylmalate dehydrogenase

Systematic name: (R)-3,3-dimethylmalate:NAD+ oxidoreductase (decarboxylating)
Comments: Requires K+ or NH4

+ and Mn2+ or Co2+; also acts on (R)-malate.
References: [2360]

[EC 1.1.1.84 created 1972]

EC 1.1.1.85
Accepted name: 3-isopropylmalate dehydrogenase

Reaction: (2R,3S)-3-isopropylmalate + NAD+ = 4-methyl-2-oxopentanoate + CO2 + NADH + H+ (overall reac-
tion)
(1a) (2R,3S)-3-isopropylmalate + NAD+ = (2S)-2-isopropyl-3-oxosuccinate + NADH + H+

(1b) (2S)-2-isopropyl-3-oxosuccinate = 4-methyl-2-oxopentanoate + CO2 (spontaneous)
Other name(s): β-isopropylmalic enzyme; β-isopropylmalate dehydrogenase; threo-Ds-3-isopropylmalate dehydroge-

nase; 3-carboxy-2-hydroxy-4-methylpentanoate:NAD+ oxidoreductase
Systematic name: (2R,3S)-3-isopropylmalate:NAD+ oxidoreductase
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Comments: The product decarboxylates spontaneously to yield 4-methyl-2-oxopentanoate.
References: [451, 2949, 2762, 480]

[EC 1.1.1.85 created 1972, modified 1976]

EC 1.1.1.86
Accepted name: ketol-acid reductoisomerase (NADP+)

Reaction: (2R)-2,3-dihydroxy-3-methylbutanoate + NADP+ = (2S)-2-hydroxy-2-methyl-3-oxobutanoate +
NADPH + H+

Other name(s): dihydroxyisovalerate dehydrogenase (isomerizing); acetohydroxy acid isomeroreductase; ketol acid
reductoisomerase; α-keto-β-hydroxylacyl reductoisomerase; 2-hydroxy-3-keto acid reductoisomerase;
acetohydroxy acid reductoisomerase; acetolactate reductoisomerase; dihydroxyisovalerate (isomer-
izing) dehydrogenase; isomeroreductase; reductoisomerase; ketol-acid reductoisomerase; (R)-2,3-
dihydroxy-3-methylbutanoate:NADP+ oxidoreductase (isomerizing)

Systematic name: (2R)-2,3-dihydroxy-3-methylbutanoate:NADP+ oxidoreductase (isomerizing)
Comments: Also catalyses the reduction of 2-ethyl-2-hydroxy-3-oxobutanoate to 2,3-dihydroxy-3-

methylpentanoate. The enzyme, found in many bacteria and archaea, is specific for NADPH (cf.
EC 1.1.1.382, ketol-acid reductoisomerase (NAD+) and EC 1.1.1.383, ketol-acid reductoisomerase
[NAD(P)+]).

References: [118, 1501, 1938, 3324, 403]

[EC 1.1.1.86 created 1972, modified 1976, modified 1981 (EC 1.1.1.89 created 1972, incorporated 1976), modified 2015]

EC 1.1.1.87
Accepted name: homoisocitrate dehydrogenase

Reaction: (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate + NAD+ = 2-oxoadipate + CO2 + NADH + H+

Other name(s): 2-hydroxy-3-carboxyadipate dehydrogenase; 3-carboxy-2-hydroxyadipate dehydrogenase; homoisoc-
itric dehydrogenase; (-)-1-hydroxy-1,2,4-butanetricarboxylate:NAD+ oxidoreductase (decarboxylat-
ing); 3-carboxy-2-hydroxyadipate:NAD+ oxidoreductase (decarboxylating); HICDH

Systematic name: (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate:NAD+ oxidoreductase (decarboxylating)
Comments: Forms part of the lysine biosynthesis pathway in fungi [4418].
References: [3669, 3243, 4418]

[EC 1.1.1.87 created 1972 (EC 1.1.1.155 created 1976, incorporated 2004)]

EC 1.1.1.88
Accepted name: hydroxymethylglutaryl-CoA reductase

Reaction: (R)-mevalonate + CoA + 2 NAD+ = 3-hydroxy-3-methylglutaryl-CoA + 2 NADH + 2 H+

Other name(s): β-hydroxy-β-methylglutaryl coenzyme A reductase; β-hydroxy-β-methylglutaryl CoA-reductase; 3-
hydroxy-3-methylglutaryl coenzyme A reductase; hydroxymethylglutaryl coenzyme A reductase

Systematic name: (R)-mevalonate:NAD+ oxidoreductase (CoA-acylating)
References: [1017]

[EC 1.1.1.88 created 1972, modified 2002]

[1.1.1.89 Deleted entry. dihydroxyisovalerate dehydrogenase (isomerizing). Now included with EC 1.1.1.86 ketol-acid re-
ductoisomerase]

[EC 1.1.1.89 created 1972, deleted 1976]

EC 1.1.1.90
Accepted name: aryl-alcohol dehydrogenase

Reaction: an aromatic alcohol + NAD+ = an aromatic aldehyde + NADH + H+
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Other name(s): p-hydroxybenzyl alcohol dehydrogenase; benzyl alcohol dehydrogenase; coniferyl alcohol dehydro-
genase

Systematic name: aryl-alcohol:NAD+ oxidoreductase
Comments: A group of enzymes with broad specificity towards primary alcohols with an aromatic or cyclohex-1-

ene ring, but with low or no activity towards short-chain aliphatic alcohols.
References: [3720, 4321]

[EC 1.1.1.90 created 1972, modified 1989]

EC 1.1.1.91
Accepted name: aryl-alcohol dehydrogenase (NADP+)

Reaction: an aromatic alcohol + NADP+ = an aromatic aldehyde + NADPH + H+

Other name(s): aryl alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate); coniferyl alcohol dehy-
drogenase; NADPH-linked benzaldehyde reductase; aryl-alcohol dehydrogenase (NADP)

Systematic name: aryl-alcohol:NADP+ oxidoreductase
Comments: Also acts on some aliphatic aldehydes, but cinnamaldehyde was the best substrate found.
References: [1300]

[EC 1.1.1.91 created 1972]

EC 1.1.1.92
Accepted name: oxaloglycolate reductase (decarboxylating)

Reaction: D-glycerate + NAD(P)+ + CO2 = 2-hydroxy-3-oxosuccinate + NAD(P)H + 2 H+

Systematic name: D-glycerate:NAD(P)+ oxidoreductase (carboxylating)
Comments: Also reduces hydroxypyruvate to D-glycerate and glyoxylate to glycolate.
References: [2005]

[EC 1.1.1.92 created 1972]

EC 1.1.1.93
Accepted name: tartrate dehydrogenase

Reaction: tartrate + NAD+ = oxaloglycolate + NADH + H+

Other name(s): mesotartrate dehydrogenase
Systematic name: tartrate:NAD+ oxidoreductase

Comments: meso-tartrate and (R,R)-tartrate act as substrates. Requires Mn2+ and a monovalent cation.
References: [2008]

[EC 1.1.1.93 created 1972]

EC 1.1.1.94
Accepted name: glycerol-3-phosphate dehydrogenase [NAD(P)+]

Reaction: sn-glycerol 3-phosphate + NAD(P)+ = glycerone phosphate + NAD(P)H + H+

Other name(s): L-glycerol-3-phosphate:NAD(P) oxidoreductase; glycerol phosphate dehydrogenase (nicotinamide
adenine dinucleotide (phosphate)); glycerol 3-phosphate dehydrogenase (NADP); glycerol-3-
phosphate dehydrogenase [NAD(P)]

Systematic name: sn-glycerol-3-phosphate:NAD(P)+ 2-oxidoreductase
Comments: The enzyme from Escherichia coli shows specificity for the B side of NADPH.
References: [1950, 917, 918, 919]

[EC 1.1.1.94 created 1972, modified 2005]

EC 1.1.1.95
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Accepted name: phosphoglycerate dehydrogenase
Reaction: 3-phospho-D-glycerate + NAD+ = 3-phosphooxypyruvate + NADH + H+

Other name(s): PHGDH (gene name); D-3-phosphoglycerate:NAD+ oxidoreductase; α-phosphoglycerate de-
hydrogenase; 3-phosphoglycerate dehydrogenase; 3-phosphoglyceric acid dehydrogenase; D-3-
phosphoglycerate dehydrogenase; glycerate 3-phosphate dehydrogenase; glycerate-1,3-phosphate
dehydrogenase; phosphoglycerate oxidoreductase; phosphoglyceric acid dehydrogenase; SerA; 3-
phosphoglycerate:NAD+ 2-oxidoreductase; SerA 3PG dehydrogenase; 3PHP reductase

Systematic name: 3-phospho-D-glycerate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses the first committed and rate-limiting step in the phosphoserine pathway of ser-

ine biosynthesis. The reaction occurs predominantly in the direction of reduction. The enzyme from
the bacterium Escherichia coli also catalyses the activity of EC 1.1.1.399, 2-oxoglutarate reductase
[4459].

References: [3018, 4098, 3550, 3710, 3397, 4459, 8, 810]

[EC 1.1.1.95 created 1972, modified 2006, modified 2016]

EC 1.1.1.96
Accepted name: diiodophenylpyruvate reductase

Reaction: 3-(3,5-diiodo-4-hydroxyphenyl)lactate + NAD+ = 3-(3,5-diiodo-4-hydroxyphenyl)pyruvate + NADH
+ H+

Other name(s): aromatic α-keto acid; KAR; 2-oxo acid reductase
Systematic name: 3-(3,5-diiodo-4-hydroxyphenyl)lactate:NAD+ oxidoreductase

Comments: Substrates contain an aromatic ring with a pyruvate side chain. The most active substrates are halo-
genated derivatives. Compounds with hydroxy or amino groups in the 3 or 5 position are inactive.

References: [4426]

[EC 1.1.1.96 created 1972]

EC 1.1.1.97
Accepted name: 3-hydroxybenzyl-alcohol dehydrogenase

Reaction: 3-hydroxybenzyl alcohol + NADP+ = 3-hydroxybenzaldehyde + NADPH + H+

Other name(s): m-hydroxybenzyl alcohol dehydrogenase; m-hydroxybenzyl alcohol (NADP) dehydrogenase; m-
hydroxybenzylalcohol dehydrogenase

Systematic name: 3-hydroxybenzyl-alcohol:NADP+ oxidoreductase
References: [1037]

[EC 1.1.1.97 created 1972]

EC 1.1.1.98
Accepted name: (R)-2-hydroxy-fatty-acid dehydrogenase

Reaction: (R)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+

Other name(s): D-2-hydroxy fatty acid dehydrogenase; 2-hydroxy fatty acid oxidase
Systematic name: (R)-2-hydroxystearate:NAD+ oxidoreductase

References: [2212]

[EC 1.1.1.98 created 1972]

EC 1.1.1.99
Accepted name: (S)-2-hydroxy-fatty-acid dehydrogenase

Reaction: (S)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+

Other name(s): dehydrogenase, L-2-hydroxy fatty acid; L-2-hydroxy fatty acid dehydrogenase; 2-hydroxy fatty acid
oxidase

Systematic name: (S)-2-hydroxystearate:NAD+ oxidoreductase
References: [2212]
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[EC 1.1.1.99 created 1972]

EC 1.1.1.100
Accepted name: 3-oxoacyl-[acyl-carrier-protein] reductase

Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + NADP+ = a 3-oxoacyl-[acyl-carrier protein] + NADPH
+ H+

Other name(s): β-ketoacyl-[acyl-carrier protein](ACP) reductase; β-ketoacyl acyl carrier protein (ACP) reductase; β-
ketoacyl reductase; β-ketoacyl thioester reductase; β-ketoacyl-ACP reductase; β-ketoacyl-acyl carrier
protein reductase; 3-ketoacyl acyl carrier protein reductase; NADPH-specific 3-oxoacyl-[acylcarrier
protein]reductase; 3-oxoacyl-[ACP]reductase; (3R)-3-hydroxyacyl-[acyl-carrier-protein]:NADP+ oxi-
doreductase

Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:NADP+ oxidoreductase
Comments: Exhibits a marked preference for acyl-carrier-protein derivatives over CoA derivatives as substrates.
References: [3058, 3496, 3913]

[EC 1.1.1.100 created 1972, modified 1976]

EC 1.1.1.101
Accepted name: acylglycerone-phosphate reductase

Reaction: 1-palmitoylglycerol 3-phosphate + NADP+ = palmitoylglycerone phosphate + NADPH + H+

Other name(s): palmitoyldihydroxyacetone-phosphate reductase; palmitoyl dihydroxyacetone phosphate reductase;
palmitoyl-dihydroxyacetone-phosphate reductase; acyldihydroxyacetone phosphate reductase; palmi-
toyl dihydroxyacetone phosphate reductase

Systematic name: 1-palmitoylglycerol-3-phosphate:NADP+ oxidoreductase
Comments: Also acts on alkylglycerone 3-phosphate and alkylglycerol 3-phosphate.
References: [2108]

[EC 1.1.1.101 created 1972, modified 1976]

EC 1.1.1.102
Accepted name: 3-dehydrosphinganine reductase

Reaction: sphinganine + NADP+ = 3-dehydrosphinganine + NADPH + H+

Other name(s): D-3-dehydrosphinganine reductase; D-3-oxosphinganine reductase; DSR; 3-oxosphinganine reduc-
tase; 3-oxosphinganine:NADPH oxidoreductase; D-3-oxosphinganine:B-NADPH oxidoreductase

Systematic name: D-erythro-dihydrosphingosine:NADP+ 3-oxidoreductase
References: [3656, 3657]

[EC 1.1.1.102 created 1972]

EC 1.1.1.103
Accepted name: L-threonine 3-dehydrogenase

Reaction: L-threonine + NAD+ = L-2-amino-3-oxobutanoate + NADH + H+

Other name(s): L-threonine dehydrogenase; threonine 3-dehydrogenase; threonine dehydrogenase; TDH
Systematic name: L-threonine:NAD+ oxidoreductase

Comments: This enzyme acts in concert with EC 2.3.1.29, glycine C-acetyltransferase, in the degradation of thre-
onine to glycine. This threonine-degradation pathway is common to prokaryotic and eukaryotic cells
and the two enzymes involved form a complex [1402]. In aqueous solution, the product L-2-amino-3-
oxobutanoate can spontaneously decarboxylate to form aminoacetone.

References: [1272, 1402, 2774, 959]

[EC 1.1.1.103 created 1972]

EC 1.1.1.104
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Accepted name: 4-oxoproline reductase
Reaction: 4-hydroxy-L-proline + NAD+ = 4-oxoproline + NADH + H+

Other name(s): hydroxy-L-proline oxidase
Systematic name: 4-hydroxy-L-proline:NAD+ oxidoreductase

References: [3566]

[EC 1.1.1.104 created 1972]

EC 1.1.1.105
Accepted name: all-trans-retinol dehydrogenase (NAD+)

Reaction: all-trans-retinol—[cellular-retinol-binding-protein] + NAD+ = all-trans-retinal—[cellular-retinol-
binding-protein] + NADH + H+

Other name(s): retinol (vitamin A1) dehydrogenase; MDR; microsomal retinol dehydrogenase; retinol dehydrogenase
(misleading); retinal reductase (ambiguous); retinene reductase; epidermal retinol dehydrogenase 2;
SDR16C5 (gene name); RDH16 (gene name)

Systematic name: all-trans retinol:NAD+ oxidoreductase
Comments: The enzyme recognizes all-trans-retinol and all-trans-retinal as substrates and exhibits a strong pref-

erence for NAD+/NADH as cofactors. Recognizes the substrate both in free form and when bound to
cellular-retinol-binding-protein (CRBP1), but has higher affinity for the bound form [1252]. No activ-
ity with 11-cis-retinol or 11-cis-retinal (cf. EC 1.1.1.315, 11-cis retinol dehydrogenase). Also active
with 3α-hydroxysteroids [1252].

References: [1995, 1252, 2465, 2178]

[EC 1.1.1.105 created 1972, modified 2011]

EC 1.1.1.106
Accepted name: pantoate 4-dehydrogenase

Reaction: (R)-pantoate + NAD+ = (R)-4-dehydropantoate + NADH + H+

Other name(s): pantoate dehydrogenase; pantothenase; D-pantoate:NAD+ 4-oxidoreductase
Systematic name: (R)-pantoate:NAD+ 4-oxidoreductase

References: [1241]

[EC 1.1.1.106 created 1972, modified 1976]

EC 1.1.1.107
Accepted name: pyridoxal 4-dehydrogenase

Reaction: pyridoxal + NAD+ = 4-pyridoxolactone + NADH + H+

Other name(s): pyridoxal dehydrogenase
Systematic name: pyridoxal:NAD+ 4-oxidoreductase

Comments: The enzyme acts on the hemiacetal form of the substrate.
References: [445]

[EC 1.1.1.107 created 1972]

EC 1.1.1.108
Accepted name: carnitine 3-dehydrogenase

Reaction: carnitine + NAD+ = 3-dehydrocarnitine + NADH + H+

Systematic name: carnitine:NAD+ 3-oxidoreductase
References: [142, 3392]

[EC 1.1.1.108 created 1972]

[1.1.1.109 Transferred entry. 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. Now EC 1.3.1.28, 2,3-dihydro-2,3-dihydroxybenzoate
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dehydrogenase]

[EC 1.1.1.109 created 1972, deleted 1976]

EC 1.1.1.110
Accepted name: aromatic 2-oxoacid reductase

Reaction: (1) (R)-3-(phenyl)lactate + NAD+ = 3-phenylpyruvate + NADH + H+

(2) (R)-3-(4-hydroxyphenyl)lactate + NAD+ = 3-(4-hydroxyphenyl)pyruvate + NADH + H+

(3) (R)-(indol-3-yl)lactate + NAD+ = (indol-3-yl)pyruvate + NADH + H+

Other name(s): (R)-aromatic lactate dehydrogenase; (R)-4-hydroxyphenyllactate dehydrogenase; indolelactate:NAD+

oxidoreductase; indolelactate dehydrogenase; fldH (gene name); (indol-3-yl)lactate:NAD+ oxidore-
ductase

Systematic name: aromatic 2-oxoacid:NAD+ oxidoreductase
Comments: The enzymes from anaerobic bacteria such as Clostridium sporogenes participate in the fermentation

pathways of L-phenylalanine, L-tyrosine and L-tryptophan. The enzyme from the yeast Candida mal-
tosa has similar activity, but, unlike the bacterial enzyme, requires Mn2+ and can also use NADPH
with lower activity.

References: [1727, 1202, 327, 819, 847]

[EC 1.1.1.110 created 1972 (EC 1.1.1.222 created 2000, incorporated 2018), modified 2018]

EC 1.1.1.111
Accepted name: 3-(imidazol-5-yl)lactate dehydrogenase

Reaction: (S)-3-(imidazol-5-yl)lactate + NAD(P)+ = 3-(imidazol-5-yl)pyruvate + NAD(P)H + H+

Other name(s): imidazol-5-yl lactate dehydrogenase
Systematic name: (S)-3-(imidazol-5-yl)lactate:NAD(P)+ oxidoreductase

References: [659, 668]

[EC 1.1.1.111 created 1972]

EC 1.1.1.112
Accepted name: indanol dehydrogenase

Reaction: indan-1-ol + NAD(P)+ = indanone + NAD(P)H + H+

Systematic name: indan-1-ol:NAD(P)+ 1-oxidoreductase
Comments: 3(20)α-Hydroxysteroids are also oxidized, more slowly.
References: [298, 1386]

[EC 1.1.1.112 created 1972]

EC 1.1.1.113
Accepted name: L-xylose 1-dehydrogenase

Reaction: L-xylose + NADP+ = L-xylono-1,4-lactone + NADPH + H+

Other name(s): L-xylose dehydrogenase; NADPH-xylose reductase
Systematic name: L-xylose:NADP+ 1-oxidoreductase

Comments: Also oxidizes D-arabinose and D-lyxose.
References: [3963]

[EC 1.1.1.113 created 1972]

EC 1.1.1.114
Accepted name: apiose 1-reductase

Reaction: D-apiitol + NAD+ = D-apiose + NADH + H+

Other name(s): D-apiose reductase; D-apiitol reductase
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Systematic name: D-apiitol:NAD+ 1-oxidoreductase
References: [1371, 2750]

[EC 1.1.1.114 created 1972]

EC 1.1.1.115
Accepted name: ribose 1-dehydrogenase (NADP+)

Reaction: D-ribose + NADP+ + H2O = D-ribonate + NADPH + H+

Other name(s): D-ribose dehydrogenase (NADP+); NADP-pentose-dehydrogenase; ribose 1-dehydrogenase (NADP)
Systematic name: D-ribose:NADP+ 1-oxidoreductase

Comments: Also acts, more slowly, on D-xylose and other pentoses.
References: [3360, 3367]

[EC 1.1.1.115 created 1972]

EC 1.1.1.116
Accepted name: D-arabinose 1-dehydrogenase (NAD+)

Reaction: D-arabinose + NAD+ = D-arabinono-1,4-lactone + NADH + H+

Other name(s): NAD+-pentose-dehydrogenase; arabinose(fucose)dehydrogenase
Systematic name: D-arabinose:NAD+ 1-oxidoreductase

References: [2926, 3367]

[EC 1.1.1.116 created 1972]

EC 1.1.1.117
Accepted name: D-arabinose 1-dehydrogenase [NAD(P)+]

Reaction: D-arabinose + NAD(P)+ = D-arabinono-1,4-lactone + NAD(P)H + H+

Other name(s): D-arabinose 1-dehydrogenase [NAD(P)]
Systematic name: D-arabinose:NAD(P)+ 1-oxidoreductase

Comments: Also acts on L-galactose, 6-deoxy- and 3,6-dideoxy-L-galactose.
References: [637, 635, 636]

[EC 1.1.1.117 created 1972]

EC 1.1.1.118
Accepted name: glucose 1-dehydrogenase (NAD+)

Reaction: D-glucose + NAD+ = D-glucono-1,5-lactone + NADH + H+

Other name(s): D-glucose:NAD oxidoreductase; D-aldohexose dehydrogenase; glucose 1-dehydrogenase (NAD)
Systematic name: D-glucose:NAD+ 1-oxidoreductase

References: [1588]

[EC 1.1.1.118 created 1972, modified 1976]

EC 1.1.1.119
Accepted name: glucose 1-dehydrogenase (NADP+)

Reaction: D-glucose + NADP+ = D-glucono-1,5-lactone + NADPH + H+

Other name(s): nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogenase; NADP-linked aldo-
hexose dehydrogenase; NADP-dependent glucose dehydrogenase; glucose 1-dehydrogenase (NADP)

Systematic name: D-glucose:NADP+ 1-oxidoreductase
Comments: Also oxidizes D-mannose, 2-deoxy-D-glucose and 2-amino-2-deoxy-D-mannose.
References: [13, 143]
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[EC 1.1.1.119 created 1972]

EC 1.1.1.120
Accepted name: galactose 1-dehydrogenase (NADP+)

Reaction: D-galactose + NADP+ = D-galactono-1,5-lactone + NADPH + H+

Other name(s): D-galactose dehydrogenase (NADP+); galactose 1-dehydrogenase (NADP)
Systematic name: D-galactose:NADP+ 1-oxidoreductase

Comments: Also acts on L-arabinose, 6-deoxy- and 2-deoxy-D-galactose.
References: [637, 635, 636, 3366]

[EC 1.1.1.120 created 1972]

EC 1.1.1.121
Accepted name: aldose 1-dehydrogenase (NAD+)

Reaction: D-aldose + NAD+ = D-aldonolactone + NADH + H+

Other name(s): aldose dehydrogenase; D-aldohexose dehydrogenase; aldose 1-dehydrogenase
Systematic name: D-aldose:NAD+ 1-oxidoreductase

Comments: Acts on D-glucose, 2-deoxy- and 6-deoxy-D-glucose, D-galactose, 6-deoxy-D-galactose, 2-deoxy-L-
arabinose and D-xylose.

References: [637, 635, 636]

[EC 1.1.1.121 created 1972]

EC 1.1.1.122
Accepted name: D-threo-aldose 1-dehydrogenase

Reaction: a D-threo-aldose + NAD+ = a D-threo-aldono-1,5-lactone + NADH + H+

Other name(s): L-fucose dehydrogenase; (2S,3R)-aldose dehydrogenase; dehydrogenase, L-fucose; L-fucose (D-
arabinose) dehydrogenase

Systematic name: D-threo-aldose:NAD+ 1-oxidoreductase
Comments: Acts on L-fucose, D-arabinose and L-xylose; the animal enzyme was also shown to act on L-

arabinose, and the enzyme from Pseudomonas caryophylli on L-glucose.
References: [3315, 3346]

[EC 1.1.1.122 created 1972]

EC 1.1.1.123
Accepted name: sorbose 5-dehydrogenase (NADP+)

Reaction: L-sorbose + NADP+ = 5-dehydro-D-fructose + NADPH + H+

Other name(s): 5-ketofructose reductase; 5-keto-D-fructose reductase; sorbose (nicotinamide adenine dinucleotide
phosphate) dehydrogenase; reduced nicotinamide adenine dinucleotide phosphate-linked reductase;
sorbose 5-dehydrogenase (NADP+)

Systematic name: L-sorbose:NADP+ 5-oxidoreductase
References: [951]

[EC 1.1.1.123 created 1972, modified 1976]

EC 1.1.1.124
Accepted name: fructose 5-dehydrogenase (NADP+)

Reaction: D-fructose + NADP+ = 5-dehydro-D-fructose + NADPH + H+

Other name(s): 5-ketofructose reductase (NADP); 5-keto-D-fructose reductase (NADP+); fructose 5-(nicotinamide
adenine dinucleotide phosphate) dehydrogenase; D-(-)fructose:(NADP+) 5-oxidoreductase; fructose
5-dehydrogenase (NADP)
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Systematic name: D-fructose:NADP+ 5-oxidoreductase
References: [73, 145]

[EC 1.1.1.124 created 1972, modified 1976]

EC 1.1.1.125
Accepted name: 2-deoxy-D-gluconate 3-dehydrogenase

Reaction: 2-deoxy-D-gluconate + NAD+ = 3-dehydro-2-deoxy-D-gluconate + NADH + H+

Other name(s): 2-deoxygluconate dehydrogenase
Systematic name: 2-deoxy-D-gluconate:NAD+ 3-oxidoreductase

References: [931]

[EC 1.1.1.125 created 1972]

EC 1.1.1.126
Accepted name: 2-dehydro-3-deoxy-D-gluconate 6-dehydrogenase

Reaction: 2-dehydro-3-deoxy-D-gluconate + NADP+ = (4S,5S)-4,5-dihydroxy-2,6-dioxohexanoate + NADPH +
H+

Other name(s): 2-keto-3-deoxy-D-gluconate dehydrogenase; 2-keto-3-deoxygluconate dehydrogenase
Systematic name: 2-dehydro-3-deoxy-D-gluconate:NADP+ 6-oxidoreductase

References: [3055]

[EC 1.1.1.126 created 1972]

EC 1.1.1.127
Accepted name: 2-dehydro-3-deoxy-D-gluconate 5-dehydrogenase

Reaction: 2-dehydro-3-deoxy-D-gluconate + NAD+ = (4S)-4,6-dihydroxy-2,5-dioxohexanoate + NADH + H+

Other name(s): 2-keto-3-deoxygluconate 5-dehydrogenase; 2-keto-3-deoxy-D-gluconate dehydrogenase; 2-keto-3-
deoxygluconate (nicotinamide adenine dinucleotide (phosphate)) dehydrogenase; 2-keto-3-deoxy-D-
gluconate (3-deoxy-D-glycero-2,5-hexodiulosonic acid) dehydrogenase

Systematic name: 2-dehydro-3-deoxy-D-gluconate:NAD+ 5-oxidoreductase
Comments: The enzyme from Pseudomonas acts equally well on NAD+ or NADP+, while that from Erwinia

chrysanthemi and Escherichia coli is more specific for NAD+.
References: [647, 3056]

[EC 1.1.1.127 created 1972, modified 1976, modified 1989]

[1.1.1.128 Deleted entry. L-idonate 2-dehydrogenase. The reaction described is covered by EC 1.1.1.264.]

[EC 1.1.1.128 created 1972, modified 1976, deleted 2012]

EC 1.1.1.129
Accepted name: L-threonate 3-dehydrogenase

Reaction: L-threonate + NAD+ = 3-dehydro-L-erythronate + NADH + H+

Other name(s): threonate dehydrogenase; L-threonic acid dehydrogenase
Systematic name: L-threonate:NAD+ 3-oxidoreductase

References: [134]

[EC 1.1.1.129 created 1972]

EC 1.1.1.130
Accepted name: 3-dehydro-L-gulonate 2-dehydrogenase

Reaction: 3-dehydro-L-gulonate + NAD(P)+ = (4R,5S)-4,5,6-trihydroxy-2,3-dioxohexanoate + NAD(P)H + H+
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Other name(s): 3-keto-L-gulonate dehydrogenase; 3-ketogulonate dehydrogenase; 3-keto-L-gulonate dehydrogenase;
3-ketogulonate dehydrogenase

Systematic name: 3-dehydro-L-gulonate:NAD(P)+ 2-oxidoreductase
References: [4059]

[EC 1.1.1.130 created 1972]

EC 1.1.1.131
Accepted name: mannuronate reductase

Reaction: D-mannonate + NAD(P)+ = D-mannuronate + NAD(P)H + H+

Other name(s): mannonate dehydrogenase; mannonate (nicotinamide adenine dinucleotide (phos-
phate))dehydrogenase; mannonate dehydrogenase; mannuronate reductase; mannonate dehydroge-
nase (NAD(P)+); D-mannonate:nicotinamide adenine dinucleotide (phosphate oxidoreductase (D-
mannuronate-forming))

Systematic name: D-mannonate:NAD(P)+ 6-oxidoreductase
References: [988]

[EC 1.1.1.131 created 1972 (EC 1.2.1.34 created 1972, incorporated 1983; EC 1.1.1.180 created 1983, incorporated 1984)]

EC 1.1.1.132
Accepted name: GDP-mannose 6-dehydrogenase

Reaction: GDP-D-mannose + 2 NAD+ + H2O = GDP-D-mannuronate + 2 NADH + 2 H+

Other name(s): guanosine diphosphomannose dehydrogenase; GDP-mannose dehydrogenase; guanosine diphospho-
mannose dehydrogenase; guanosine diphospho-D-mannose dehydrogenase

Systematic name: GDP-D-mannose:NAD+ 6-oxidoreductase
Comments: Also acts on the corresponding deoxynucleoside diphosphate derivative as a substrate.
References: [3054]

[EC 1.1.1.132 created 1972]

EC 1.1.1.133
Accepted name: dTDP-4-dehydrorhamnose reductase

Reaction: dTDP-β-L-rhamnose + NADP+ = dTDP-4-dehydro-β-L-rhamnose + NADPH + H+

Other name(s): dTDP-4-keto-L-rhamnose reductase; dTDP-4-ketorhamnose reductase; TDP-4-keto-rhamnose re-
ductase; thymidine diphospho-4-ketorhamnose reductase; dTDP-6-deoxy-L-mannose:NADP+ 4-
oxidoreductase; dTDP-6-deoxy-β-L-mannose:NADP+ 4-oxidoreductase

Systematic name: dTDP-β-L-rhamnose:NADP+ 4-oxidoreductase
Comments: In the reverse direction, reduction on the 4-position of the hexose moiety takes place only while the

substrate is bound to another enzyme that catalyses epimerization at C-3 and C-5; the complex has
been referred to as dTDP-L-rhamnose synthase.

References: [2502]

[EC 1.1.1.133 created 1972]

EC 1.1.1.134
Accepted name: dTDP-6-deoxy-L-talose 4-dehydrogenase (NADP+)

Reaction: dTDP-6-deoxy-β-L-talose + NADP+ = dTDP-4-dehydro-β-L-rhamnose + NADPH + H+

Other name(s): thymidine diphospho-6-deoxy-L-talose dehydrogenase; TDP-6-deoxy-L-talose dehydrogenase; dTDP-
6-deoxy-L-talose dehydrogenase (4-reductase); dTDP-6-deoxy-L-talose:NADP+ 4-oxidoreductase

Systematic name: dTDP-6-deoxy-β-L-talose:NADP+ 4-oxidoreductase
Comments: Oxidation on the 4-position of the hexose moiety takes place only while the substrate is bound to an-

other enzyme that catalyses epimerization at C-3 and C-5.
References: [1167]
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[EC 1.1.1.134 created 1972]

EC 1.1.1.135
Accepted name: GDP-6-deoxy-D-talose 4-dehydrogenase

Reaction: GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+

Other name(s): guanosine diphospho-6-deoxy-D-talose dehydrogenase; GDP-6-deoxy-D-talose:NAD(P)+ 4-
oxidoreductase

Systematic name: GDP-6-deoxy-α-D-talose:NAD(P)+ 4-oxidoreductase
References: [2400]

[EC 1.1.1.135 created 1972, modified 1976]

EC 1.1.1.136
Accepted name: UDP-N-acetylglucosamine 6-dehydrogenase

Reaction: UDP-N-acetyl-α-D-glucosamine + 2 NAD+ + H2O = UDP-2-acetamido-2-deoxy-α-D-glucuronate +
2 NADH + 2 H+

Other name(s): uridine diphosphoacetylglucosamine dehydrogenase; UDP-acetylglucosamine dehydrogenase; UDP-
2-acetamido-2-deoxy-D-glucose:NAD oxidoreductase; UDP-GlcNAc dehydrogenase; WbpA; WbpO

Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 6-oxidoreductase
Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-

diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccha-
ride.

References: [982, 2549]

[EC 1.1.1.136 created 1972, modified 2012]

EC 1.1.1.137
Accepted name: ribitol-5-phosphate 2-dehydrogenase

Reaction: D-ribitol 5-phosphate + NAD(P)+ = D-ribulose 5-phosphate + NAD(P)H + H+

Other name(s): ribitol 5-phosphate dehydrogenase
Systematic name: D-ribitol-5-phosphate:NAD(P)+ 2-oxidoreductase

Comments: The enzyme, characterized from the bacterium Lactobacillus plantarum, can use both NAD+ and
NADP+ as electron acceptor [cf. EC 1.1.1.405, ribitol-5-phosphate 2-dehydrogenase (NADP+)].

References: [1218]

[EC 1.1.1.137 created 1972, modified 2017]

EC 1.1.1.138
Accepted name: mannitol 2-dehydrogenase (NADP+)

Reaction: D-mannitol + NADP+ = D-fructose + NADPH + H+

Other name(s): mannitol 2-dehydrogenase (NADP)
Systematic name: D-mannitol:NADP+ 2-oxidoreductase

References: [1747, 3686]

[EC 1.1.1.138 created 1972]

[1.1.1.139 Deleted entry. polyol dehydrogenase (NADP+). Now included with EC 1.1.1.21 aldehyde reductase]

[EC 1.1.1.139 created 1972, deleted 1978]

EC 1.1.1.140
Accepted name: sorbitol-6-phosphate 2-dehydrogenase

Reaction: D-sorbitol 6-phosphate + NAD+ = D-fructose 6-phosphate + NADH + H+
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Other name(s): ketosephosphate reductase; ketosephosphate reductase; D-sorbitol 6-phosphate dehydrogenase; D-
sorbitol-6-phosphate dehydrogenase; sorbitol-6-P-dehydrogenase; D-glucitol-6-phosphate dehydroge-
nase

Systematic name: D-sorbitol-6-phosphate:NAD+ 2-oxidoreductase
References: [3901, 2270]

[EC 1.1.1.140 created 1972]

EC 1.1.1.141
Accepted name: 15-hydroxyprostaglandin dehydrogenase (NAD+)

Reaction: (5Z,13E,15S)-11α,15-dihydroxy-9-oxoprost-5,13-dienoate + NAD+ = (5Z,13E)-11α-hydroxy-9,15-
dioxoprost-5,13-dienoate + NADH + H+

Other name(s): NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (type I); PGDH; 11α,15-dihydroxy-9-
oxoprost-13-enoate:NAD+ 15-oxidoreductase; 15-OH-PGDH; 15-hydroxyprostaglandin dehydroge-
nase; 15-hydroxyprostanoic dehydrogenase; NAD+-specific 15-hydroxyprostaglandin dehydrogenase;
prostaglandin dehydrogenase; 15-hydroxyprostaglandin dehydrogenase (NAD+); (5Z,13E)-(15S)-
11α,15-dihydroxy-9-oxoprost-13-enoate:NAD+ 15-oxidoreductase

Systematic name: (5Z,13E,15S)-11α,15-dihydroxy-9-oxoprost-5,13-dienoate:NAD+ 15-oxidoreductase
Comments: Acts on prostaglandin E2, F2α and B1, but not on prostaglandin D2. cf. EC 1.1.1.196 15-

hydroxyprostaglandin-D dehydrogenase (NADP+) and EC 1.1.1.197 15-hydroxyprostaglandin de-
hydrogenase (NADP+).

References: [92, 383, 2175, 2177]

[EC 1.1.1.141 created 1972]

EC 1.1.1.142
Accepted name: D-pinitol dehydrogenase

Reaction: 1D-3-O-methyl-chiro-inositol + NADP+ = 2D-5-O-methyl-2,3,5/4,6-pentahydroxycyclohexanone +
NADPH + H+

Other name(s): 5D-5-O-methyl-chiro-inositol:NADP+ oxidoreductase
Systematic name: 1D-3-O-methyl-chiro-inositol:NADP+ oxidoreductase

References: [3259]

[EC 1.1.1.142 created 1972]

EC 1.1.1.143
Accepted name: sequoyitol dehydrogenase

Reaction: 5-O-methyl-myo-inositol + NAD+ = 2D-5-O-methyl-2,3,5/4,6-pentahydroxycyclohexanone + NADH
+ H+

Other name(s): D-pinitol dehydrogenase
Systematic name: 5-O-methyl-myo-inositol:NAD+ oxidoreductase

References: [3259]

[EC 1.1.1.143 created 1972]

EC 1.1.1.144
Accepted name: perillyl-alcohol dehydrogenase

Reaction: perillyl alcohol + NAD+ = perillyl aldehyde + NADH + H+

Other name(s): perillyl alcohol dehydrogenase
Systematic name: perillyl-alcohol:NAD+ oxidoreductase

Comments: Oxidizes a number of primary alcohols with the alcohol group allylic to an endocyclic double bond
and a 6-membered ring, either aromatic or hydroaromatic.

References: [182]
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[EC 1.1.1.144 created 1972]

EC 1.1.1.145
Accepted name: 3β-hydroxy-∆5-steroid dehydrogenase

Reaction: a 3β-hydroxy-∆5-steroid + NAD+ = a 3-oxo-∆5-steroid + NADH + H+

Other name(s): progesterone reductase; ∆5-3β-hydroxysteroid dehydrogenase; 3β-hydroxy-5-ene steroid dehy-
drogenase; 3β-hydroxy steroid dehydrogenase/isomerase; 3β-hydroxy-∆5-C27-steroid dehydroge-
nase/isomerase; 3β-hydroxy-∆5-C27-steroid oxidoreductase; 3β-hydroxy-5-ene-steroid oxidoreduc-
tase; steroid-∆5-3β-ol dehydrogenase; 3β-HSDH; 5-ene-3-β-hydroxysteroid dehydrogenase; 3β-
hydroxy-5-ene-steroid dehydrogenase

Systematic name: 3β-hydroxy-∆5-steroid:NAD+ 3-oxidoreductase
Comments: This activity is found in several bifunctional enzymes that catalyse the oxidative conversion of ∆5-

3-hydroxy steroids to a ∆4-3-oxo configuration. This conversion is carried out in two separate, se-
quential reactions; in the first reaction, which requires NAD+, the enzyme catalyses the dehydrogena-
tion of the 3β-hydroxy steroid to a 3-oxo intermediate. In the second reaction the reduced coenzyme,
which remains attached to the enzyme, activates the isomerization of the ∆5 form to a ∆4 form (cf.
EC 5.3.3.1, steroid ∆-isomerase). Substrates include dehydroepiandrosterone (which is converted into
androst-5-ene-3,17-dione), pregnenolone (converted to progesterone) and cholest-5-en-3-one, an in-
termediate of cholesterol degradation.

References: [562, 2033, 2773]

[EC 1.1.1.145 created 1972]

EC 1.1.1.146
Accepted name: 11β-hydroxysteroid dehydrogenase

Reaction: an 11β-hydroxysteroid + NADP+ = an 11-oxosteroid + NADPH + H+

Other name(s): corticosteroid 11β-dehydrogenase; β-hydroxysteroid dehydrogenase; 11β-hydroxy steroid dehydroge-
nase; corticosteroid 11-reductase; dehydrogenase, 11β-hydroxy steroid

Systematic name: 11β-hydroxysteroid:NADP+ 11-oxidoreductase
References: [29, 459, 2114, 3001]

[EC 1.1.1.146 created 1972]

EC 1.1.1.147
Accepted name: 16α-hydroxysteroid dehydrogenase

Reaction: a 16α-hydroxysteroid + NAD(P)+ = a 16-oxosteroid + NAD(P)H + H+

Other name(s): 16α-hydroxy steroid dehydrogenase
Systematic name: 16α-hydroxysteroid:NAD(P)+ 16-oxidoreductase

References: [2499]

[EC 1.1.1.147 created 1972]

EC 1.1.1.148
Accepted name: estradiol 17α-dehydrogenase

Reaction: estradiol-17α + NAD(P)+ = estrone + NAD(P)H + H+

Other name(s): 17α-estradiol dehydrogenase; 17α-hydroxy steroid dehydrogenase; 17α-hydroxy steroid oxidoreduc-
tase; 17α-hydroxysteroid oxidoreductase; estradiol 17α-oxidoreductase

Systematic name: 17α-hydroxysteroid:NAD(P)+ 17-oxidoreductase
References: [3170]

[EC 1.1.1.148 created 1972]
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EC 1.1.1.149
Accepted name: 20α-hydroxysteroid dehydrogenase

Reaction: 17α,20α-dihydroxypregn-4-en-3-one + NAD(P)+ = 17α-hydroxyprogesterone + NAD(P)H + H+

Other name(s): 20α-hydroxy steroid dehydrogenase; 20α-HSD; 20α-HSDH
Systematic name: 20α-hydroxysteroid:NAD(P)+ 20-oxidoreductase

Comments: Re-specific with respect to NAD(P)+ (cf. EC 1.1.1.62 17β-estradiol 17-dehydrogenase).
References: [3491, 3680]

[EC 1.1.1.149 created 1972, deleted 1983, reinstated 1986]

EC 1.1.1.150
Accepted name: 21-hydroxysteroid dehydrogenase (NAD+)

Reaction: pregnan-21-ol + NAD+ = pregnan-21-al + NADH + H+

Other name(s): 21-hydroxysteroid dehydrogenase (NAD)
Systematic name: 21-hydroxysteroid:NAD+ 21-oxidoreductase

Comments: Acts on a number of 21-hydroxycorticosteroids.
References: [2599]

[EC 1.1.1.150 created 1972]

EC 1.1.1.151
Accepted name: 21-hydroxysteroid dehydrogenase (NADP+)

Reaction: pregnan-21-ol + NADP+ = pregnan-21-al + NADPH + H+

Other name(s): 21-hydroxy steroid dehydrogenase; 21-hydroxy steroid (nicotinamide adenine dinucleotide phos-
phate) dehydrogenase; 21-hydroxy steroid dehydrogenase (nicotinamide adenine dinucleotide phos-
phate); NADP-21-hydroxysteroid dehydrogenase; 21-hydroxysteroid dehydrogenase (NADP)

Systematic name: 21-hydroxysteroid:NADP+ 21-oxidoreductase
Comments: Acts on a number of 21-hydroxycorticosteroids.
References: [2599]

[EC 1.1.1.151 created 1972]

EC 1.1.1.152
Accepted name: 3α-hydroxy-5β-androstane-17-one 3α-dehydrogenase

Reaction: 3α-hydroxy-5β-androstane-17-one + NAD+ = 5β-androstane-3,17-dione + NADH + H+

Other name(s): etiocholanolone 3α-dehydrogenase; etiocholanolone 3α-dehydrogenase; 3α-hydroxy-5β-steroid de-
hydrogenase

Systematic name: 3α-hydroxy-5β-steroid:NAD+ 3-oxidoreductase
References: [3215]

[EC 1.1.1.152 created 1972]

EC 1.1.1.153
Accepted name: sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming)

Reaction: (1) L-erythro-7,8-dihydrobiopterin + NADP+ = sepiapterin + NADPH + H+

(2) L-erythro-tetrahydrobiopterin + 2 NADP+ = 6-pyruvoyl-5,6,7,8-tetrahydropterin + 2 NADPH + 2
H+

Other name(s): SR
Systematic name: L-erythro-7,8-dihydrobiopterin:NADP+ oxidoreductase

Comments: This enzyme catalyses the final step in the de novo synthesis of tetrahydrobiopterin from GTP. The
enzyme, which is found in higher animals and some fungi and bacteria, produces the erythro form of
tetrahydrobiopterin. cf. EC 1.1.1.325, sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming).

References: [1844, 2441, 4179, 1923]
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[EC 1.1.1.153 created 1972, modified 2012]

EC 1.1.1.154
Accepted name: ureidoglycolate dehydrogenase

Reaction: (S)-ureidoglycolate + NAD(P)+ = oxalureate + NAD(P)H + H+

Systematic name: (S)-ureidoglycolate:NAD(P)+ oxidoreductase
References: [3998]

[EC 1.1.1.154 created 1976]

[1.1.1.155 Deleted entry. homoisocitrate dehydrogenase. The enzyme is identical to EC 1.1.1.87, homoisocitrate dehydro-
genase]

[EC 1.1.1.155 created 1976, deleted 2004]

EC 1.1.1.156
Accepted name: glycerol 2-dehydrogenase (NADP+)

Reaction: glycerol + NADP+ = glycerone + NADPH + H+

Other name(s): dihydroxyacetone reductase; dihydroxyacetone (reduced nicotinamide adenine dinucleotide
phosphate) reductase; dihydroxyacetone reductase (NADPH); DHA oxidoreductase; glycerol 2-
dehydrogenase (NADP)

Systematic name: glycerol:NADP+ 2-oxidoreductase (glycerone-forming)
References: [254]

[EC 1.1.1.156 created 1976]

EC 1.1.1.157
Accepted name: 3-hydroxybutyryl-CoA dehydrogenase

Reaction: (S)-3-hydroxybutanoyl-CoA + NADP+ = 3-acetoacetyl-CoA + NADPH + H+

Other name(s): β-hydroxybutyryl coenzyme A dehydrogenase; L(+)-3-hydroxybutyryl-CoA dehydrogenase; BHBD;
dehydrogenase, L-3-hydroxybutyryl coenzyme A (nicotinamide adenine dinucleotide phosphate); L-
(+)-3-hydroxybutyryl-CoA dehydrogenase; β-hydroxybutyryl-CoA dehydrogenase

Systematic name: (S)-3-hydroxybutanoyl-CoA:NADP+ oxidoreductase
References: [2352]

[EC 1.1.1.157 created 1976]

[1.1.1.158 Transferred entry. UDP-N-acetylmuramate dehydrogenase. Now EC 1.3.1.98, UDP-N-acetylmuramate dehydro-
genase]

[EC 1.1.1.158 created 1976, modified 1983, modified 2002, deleted 2013]

EC 1.1.1.159
Accepted name: 7α-hydroxysteroid dehydrogenase

Reaction: cholate + NAD+ = 3α,12α-dihydroxy-7-oxo-5β-cholan-24-oate + NADH + H+

Other name(s): 7α-hydroxy steroid dehydrogenase; 7α-HSDH
Systematic name: 7α-hydroxysteroid:NAD+ 7-oxidoreductase

Comments: Catalyses the oxidation of the 7α-hydroxy group of bile acids and alcohols both in their free and con-
jugated forms. The Bacteroides fragilis and Clostridium enzymes can also utilize NADP+.

References: [1412, 2337, 2339, 2340]

[EC 1.1.1.159 created 1976, modified 1980]

EC 1.1.1.160
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Accepted name: dihydrobunolol dehydrogenase
Reaction: (±)-5-[(tert-butylamino)-2′-hydroxypropoxy]-1,2,3,4-tetrahydro-1-naphthol + NADP+ = (±)-5-[(tert-

butylamino)-2′-hydroxypropoxy]-3,4-dihydro-1(2H)-naphthalenone + NADPH + H+

Other name(s): bunolol reductase
Systematic name: (±)-5-[(tert-butylamino)-2′-hydroxypropoxy]-1,2,3,4-tetrahydro-1-naphthol:NADP+ oxidoreductase

Comments: Also acts, more slowly, with NAD+.
References: [2193]

[EC 1.1.1.160 created 1976]

[1.1.1.161 Deleted entry. cholestanetetraol 26-dehydrogenase. The activity is part of EC 1.14.13.15, cholestanetriol 26-
monooxygenase ]

[EC 1.1.1.161 created 1976, deleted 2012]

EC 1.1.1.162
Accepted name: erythrulose reductase

Reaction: D-threitol + NADP+ = D-erythrulose + NADPH + H+

Other name(s): D-erythrulose reductase; erythritol:NADP+ oxidoreductase
Systematic name: D-threitol:NADP+ oxidoreductase

Comments: NAD+ is also utilized, but more slowly.
References: [3964, 3962]

[EC 1.1.1.162 created 1976]

EC 1.1.1.163
Accepted name: cyclopentanol dehydrogenase

Reaction: cyclopentanol + NAD+ = cyclopentanone + NADH + H+

Systematic name: cyclopentanol:NAD+ oxidoreductase
Comments: 4-Methylcyclohexanol and cyclohexanol can also act as substrates.
References: [1282, 1694]

[EC 1.1.1.163 created 1976]

EC 1.1.1.164
Accepted name: hexadecanol dehydrogenase

Reaction: hexadecanol + NAD+ = hexadecanal + NADH + H+

Systematic name: hexadecanol:NAD+ oxidoreductase
Comments: The liver enzyme acts on long-chain alcohols from C8 to C16. The Euglena enzyme also oxidizes the

corresponding aldehydes to fatty acids.
References: [2015, 3655]

[EC 1.1.1.164 created 1976]

EC 1.1.1.165
Accepted name: 2-alkyn-1-ol dehydrogenase

Reaction: 2-butyne-1,4-diol + NAD+ = 4-hydroxy-2-butynal + NADH + H+

Systematic name: 2-butyne-1,4-diol:NAD+ 1-oxidoreductase
Comments: Acts on a variety of 2-alkyn-1-ols, and also on 1,4-butanediol. NADP+ also acts as acceptor, but more

slowly.
References: [2579]

[EC 1.1.1.165 created 1976]
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EC 1.1.1.166
Accepted name: hydroxycyclohexanecarboxylate dehydrogenase

Reaction: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate + NAD+ = (1S,4S)-4-hydroxy-3-
oxocyclohexane-1-carboxylate + NADH + H+

Other name(s): dihydroxycyclohexanecarboxylate dehydrogenase; (-)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate-
NAD+ oxidoreductase

Systematic name: (1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate:NAD+ 3-oxidoreductase
Comments: Acts on hydroxycyclohexanecarboxylates that have an equatorial carboxy group at C-1, an axial hy-

droxy group at C-3 and an equatorial hydroxy or carbonyl group at C-4, including (-)-quinate and
(-)-shikimate.

References: [4195]

[EC 1.1.1.166 created 1976]

EC 1.1.1.167
Accepted name: hydroxymalonate dehydrogenase

Reaction: hydroxymalonate + NAD+ = oxomalonate + NADH + H+

Systematic name: hydroxymalonate:NAD+ oxidoreductase
References: [1782]

[EC 1.1.1.167 created 1976]

EC 1.1.1.168
Accepted name: 2-dehydropantolactone reductase (Re-specific)

Reaction: (R)-pantolactone + NADP+ = 2-dehydropantolactone + NADPH + H+

Other name(s): 2-oxopantoyl lactone reductase; ketopantoyl lactone reductase; 2-ketopantoyl lactone reductase;
2-dehydropantoyl-lactone reductase (A-specific); (R)-pantolactone:NADP+ oxidoreductase (A-
specific); 2-dehydropantolactone reductase (A-specific)

Systematic name: (R)-pantolactone:NADP+ oxidoreductase (Re-specific)
Comments: The yeast enzyme differs from that from Escherichia coli [EC 1.1.1.214 2-dehydropantolactone re-

ductase (Si-specific)], which is specific for the Si-face of NADP+, and in receptor requirements from
EC 1.1.99.26 3-hydroxycyclohexanone dehydrogenase.

References: [1932, 4214]

[EC 1.1.1.168 created 1976, modified 1986, modified 1999]

EC 1.1.1.169
Accepted name: 2-dehydropantoate 2-reductase

Reaction: (R)-pantoate + NADP+ = 2-dehydropantoate + NADPH + H+

Other name(s): 2-oxopantoate reductase; 2-ketopantoate reductase; 2-ketopantoic acid reductase; ketopantoate reduc-
tase; ketopantoic acid reductase

Systematic name: (R)-pantoate:NADP+ 2-oxidoreductase
References: [1932]

[EC 1.1.1.169 created 1976]

EC 1.1.1.170
Accepted name: 3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxylating)

Reaction: a 3β-hydroxysteroid-4α-carboxylate + NAD(P)+ = a 3-oxosteroid + CO2 + NAD(P)H
Other name(s): 3β-hydroxy-4β-methylcholestenecarboxylate 3-dehydrogenase (decarboxylating); 3β-hydroxy-4β-

methylcholestenoate dehydrogenase; sterol 4α-carboxylic decarboxylase; sterol-4α-carboxylate 3-
dehydrogenase (decarboxylating) (ambiguous); ERG26 (gene name); NSDHL (gene name)

Systematic name: 3β-hydroxysteroid-4α-carboxylate:NAD(P)+ 3-oxidoreductase (decarboxylating)
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Comments: The enzyme catalyses the decarboxylation of the C-4 carbon and the dehydrogenation of a 3β hy-
droxyl at the C-3 carbon of 3β-hydroxysteroid-4α-carboxylates. It is involved in zymosterol and
cholesterol biosynthesis.

References: [381, 3105, 1132, 477]

[EC 1.1.1.170 created 1978, modified 2002, modified 2012]

[1.1.1.171 Transferred entry. methylenetetrahydrofolate reductase (NADPH). Now EC 1.5.1.20, methylenetetrahydrofolate
reductase [NAD(P)H]]

[EC 1.1.1.171 created 1978, deleted 1984]

EC 1.1.1.172
Accepted name: 2-oxoadipate reductase

Reaction: 2-hydroxyadipate + NAD+ = 2-oxoadipate + NADH + H+

Other name(s): 2-ketoadipate reductase; α-ketoadipate reductase; 2-ketoadipate reductase
Systematic name: 2-hydroxyadipate:NAD+ 2-oxidoreductase

References: [3705]

[EC 1.1.1.172 created 1978]

EC 1.1.1.173
Accepted name: L-rhamnose 1-dehydrogenase

Reaction: L-rhamnofuranose + NAD+ = L-rhamno-1,4-lactone + NADH + H+

Systematic name: L-rhamnofuranose:NAD+ 1-oxidoreductase
References: [3188, 3189]

[EC 1.1.1.173 created 1978]

EC 1.1.1.174
Accepted name: cyclohexane-1,2-diol dehydrogenase

Reaction: trans-cyclohexane-1,2-diol + NAD+ = 2-hydroxycyclohexan-1-one + NADH + H+

Systematic name: trans-cyclohexane-1,2-diol:NAD+ 1-oxidoreductase
Comments: Also oxidizes, more slowly, the cis isomer and 2-hydroxycyclohexanone.
References: [752]

[EC 1.1.1.174 created 1978]

EC 1.1.1.175
Accepted name: D-xylose 1-dehydrogenase

Reaction: D-xylose + NAD+ = D-xylonolactone + NADH + H+

Other name(s): NAD-D-xylose dehydrogenase; D-xylose dehydrogenase; (NAD)-linked D-xylose dehydrogenase
Systematic name: D-xylose:NAD+ 1-oxidoreductase

References: [4320]

[EC 1.1.1.175 created 1978]

EC 1.1.1.176
Accepted name: 12α-hydroxysteroid dehydrogenase

Reaction: cholate + NADP+ = 3α,7α-dihydroxy-12-oxo-5β-cholan-24-oate + NADPH + H+

Other name(s): 12α-hydroxy steroid dehydrogenase; NAD+-dependent 12α-hydroxysteroid dehydrogenase; NADP+-
12α-hydroxysteroid dehydrogenase

Systematic name: 12α-hydroxysteroid:NADP+ 12-oxidoreductase
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Comments: Catalyses the oxidation of the 12α-hydroxy group of bile acids, both in their free and conjugated
form. Also acts on bile alcohols.

References: [2336, 2372]

[EC 1.1.1.176 created 1978]

EC 1.1.1.177
Accepted name: glycerol-3-phosphate 1-dehydrogenase (NADP+)

Reaction: sn-glycerol 3-phosphate + NADP+ = D-glyceraldehyde 3-phosphate + NADPH + H+

Other name(s): glycerol phosphate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; L-glycerol 3-
phosphate:NADP+ oxidoreductase; glycerin-3-phosphate dehydrogenase; NADPH-dependent
glycerin-3-phosphate dehydrogenase; NADP-specific glycerol 3-phosphate 1-dehydrogenase

Systematic name: sn-glycerol-3-phosphate:NADP+ 1-oxidoreductase
References: [1225, 4249]

[EC 1.1.1.177 created 1980, modified 1980]

EC 1.1.1.178
Accepted name: 3-hydroxy-2-methylbutyryl-CoA dehydrogenase

Reaction: (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA + NAD+ = 2-methylacetoacetyl-CoA + NADH + H+

Other name(s): 2-methyl-3-hydroxybutyryl coenzyme A dehydrogenase; 2-methyl-3-hydroxybutyryl coenzyme A
dehydrogenase; 2-methyl-3-hydroxy-butyryl CoA dehydrogenase

Systematic name: (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA:NAD+ oxidoreductase
Comments: Also acts, more slowly, on (2S,3S)-2-hydroxy-3-methylpentanoyl-CoA.
References: [651]

[EC 1.1.1.178 created 1981]

EC 1.1.1.179
Accepted name: D-xylose 1-dehydrogenase (NADP+)

Reaction: D-xylose + NADP+ = D-xylono-1,5-lactone + NADPH + H+

Other name(s): D-xylose (nicotinamide adenine dinucleotide phosphate) dehydrogenase; D-xylose-NADP dehydroge-
nase; D-xylose:NADP+ oxidoreductase; D-xylose 1-dehydrogenase (NADP)

Systematic name: D-xylose:NADP+ 1-oxidoreductase
Comments: Also acts, more slowly, on L-arabinose and D-ribose.
References: [4231, 4232]

[EC 1.1.1.179 created 1982]

[1.1.1.180 Deleted entry. mannonate dehydrogenase (NAD(P)+). Now included with EC 1.1.1.131 mannuronate reductase]

[EC 1.1.1.180 created 1983, deleted 1984]

EC 1.1.1.181
Accepted name: cholest-5-ene-3β,7α-diol 3β-dehydrogenase

Reaction: cholest-5-ene-3β,7α-diol + NAD+ = 7α-hydroxycholest-4-en-3-one + NADH + H+

Other name(s): 3β-hydroxy-∆5-C27-steroid oxidoreductase
Systematic name: cholest-5-ene-3β,7α-diol:NAD+ 3-oxidoreductase

Comments: Highly specific for 3β-hydroxy-C27-steroids with ∆5-double bond.
References: [4210]

[EC 1.1.1.181 created 1983]

[1.1.1.182 Deleted entry. fenchol dehydrogenase. Now included with EC 1.1.1.198 (+)-borneol dehydrogenase, EC 1.1.1.227
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(-)-borneol dehydrogenase and EC 1.1.1.228 (+)-sabinol dehydrogenase]

[EC 1.1.1.182 created 1983, deleted 1990]

EC 1.1.1.183
Accepted name: geraniol dehydrogenase (NADP+)

Reaction: geraniol + NADP+ = geranial + NADPH + H+

Systematic name: geraniol:NADP+ oxidoreductase
Comments: Also acts, more slowly on farnesol but not on nerol. The enzyme produces a mixture known as cit-

ral, which includes geranial and neral. It is still not known whether neral is produced directly by the
enzyme, or by isomerization of geranial.

References: [3045, 3437, 3288]

[EC 1.1.1.183 created 1983]

EC 1.1.1.184
Accepted name: carbonyl reductase (NADPH)

Reaction: R-CHOH-R′ + NADP+ = R-CO-R′ + NADPH + H+

Other name(s): aldehyde reductase 1; prostaglandin 9-ketoreductase; xenobiotic ketone reductase; NADPH-dependent
carbonyl reductase; ALR3; carbonyl reductase; nonspecific NADPH-dependent carbonyl reductase;
carbonyl reductase (NADPH2)

Systematic name: secondary-alcohol:NADP+ oxidoreductase
Comments: Acts on a wide range of carbonyl compounds, including quinones, aromatic aldehydes, ketoaldehydes,

daunorubicin and prostaglandins E and F, reducing them to the corresponding alcohol. Si-specific
with respect to NADPH [cf. EC 1.1.1.2 alcohol dehydrogenase (NADP+)].

References: [36, 2258, 4177]

[EC 1.1.1.184 created 1983]

EC 1.1.1.185
Accepted name: L-glycol dehydrogenase

Reaction: an L-glycol + NAD(P)+ = a 2-hydroxycarbonyl compound + NAD(P)H + H+

Other name(s): glycol (nicotinamide adenine dinucleotide (phosphate)) dehydrogenase; L-(+)-glycol:NAD(P) oxi-
doreductase; L-glycol:NAD(P) dehydrogenase

Systematic name: L-glycol:NAD(P)+ oxidoreductase
Comments: The 2-hydroxycarbonyl compound formed can be further oxidized to a vicinal dicarbonyl com-

pound. In the reverse direction, vicinal diketones, glyceraldehyde, glyoxal, methylglyoxal, 2-oxo-
hydroxyketones and 2-ketoacid esters can be reduced.

References: [271]

[EC 1.1.1.185 created 1984]

EC 1.1.1.186
Accepted name: dTDP-galactose 6-dehydrogenase

Reaction: dTDP-D-galactose + 2 NADP+ + H2O = dTDP-D-galacturonate + 2 NADPH + 2 H+

Other name(s): thymidine-diphosphate-galactose dehydrogenase
Systematic name: dTDP-D-galactose:NADP+ 6-oxidoreductase

References: [1828]

[EC 1.1.1.186 created 1984, modified 2002]

EC 1.1.1.187
Accepted name: GDP-4-dehydro-D-rhamnose reductase
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Reaction: (1) GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+

(2) GDP-6-deoxy-α-D-talose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+

Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase; GDP-4-keto-D-rhamnose reductase; guanosine
diphosphate-4-keto-D-rhamnose reductase; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase;
GDP-6-deoxy-α-D-mannose:NAD(P)+ 4-oxidoreductase

Systematic name: GDP-4-dehydro-α-D-rhamnose:NAD(P)+ 4-oxidoreductase
Comments: The enzyme, which operates in the opposite direction to that shown, forms a mixture of GDP-α-D-

rhamnose and its C-4 epimer, GDP-6-deoxy-α-D-talose. cf. EC 1.1.1.281, GDP-4-dehydro-6-deoxy-
D-mannose reductase and EC 1.1.1.135, GDP-6-deoxy-D-talose 4-dehydrogenase.

References: [196, 4226]

[EC 1.1.1.187 created 1984]

EC 1.1.1.188
Accepted name: prostaglandin-F synthase

Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-9α,15-
dihydroxy-11-oxoprosta-5,13-dienoate + NADPH + H+

Other name(s): prostaglandin-D2 11-reductase; reductase, 15-hydroxy-11-oxoprostaglandin; PGD2 11-ketoreductase;
PGF2α synthetase; prostaglandin 11-ketoreductase; prostaglandin D2-ketoreductase; prostaglandin
F synthase; prostaglandin F synthetase; synthetase, prostaglandin F2α; PGF synthetase; NADPH-
dependent prostaglandin D2 11-keto reductase; prostaglandin 11-keto reductase

Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 11-oxidoreductase
Comments: Reduces prostaglandin D2 and prostaglandin H2 to prostaglandin F2; prostaglandin D2 is not an in-

termediate in the reduction of prostaglandin H2. Also catalyses the reduction of a number of carbonyl
compounds, such as 9,10-phenanthroquinone and 4-nitroacetophenone.

References: [3162, 4142, 4144, 4245, 4246]

[EC 1.1.1.188 created 1984, modified 1989, modified 1990]

EC 1.1.1.189
Accepted name: prostaglandin-E2 9-reductase

Reaction: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-(15S)-11α,15-
dihydroxy-9-oxoprosta-5,13-dienoate + NADPH + H+

Other name(s): PGE2-9-OR; reductase, 15-hydroxy-9-oxoprostaglandin; 9-keto-prostaglandin E2 reductase; 9-
ketoprostaglandin reductase; PGE-9-ketoreductase; PGE2 9-oxoreductase; PGE2-9-ketoreductase;
prostaglandin 9-ketoreductase; prostaglandin E 9-ketoreductase; prostaglandin E2-9-oxoreductase

Systematic name: (5Z,13E)-(15S)-9α,11α,15-trihydroxyprosta-5,13-dienoate:NADP+ 9-oxidoreductase
Comments: Reduces prostaglandin E2 to prostaglandin F2α. A number of other 9-oxo- and 15-oxo-prostaglandin

derivatives can also be reduced to the corresponding hydroxy compounds. May be identical with EC
1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+).

References: [2176, 3369, 3777, 4149]

[EC 1.1.1.189 created 1984, modified 1989]

EC 1.1.1.190
Accepted name: indole-3-acetaldehyde reductase (NADH)

Reaction: (indol-3-yl)ethanol + NAD+ = (indol-3-yl)acetaldehyde + NADH + H+

Other name(s): indoleacetaldehyde reductase; indole-3-acetaldehyde reductase (NADH); indole-3-ethanol:NAD+

oxidoreductase
Systematic name: (indol-3-yl)ethanol:NAD+ oxidoreductase

References: [418]

[EC 1.1.1.190 created 1984]
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EC 1.1.1.191
Accepted name: indole-3-acetaldehyde reductase (NADPH)

Reaction: (indol-3-yl)ethanol + NADP+ = (indol-3-yl)acetaldehyde + NADPH + H+

Other name(s): indoleacetaldehyde (reduced nicotinamide adenine dinucleotide phosphate) reductase; indole-3-
acetaldehyde reductase (NADPH); indole-3-ethanol:NADP+ oxidoreductase

Systematic name: (indol-3-yl)ethanol:NADP+ oxidoreductase
References: [418]

[EC 1.1.1.191 created 1984]

EC 1.1.1.192
Accepted name: long-chain-alcohol dehydrogenase

Reaction: a long-chain alcohol + 2 NAD+ + H2O = a long-chain carboxylate + 2 NADH + 2 H+

Other name(s): long-chain alcohol dehydrogenase; fatty alcohol oxidoreductase
Systematic name: long-chain-alcohol:NAD+ oxidoreductase

Comments: Hexadecanol is a good substrate.
References: [2180]

[EC 1.1.1.192 created 1984]

EC 1.1.1.193
Accepted name: 5-amino-6-(5-phosphoribosylamino)uracil reductase

Reaction: 5-amino-6-(5-phospho-D-ribitylamino)uracil + NADP+ = 5-amino-6-(5-phospho-D-
ribosylamino)uracil + NADPH + H+

Other name(s): aminodioxyphosphoribosylaminopyrimidine reductase
Systematic name: 5-amino-6-(5-phospho-D-ribitylamino)uracil:NADP+ 1′-oxidoreductase

References: [452]

[EC 1.1.1.193 created 1984, modified 2011]

EC 1.1.1.194
Accepted name: coniferyl-alcohol dehydrogenase

Reaction: coniferyl alcohol + NADP+ = coniferyl aldehyde + NADPH + H+

Other name(s): CAD (ambiguous)
Systematic name: coniferyl-alcohol:NADP+ oxidoreductase

Comments: Specific for coniferyl alcohol; does not act on cinnamyl alcohol, 4-coumaryl alcohol or sinapyl alco-
hol.

References: [2388, 4273]

[EC 1.1.1.194 created 1984]

EC 1.1.1.195
Accepted name: cinnamyl-alcohol dehydrogenase

Reaction: cinnamyl alcohol + NADP+ = cinnamaldehyde + NADPH + H+

Other name(s): cinnamyl alcohol dehydrogenase; CAD (ambiguous)
Systematic name: cinnamyl-alcohol:NADP+ oxidoreductase

Comments: Acts on coniferyl alcohol, sinapyl alcohol, 4-coumaryl alcohol and cinnamyl alcohol (cf. EC
1.1.1.194 coniferyl-alcohol dehydrogenase).

References: [3314, 4273, 4274]

[EC 1.1.1.195 created 1984]
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EC 1.1.1.196
Accepted name: 15-hydroxyprostaglandin-D dehydrogenase (NADP+)

Reaction: (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate + NADP+ = (5Z,13E)-9α-hydroxy-
11,15-dioxoprosta-5,13-dienoate + NADPH + H+

Other name(s): prostaglandin-D 15-dehydrogenase (NADP); dehydrogenase, prostaglandin D2; NADP-PGD2 de-
hydrogenase; dehydrogenase, 15-hydroxyprostaglandin (nicotinamide adenine dinucleotide phos-
phate); 15-hydroxy PGD2 dehydrogenase; 15-hydroxyprostaglandin dehydrogenase (NADP); NADP-
dependent 15-hydroxyprostaglandin dehydrogenase; prostaglandin D2 dehydrogenase; NADP-linked
15-hydroxyprostaglandin dehydrogenase; NADP-specific 15-hydroxyprostaglandin dehydrogenase;
NADP-linked prostaglandin D2 dehydrogenase; 15-hydroxyprostaglandin-D dehydrogenase (NADP)

Systematic name: (5Z,13E)-(15S)-9α,15-dihydroxy-11-oxoprosta-5,13-dienoate:NADP+ 15-oxidoreductase
Comments: Specific for prostaglandins D [cf. EC 1.1.1.141 15-hydroxyprostaglandin dehydrogenase (NAD+) and

EC 1.1.1.197 15-hydroxyprostaglandin dehydrogenase (NADP+)].
References: [4143]

[EC 1.1.1.196 created 1984, modified 1990]

EC 1.1.1.197
Accepted name: 15-hydroxyprostaglandin dehydrogenase (NADP+)

Reaction: (13E)-(15S)-11α,15-dihydroxy-9-oxoprost-13-enoate + NADP+ = (13E)-11α-hydroxy-9,15-
dioxoprost-13-enoate + NADPH + H+

Other name(s): NADP-dependent 15-hydroxyprostaglandin dehydrogenase; NADP-linked 15-hydroxyprostaglandin
dehydrogenase; NADP-specific 15-hydroxyprostaglandin dehydrogenase; type II 15-
hydroxyprostaglandin dehydrogenase; 15-hydroxyprostaglandin dehydrogenase (NADP)

Systematic name: (13E)-(15S)-11α,15-dihydroxy-9-oxoprost-13-enoate:NADP+ 15-oxidoreductase
Comments: Acts on prostaglandins E2, F2α and B1, but not on prostaglandin D2 [cf. EC 1.1.1.141 15-

hydroxyprostaglandin dehydrogenase (NAD+) and EC 1.1.1.196 15-hydroxyprostaglandin-D dehy-
drogenase (NADP+)]. May be identical with EC 1.1.1.189 prostaglandin-E2 9-reductase.

References: [2175, 2177]

[EC 1.1.1.197 created 1984]

EC 1.1.1.198
Accepted name: (+)-borneol dehydrogenase

Reaction: (+)-borneol + NAD+ = (+)-camphor + NADH + H+

Other name(s): bicyclic monoterpenol dehydrogenase
Systematic name: (+)-borneol:NAD+ oxidoreductase

Comments: NADP+ can also act, but more slowly.
References: [696, 777]

[EC 1.1.1.198 created 1984, modified 1990 (EC 1.1.1.182 created 1983, part incorporated 1990)]

EC 1.1.1.199
Accepted name: (S)-usnate reductase

Reaction: (6R)-2-acetyl-6-(3-acetyl-2,4,6-trihydroxy-5-methylphenyl)-3-hydroxy-6-methyl-2,4-cyclohexadien-
1-one + NAD+ = (S)-usnate + NADH + H+

Other name(s): L-usnic acid dehydrogenase
Systematic name: reduced-(S)-usnate:NAD+ oxidoreductase (ether-bond-forming)

References: [966]

[EC 1.1.1.199 created 1984]

EC 1.1.1.200
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Accepted name: aldose-6-phosphate reductase (NADPH)
Reaction: D-sorbitol 6-phosphate + NADP+ = D-glucose 6-phosphate + NADPH + H+

Other name(s): aldose 6-phosphate reductase; NADP-dependent aldose 6-phosphate reductase; A6PR; aldose-6-P
reductase; aldose-6-phosphate reductase; alditol 6-phosphate:NADP 1-oxidoreductase; aldose-6-
phosphate reductase (NADPH2)

Systematic name: D-aldose-6-phosphate:NADP+ 1-oxidoreductase
Comments: In the reverse reaction, acts also on D-galactose 6-phosphate and, more slowly, on D-mannose 6-

phosphate and 2-deoxy-D-glucose 6-phosphate.
References: [2758]

[EC 1.1.1.200 created 1984]

EC 1.1.1.201
Accepted name: 7β-hydroxysteroid dehydrogenase (NADP+)

Reaction: a 7β-hydroxysteroid + NADP+ = a 7-oxosteroid + NADPH + H+

Other name(s): NADP-dependent 7β-hydroxysteroid dehydrogenase; 7β-hydroxysteroid dehydrogenase (NADP)
Systematic name: 7β-hydroxysteroid:NADP+ 7-oxidoreductase

Comments: Catalyses the oxidation of the 7β-hydroxy group of bile acids such as ursodeoxycholate.
References: [1515, 2337, 2338]

[EC 1.1.1.201 created 1984]

EC 1.1.1.202
Accepted name: 1,3-propanediol dehydrogenase

Reaction: propane-1,3-diol + NAD+ = 3-hydroxypropanal + NADH + H+

Other name(s): 3-hydroxypropionaldehyde reductase; 1,3-PD:NAD+ oxidoreductase; 1,3-propanediol:NAD+ oxi-
doreductase; 1,3-propanediol dehydrogenase

Systematic name: propane-1,3-diol:NAD+ 1-oxidoreductase
References: [2, 1030]

[EC 1.1.1.202 created 1984]

EC 1.1.1.203
Accepted name: uronate dehydrogenase

Reaction: (1) β-D-galacturonate + NAD+ = D-galactaro-1,5-lactone + NADH + H+

(2) β-D-glucuronate + NAD+ = D-glucaro-1,5-lactone + NADH + H+

Other name(s): uronate:NAD-oxidoreductase; uronic acid dehydrogenase
Systematic name: uronate:NAD+ 1-oxidoreductase

Comments: Requires Mg2+. The enzyme, characterized from the bacterium Agrobacterium fabrum, participates
in oxidative degradation pathways for galacturonate and glucuronate. The enzyme can only accept the
β anomeric form of the substrate [2943]. The 1,5-lactone product is rather stable at cytosolic pH and
does not hydrolyse spontaneously at a substantial rate.

References: [1906, 331, 79, 2943]

[EC 1.1.1.203 created 1972 as EC 1.2.1.35, transferred 1984 to EC 1.1.1.203, modified 2014]

[1.1.1.204 Transferred entry. xanthine dehydrogenase. Now EC 1.17.1.4, xanthine dehydrogenase. The enzyme was incor-
rectly classified as acting on a CH-OH group]

[EC 1.1.1.204 created 1972 as EC 1.2.1.37, transferred 1984 to EC 1.1.1.204, modified 1989, deleted 2004]

EC 1.1.1.205
Accepted name: IMP dehydrogenase

Reaction: IMP + NAD+ + H2O = XMP + NADH + H+
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Other name(s): inosine-5′-phosphate dehydrogenase; inosinic acid dehydrogenase; inosinate dehydrogenase; inosine
5′-monophosphate dehydrogenase; inosine monophosphate dehydrogenase; IMP oxidoreductase; ino-
sine monophosphate oxidoreductase

Systematic name: IMP:NAD+ oxidoreductase
Comments: The enzyme acts on the hydroxy group of the hydrated derivative of the substrate.
References: [2359, 3949]

[EC 1.1.1.205 created 1961 as EC 1.2.1.14, transferred 1984 to EC 1.1.1.205]

EC 1.1.1.206
Accepted name: tropinone reductase I

Reaction: tropine + NADP+ = tropinone + NADPH + H+

Other name(s): tropine dehydrogenase; tropinone reductase (ambiguous); TR-I
Systematic name: tropine:NADP+ 3α-oxidoreductase

Comments: Also oxidizes other tropan-3α-ols, but not the corresponding β-derivatives [1994]. This enzyme along
with EC 1.1.1.236, tropinone reductase II, represents a branch point in tropane alkaloid metabolism
[867]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine and scopolamine
whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabolite on the pathway
to the calystegines [867]. Both enzymes are always found together in any given tropane-alkaloid-
producing species, have a common substrate, tropinone, and are strictly stereospecific [2701].

References: [1994, 674, 2701, 867]

[EC 1.1.1.206 created 1984, modified 2007]

EC 1.1.1.207
Accepted name: (-)-menthol dehydrogenase

Reaction: (-)-menthol + NADP+ = (-)-menthone + NADPH + H+

Other name(s): monoterpenoid dehydrogenase
Systematic name: (-)-menthol:NADP+ oxidoreductase

Comments: Not identical with EC 1.1.1.208 (+)-neomenthol dehydrogenase. Acts also on a number of other cy-
clohexanols and cyclohexenols.

References: [1956]

[EC 1.1.1.207 created 1984]

EC 1.1.1.208
Accepted name: (+)-neomenthol dehydrogenase

Reaction: (+)-neomenthol + NADP+ = (-)-menthone + NADPH + H+

Other name(s): monoterpenoid dehydrogenase
Systematic name: (+)-neomenthol:NADP+ oxidoreductase

Comments: Not identical with EC 1.1.1.207 (-)-menthol dehydrogenase. Acts also on a number of other cyclohex-
anols and cyclohexenols.

References: [1956]

[EC 1.1.1.208 created 1984]

EC 1.1.1.209
Accepted name: 3(or 17)α-hydroxysteroid dehydrogenase

Reaction: androsterone + NAD(P)+ = 5α-androstane-3,17-dione + NAD(P)H + H+

Other name(s): 3(17)α-hydroxysteroid dehydrogenase
Systematic name: 3(or 17)α-hydroxysteroid:NAD(P)+ oxidoreductase

Comments: Acts on the 3α-hydroxy group of androgens of the 5α-androstane series; and also, more slowly, on
the 17α-hydroxy group of both androgenic and estrogenic substrates (cf. EC 1.1.1.51 3(or 17)β-
hydroxysteroid dehydrogenase).
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References: [2149, 2150]

[EC 1.1.1.209 created 1986]

EC 1.1.1.210
Accepted name: 3β(or 20α)-hydroxysteroid dehydrogenase

Reaction: 5α-androstan-3β,17β-diol + NADP+ = 17β-hydroxy-5α-androstan-3-one + NADPH + H+

Other name(s): progesterone reductase; dehydrogenase, 3β,20α-hydroxy steroid; 3β,20α-hydroxysteroid oxidoreduc-
tase

Systematic name: 3β(or 20α)-hydroxysteroid:NADP+ oxidoreductase
Comments: Also acts on 20α-hydroxysteroids.
References: [3461]

[EC 1.1.1.210 created 1986]

EC 1.1.1.211
Accepted name: long-chain-3-hydroxyacyl-CoA dehydrogenase

Reaction: a long-chain (S)-3-hydroxyacyl-CoA + NAD+ = a long-chain 3-oxoacyl-CoA + NADH + H+

Other name(s): β-hydroxyacyl-CoA dehydrogenase; long-chain 3-hydroxyacyl coenzyme A dehydrogenase; 3-
hydroxyacyl-CoA dehydrogenase; LCHAD

Systematic name: long-chain-(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase
Comments: This enzyme was purified from the mitochondrial inner membrane. The enzyme has a preference for

long-chain substrates, and activity with a C16 substrate was 6- to 15-fold higher than with a C4 sub-
strate (cf. EC 1.1.1.35 3-hydroxyacyl-CoA dehydrogenase).

References: [936]

[EC 1.1.1.211 created 1986]

EC 1.1.1.212
Accepted name: 3-oxoacyl-[acyl-carrier-protein] reductase (NADH)

Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + NAD+ = a 3-oxoacyl-[acyl-carrier protein] + NADH +
H+

Other name(s): 3-oxoacyl-[acyl carrier protein] (reduced nicotinamide adenine dinucleotide) reductase; 3-oxoacyl-
[acyl-carrier-protein] reductase (NADH); (3R)-3-hydroxyacyl-[acyl-carrier-protein]:NAD+ oxidore-
ductase

Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:NAD+ oxidoreductase
Comments: Forms part of the fatty acid synthase system in plants. Can be separated from EC 1.1.1.100, 3-

oxoacyl-[acyl-carrier-protein] reductase.
References: [521]

[EC 1.1.1.212 created 1986]

EC 1.1.1.213
Accepted name: 3α-hydroxysteroid 3-dehydrogenase (Re-specific)

Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+

Other name(s): 3α-hydroxysteroid dehydrogenase; 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (A-specific); 3α-
hydroxysteroid 3-dehydrogenase (A-specific)

Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase (Re-specific)
Comments: The enzyme acts on multiple 3α-hydroxysteroids. Re-specific with respect to NAD+ or NADP+ [cf.

EC 1.1.1.50, 3α-hydroxysteroid 3-dehydrogenase (Si-specific)]. Enzymes whose stereo-specificity
with respect to NAD+ or NADP+ is not known are described by EC 1.1.1.357, 3α-hydroxysteroid
3-dehydrogenase.

References: [304, 3905]
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[EC 1.1.1.213 created 1986, modified 2012]

EC 1.1.1.214
Accepted name: 2-dehydropantolactone reductase (Si-specific)

Reaction: (R)-pantolactone + NADP+ = 2-dehydropantolactone + NADPH + H+

Other name(s): 2-oxopantoyl lactone reductase; 2-ketopantoyl lactone reductase; ketopantoyl lactone reductase; 2-
dehydropantoyl-lactone reductase (B-specific); (R)-pantolactone:NADP+ oxidoreductase (B-specific);
2-dehydropantolactone reductase (B-specific)

Systematic name: (R)-pantolactone:NADP+ oxidoreductase (Si-specific)
Comments: The Escherichia coli enzyme differs from that from yeast [EC 1.1.1.168 2-dehydropantolactone re-

ductase (Re-specific)], which is specific for the Re-face of NADP+, and in receptor requirements from
EC 1.1.99.26 3-hydroxycyclohexanone dehydrogenase.

References: [4214]

[EC 1.1.1.214 created 1986, modified 1999, modified 2013]

EC 1.1.1.215
Accepted name: gluconate 2-dehydrogenase

Reaction: D-gluconate + NADP+ = 2-dehydro-D-gluconate + NADPH + H+

Other name(s): 2-keto-D-gluconate reductase; 2-ketogluconate reductase
Systematic name: D-gluconate:NADP+ oxidoreductase

Comments: Also acts on L-idonate, D-galactonate and D-xylonate.
References: [14, 600]

[EC 1.1.1.215 created 1989]

EC 1.1.1.216
Accepted name: farnesol dehydrogenase (NADP+)

Reaction: (2E,6E)-farnesol + NADP+ = (2E,6E)-farnesal + NADPH + H+

Other name(s): NADP+-farnesol dehydrogenase; farnesol (nicotinamide adenine dinucleotide phosphate) dehydroge-
nase

Systematic name: (2E,6E)-farnesol:NADP+ 1-oxidoreductase
Comments: Also acts, more slowly, on (2Z,6E)-farnesol, geraniol, citronerol and nerol.
References: [1652]

[EC 1.1.1.216 created 1989]

EC 1.1.1.217
Accepted name: benzyl-2-methyl-hydroxybutyrate dehydrogenase

Reaction: benzyl (2R,3S)-2-methyl-3-hydroxybutanoate + NADP+ = benzyl 2-methyl-3-oxobutanoate +
NADPH + H+

Other name(s): benzyl 2-methyl-3-hydroxybutyrate dehydrogenase
Systematic name: benzyl-(2R,3S)-2-methyl-3-hydroxybutanoate:NADP+ 3-oxidoreductase

Comments: Also acts on benzyl (2S,3S)-2-methyl-3-hydroxybutanoate; otherwise highly specific.
References: [1122]

[EC 1.1.1.217 created 1989]

EC 1.1.1.218
Accepted name: morphine 6-dehydrogenase

Reaction: morphine + NAD(P)+ = morphinone + NAD(P)H + H+

Other name(s): naloxone reductase; reductase, naloxone
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Systematic name: morphine:NAD(P)+ 6-oxidoreductase
Comments: Also acts on some other alkaloids, including codeine, normorphine and ethylmorphine, but only very

slowly on 7,8-saturated derivatives such as dihydromorphine and dihydrocodeine. In the reverse direc-
tion, also reduces naloxone to the 6α-hydroxy analogue. Activated by 2-mercaptoethanol.

References: [4324, 4325]

[EC 1.1.1.218 created 1989, modified 1990]

EC 1.1.1.219
Accepted name: dihydroflavonol 4-reductase

Reaction: a (2R,3S,4S)-leucoanthocyanidin + NADP+ = a (2R,3R)-dihydroflavonol + NADPH + H+

Other name(s): dihydrokaempferol 4-reductase; dihydromyricetin reductase; NADPH-dihydromyricetin reductase;
dihydroquercetin reductase; DFR (gene name); cis-3,4-leucopelargonidin:NADP+ 4-oxidoreductase;
dihydroflavanol 4-reductase (incorrect)

Systematic name: (2R,3S,4S)-leucoanthocyanidin:NADP+ 4-oxidoreductase
Comments: This plant enzyme, involved in the biosynthesis of anthocyanidins, is known to act on (+)-

dihydrokaempferol, (+)-taxifolin, and (+)-dihydromyricetin, although some enzymes may act only
on a subset of these compounds. Each dihydroflavonol is reduced to the corresponding cis-flavan-3,4-
diol. NAD+ can act instead of NADP+, but more slowly.

References: [1469, 3617, 1019, 2224]

[EC 1.1.1.219 created 1989, modified 2016]

EC 1.1.1.220
Accepted name: 6-pyruvoyltetrahydropterin 2′-reductase

Reaction: 6-lactoyl-5,6,7,8-tetrahydropterin + NADP+ = 6-pyruvoyltetrahydropterin + NADPH + H+

Other name(s): 6-pyruvoyltetrahydropterin reductase; 6PPH4(2′-oxo) reductase; 6-pyruvoyl tetrahydropterin (2′-
oxo)reductase; 6-pyruvoyl-tetrahydropterin 2′-reductase; pyruvoyl-tetrahydropterin reductase

Systematic name: 6-lactoyl-5,6,7,8-tetrahydropterin:NADP+ 2′-oxidoreductase
Comments: Not identical with EC 1.1.1.153 sepiapterin reductase.
References: [2550]

[EC 1.1.1.220 created 1989]

EC 1.1.1.221
Accepted name: vomifoliol dehydrogenase

Reaction: (6S,9R)-6-hydroxy-3-oxo-α-ionol + NAD+ = (6S)-6-hydroxy-3-oxo-α-ionone + NADH + H+

Other name(s): vomifoliol 4′-dehydrogenase; vomifoliol:NAD+ 4′-oxidoreductase
Systematic name: (6S,9R)-6-hydroxy-3-oxo-α-ionol:NAD+ oxidoreductase

Comments: Oxidizes vomifoliol to dehydrovomifoliol; involved in the metabolism of abscisic acid in Corynebac-
terium sp.

References: [1408]

[EC 1.1.1.221 created 1989]

[1.1.1.222 Transferred entry. (R)-4-hydroxyphenyllactate dehydrogenase. Now included with EC 1.1.1.110, aromatic 2-
oxoacid reductase]

[EC 1.1.1.222 created 1989, deleted 2018]

EC 1.1.1.223
Accepted name: isopiperitenol dehydrogenase

Reaction: (-)-trans-isopiperitenol + NAD+ = (-)-isopiperitenone + NADH + H+

Systematic name: (-)-trans-isopiperitenol:NAD+ oxidoreductase
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Comments: Acts on (-)-trans-isopiperitenol, (+)-trans-piperitenol and (+)-trans-pulegol. Involved in the biosyn-
thesis of menthol and related monoterpenes in peppermint (Mentha piperita) leaves.

References: [1957]

[EC 1.1.1.223 created 1989]

EC 1.1.1.224
Accepted name: mannose-6-phosphate 6-reductase

Reaction: D-mannitol 1-phosphate + NADP+ = D-mannose 6-phosphate + NADPH + H+

Other name(s): NADPH-dependent mannose 6-phosphate reductase; mannose-6-phosphate reductase; 6-
phosphomannose reductase; NADP-dependent mannose-6-P:mannitol-1-P oxidoreductase; NADPH-
dependent M6P reductase; NADPH-mannose-6-P reductase

Systematic name: D-mannitol-1-phosphate:NADP+ 6-oxidoreductase
Comments: Involved in the biosynthesis of mannitol in celery (Apium graveolens) leaves.
References: [3260]

[EC 1.1.1.224 created 1989]

EC 1.1.1.225
Accepted name: chlordecone reductase

Reaction: chlordecone alcohol + NADP+ = chlordecone + NADPH + H+

Other name(s): CDR
Systematic name: chlordecone-alcohol:NADP+ 2-oxidoreductase

Comments: Chlordecone is an organochlorine pesticide.
References: [2597]

[EC 1.1.1.225 created 1989]

EC 1.1.1.226
Accepted name: 4-hydroxycyclohexanecarboxylate dehydrogenase

Reaction: trans-4-hydroxycyclohexanecarboxylate + NAD+ = 4-oxocyclohexanecarboxylate + NADH + H+

Other name(s): trans-4-hydroxycyclohexanecarboxylate dehydrogenase
Systematic name: trans-4-hydroxycyclohexanecarboxylate:NAD+ 4-oxidoreductase

Comments: The enzyme from Corynebacterium cyclohexanicum is highly specific for the trans-4-hydroxy deriva-
tive.

References: [2833]

[EC 1.1.1.226 created 1990]

EC 1.1.1.227
Accepted name: (-)-borneol dehydrogenase

Reaction: (-)-borneol + NAD+ = (-)-camphor + NADH + H+

Systematic name: (-)-borneol:NAD+ oxidoreductase
Comments: NADP+ can also act, but more slowly.
References: [777]

[EC 1.1.1.227 created 1990 (EC 1.1.1.182 created 1983, part incorporated 1990)]

EC 1.1.1.228
Accepted name: (+)-sabinol dehydrogenase

Reaction: (+)-cis-sabinol + NAD+ = (+)-sabinone + NADH + H+

Other name(s): (+)-cis-sabinol dehydrogenase
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Systematic name: (+)-cis-sabinol:NAD+ oxidoreductase
Comments: NADP+ can also act, but more slowly. Involved in the biosynthesis of (+)-3-thujone and (–)-3-

isothujone.
References: [777]

[EC 1.1.1.228 created 1990 (EC 1.1.1.182 created 1983, part incorporated 1990)]

EC 1.1.1.229
Accepted name: diethyl 2-methyl-3-oxosuccinate reductase

Reaction: diethyl (2R,3R)-2-methyl-3-hydroxysuccinate + NADP+ = diethyl 2-methyl-3-oxosuccinate +
NADPH + H+

Systematic name: diethyl-(2R,3R)-2-methyl-3-hydroxysuccinate:NADP+ 3-oxidoreductase
Comments: Also acts on diethyl (2S,3R)-2-methyl-3-hydroxysuccinate; and on the corresponding dimethyl esters.
References: [1123]

[EC 1.1.1.229 created 1990]

EC 1.1.1.230
Accepted name: 3α-hydroxyglycyrrhetinate dehydrogenase

Reaction: 3α-hydroxyglycyrrhetinate + NADP+ = 3-oxoglycyrrhetinate + NADPH + H+

Systematic name: 3α-hydroxyglycyrrhetinate:NADP+ 3-oxidoreductase
Comments: Highly specific to 3α-hydroxy derivatives of glycyrrhetinate and its analogues. Not identical to EC

1.1.1.50 3α-hydroxysteroid dehydrogenase (Si-specific).
References: [43]

[EC 1.1.1.230 created 1990]

EC 1.1.1.231
Accepted name: 15-hydroxyprostaglandin-I dehydrogenase (NADP+)

Reaction: (5Z,13E)-(15S)-6,9α-epoxy-11α,15-dihydroxyprosta-5,13-dienoate + NADP+ = (5Z,13E)-6,9α-
epoxy-11α-hydroxy-15-oxoprosta-5,13-dienoate + NADPH + H+

Other name(s): prostacyclin dehydrogenase; PG I2 dehydrogenase; prostacyclin dehydrogenase; NADP-linked
15-hydroxyprostaglandin (prostacyclin) dehydrogenase; NADP+-dependent PGI2-specific 15-
hydroxyprostaglandin dehydrogenase; 15-hydroxyprostaglandin-I dehydrogenase (NADP)

Systematic name: (5Z,13E)-(15S)-6,9α-epoxy-11α,15-dihydroxyprosta-5,13-dienoate:NADP+ 15-oxidoreductase
Comments: Specific for prostaglandin I2.
References: [2031]

[EC 1.1.1.231 created 1990]

EC 1.1.1.232
Accepted name: 15-hydroxyicosatetraenoate dehydrogenase

Reaction: (15S)-15-hydroxy-5,8,11-cis-13-trans-icosatetraenoate + NAD(P)+ = 15-oxo-5,8,11-cis-13-trans-
icosatetraenoate + NAD(P)H + H+

Other name(s): 15-hydroxyeicosatetraenoate dehydrogenase
Systematic name: (15S)-15-hydroxy-5,8,11-cis-13-trans-icosatetraenoate:NAD(P)+ 15-oxidoreductase

References: [3572]

[EC 1.1.1.232 created 1992]

EC 1.1.1.233
Accepted name: N-acylmannosamine 1-dehydrogenase
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Reaction: N-acyl-D-mannosamine + NAD+ = N-acyl-D-mannosaminolactone + NADH + H+

Other name(s): N-acylmannosamine dehydrogenase; N-acetyl-D-mannosamine dehydrogenase; N-acyl-D-
mannosamine dehydrogenase; N-acylmannosamine dehydrogenase

Systematic name: N-acyl-D-mannosamine:NAD+ 1-oxidoreductase
Comments: Acts on acetyl-D-mannosamine and glycolyl-D-mannosamine. Highly specific.
References: [1570]

[EC 1.1.1.233 created 1992]

EC 1.1.1.234
Accepted name: flavanone 4-reductase

Reaction: (2S)-flavan-4-ol + NADP+ = (2S)-flavanone + NADPH + H+

Systematic name: (2S)-flavan-4-ol:NADP+ 4-oxidoreductase
Comments: Involved in the biosynthesis of 3-deoxyanthocyanidins from flavanones such as naringenin or eriodic-

tyol.
References: [3644]

[EC 1.1.1.234 created 1992]

EC 1.1.1.235
Accepted name: 8-oxocoformycin reductase

Reaction: coformycin + NADP+ = 8-oxocoformycin + NADPH + H+

Other name(s): 8-ketodeoxycoformycin reductase
Systematic name: coformycin:NADP+ 8-oxidoreductase

Comments: Si-specific with respect to NADPH. Also reduces 8-oxodeoxy-coformycin to the nucleoside antibiotic
deoxycoformycin.

References: [1383]

[EC 1.1.1.235 created 1992]

EC 1.1.1.236
Accepted name: tropinone reductase II

Reaction: pseudotropine + NADP+ = tropinone + NADPH + H+

Other name(s): tropinone (ψ-tropine-forming) reductase; pseudotropine forming tropinone reductase; tropinone re-
ductase (ambiguous); TR-II

Systematic name: pseudotropine:NADP+ 3-oxidoreductase
Comments: This enzyme along with EC 1.1.1.206, tropine dehydrogenase, represents a branch point in tropane

alkaloid metabolism [2701]. Tropine (the product of EC 1.1.1.206) is incorporated into hyoscyamine
and scopolamine whereas pseudotropine (the product of EC 1.1.1.236) is the first specific metabo-
lite on the pathway to the calystegines [2701]. Both enzymes are always found together in any given
tropane-alkaloid-producing species, have a common substrate, tropinone, and are strictly stereospe-
cific [674].

References: [868, 674, 2701, 867]

[EC 1.1.1.236 created 1992, modified 2007]

EC 1.1.1.237
Accepted name: hydroxyphenylpyruvate reductase

Reaction: (1) (R)-3-(4-hydroxyphenyl)lactate + NAD(P)+ = 3-(4-hydroxyphenyl)pyruvate + NAD(P)H + H+

(2) (R)-3-(3,4-dihydroxyphenyl)lactate + NAD(P)+ = 3-(3,4-dihydroxyphenyl)pyruvate + NAD(P)H +
H+

Other name(s): HPPR
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Systematic name: (R)-3-(4-hydroxyphenyl)lactate:NAD(P)+ oxidoreductase
Comments: The enzyme participates in the biosynthesis of rosmarinic acid. It belongs to the family of D-isomer-

specific 2-hydroxyacid dehydrogenases, and prefers NADPH to NADH.
References: [2987, 1913, 1924, 4105]

[EC 1.1.1.237 created 1992, modified 2018]

EC 1.1.1.238
Accepted name: 12β-hydroxysteroid dehydrogenase

Reaction: 3α,7α,12β-trihydroxy-5β-cholan-24-oate + NADP+ = 3α,7α-dihydroxy-12-oxo-5β-cholan-24-oate +
NADPH + H+

Other name(s): 12β-hydroxy steroid (nicotinamide adenine dinucleotide phosphate) dehydrogenase
Systematic name: 12β-hydroxysteroid:NADP+ 12-oxidoreductase

Comments: Acts on a number of bile acids, both in their free and conjugated forms.
References: [914]

[EC 1.1.1.238 created 1992]

EC 1.1.1.239
Accepted name: 3α(17β)-hydroxysteroid dehydrogenase (NAD+)

Reaction: testosterone + NAD+ = androstenedione + NADH + H+

Other name(s): 3α,17β-hydroxy steroid dehydrogenase; 3α(17β)-HSD; 17-ketoreductase (ambiguous); 17β-HSD
(ambiguous); HSD17B6 (gene name); HSD17B8 (gene name)

Systematic name: 3α(or 17β)-hydroxysteroid:NAD+ oxidoreductase
Comments: Also acts on other 17β-hydroxysteroids and on the 3α-hydroxy group of pregnanes and bile acids.

Different from EC 1.1.1.50 3α-hydroxysteroid dehydrogenase (Si-specific) or EC 1.1.1.213 3α-
hydroxysteroid dehydrogenase (Re-specific).

References: [3761, 4046, 946, 2849]

[EC 1.1.1.239 created 1992, modified 2012 (EC 1.1.1.63 created 1965, incorporated 2012)]

EC 1.1.1.240
Accepted name: N-acetylhexosamine 1-dehydrogenase

Reaction: N-acetyl-α-D-glucosamine + NAD+ = N-acetyl-D-glucosaminate + NADH + H+

Other name(s): N-acetylhexosamine dehydrogenase; N-acetyl-D-hexosamine dehydrogenase
Systematic name: N-acetyl-D-hexosamine:NAD+ 1-oxidoreductase

Comments: Also acts on N-acetylgalactosamine and, more slowly, on N-acetylmannosamine. Anomeric speci-
ficity was tested with N-acetyl-D-glucosamine, and it was shown that the enzyme is specific for the α

anomer.
References: [1571]

[EC 1.1.1.240 created 1992]

EC 1.1.1.241
Accepted name: 6-endo-hydroxycineole dehydrogenase

Reaction: 6-endo-hydroxycineole + NAD+ = 6-oxocineole + NADH + H+

Systematic name: 6-endo-hydroxycineole:NAD+ 6-oxidoreductase
References: [4217]

[EC 1.1.1.241 created 1992]

[1.1.1.242 Transferred entry. zeatin reductase. Now EC 1.3.1.69, zeatin reductase]

[EC 1.1.1.242 created 1992, deleted 2001]
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EC 1.1.1.243
Accepted name: carveol dehydrogenase

Reaction: (–)-trans-carveol + NADP+ = (–)-carvone + NADPH + H+

Other name(s): (–)-trans-carveol dehydrogenase
Systematic name: (–)-trans-carveol:NADP+ oxidoreductase

References: [1186]

[EC 1.1.1.243 created 1992]

EC 1.1.1.244
Accepted name: methanol dehydrogenase

Reaction: methanol + NAD+ = formaldehyde + NADH + H+

Systematic name: methanol:NAD+ oxidoreductase
References: [119]

[EC 1.1.1.244 created 1992]

EC 1.1.1.245
Accepted name: cyclohexanol dehydrogenase

Reaction: cyclohexanol + NAD+ = cyclohexanone + NADH + H+

Systematic name: cyclohexanol:NAD+ oxidoreductase
Comments: Also oxidizes some other alicyclic alcohols and diols.
References: [741, 857, 3932]

[EC 1.1.1.245 created 1992]

[1.1.1.246 Transferred entry. pterocarpin synthase. This activity is now known to be catalysed by two enzymes, vestitone
reductase (EC 1.1.1.348) and medicarpin synthase (EC 4.2.1.139).]

[EC 1.1.1.246 created 1992, deleted 2013]

EC 1.1.1.247
Accepted name: codeinone reductase (NADPH)

Reaction: codeine + NADP+ = codeinone + NADPH + H+

Systematic name: codeine:NADP+ oxidoreductase
Comments: Catalyses the reversible reduction of codeinone to codeine, which is a direct precursor of morphine in

the opium poppy plant, Papaver somniferum.
References: [2198, 2197]

[EC 1.1.1.247 created 1999, modified 2001]

EC 1.1.1.248
Accepted name: salutaridine reductase (NADPH)

Reaction: salutaridinol + NADP+ = salutaridine + NADPH + H+

Systematic name: salutaridinol:NADP+ 7-oxidoreductase
Comments: Catalyses the reversible reduction of salutaridine to salutaridinol, which is a direct precursor of mor-

phinan alkaloids in the poppy plant.
References: [1182]

[EC 1.1.1.248 created 1999, modified 2001]

[1.1.1.249 Deleted entry. Provisional entry deleted. Revised and reinstated as EC 2.5.1.46 deoxyhypusine synthase]

[EC 1.1.1.249 provisional version created 1999, deleted 1999 (reinstated 2001 as EC 2.5.1.46)]
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EC 1.1.1.250
Accepted name: D-arabinitol 2-dehydrogenase

Reaction: D-arabinitol + NAD+ = D-ribulose + NADH + H+

Other name(s): D-arabinitol 2-dehydrogenase (ribulose-forming)
Systematic name: D-arabinitol:NAD+ 2-oxidoreductase (D-ribulose-forming)

References: [4244, 3094]

[EC 1.1.1.250 created 1999]

EC 1.1.1.251
Accepted name: galactitol-1-phosphate 5-dehydrogenase

Reaction: galactitol 1-phosphate + NAD+ = D-tagatose 6-phosphate + NADH + H+

Other name(s): gatD (gene name)
Systematic name: galactitol-1-phosphate:NAD+ oxidoreductase

Comments: The enzyme from the bacterium Escherichia coli is involved in a galactitol degradation pathway. It
contains two zinc atoms per subunit.

References: [4240, 2806, 257]

[EC 1.1.1.251 created 1999]

EC 1.1.1.252
Accepted name: tetrahydroxynaphthalene reductase

Reaction: scytalone + NADP+ = 1,3,6,8-tetrahydroxynaphthalene + NADPH + H+

Systematic name: scytalone:NADP+ ∆5-oxidoreductase
Comments: Reduces 1,3,6,8-tetrahydroxynaphthalene to scytalone and also reduces 1,3,8-trihydroxynaphthalene

to vermelone. Involved with EC 4.2.1.94 scytalone dehydratase in the biosynthesis of melanin in
pathogenic fungi.

References: [4187, 4041, 3876]

[EC 1.1.1.252 created 1992 as EC 1.3.1.50, transferred 1999 to EC 1.1.1.252]

[1.1.1.253 Transferred entry. pteridine reductase. Now EC 1.5.1.33, pteridine reductase]

[EC 1.1.1.253 created 1999, deleted 2003]

EC 1.1.1.254
Accepted name: (S)-carnitine 3-dehydrogenase

Reaction: (S)-carnitine + NAD+ = 3-dehydrocarnitine + NADH + H+

Systematic name: (S)-carnitine:NAD+ oxidoreductase
Comments: Specific for the (S)-enantiomer of carnitine, i.e., the enantiomer of the substrate of EC 1.1.1.108 carni-

tine 3-dehydrogenase
References: [3447]

[EC 1.1.1.254 created 1999]

EC 1.1.1.255
Accepted name: mannitol dehydrogenase

Reaction: D-mannitol + NAD+ = D-mannose + NADH + H+

Other name(s): MTD; NAD-dependent mannitol dehydrogenase
Systematic name: mannitol:NAD+ 1-oxidoreductase

Comments: The enzyme from Apium graveolens (celery) oxidizes alditols with a minimum requirement of 2R chi-
rality at the carbon adjacent to the primary carbon undergoing the oxidation. The enzyme is specific
for NAD+ and does not use NADP+.

References: [3665, 3666, 4223, 3664]
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[EC 1.1.1.255 created 2000]

EC 1.1.1.256
Accepted name: fluoren-9-ol dehydrogenase

Reaction: fluoren-9-ol + NAD(P)+ = fluoren-9-one + NAD(P)H + H+

Systematic name: fluoren-9-ol:NAD(P)+ oxidoreductase
Comments: Involved in the pathway for fluorene metabolism in Arthrobacter sp.
References: [516, 1285]

[EC 1.1.1.256 created 2000]

EC 1.1.1.257
Accepted name: 4-(hydroxymethyl)benzenesulfonate dehydrogenase

Reaction: 4-(hydroxymethyl)benzenesulfonate + NAD+ = 4-formylbenzenesulfonate + NADH + H+

Systematic name: 4-(hydroxymethyl)benzenesulfonate:NAD+ oxidoreductase
Comments: Involved in the toluene-4-sulfonate degradation pathway in Comamonas testosteroni.
References: [1789]

[EC 1.1.1.257 created 2000]

EC 1.1.1.258
Accepted name: 6-hydroxyhexanoate dehydrogenase

Reaction: 6-hydroxyhexanoate + NAD+ = 6-oxohexanoate + NADH + H+

Systematic name: 6-hydroxyhexanoate:NAD+ oxidoreductase
Comments: Involved in the cyclohexanol degradation pathway in Acinetobacter NCIB 9871.
References: [857, 1450]

[EC 1.1.1.258 created 2000]

EC 1.1.1.259
Accepted name: 3-hydroxypimeloyl-CoA dehydrogenase

Reaction: 3-hydroxypimeloyl-CoA + NAD+ = 3-oxopimeloyl-CoA + NADH + H+

Systematic name: 3-hydroxypimeloyl-CoA:NAD+ oxidoreductase
Comments: Involved in the anaerobic pathway of benzoate degradation in bacteria.
References: [1405]

[EC 1.1.1.259 created 2000]

EC 1.1.1.260
Accepted name: sulcatone reductase

Reaction: sulcatol + NAD+ = sulcatone + NADH + H+

Systematic name: sulcatol:NAD+ oxidoreductase
Comments: Studies on the effects of growth-stage and nutrient supply on the stereochemistry of sulcatone reduc-

tion in Clostridia pasteurianum, C. tyrobutyricum and Lactobacillus brevis suggest that there may be
at least two sulcatone reductases with different stereospecificities.

References: [250, 3888, 3889]

[EC 1.1.1.260 created 2000, modified 2001]

EC 1.1.1.261
Accepted name: sn-glycerol-1-phosphate dehydrogenase

Reaction: sn-glycerol 1-phosphate + NAD(P)+ = glycerone phosphate + NAD(P)H + H+
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Other name(s): glycerol-1-phosphate dehydrogenase [NAD(P)+]; sn-glycerol-1-phosphate:NAD+ oxidoreductase;
G-1-P dehydrogenase; Gro1PDH; AraM

Systematic name: sn-glycerol-1-phosphate:NAD(P)+ 2-oxidoreductase
Comments: This enzyme is found primarily as a Zn2+-dependent form in archaea but a Ni2+-dependent form

has been found in Gram-positive bacteria [1311]. The Zn2+-dependent metalloenzyme is responsi-
ble for the formation of archaea-specific sn-glycerol-1-phosphate, the first step in the biosynthesis
of polar lipids in archaea. It is the enantiomer of sn-glycerol 3-phosphate, the form of glycerophos-
phate found in bacteria and eukaryotes. The other enzymes involved in the biosynthesis of polar
lipids in archaea are EC 2.5.1.41 (phosphoglycerol geranylgeranyltransferase) and EC 2.5.1.42
(geranylgeranylglycerol-phosphate geranylgeranyltransferase), which together alkylate the hydroxy
groups of glycerol 1-phosphate to give unsaturated archaetidic acid, which is acted upon by EC
2.7.7.67 (CDP-archaeol synthase) to form CDP-unsaturated archaeol. The final step in the pathway
involves the addition of L-serine, with concomitant removal of CMP, leading to the production of un-
saturated archaetidylserine [2621]. Activity of the enzyme is stimulated by K+ [2793].

References: [2792, 2793, 2000, 2621, 1360, 1311]

[EC 1.1.1.261 created 2000, modified 2009]

EC 1.1.1.262
Accepted name: 4-hydroxythreonine-4-phosphate dehydrogenase

Reaction: 4-phosphooxy-L-threonine + NAD+ = 3-amino-2-oxopropyl phosphate + CO2 + NADH + H+

Other name(s): NAD+-dependent threonine 4-phosphate dehydrogenase; L-threonine 4-phosphate dehydrogenase;
4-(phosphohydroxy)-L-threonine dehydrogenase; PdxA; 4-(phosphonooxy)-L-threonine:NAD+ oxi-
doreductase; 4-phosphooxy-L-threonine:NAD+ oxidoreductase

Systematic name: 4-phosphooxy-L-threonine:NAD+ 3-oxidoreductase (decarboxylating)
Comments: The enzyme is part of the biosynthesis pathway of the coenzyme pyridoxal 5′-phosphate found in

anaerobic bacteria.
References: [492, 2109, 3545, 193]

[EC 1.1.1.262 created 2000, modified 2006]

EC 1.1.1.263
Accepted name: 1,5-anhydro-D-fructose reductase

Reaction: 1,5-anhydro-D-glucitol + NADP+ = 1,5-anhydro-D-fructose + NADPH + H+

Systematic name: 1,5-anhydro-D-glucitol:NADP+ oxidoreductase
Comments: Also reduces pyridine-3-aldehyde and 2,3-butanedione. Acetaldehyde, 2-dehydroglucose (glucosone)

and glucuronate are poor substrates, but there is no detectable action on glucose, mannose and fruc-
tose.

References: [3295]

[EC 1.1.1.263 created 2000]

EC 1.1.1.264
Accepted name: L-idonate 5-dehydrogenase

Reaction: L-idonate + NAD(P)+ = 5-dehydro-D-gluconate + NAD(P)H + H+

Systematic name: L-idonate:NAD(P)+ oxidoreductase
Comments: The enzyme from the bacterium Escherichia coli is specific for 5-dehydro-D-gluconate. cf. EC

1.1.1.366, L-idonate 5-dehydrogenase (NAD+).
References: [223]

[EC 1.1.1.264 created 2000, modified 2013]

EC 1.1.1.265
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Accepted name: 3-methylbutanal reductase
Reaction: 3-methylbutanol + NAD(P)+ = 3-methylbutanal + NAD(P)H + H+

Systematic name: 3-methylbutanol:NAD(P)+ oxidoreductase
Comments: The enzyme purified from Saccharomyces cerevisiae catalyses the reduction of a number of straight-

chain and branched aldehydes, as well as some aromatic aldehydes.
References: [4007, 2755]

[EC 1.1.1.265 created 2000]

EC 1.1.1.266
Accepted name: dTDP-4-dehydro-6-deoxyglucose reductase

Reaction: dTDP-α-D-fucopyranose + NAD(P)+ = dTDP-4-dehydro-6-deoxy-α-D-glucose + NAD(P)H + H+

Other name(s): dTDP-4-keto-6-deoxyglucose reductase; dTDP-D-fucose:NADP+ oxidoreductase; Fcf1; dTDP-6-
deoxy-D-xylo-hex-4-ulopyranose reductase

Systematic name: dTDP-α-D-fucopyranose:NAD(P)+ oxidoreductase
Comments: The enzymes from the Gram-negative bacteria Aggregatibacter actinomycetemcomitans and Es-

cherichia coli O52 are involved in activation of fucose for incorporation into capsular polysaccharide
O-antigens [4382, 4114]. The enzyme from the Gram-positive bacterium Anoxybacillus tepidamans
(Geobacillus tepidamans) is involved in activation of fucose for incorporation into the organism’s S-
layer [4428]. The enzyme from Escherichia coli O52 has a higher catalytic efficiency with NADH
than with NADPH [4114].

References: [4382, 4428, 4114]

[EC 1.1.1.266 created 2001, modified 2013]

EC 1.1.1.267
Accepted name: 1-deoxy-D-xylulose-5-phosphate reductoisomerase

Reaction: 2-C-methyl-D-erythritol 4-phosphate + NADP+ = 1-deoxy-D-xylulose 5-phosphate + NADPH + H+

Other name(s): DXP-reductoisomerase; 1-deoxy-D-xylulose-5-phosphate isomeroreductase; 2-C-methyl-D-erythritol
4-phosphate (MEP) synthase

Systematic name: 2-C-methyl-D-erythritol-4-phosphate:NADP+ oxidoreductase (isomerizing)
Comments: The enzyme requires Mn2+, Co2+ or Mg2+ for activity, with the first being most effective. The en-

zyme from several eubacteria, including Escherichia coli, forms part of an alternative nonmevalonate
pathway for terpenoid biosynthesis (for diagram, click here). The mechanism has been shown to be a
retroaldol/aldol reaction [2662].

References: [3780, 2662]

[EC 1.1.1.267 created 2001]

EC 1.1.1.268
Accepted name: 2-(R)-hydroxypropyl-CoM dehydrogenase

Reaction: 2-(R)-hydroxypropyl-CoM + NAD+ = 2-oxopropyl-CoM + NADH + H+

Other name(s): 2-(2-(R)-hydroxypropylthio)ethanesulfonate dehydrogenase
Systematic name: 2-[2-(R)-hydroxypropylthio]ethanesulfonate:NAD+ oxidoreductase

Comments: The enzyme is highly specific for (R)-2-hydroxyalkyl thioethers of CoM, in contrast to EC 1.1.1.269,
2-(S)-hydroxypropyl-CoM dehydrogenase, which is highly specific for the (S)-enantiomer. This
enzyme forms component III of a four-component enzyme system comprising EC 4.4.1.23 (2-
hydroxypropyl-CoM lyase; component I), EC 1.8.1.5 [2-oxopropyl-CoM reductase (carboxylating);
component II], EC 1.1.1.268 [2-(R)-hydroxypropyl-CoM dehydrogenase; component III] and EC
1.1.1.269 [2-(S)-hydroxypropyl-CoM dehydrogenase; component IV] that is involved in epoxyalkane
carboxylation in Xanthobacter sp. strain Py2.

References: [62]
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[EC 1.1.1.268 created 2001]

EC 1.1.1.269
Accepted name: 2-(S)-hydroxypropyl-CoM dehydrogenase

Reaction: (2S)-2-hydroxypropyl-CoM + NAD+ = 2-oxopropyl-CoM + NADH + H+

Other name(s): 2-(2-(S)-hydroxypropylthio)ethanesulfonate dehydrogenase; 2-[2-(S)-
hydroxypropylthio]ethanesulfonate:NAD+ oxidoreductase

Systematic name: 2-[(2S)-2-hydroxypropyl]sulfanylethanesulfonate:NAD+ oxidoreductase
Comments: The enzyme is highly specific for (2S)-2-hydroxyalkyl thioethers of CoM, in contrast to EC 1.1.1.268,

2-(R)-hydroxypropyl-CoM dehydrogenase, which is highly specific for the (R)-enantiomer. This
enzyme forms component IV of a four-component enzyme system EC 4.4.1.23 (2-hydroxypropyl-
CoM lyase; component I), EC 1.8.1.5 [2-oxopropyl-CoM reductase (carboxylating); component II],
EC 1.1.1.268 [2-(R)-hydroxypropyl-CoM dehydrogenase; component III] and EC 1.1.1.269 [2-(S)-
hydroxypropyl-CoM dehydrogenase; component IV].html”¿click here that is involved in epoxyalkane
carboxylation in Xanthobacter sp. strain Py2.

References: [62]

[EC 1.1.1.269 created 2001]

EC 1.1.1.270
Accepted name: 3β-hydroxysteroid 3-dehydrogenase

Reaction: a 3β-hydroxysteroid + NADP+ = a 3-oxosteroid + NADPH + H+

Other name(s): 3-keto-steroid reductase; 3-KSR; HSD17B7 (gene name); ERG27 (gene name)
Systematic name: 3β-hydroxysteroid:NADP+ 3-oxidoreductase

Comments: The enzyme acts on multiple 3β-hydroxysteroids. Participates in the biosynthesis of zemosterol and
cholesterol, where it catalyses the reaction in the opposite direction to that shown. The mammalian
enzyme is bifunctional and also catalyses EC 1.1.1.62, 17β-estradiol 17-dehydrogenase [2398].

References: [3763, 297, 1133, 2398]

[EC 1.1.1.270 created 2002, modified 2012]

EC 1.1.1.271
Accepted name: GDP-L-fucose synthase

Reaction: GDP-β-L-fucose + NADP+ = GDP-4-dehydro-α-D-rhamnose + NADPH + H+

Other name(s): GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase; GDP-L-fucose:NADP+ 4-
oxidoreductase (3,5-epimerizing)

Systematic name: GDP-β-L-fucose:NADP+ 4-oxidoreductase (3,5-epimerizing)
Comments: Both human and Escherichia coli enzymes can use NADH in place of NADPH to a slight extent.
References: [540, 2467, 2505, 3576]

[EC 1.1.1.271 created 2002, modified 2003]

EC 1.1.1.272
Accepted name: D-2-hydroxyacid dehydrogenase (NADP+)

Reaction: an (R)-2-hydroxycarboxylate + NADP+ = a 2-oxocarboxylate + NADPH + H+

Other name(s): ddh (gene name)
Systematic name: (R)-2-hydroxycarboxylate:NADP+ oxidoreductase

Comments: This enzyme, characterized from the halophilic archaeon Haloferax mediterranei and the mold As-
pergillus oryzae, catalyses a stereospecific reduction of 2-oxocarboxylic acids into the corresponding
D-2-hydroxycarboxylic acids. The enzyme prefers substrates with a main chain of 5 carbons (such as
4-methyl-2-oxopentanoate) to those with a shorter chain, and can use NADH with much lower effi-
ciency. cf. EC 1.1.1.345, (d)-2-hydroxyacid dehydrogenase (NAD+).

References: [851, 3500]
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[EC 1.1.1.272 created 2002, modified 2013]

EC 1.1.1.273
Accepted name: vellosimine dehydrogenase

Reaction: 10-deoxysarpagine + NADP+ = vellosimine + NADPH + H+

Systematic name: 10-deoxysarpagine:NADP+ oxidoreductase
Comments: Also acts on related alkaloids with an endo-aldehyde group as vellosimine (same stereochemistry at

C-16) but only slight activity with exo-aldehydes. Detected in many cell suspension cultures of plants
from the family Apocynaceae.

References: [2997]

[EC 1.1.1.273 created 2002]

EC 1.1.1.274
Accepted name: 2,5-didehydrogluconate reductase (2-dehydro-D-gluconate-forming)

Reaction: 2-dehydro-D-gluconate + NADP+ = 2,5-didehydro-D-gluconate + NADPH + H+

Other name(s): 2,5-diketo-D-gluconate reductase (ambiguous)
Systematic name: 2-dehydro-D-gluconate:NADP+ 2-oxidoreductase (2-dehydro-D-gluconate-forming)

Comments: The enzyme is involved in the catabolism of 2,5-didehydrogluconate. cf. EC 1.1.1.346, 2,5-
didehydrogluconate reductase (2-dehydro-L-gulonate-forming).

References: [3583]

[EC 1.1.1.274 created 2002, modified 2013]

EC 1.1.1.275
Accepted name: (+)-trans-carveol dehydrogenase

Reaction: (+)-trans-carveol + NAD+ = (+)-(S)-carvone + NADH + H+

Other name(s): carveol dehydrogenase
Systematic name: (+)-trans-carveol:NAD+ oxidoreductase

Comments: NADP+ cannot replace NAD+. Forms part of the monoterpenoid biosynthesis pathway in Carum
carvi (caraway) seeds.

References: [368]

[EC 1.1.1.275 created 2003]

EC 1.1.1.276
Accepted name: serine 3-dehydrogenase (NADP+)

Reaction: L-serine + NADP+ = 2-aminoacetaldehyde + CO2 + NADPH + H+ (overall reaction)
(1a) L-serine + NADP+ = 2-aminomalonate semialdehyde + NADPH + H+

(1b) 2-aminomalonate semialdehyde = 2-aminoacetaldehyde + CO2 (spontaneous)
Other name(s): serine 3-dehydrogenase

Systematic name: L-serine:NADP+ 3-oxidoreductase
Comments: NAD+ cannot replace NADP+ [cf. EC 1.1.1.387, serine 3-dehydrogenase (NAD+)].
References: [1096, 616]

[EC 1.1.1.276 created 2003, modified 2015]

EC 1.1.1.277
Accepted name: 3β-hydroxy-5β-steroid dehydrogenase

Reaction: 3β-hydroxy-5β-pregnane-20-one + NADP+ = 5β-pregnan-3,20-dione + NADPH + H+

Other name(s): 3β-hydroxysteroid 5β-oxidoreductase; 3β-hydroxysteroid 5β-progesterone oxidoreductase
Systematic name: 3β-hydroxy-5β-steroid:NADP+ 3-oxidoreductase

References: [3696, 3432, 2260]
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[EC 1.1.1.277 created 2003]

EC 1.1.1.278
Accepted name: 3β-hydroxy-5α-steroid dehydrogenase

Reaction: 3β-hydroxy-5α-pregnane-20-one + NADP+ = 5α-pregnan-3,20-dione + NADPH + H+

Systematic name: 3β-hydroxy-5α-steroid:NADP+ 3-oxidoreductase
References: [2260, 4135]

[EC 1.1.1.278 created 2003]

EC 1.1.1.279
Accepted name: (R)-3-hydroxyacid-ester dehydrogenase

Reaction: ethyl (R)-3-hydroxyhexanoate + NADP+ = ethyl 3-oxohexanoate + NADPH + H+

Other name(s): 3-oxo ester (R)-reductase
Systematic name: ethyl-(R)-3-hydroxyhexanoate:NADP+ 3-oxidoreductase

Comments: Also acts on ethyl (R)-3-oxobutanoate and some other (R)-3-hydroxy acid esters. The (R)- symbol is
allotted on the assumption that no substituents change the order of priority from O-3 > C-2 > C-4. A
subunit of yeast fatty acid synthase EC 2.3.1.86, fatty-acyl-CoA synthase system. cf. EC 1.1.1.280,
(S)-3-hydroxyacid ester dehydrogenase.

References: [1459]

[EC 1.1.1.279 created 1990 as EC 1.2.1.55, transferred 2003 to EC 1.1.1.279, modified 2018]

EC 1.1.1.280
Accepted name: (S)-3-hydroxyacid-ester dehydrogenase

Reaction: ethyl (S)-3-hydroxyhexanoate + NADP+ = ethyl 3-oxohexanoate + NADPH + H+

Other name(s): 3-oxo ester (S)-reductase
Systematic name: ethyl-(S)-3-hydroxyhexanoate:NADP+ 3-oxidoreductase

Comments: Also acts on 4-oxo- and 5-oxo-fatty acids and their esters. cf. EC 1.1.1.279 (R)-3-hydroxyacid-ester
dehydrogenase.

References: [1459]

[EC 1.1.1.280 created 1990 as EC 1.2.1.56, transferred 2003 to EC 1.1.1.280]

EC 1.1.1.281
Accepted name: GDP-4-dehydro-6-deoxy-D-mannose reductase

Reaction: GDP-α-D-rhamnose + NAD(P)+ = GDP-4-dehydro-α-D-rhamnose + NAD(P)H + H+

Other name(s): GDP-4-keto-6-deoxy-D-mannose reductase [ambiguous]; GDP-6-deoxy-D-lyxo-4-hexulose reductase;
Rmd; GDP-6-deoxy-D-mannose:NAD(P)+ 4-oxidoreductase (D-rhamnose-forming); GDP-6-deoxy-
α-D-mannose:NAD(P)+ 4-oxidoreductase (D-rhamnose-forming)

Systematic name: GDP-α-D-rhamnose:NAD(P)+ 4-oxidoreductase
Comments: This enzyme differs from EC 1.1.1.187, GDP-4-dehydro-D-rhamnose reductase, in that the only prod-

uct formed is GDP-α-D-rhamnose. D-Rhamnose is a constituent of lipopolysaccharides of Gram-
negative plant and human pathogenic bacteria.

References: [1972, 2377]

[EC 1.1.1.281 created 2004]

EC 1.1.1.282
Accepted name: quinate/shikimate dehydrogenase

Reaction: (1) L-quinate + NAD(P)+ = 3-dehydroquinate + NAD(P)H + H+

(2) shikimate + NAD(P)+ = 3-dehydroshikimate + NAD(P)H + H+
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Other name(s): YdiB
Systematic name: L-quinate:NAD(P)+ 3-oxidoreductase

Comments: This is the second shikimate dehydrogenase enzyme found in Escherichia coli and differs from EC
1.1.1.25, shikimate dehydrogenase, in that it can use both quinate and shikimate as substrate and ei-
ther NAD+ or NADP+ as acceptor.

References: [2527, 256]

[EC 1.1.1.282 created 2004]

EC 1.1.1.283
Accepted name: methylglyoxal reductase (NADPH)

Reaction: (S)-lactaldehyde + NADP+ = 2-oxopropanal + NADPH + H+

Other name(s): lactaldehyde dehydrogenase (NADP+); GRE2 (gene name); methylglyoxal reductase (NADPH-
dependent); lactaldehyde:NADP+ oxidoreductase

Systematic name: (S)-lactaldehyde:NADP+ oxidoreductase
Comments: The enzyme from the yeast Saccharomyces cerevisiae catalyses the reduction of a keto group in

a number of compounds, forming enantiopure products. Among the substrates are methylglyoxal
(which is reduced to (S)-lactaldehyde) [2669, 566], 3-methylbutanal [1426], hexane-2,5-dione [2652]
and 3-chloro-1-phenylpropan-1-one [611]. The enzyme differs from EC 1.1.1.78, methylglyoxal re-
ductase (NADH), which is found in mammals, by its coenzyme requirement, reaction direction, and
enantiomeric preference.

References: [2669, 566, 1426, 2652, 611, 393]

[EC 1.1.1.283 created 2005, modified 2013]

EC 1.1.1.284
Accepted name: S-(hydroxymethyl)glutathione dehydrogenase

Reaction: S-(hydroxymethyl)glutathione + NAD(P)+ = S-formylglutathione + NAD(P)H + H+

Other name(s): NAD-linked formaldehyde dehydrogenase (incorrect); formaldehyde dehydrogenase (incorrect);
formic dehydrogenase (incorrect); class III alcohol dehydrogenase; ADH3; χ-ADH; FDH (incor-
rect); formaldehyde dehydrogenase (glutathione) (incorrect); GS-FDH (incorrect); glutathione-
dependent formaldehyde dehydrogenase (incorrect); NAD-dependent formaldehyde dehydrogenase;
GD-FALDH; NAD- and glutathione-dependent formaldehyde dehydrogenase

Systematic name: S-(hydroxymethyl)glutathione:NAD+ oxidoreductase
Comments: The substrate, S-(hydroxymethyl)glutathione, forms spontaneously from glutathione and formalde-

hyde; its rate of formation is increased in some bacteria by the presence of EC 4.4.1.22, S-
(hydroxymethyl)glutathione synthase. This enzyme forms part of the pathway that detoxifies
formaldehyde, since the product is hydrolysed by EC 3.1.2.12, S-formylglutathione hydrolase. The
human enzyme belongs to the family of zinc-dependent alcohol dehydrogenases. Also specifically
reduces S-nitrosylglutathione.

References: [1712, 3233, 2280, 3309, 4009, 3127, 197]

[EC 1.1.1.284 created 2005 (EC 1.2.1.1 created 1961, modified 1982, modified 2002, part transferred 2005 to EC 1.1.1.284)]

EC 1.1.1.285
Accepted name: 3′′-deamino-3′′-oxonicotianamine reductase

Reaction: 2′-deoxymugineic acid + NAD(P)+ = 3′′-deamino-3′′-oxonicotianamine + NAD(P)H + H+

Systematic name: 2′-deoxymugineic acid:NAD(P)+ 3′′-oxidoreductase
References: [3519]

[EC 1.1.1.285 created 2005]

EC 1.1.1.286
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Accepted name: isocitrate—homoisocitrate dehydrogenase
Reaction: (1) isocitrate + NAD+ = 2-oxoglutarate + CO2 + NADH

(2) (1R,2S)-1-hydroxybutane-1,2,4-tricarboxylate + NAD+ = 2-oxoadipate + CO2 + NADH + H+

Other name(s): homoisocitrate—isocitrate dehydrogenase; PH1722
Systematic name: isocitrate(homoisocitrate):NAD+ oxidoreductase (decarboxylating)

Comments: Requires Mn2+ and K+ or NH4
+ for activity. Unlike EC 1.1.1.41, isocitrate dehydrogenase (NAD+)

and EC 1.1.1.87, homoisocitrate dehydrogenase, this enzyme, from Pyrococcus horikoshii, can use
both isocitrate and homoisocitrate as substrates. The enzyme may play a role in both the lysine and
glutamate biosynthesis pathways.

References: [2575]

[EC 1.1.1.286 created 2005]

EC 1.1.1.287
Accepted name: D-arabinitol dehydrogenase (NADP+)

Reaction: (1) D-arabinitol + NADP+ = D-xylulose + NADPH + H+

(2) D-arabinitol + NADP+ = D-ribulose + NADPH + H+

Other name(s): NADP+-dependent D-arabitol dehydrogenase; ARD1p; D-arabitol dehydrogenase 1
Systematic name: D-arabinitol:NADP+ oxidoreductase

Comments: The enzyme from the rust fungus Uromyces fabae can use D-arabinitol and D-mannitol as substrates
in the forward direction and D-xylulose, D-ribulose and, to a lesser extent, D-fructose as substrates
in the reverse direction. This enzyme carries out the reactions of both EC 1.1.1.11, D-arabinitol 4-
dehydrogenase and EC 1.1.1.250, D-arabinitol 2-dehydrogenase, but unlike them, uses NADP+ rather
than NAD+ as cofactor. D-Arabinitol is capable of quenching reactive oxygen species involved in
defense reactions of the host plant.

References: [2268]

[EC 1.1.1.287 created 2005]

EC 1.1.1.288
Accepted name: xanthoxin dehydrogenase

Reaction: xanthoxin + NAD+ = abscisic aldehyde + NADH + H+

Other name(s): xanthoxin oxidase; ABA2
Systematic name: xanthoxin:NAD+ oxidoreductase

Comments: Requires a molybdenum cofactor for activity. NADP+ cannot replace NAD+ and short-chain alco-
hols such as ethanol, isopropanol, butanol and cyclohexanol cannot replace xanthoxin as substrate
[1240]. Involved in the abscisic-acid biosynthesis pathway in plants, along with EC 1.2.3.14 (abscisic-
aldehyde oxidase), EC 1.13.11.51 (9-cis-epoxycarotenoid dioxygenase) and EC 1.14.13.93 [(+)-
abscisic acid 8′-hydroxylase]. Abscisic acid is a sesquiterpenoid plant hormone that is involved in the
control of a wide range of essential physiological processes, including seed development, germination
and responses to stress [1240].

References: [3535, 3411, 1240]

[EC 1.1.1.288 created 2005]

EC 1.1.1.289
Accepted name: sorbose reductase

Reaction: D-glucitol + NADP+ = L-sorbose + NADPH + H+

Other name(s): Sou1p
Systematic name: D-glucitol:NADP+ oxidoreductase

Comments: The reaction occurs predominantly in the reverse direction. This enzyme can also convert D-fructose
into D-mannitol, but more slowly. Belongs in the short-chain dehydrogenase family.

References: [1274, 1275, 3713, 3513]
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[EC 1.1.1.289 created 2006]

EC 1.1.1.290
Accepted name: 4-phosphoerythronate dehydrogenase

Reaction: 4-phospho-D-erythronate + NAD+ = (3R)-3-hydroxy-2-oxo-4-phosphooxybutanoate + NADH + H+

Other name(s): PdxB; PdxB 4PE dehydrogenase; 4-O-phosphoerythronate dehydrogenase; 4PE dehydrogenase;
erythronate-4-phosphate dehydrogenase

Systematic name: 4-phospho-D-erythronate:NAD+ 2-oxidoreductase
Comments: This enzyme catalyses a step in a bacterial pathway for the biosynthesis of pyridoxal 5′-phosphate.

The enzyme contains a tightly-bound NAD(H) cofactor that is not re-oxidized by free NAD+. In or-
der to re-oxidize the cofactor and restore enzyme activity, the enzyme catalyses the reduction of a 2-
oxo acid (such as 2-oxoglutarate, oxaloacetate, or pyruvate) to the respective (R)-hydroxy acid [3252].
cf. EC 1.1.1.399, 2-oxoglutarate reductase.

References: [2115, 2969, 4459, 1258, 3390, 3252]

[EC 1.1.1.290 created 2006, modified 2016]

EC 1.1.1.291
Accepted name: 2-hydroxymethylglutarate dehydrogenase

Reaction: (S)-2-hydroxymethylglutarate + NAD+ = 2-formylglutarate + NADH + H+

Other name(s): HgD
Systematic name: (S)-2-hydroxymethylglutarate:NAD+ oxidoreductase

Comments: NADP+ cannot replace NAD+. Forms part of the nicotinate-fermentation catabolism pathway in
Eubacterium barkeri. Other enzymes involved in this pathway are EC 1.17.1.5 (nicotinate dehy-
drogenase), EC 1.3.7.1 (6-hydroxynicotinate reductase), EC 3.5.2.18 (enamidase), EC 5.4.99.4 (2-
methyleneglutarate mutase), EC 5.3.3.6 (methylitaconate ∆-isomerase), EC 4.2.1.85 (dimethylmaleate
hydratase) and EC 4.1.3.32 (2,3-dimethylmalate lyase).

References: [61]

[EC 1.1.1.291 created 2006]

EC 1.1.1.292
Accepted name: 1,5-anhydro-D-fructose reductase (1,5-anhydro-D-mannitol-forming)

Reaction: 1,5-anhydro-D-mannitol + NADP+ = 1,5-anhydro-D-fructose + NADPH + H+

Other name(s): 1,5-anhydro-D-fructose reductase (ambiguous); AFR
Systematic name: 1,5-anhydro-D-mannitol:NADP+ oxidoreductase

Comments: This enzyme is present in some but not all Rhizobium species and belongs in the GFO/IDH/MocA
protein family [732]. This enzyme differs from hepatic 1,5-anhydro-D-fructose reductase, which
yields 1,5-anhydro-D-glucitol as the product (see EC 1.1.1.263). In Sinorhizobium morelense, the
product of the reaction, 1,5-anhydro-D-mannitol, can be further metabolized to D-mannose [2070].
The enzyme also reduces 1,5-anhydro-D-erythro-hexo-2,3-diulose and 2-ketoaldoses (called osones),
such as D-glucosone (D-arabino-hexos-2-ulose) and 6-deoxy-D-glucosone. It does not reduce com-
mon aldoses and ketoses, or non-sugar aldehydes and ketones [2070].

References: [2070, 732]

[EC 1.1.1.292 created 2007]

[1.1.1.293 Deleted entry. tropinone reductase I. This enzyme was already in the Enzyme List as EC 1.1.1.206, tropine
dehydrogenase so EC 1.1.1.293 has been withdrawn at the public-review stage]

[EC 1.1.1.293 created 2007, withdrawn while undergoing public review]

EC 1.1.1.294
Accepted name: chlorophyll(ide) b reductase
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Reaction: 71-hydroxychlorophyllide a + NAD(P)+ = chlorophyllide b + NAD(P)H + H+

Other name(s): chlorophyll b reductase; Chl b reductase
Systematic name: 71-hydroxychlorophyllide-a:NAD(P)+ oxidoreductase

Comments: This enzyme carries out the first step in the conversion of chlorophyll b to chlorophyll a. It is involved
in chlorophyll degradation, which occurs during leaf senescence [1575] and it also forms part of the
chlorophyll cycle, which interconverts chlorophyll a and b in response to changing light conditions
[1681, 3250].

References: [3362, 3363, 1575, 1681, 3250]

[EC 1.1.1.294 created 2007]

EC 1.1.1.295
Accepted name: momilactone-A synthase

Reaction: 3β-hydroxy-9β-pimara-7,15-diene-19,6β-olide + NAD(P)+ = momilactone A + NAD(P)H + H+

Other name(s): momilactone A synthase; OsMAS
Systematic name: 3β-hydroxy-9β-pimara-7,15-diene-19,6β-olide:NAD(P)+ oxidoreductase

Comments: The rice phytoalexin momilactone A is a diterpenoid secondary metabolite that is involved in the
defense mechanism of the plant. Momilactone A is produced in response to attack by a pathogen
through the perception of elicitor signal molecules such as chitin oligosaccharide, or after exposure
to UV irradiation. The enzyme, which catalyses the last step in the biosynthesis of momilactone A,
can use both NAD+ and NADP+ but activity is higher with NAD+ [136].

References: [136, 3508]

[EC 1.1.1.295 created 2008]

EC 1.1.1.296
Accepted name: dihydrocarveol dehydrogenase

Reaction: menth-8-en-2-ol + NAD+ = menth-8-en-2-one + NADH + H+

Other name(s): carveol dehydrogenase (ambiguous)
Systematic name: menth-8-en-2-ol:NAD+ oxidoreductase

Comments: This enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 forms part of
the carveol and dihydrocarveol degradation pathway. The enzyme accepts all eight stereoisomers
of menth-8-en-2-ol as substrate, although some isomers are converted faster than others. The pre-
ferred substrates are (+)-neoisodihydrocarveol, (+)-isodihydrocarveol, (+)-dihydrocarveol and (–)-
isodihydrocarveol.

References: [3999]

[EC 1.1.1.296 created 2008]

EC 1.1.1.297
Accepted name: limonene-1,2-diol dehydrogenase

Reaction: menth-8-ene-1,2-diol + NAD+ = 1-hydroxymenth-8-en-2-one + NADH + H+ (general reaction)
(1) (1S,2S,4R)-menth-8-ene-1,2-diol + NAD+ = (1S,4R)-1-hydroxymenth-8-en-2-one + NADH + H+

(2) (1R,2R,4S)-menth-8-ene-1,2-diol + NAD+ = (1R,4S)-1-hydroxymenth-8-en-2-one + NADH + H+

Other name(s): NAD+-dependent limonene-1,2-diol dehydrogenase
Systematic name: menth-8-ene-1,2-diol:NAD+ oxidoreductase

Comments: While the enzyme from the Gram-positive bacterium Rhodococcus erythropolis DCL14 can use both
(1S,2S,4R)- and (1R,2R,4S)-menth-8-ene-1,2-diol as substrate, activity is higher with (1S,2S,4R)-
menth-8-ene-1,2-diol as substrate.

References: [4000]

[EC 1.1.1.297 created 2008]
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EC 1.1.1.298
Accepted name: 3-hydroxypropionate dehydrogenase (NADP+)

Reaction: 3-hydroxypropanoate + NADP+ = malonate semialdehyde + NADPH + H+

Other name(s): 3-hydroxypropanoate dehydrogenase (NADP+); 3-hydroxypropionate:NADP+ oxidoreductase
Systematic name: 3-hydroxypropanoate:NADP+ oxidoreductase

Comments: Catalyses the reduction of malonate semialdehyde to 3-hydroxypropanoate, a key step in the 3-
hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutanoate cycles, autotrophic CO2
fixation pathways found in some green non-sulfur phototrophic bacteria and archaea, respectively
[3671, 265]. The enzyme from Chloroflexus aurantiacus is bifunctional, and also catalyses the up-
stream reaction in the pathway, EC 1.2.1.75 [1604]. Different from EC 1.1.1.59 [3-hydroxypropionate
dehydrogenase (NAD+)] by cofactor preference.

References: [3671, 265, 1604]

[EC 1.1.1.298 created 2009]

EC 1.1.1.299
Accepted name: malate dehydrogenase [NAD(P)+]

Reaction: (S)-malate + NAD(P)+ = oxaloacetate + NAD(P)H + H+

Other name(s): MdH II, NAD(P)+-dependent malate dehyrogenase
Systematic name: (S)-malate:NAD(P)+ oxidoreductase

Comments: This enzyme, which was characterized from the methanogenic archaeon Methanobacterium ther-
moautotrophicum, catalyses only the reduction of oxaloacetate, and can use NAD+ and NADP+ with
similar specific activity [3874]. Different from EC 1.1.1.37 (malate dehydrogenase (NAD+)), EC
1.1.1.82 (malate dehydrogenase (NADP+)) and EC 1.1.5.4 (malate dehydrogenase (quinone)).

References: [3874]

[EC 1.1.1.299 created 2009]

EC 1.1.1.300
Accepted name: NADP-retinol dehydrogenase

Reaction: retinol + NADP+ = retinal + NADPH + H+

Other name(s): all-trans retinal reductase (ambiguous); all-trans-retinol dehydrogenase; NADP(H)-dependent retinol
dehydrogenase/reductase; RDH11; RDH12; RDH13; RDH14; retinol dehydrogenase 12; retinol dehy-
drogenase 14; retinol dehydrogenase [NADP+]; RalR1; PSDR1

Systematic name: retinol:NADP+ oxidoreductase
Comments: Greater catalytic efficiency in the reductive direction. This observation, and the enzyme’s localiza-

tion at the entrance to the mitochondrial matrix, suggest that it may function to protect mitochondria
against oxidative stress associated with the highly reactive retinal produced from dietary β-carotene
by EC 1.13.11.63 (β-carotene 15,15′-dioxygenase) [252]. Km-values for NADP+ and NADPH are
at least 800-fold lower than those for NAD+ and NADH [253, 1867]. This enzyme differs from EC
1.1.1.105, retinol dehydrogenase, which prefers NAD+ and NADH.

References: [253, 252, 1335, 1867]

[EC 1.1.1.300 created 2009]

EC 1.1.1.301
Accepted name: D-arabitol-phosphate dehydrogenase

Reaction: D-arabinitol 1-phosphate + NAD+ = D-xylulose 5-phosphate + NADH + H+

Other name(s): APDH; D-arabitol 1-phosphate dehydrogenase; D-arabitol 5-phosphate dehydrogenase; D-arabinitol
1-phosphate dehydrogenase; D-arabinitol 5-phosphate dehydrogenase

Systematic name: D-arabinitol-phosphate:NAD+ oxidoreductase
Comments: This enzyme participates in arabinitol catabolism. The enzyme also converts D-arabinitol 5-phosphate

to D-ribulose 5-phosphate at a lower rate [3048].
References: [3048]
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[EC 1.1.1.301 created 2010]

EC 1.1.1.302
Accepted name: 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5′-phosphate reductase

Reaction: 2,5-diamino-6-(5-phospho-D-ribitylamino)pyrimidin-4(3H)-one + NAD(P)+ = 2,5-diamino-6-(5-
phospho-D-ribosylamino)pyrimidin-4(3H)-one + NAD(P)H + H+

Other name(s): 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate reductase; MjaRED; MJ0671 (gene
name)

Systematic name: 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one:NAD(P)+ oxidoreductase
Comments: The reaction proceeds in the opposite direction. A step in riboflavin biosynthesis, NADPH

and NADH function equally well as reductant. Differs from EC 1.1.1.193 [5-amino-6-(5-
phosphoribosylamino)uracil reductase] since it does not catalyse the reduction of 5-amino-6-
ribosylaminopyrimidine-2,4(1H,3H)-dione 5′-phosphate [1262].

References: [1262, 555]

[EC 1.1.1.302 created 2010, modified 2011]

EC 1.1.1.303
Accepted name: diacetyl reductase [(R)-acetoin forming]

Reaction: (R)-acetoin + NAD+ = diacetyl + NADH + H+

Other name(s): (R)-acetoin dehydrogenase
Systematic name: (R)-acetoin:NAD+ oxidoreductase

Comments: The reaction is catalysed in the reverse direction. This activity is usually associated with butanediol
dehydrogenase activity (EC 1.1.1.4 or EC 1.1.1.76). While the butanediol dehydrogenase activity is
reversible, diacetyl reductase activity is irreversible. This enzyme has been reported in the yeast Sac-
charomyces cerevisiae [1460, 1239]. Different from EC 1.1.1.304, diacetyl reductase [(S)-acetoin
forming].

References: [1460, 1239]

[EC 1.1.1.303 created 2010 (EC 1.1.1.5 created 1961, modified 1976, part incorporated 2010)]

EC 1.1.1.304
Accepted name: diacetyl reductase [(S)-acetoin forming]

Reaction: (S)-acetoin + NAD+ = diacetyl + NADH + H+

Other name(s): (S)-acetoin dehydrogenase
Systematic name: (S)-acetoin:NAD+ oxidoreductase

Comments: The reaction is catalysed in the reverse direction. This activity is usually associated with butane-
diol dehydrogenase activity (EC 1.1.1.4 or EC 1.1.1.76). While the butanediol dehydrogenase ac-
tivity is reversible, diacetyl reductase activity is irreversible. This enzyme has been reported in
the bacteria Geobacillus stearothermophilus, Enterobacter aerogenes and Klebsiella pneumoniae
[1207, 501, 3967]. Different from EC 1.1.1.303, diacetyl reductase [(R)-acetoin forming].

References: [1207, 501, 3967]

[EC 1.1.1.304 created 2010 (EC 1.1.1.5 created 1961, modified 1976, part incorporated 2010)]

EC 1.1.1.305
Accepted name: UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating)

Reaction: UDP-α-D-glucuronate + NAD+ = UDP-β-L-threo-pentapyranos-4-ulose + CO2 + NADH + H+

Other name(s): UDP-GlcUA decarboxylase; ArnADH; UDP-glucuronate:NAD+ oxidoreductase (decarboxylating)
Systematic name: UDP-α-D-glucuronate:NAD+ oxidoreductase (decarboxylating)

Comments: The activity is part of a bifunctional enzyme also performing the reaction of EC 2.1.2.13 (UDP-4-
amino-4-deoxy-L-arabinose formyltransferase).

References: [390, 1164, 4219, 1165, 4329]
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[EC 1.1.1.305 created 2010]

EC 1.1.1.306
Accepted name: S-(hydroxymethyl)mycothiol dehydrogenase

Reaction: S-(hydroxymethyl)mycothiol + NAD+ = S-formylmycothiol + NADH + H+

Other name(s): NAD/factor-dependent formaldehyde dehydrogenase; mycothiol-dependent formaldehyde dehydroge-
nase

Systematic name: S-(hydroxymethyl)mycothiol:NAD+ oxidoreductase
Comments: S-hydroxymethylmycothiol is believed to form spontaneously from formaldehyde and mycothiol.

This enzyme oxidizes the product of this spontaneous reaction to S-formylmycothiol, in a reaction
that is analogous to EC 1.1.1.284, S-(hydroxymethyl)glutathione dehydrogenase.

References: [2560, 2819, 4052, 3136]

[EC 1.1.1.306 created 2010 as EC 1.2.1.66, transferred 2010 to EC 1.1.1.306]

EC 1.1.1.307
Accepted name: D-xylose reductase

Reaction: xylitol + NAD(P)+ = D-xylose + NAD(P)H + H+

Other name(s): XylR; XyrA; msXR; dsXR; monospecific xylose reductase; dual specific xylose reductase;
NAD(P)H-dependent xylose reductase; xylose reductase

Systematic name: xylitol:NAD(P)+ oxidoreductase
Comments: Xylose reductase catalyses the initial reaction in the xylose utilization pathway, the NAD(P)H depen-

dent reduction of xylose to xylitol.
References: [2766, 2783, 1621, 572, 4031, 999, 2170, 4252]

[EC 1.1.1.307 created 2010]

EC 1.1.1.308
Accepted name: sulfopropanediol 3-dehydrogenase

Reaction: (R)-2,3-dihydroxypropane-1-sulfonate + 2 NAD+ + H2O = (R)-3-sulfolactate + 2 NADH + 2 H+

Other name(s): DHPS 3-dehydrogenase (sulfolactate forming); 2,3-dihydroxypropane-1-sulfonate 3-dehydrogenase
(sulfolactate forming); dihydroxypropanesulfonate 3-dehydrogenase; hpsN (gene name)

Systematic name: (R)-2,3-dihydroxypropane-1-sulfonate:NAD+ 3-oxidoreductase
Comments: The enzyme is involved in degradation of (R)-2,3-dihydroxypropanesulfonate.
References: [2474]

[EC 1.1.1.308 created 2011]

EC 1.1.1.309
Accepted name: phosphonoacetaldehyde reductase (NADH)

Reaction: 2-hydroxyethylphosphonate + NAD+ = phosphonoacetaldehyde + NADH + H+

Other name(s): PhpC
Systematic name: 2-hydroxyethylphosphonate:NAD+ oxidoreductase

Comments: The enzyme from Streptomyces viridochromogenes catalyses a step in the biosynthesis of phos-
phinothricin tripeptide, the reduction of phosphonoacetaldehyde to 2-hydroxyethylphosphonate. The
preferred cofactor is NADH, lower activity with NADPH [325].

References: [325]

[EC 1.1.1.309 created 2011]

EC 1.1.1.310
Accepted name: (S)-sulfolactate dehydrogenase
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Reaction: (2S)-3-sulfolactate + NAD+ = 3-sulfopyruvate + NADH + H+

Other name(s): (2S)-3-sulfolactate dehydrogenase; SlcC
Systematic name: (2S)-sulfolactate:NAD+ oxidoreductase

Comments: This enzyme, isolated from the bacterium Chromohalobacter salexigens DSM 3043, acts only on
the (S)-enantiomer of 3-sulfolactate. Combined with EC 1.1.1.338, (2R)-3-sulfolactate dehydroge-
nase (NADP+), it provides a racemase system that converts (2S)-3-sulfolactate to (2R)-3-sulfolactate,
which is degraded further by EC 4.4.1.24, (2R)-sulfolactate sulfo-lyase. The enzyme is specific for
NAD+.

References: [794]

[EC 1.1.1.310 created 2011, modified 2013]

EC 1.1.1.311
Accepted name: (S)-1-phenylethanol dehydrogenase

Reaction: (S)-1-phenylethanol + NAD+ = acetophenone + NADH + H+

Other name(s): PED
Systematic name: (S)-1-phenylethanol:NAD+ oxidoreductase

Comments: The enzyme is involved in degradation of ethylbenzene.
References: [1975, 1532]

[EC 1.1.1.311 created 2011]

EC 1.1.1.312
Accepted name: 2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase

Reaction: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal + NADP+ = 2-oxo-2H-pyran-4,6-
dicarboxylate + NADPH + H+

Other name(s): 2-hydroxy-4-carboxymuconate 6-semialdehyde dehydrogenase; 4-carboxy-2-hydroxy-cis,cis-
muconate-6-semialdehyde:NADP+ oxidoreductase; α-hydroxy-γ-carboxymuconic ε-semialdehyde
dehydrogenase; 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC; ProD

Systematic name: 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal:NADP+ 2-oxidoreductase
Comments: The enzyme does not act on unsubstituted aliphatic or aromatic aldehydes or glucose; NAD+ can

replace NADP+, but with lower affinity. The enzyme was initially believed to act on 4-carboxy-
2-hydroxy-cis,cis-muconate 6-semialdehyde and produce 4-carboxy-2-hydroxy-cis,cis-muconate
[2423]. However, later studies showed that the substrate is the hemiacetal form [2422], and the prod-
uct is 2-oxo-2H-pyran-4,6-dicarboxylate [2421, 2426].

References: [2423, 2421, 2422, 2426]

[EC 1.1.1.312 created 1978 as EC 1.2.1.45, transferred 2011 to EC 1.1.1.312]

EC 1.1.1.313
Accepted name: sulfoacetaldehyde reductase

Reaction: isethionate + NADP+ = 2-sulfoacetaldehyde + NADPH + H+

Other name(s): isfD (gene name)
Systematic name: isethionate:NADP+ oxidoreductase

Comments: Catalyses the reaction only in the opposite direction. Involved in taurine degradation. The bacterium
Chromohalobacter salexigens strain DSM 3043 possesses two enzymes that catalyse this reaction,
a constitutive enzyme (encoded by isfD2) and an inducible enzyme (encoded by isfD). The latter is
induced by taurine, and is responsible for most of the activity observed in taurine-grown cells.

References: [2055]

[EC 1.1.1.313 created 2011]

[1.1.1.314 Deleted entry. germacrene A alcohol dehydrogenase. Now known to be catalyzed by EC 1.14.14.95, germacrene
A hydroxylase]
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[EC 1.1.1.314 created 2011, deleted 2018]

EC 1.1.1.315
Accepted name: 11-cis-retinol dehydrogenase

Reaction: 11-cis-retinol—[retinal-binding-protein] + NAD+ = 11-cis-retinal—[retinol-binding-protein] +
NADH + H+

Other name(s): RDH5 (gene name)
Systematic name: 11-cis-retinol:NAD+ oxidoreductase

Comments: This enzyme, abundant in the retinal pigment epithelium, catalyses the reduction of 11-cis-retinol
to 11-cis-retinal [3533] while the substrate is bound to the retinal-binding protein [4268]. This is a
crucial step in the regeneration of 11-cis-retinal, the chromophore of rhodopsin. The enzyme can also
accept other cis forms of retinol [4106].

References: [3533, 4106, 2247, 4268]

[EC 1.1.1.315 created 2011]

EC 1.1.1.316
Accepted name: L-galactose 1-dehydrogenase

Reaction: L-galactose + NAD+ = L-galactono-1,4-lactone + NADH + H+

Other name(s): L-GalDH; L-galactose dehydrogenase
Systematic name: L-galactose:NAD+ 1-oxidoreductase

Comments: The enzyme catalyses a step in the ascorbate biosynthesis in higher plants (Smirnoff-Wheeler path-
way). The activity with NADP+ is less than 10% of the activity with NAD+.

References: [2529, 1163, 4186, 2845]

[EC 1.1.1.316 created 2011]

EC 1.1.1.317
Accepted name: perakine reductase

Reaction: raucaffrinoline + NADP+ = perakine + NADPH + H+

Systematic name: raucaffrinoline:NADP+ oxidoreductase
Comments: The biosynthesis of raucaffrinoline from perakine is a side route of the ajmaline biosynthesis pathway.

The enzyme is a member of the aldo-keto reductase enzyme superfamily from higher plants.
References: [3732, 3236]

[EC 1.1.1.317 created 2011]

EC 1.1.1.318
Accepted name: eugenol synthase

Reaction: eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH + H+

Other name(s): LtCES1; EGS1; EGS2
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl ester reducing)

Comments: The enzyme acts in the opposite direction. The enzymes from the plants Ocimum basilicum (sweet
basil) [1991, 2301], Clarkia breweri and Petunia hybrida [1992] only accept coniferyl acetate and
form eugenol. The enzyme from Pimpinella anisum (anise) forms anol (from 4-coumaryl acetate) in
vivo, although the recombinant enzyme can form eugenol from coniferyl acetate [1990]. The enzyme
from Larrea tridentata (creosote bush) also forms chavicol from a coumaryl ester and can use NADH
[100].

References: [1991, 100, 2301, 1992, 1990]

[EC 1.1.1.318 created 2012]

EC 1.1.1.319
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Accepted name: isoeugenol synthase
Reaction: isoeugenol + acetate + NADP+ = coniferyl acetate + NADPH + H+

Other name(s): IGS1; t-anol/isoeugenol synthase 1
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl acetate reducing)

Comments: The enzyme acts in the opposite direction. In Ocimum basilicum (sweet basil), Clarkia breweri and
Petunia hybrida only isoeugenol is formed [1991, 1992]. However in Pimpinella anisum (anise) only
anol is formed in vivo, although the cloned enzyme does produce isoeugenol [1990].

References: [1991, 1992, 1990]

[EC 1.1.1.319 created 2012]

EC 1.1.1.320
Accepted name: benzil reductase [(S)-benzoin forming]

Reaction: (S)-benzoin + NADP+ = benzil + NADPH + H+

Other name(s): YueD
Systematic name: (S)-benzoin:NADP+ oxidoreductase

Comments: The enzyme also reduces 1-phenylpropane-1,2-dione. The enzyme from Bacillus cereus in addition
reduces 1,4-naphthoquinone and 1-(4-methylphenyl)-2-phenylethane-1,2-dione with high efficiency
[2425].

References: [2424, 2425]

[EC 1.1.1.320 created 2012]

EC 1.1.1.321
Accepted name: benzil reductase [(R)-benzoin forming]

Reaction: (R)-benzoin + NADP+ = benzil + NADPH + H+

Systematic name: (R)-benzoin:NADP+ oxidoreductase
Comments: The enzyme from the bacterium Xanthomonas oryzae is able to reduce enantioselectively only one of

the two carbonyl groups of benzil to give optically active (R)-benzoin.
References: [2024]

[EC 1.1.1.321 created 2012]

EC 1.1.1.322
Accepted name: (–)-endo-fenchol dehydrogenase

Reaction: (–)-endo-fenchol + NAD(P)+ = (+)-fenchone + NAD(P)H + H+

Other name(s): l-endo-fenchol dehydrogenase; FDH
Systematic name: (–)-endo-fenchol:NAD(P)+ oxidoreductase

Comments: Isolated from the plant Foeniculum vulgare (fennel). NADH is slightly preferred to NADPH.
References: [695]

[EC 1.1.1.322 created 2012]

EC 1.1.1.323
Accepted name: (+)-thujan-3-ol dehydrogenase

Reaction: (+)-thujan-3-ol + NAD(P)+ = (+)-thujan-3-one + NAD(P)H + H+

Other name(s): d-3-thujanol dehydrogenase; TDH
Systematic name: (+)-thujan-3-ol:NAD(P)+ oxidoreductase

Comments: Isolated from the plant Tanacetum vulgare (tansy). NADH is preferred to NADPH.
References: [695]

[EC 1.1.1.323 created 2012]
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EC 1.1.1.324
Accepted name: 8-hydroxygeraniol dehydrogenase

Reaction: (6E)-8-hydroxygeraniol + 2 NADP+ = (6E)-8-oxogeranial + 2 NADPH + 2 H+ (overall reaction)
(1a) (6E)-8-hydroxygeraniol + NADP+ = (6E)-8-hydroxygeranial + NADPH + H+

(1b) (6E)-8-hydroxygeraniol + NADP+ = (6E)-8-oxogeraniol + NADPH + H+

(1c) (6E)-8-hydroxygeranial + NADP+ = (6E)-8-oxogeranial + NADPH + H+

(1d) (6E)-8-oxogeraniol + NADP+ = (6E)-8-oxogeranial + NADPH + H+

Other name(s): 8-hydroxygeraniol oxidoreductase; CYP76B10; G10H; CrG10H; SmG10H; acyclic monoterpene pri-
mary alcohol:NADP+ oxidoreductase

Systematic name: (6E)-8-hydroxygeraniol:NADP+ oxidoreductase
Comments: Contains Zn2+. The enzyme catalyses the oxidation of (6E)-8-hydroxygeraniol to (6E)-8-oxogeranial

via either (6E)-8-hydroxygeranial or (6E)-8-oxogeraniol. Also acts on geraniol, nerol and citronellol.
May be identical to EC 1.1.1.183 geraniol dehydrogenase. The recommended numbering of geraniol
gives 8-hydroxygeraniol as the substrate rather than 10-hydroxygeraniol as used by references 1 and
2. See prenol nomenclature Pr-1.

References: [1630, 1347]

[EC 1.1.1.324 created 2012]

EC 1.1.1.325
Accepted name: sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming)

Reaction: (1) L-threo-7,8-dihydrobiopterin + NADP+ = sepiapterin + NADPH + H+

(2) L-threo-tetrahydrobiopterin + 2 NADP+ = 6-pyruvoyl-5,6,7,8-tetrahydropterin + 2 NADPH + 2 H+

Systematic name: L-threo-7,8-dihydrobiopterin:NADP+ oxidoreductase
Comments: This enzyme, isolated from the bacterium Chlorobium tepidum, catalyses the final step in the de novo

synthesis of tetrahydrobiopterin from GTP. cf. EC 1.1.1.153, sepiapterin reductase (L-erythro-7,8-
dihydrobiopterin forming).

References: [605, 3744]

[EC 1.1.1.325 created 2012]

EC 1.1.1.326
Accepted name: zerumbone synthase

Reaction: 10-hydroxy-α-humulene + NAD+ = zerumbone + NADH + H+

Other name(s): ZSD1
Systematic name: 10-hydroxy-α-humulene:NAD+ oxidoreductase

Comments: The enzyme was cloned from shampoo ginger, Zingiber zerumbet.
References: [2863]

[EC 1.1.1.326 created 2012]

EC 1.1.1.327
Accepted name: 5-exo-hydroxycamphor dehydrogenase

Reaction: 5-exo-hydroxycamphor + NAD+ = bornane-2,5-dione + NADH + H+

Other name(s): F-dehydrogenase; FdeH
Systematic name: 5-exo-hydroxycamphor:NAD+ oxidoreductase

Comments: Contains Zn2+. Isolated from Pseudomonas putida, and involved in degradation of (+)-camphor.
References: [3176, 1998, 110]

[EC 1.1.1.327 created 2012]

EC 1.1.1.328
Accepted name: nicotine blue oxidoreductase
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Reaction: 3,3′-bipyridine-2,2′,5,5′,6,6′-hexol + NAD(P)+ = (E)-2,2′,5,5′-tetrahydroxy-6H,6′H-[3,3′-
bipyridinylidene]-6,6′-dione + NAD(P)H + H+

Other name(s): nboR (gene name)
Systematic name: 3,3′-bipyridine-2,2′,5,5′,6,6′-hexol:NADP+ 11-oxidoreductase

Comments: The enzyme, characterized from the nicotine degrading bacterium Arthrobacter nicotinovorans,
catalyses the reduction of ”nicotine blue” to its hydroquinone form (the opposite direction from that
shown). Nicotine blue is the name given to the compound formed by the autocatalytic condensation of
two molecules of 2,3,6-trihydroxypyridine, an intermediate in the nicotine degradation pathway. The
main role of the enzyme may be to prevent the intracellular formation of nicotine blue semiquinone
radicals, which by redox cycling would lead to the formation of toxic reactive oxygen species. The
enzyme possesses a slight preference for NADH over NADPH.

References: [2535]

[EC 1.1.1.328 created 2012]

EC 1.1.1.329
Accepted name: 2-deoxy-scyllo-inosamine dehydrogenase

Reaction: 2-deoxy-scyllo-inosamine + NAD(P)+ = 3-amino-2,3-dideoxy-scyllo-inosose + NAD(P)H + H+

Other name(s): neoA (gene name); kanK (gene name, ambiguous); kanE (gene name, ambiguous)
Systematic name: 2-deoxy-scyllo-inosamine:NAD(P)+ 1-oxidoreductase

Comments: Requires zinc. Involved in the biosynthetic pathways of several clinically important aminocyclitol
antibiotics, including kanamycin, neomycin and ribostamycin. cf. EC 1.1.99.38, 2-deoxy-scyllo-
inosamine dehydrogenase (AdoMet-dependent).

References: [2068, 2763]

[EC 1.1.1.329 created 2012]

EC 1.1.1.330
Accepted name: very-long-chain 3-oxoacyl-CoA reductase

Reaction: a very-long-chain (3R)-3-hydroxyacyl-CoA + NADP+ = a very-long-chain 3-oxoacyl-CoA + NADPH
+ H+

Other name(s): very-long-chain 3-ketoacyl-CoA reductase; very-long-chain β-ketoacyl-CoA reductase; KCR (gene
name); IFA38 (gene name)

Systematic name: (3R)-3-hydroxyacyl-CoA:NADP+ oxidoreductase
Comments: The second component of the elongase, a microsomal protein complex responsible for extend-

ing palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs.
The enzyme is active with substrates with chain length of C16 to C34, depending on the species.
cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 4.2.1.134, very-long-chain (3R)-3-
hydroxyacyl-[acyl-carrier protein] dehydratase, and EC 1.3.1.93, very-long-chain enoyl-CoA reduc-
tase.

References: [231, 1358, 232]

[EC 1.1.1.330 created 2012]

EC 1.1.1.331
Accepted name: secoisolariciresinol dehydrogenase

Reaction: (–)-secoisolariciresinol + 2 NAD+ = (–)-matairesinol + 2 NADH + 2 H+

Systematic name: (–)-secoisolariciresinol:NAD+ oxidoreductase
Comments: Isolated from the plants Forsythia intermedia [4275] and Podophyllum peltatum [4275, 4394, 2590].

An intermediate lactol is detected in vitro.
References: [4275, 4394, 2590]

[EC 1.1.1.331 created 2012]
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EC 1.1.1.332
Accepted name: chanoclavine-I dehydrogenase

Reaction: chanoclavine-I + NAD+ = chanoclavine-I aldehyde + NADH + H+

Other name(s): easD (gene name); fgaDH (gene name)
Systematic name: chanoclavine-I:NAD+ oxidoreductase

Comments: The enzyme catalyses a step in the pathway of ergot alkaloid biosynthesis in certain fungi.
References: [4096, 4095]

[EC 1.1.1.332 created 2012]

EC 1.1.1.333
Accepted name: decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose 2-reductase

Reaction: trans,octacis-decaprenylphospho-β-D-arabinofuranose + NAD+ = trans,octacis-decaprenylphospho-
β-D-erythro-pentofuranosid-2-ulose + NADH + H+

Other name(s): decaprenylphospho-β-D-ribofuranose 2′-epimerase; Rv3791; DprE2
Systematic name: trans,octacis-decaprenylphospho-β-D-arabinofuranose:NAD+ 2-oxidoreductase

Comments: The reaction is catalysed in the reverse direction. The enzyme, isolated from the bacterium My-
cobacterium smegmatis, is involved, along with EC 1.1.98.3, decaprenylphospho-β-D-ribofuranose
2-oxidase, in the epimerization of trans,octacis-decaprenylphospho-β-D-ribofuranose to trans,octacis-
decaprenylphospho-β-D-arabinoofuranose, the arabinosyl donor for the biosynthesis of mycobacterial
cell wall arabinan polymers.

References: [3925]

[EC 1.1.1.333 created 2012]

EC 1.1.1.334
Accepted name: methylecgonone reductase

Reaction: ecgonine methyl ester + NADP+ = ecgonone methyl ester + NADPH + H+

Other name(s): MecgoR (gene name)
Systematic name: ecgonine methyl ester:NADP+ oxidoreductase

Comments: The enzyme from the plant Erythroxylum coca catalyses the penultimate step in the biosynthe-
sis of cocaine. In vivo the reaction proceeds in the opposite direction. With NADH instead of
NADPH the reaction rate is reduced to 14%. The enzyme also reduces tropinone, nortropinone and
6-hydroxytropinone but with lower reaction rates.

References: [1746]

[EC 1.1.1.334 created 2012]

EC 1.1.1.335
Accepted name: UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase

Reaction: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate + NAD+ = UDP-2-acetamido-2-deoxy-α-D-ribo-
hex-3-uluronate + NADH + H+

Other name(s): WlbA; WbpB
Systematic name: UDP-N-acetyl-2-amino-2-deoxy-α-D-glucuronate:NAD+ 3-oxidoreductase

Comments: This enzyme participates in the biosynthetic pathway for UDP-α-D-ManNAc3NAcA (UDP-2,3-
diacetamido-2,3-dideoxy-α-D-mannuronic acid), an important precursor of B-band lipopolysaccha-
ride. The enzymes from Pseudomonas aeruginosa serotype O5 and Thermus thermophilus form a
complex with the the enzyme catalysing the next step the pathway (EC 2.6.1.98, UDP-2-acetamido-
2-deoxy-ribo-hexuluronate aminotransferase). The enzyme also possesses an EC 1.1.99.2 (L-2-
hydroxyglutarate dehydrogenase) activity, and utilizes the 2-oxoglutarate produced by EC 2.6.1.98
to regenerate the tightly bound NAD+. The enzymes from Bordetella pertussis and Chromobacterium
violaceum do not bind NAD+ as tightly and do not require 2-oxoglutarate to function.

References: [4184, 2140, 3865, 3866]
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[EC 1.1.1.335 created 2012]

EC 1.1.1.336
Accepted name: UDP-N-acetyl-D-mannosamine dehydrogenase

Reaction: UDP-N-acetyl-α-D-mannosamine + 2 NAD+ + H2O = UDP-N-acetyl-α-D-mannosaminuronate + 2
NADH + 2 H+

Other name(s): UDP-ManNAc 6-dehydrogenase; wecC (gene name)
Systematic name: UDP-N-acetyl-α-D-mannosamine:NAD+ 6-oxidoreductase

Comments: Part of the pathway for acetamido sugar biosynthesis in bacteria and archaea. The enzyme has no ac-
tivity with NADP+.

References: [2728]

[EC 1.1.1.336 created 2012]

EC 1.1.1.337
Accepted name: L-2-hydroxycarboxylate dehydrogenase (NAD+)

Reaction: a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxocarboxylate + NADH + H+

Other name(s): (R)-sulfolactate:NAD+ oxidoreductase; L-sulfolactate dehydrogenase; (R)-sulfolactate dehydroge-
nase; L-2-hydroxyacid dehydrogenase (NAD+); ComC

Systematic name: (2S)-2-hydroxycarboxylate:NAD+ oxidoreductase
Comments: The enzyme from the archaeon Methanocaldococcus jannaschii acts on multiple (S)-2-

hydroxycarboxylates including (2R)-3-sulfolactate, (S)-malate, (S)-lactate, and (S)-2-
hydroxyglutarate [1256]. Note that (2R)-3-sulfolactate has the same stereo configuration as (2S)-2-
hydroxycarboxylates.

References: [1261, 1260, 1256, 3159]

[EC 1.1.1.337 created 2012]

EC 1.1.1.338
Accepted name: (2R)-3-sulfolactate dehydrogenase (NADP+)

Reaction: (2R)-3-sulfolactate + NADP+ = 3-sulfopyruvate + NADPH + H+

Other name(s): (R)-sulfolactate:NADP+ oxidoreductase; L-sulfolactate dehydrogenase; (R)-sulfolactate dehydroge-
nase; ComC

Systematic name: (2R)-3-sulfolactate:NADP+ oxidoreductase
Comments: The enzyme from the bacterium Chromohalobacter salexigens can only utilize NADP+. It functions

both biosynthetically in coenzyme M biosynthesis and degradatively, in the degradation of sulfolac-
tate. It can not use (S)-malate and (S)-lactate.

References: [794]

[EC 1.1.1.338 created 2012]

EC 1.1.1.339
Accepted name: dTDP-6-deoxy-L-talose 4-dehydrogenase (NAD+)

Reaction: dTDP-6-deoxy-β-L-talose + NAD+ = dTDP-4-dehydro-β-L-rhamnose + NADH + H+

Other name(s): tll (gene name)
Systematic name: dTDP-6-deoxy-β-L-talose:NAD+ 4-oxidoreductase

Comments: The enzyme has been characterized from the bacterium Aggregatibacter actinomycetemcomitans, in
which it participates in the biosynthesis of the serotype c-specific polysaccharide antigen. Shows no
activity with NADP+.

References: [2717]

[EC 1.1.1.339 created 2012]
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EC 1.1.1.340
Accepted name: 1-deoxy-11β-hydroxypentalenate dehydrogenase

Reaction: 1-deoxy-11β-hydroxypentalenate + NAD+ = 1-deoxy-11-oxopentalenate + NADH + H+

Other name(s): 1-deoxy-11β-hydroxypentalenic acid dehydrogenase; ptlF (gene name); penF (gene name)
Systematic name: 1-deoxy-11β-hydroxypentalenate:NAD+ oxidoreductase

Comments: Isolated from the bacterium Streptomyces avermitilis and present in many other Streptomyces species.
Part of the pathway for pentalenolactone biosynthesis.

References: [4390]

[EC 1.1.1.340 created 2012]

EC 1.1.1.341
Accepted name: CDP-abequose synthase

Reaction: CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+

Other name(s): rfbJ (gene name)
Systematic name: CDP-α-D-abequose:NADP+ 4-oxidoreductase

Comments: Isolated from Yersinia pseudotuberculosis [1891, 3880] and Salmonella enterica [1891, 4271].
References: [1891, 4271, 3880]

[EC 1.1.1.341 created 2012]

EC 1.1.1.342
Accepted name: CDP-paratose synthase

Reaction: CDP-α-D-paratose + NADP+ = CDP-4-dehydro-3,6-dideoxy-α-D-glucose + NADPH + H+

Other name(s): rfbS (gene name)
Systematic name: CDP-α-D-paratose:NADP+ 4-oxidoreductase

Comments: The enzyme is involved in synthesis of paratose and tyvelose, unusual 3,6-dideoxyhexose sugars
that form part of the O-antigen in the lipopolysaccharides of several enteric bacteria. Isolated from
Salmonella enterica subsp. enterica serovar Typhi (Salmonella typhi).

References: [4035, 1349]

[EC 1.1.1.342 created 2012]

EC 1.1.1.343
Accepted name: phosphogluconate dehydrogenase (NAD+-dependent, decarboxylating)

Reaction: 6-phospho-D-gluconate + NAD+ = D-ribulose 5-phosphate + CO2 + NADH + H+

Other name(s): 6-PGDH (ambiguous); gntZ (gene name); GNDl
Systematic name: 6-phospho-D-gluconate:NAD+ 2-oxidoreductase (decarboxylating)

Comments: Highly specific for NAD+. The enzyme catalyses both the oxidation and decarboxylation of 6-
phospho-D-gluconate. In the bacterium Methylobacillus flagellatus the enzyme participates in a
formaldehyde oxidation pathway [597]. cf. EC 1.1.1.44, phosphogluconate dehydrogenase (NADP+-
dependent, decarboxylating).

References: [1939, 2846, 4423, 597]

[EC 1.1.1.343 created 2013]

EC 1.1.1.344
Accepted name: dTDP-6-deoxy-L-talose 4-dehydrogenase [NAD(P)+]

Reaction: dTDP-6-deoxy-β-L-talose + NAD(P)+ = dTDP-4-dehydro-β-L-rhamnose + NAD(P)H + H+

Other name(s): tal (gene name)
Systematic name: dTDP-6-deoxy-β-L-talose:NAD(P)+ 4-oxidoreductase

Comments: The enzyme works equally well with NAD+ and NADP+.
References: [1814]
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[EC 1.1.1.344 created 2013]

EC 1.1.1.345
Accepted name: D-2-hydroxyacid dehydrogenase (NAD+)

Reaction: an (R)-2-hydroxycarboxylate + NAD+ = a 2-oxocarboxylate + NADH + H+

Other name(s): LdhA; HdhD; D-2-hydroxyisocaproate dehydrogenase; R-HicDH; D-HicDH; (R)-2-hydroxy-4-
methylpentanoate:NAD+ oxidoreductase; (R)-2-hydroxyisocaproate dehydrogenase; D-mandelate
dehydrogenase (ambiguous)

Systematic name: (R)-2-hydroxycarboxylate:NAD+ oxidoreductase
Comments: The enzymes, characterized from bacteria (Peptoclostridium difficile, Enterococcus faecalis and

from lactic acid bacteria) prefer substrates with a main chain of 5 carbons (such as 4-methyl-2-
oxopentanoate) to those with a shorter chain. It also utilizes phenylpyruvate. The enzyme from the
halophilic archaeon Haloferax mediterranei prefers substrates with a main chain of 3-4 carbons (pyru-
vate and 2-oxobutanoate). cf. EC 1.1.1.272, (d)-2-hydroxyacid dehydrogenase (NADP+).

References: [796, 344, 1908, 4076, 533, 2571]

[EC 1.1.1.345 created 2013]

EC 1.1.1.346
Accepted name: 2,5-didehydrogluconate reductase (2-dehydro-L-gulonate-forming)

Reaction: 2-dehydro-L-gulonate + NADP+ = 2,5-didehydro-D-gluconate + NADPH + H+

Other name(s): 2,5-diketo-D-gluconate-reductase (ambiguous); YqhE reductase; dkgA (gene name); dkgB (gene
name)

Systematic name: 2-dehydro-D-gluconate:NADP+ 2-oxidoreductase (2-dehydro-L-gulonate-forming)
Comments: The enzyme is involved in ketogluconate metabolism, and catalyses the reaction in vivo in the reverse

direction to that shown [3584]. It is used in the commercial microbial production of ascorbate. cf. EC
1.1.1.274, 2,5-didehydrogluconate reductase (2-dehydro-D-gluconate-forming).

References: [3584, 2543, 4412, 2396, 1901]

[EC 1.1.1.346 created 2013]

EC 1.1.1.347
Accepted name: geraniol dehydrogenase (NAD+)

Reaction: geraniol + NAD+ = geranial + NADH + H+

Other name(s): GeDH; geoA (gene name)
Systematic name: geraniol:NAD+ oxidoreductase

Comments: The enzyme from the bacterium Castellaniella defragrans is most active in vitro with perillyl alcohol
[2312]. The enzyme from the prune mite Carpoglyphus lactis also acts (more slowly) on farnesol but
not on nerol [2809].

References: [2809, 2312]

[EC 1.1.1.347 created 2013]

EC 1.1.1.348
Accepted name: (3R)-2′-hydroxyisoflavanone reductase

Reaction: a (4R)-4,2′-dihydroxyisoflavan + NADP+ = a (3R)-2′-hydroxyisoflavanone + NADPH + H+

Other name(s): vestitone reductase; pterocarpin synthase (incorrect); pterocarpan synthase (incorrect)
Systematic name: (3R)-2′-hydroxyisoflavanone:NADP+ 4-oxidoreductase

Comments: This plant enzyme participates in the biosynthesis of the pterocarpan phytoalexins medicarpin,
maackiain, and several forms of glyceollin. The enzyme has a strict stereo specificity for the 3R-
isoflavanones.

References: [323, 1315, 1316, 1317, 3460]
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[EC 1.1.1.348 created 1992 as EC 1.1.1.246, part transferred 2013 to EC 1.1.1.348]

EC 1.1.1.349
Accepted name: norsolorinic acid ketoreductase

Reaction: (1′S)-averantin + NADP+ = norsolorinic acid + NADPH + H+

Other name(s): aflD (gene name); nor-1 (gene name)
Systematic name: (1′S)-averantin:NADP+ oxidoreductase

Comments: Involved in the synthesis of aflatoxins in the fungus Aspergillus parasiticus.
References: [4295, 4474]

[EC 1.1.1.349 created 2013]

EC 1.1.1.350
Accepted name: ureidoglycolate dehydrogenase (NAD+)

Reaction: (S)-ureidoglycolate + NAD+ = N-carbamoyl-2-oxoglycine + NADH + H+

Systematic name: (S)-ureidoglycolate:NAD+ oxidoreductase
Comments: Involved in catabolism of purines. The enzyme from the bacterium Escherichia coli is specific for

NAD+ [1916]. cf. EC 1.1.1.154, ureidoglycolate dehydrogenase [NAD(P)+].
References: [711, 1916]

[EC 1.1.1.350 created 2013]

EC 1.1.1.351
Accepted name: phosphogluconate dehydrogenase [NAD(P)+-dependent, decarboxylating]

Reaction: 6-phospho-D-gluconate + NAD(P)+ = D-ribulose 5-phosphate + CO2 + NAD(P)H + H+

Systematic name: 6-phospho-D-gluconate:NAD(P)+ 2-oxidoreductase (decarboxylating)
Comments: The enzyme participates in the oxidative branch of the pentose phosphate pathway, whose main pur-

pose is to produce reducing power and pentose for biosynthetic reactions. Unlike EC 1.1.1.44, phos-
phogluconate dehydrogenase (NADP+-dependent, decarboxylating), it is not specific for NADP+ and
can accept both cofactors with similar efficiency. cf. EC 1.1.1.343, phosphogluconate dehydrogenase
[NAD+-dependent, decarboxylating].

References: [255, 3667, 2218]

[EC 1.1.1.351 created 2013]

EC 1.1.1.352
Accepted name: 5′-hydroxyaverantin dehydrogenase

Reaction: (1) (1′S,5′S)-hydroxyaverantin + NAD+ = 5′-oxoaverantin + NADH + H+

(2) (1′S,5′R)-hydroxyaverantin + NAD+ = 5′-oxoaverantin + NADH + H+

Other name(s): HAVN dehydrogenase; adhA (gene name)
Systematic name: (1′S,5′S)-hydroxyaverantin:NAD+ oxidoreductase

Comments: Isolated from the aflatoxin-producing mold Aspergillus parasiticus [3296]. Involved in aflatoxin
biosynthesis. 5′-Oxoaverantin will spontaneously form averufin by intramolecular ketalisation. cf.
EC 4.2.1.142, 5′-oxoaverantin cyclase.

References: [538, 3296]

[EC 1.1.1.352 created 2013]

EC 1.1.1.353
Accepted name: versiconal hemiacetal acetate reductase

Reaction: (1) versicolorone + NADP+ = 1′-hydroxyversicolorone + NADPH + H+

(2) versiconol acetate + NADP+ = versiconal hemiacetal acetate + NADPH + H+
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(3) versiconol + NADP+ = versiconal + NADPH + H+

Other name(s): VHA reductase; VHA reductase I; VHA reductase II; vrdA (gene name)
Systematic name: versiconol-acetate:NADP+ oxidoreductase

Comments: Isolated from the mold Aspergillus parasiticus. Involved in a metabolic grid that leads to aflatoxin
biosynthesis.

References: [2455, 3493]

[EC 1.1.1.353 created 2013]

EC 1.1.1.354
Accepted name: farnesol dehydrogenase (NAD+)

Reaction: (2E,6E)-farnesol + NAD+ = (2E,6E)-farnesal + NADH + H+

Other name(s): NAD+-farnesol dehydrogenase
Systematic name: (2E,6E)-farnesol:NAD+ 1-oxidoreductase

Comments: The enzyme from the prune mite Carpoglyphus lactis also acts on geraniol with greater activity
[cf. EC 1.1.1.347, geraniol dehydrogenase (NAD+)]. Unlike EC 1.1.1.216, farnesol dehydrogenase
(NADP+), this enzyme cannot use NADP+ as cofactor.

References: [2809]

[EC 1.1.1.354 created 2013]

EC 1.1.1.355
Accepted name: 2′-dehydrokanamycin reductase

Reaction: kanamycin A + NADP+ = 2′-dehydrokanamycin A + NADPH + H+

Other name(s): kanK (gene name, ambiguous)
Systematic name: kanamycin A:NADP+ oxidoreductase

Comments: Found in the bacterium Streptomyces kanamyceticus where it is involved in the conversion of
kanamycin B to kanamycin A.

References: [3704]

[EC 1.1.1.355 created 2013]

EC 1.1.1.356
Accepted name: GDP-L-colitose synthase

Reaction: GDP-β-L-colitose + NAD(P)+ = GDP-4-dehydro-3,6-dideoxy-α-D-mannose + NAD(P)H + H+

Other name(s): ColC
Systematic name: GDP-β-L-colitose:NAD(P)+ 4-oxidoreductase (5-epimerizing)

Comments: The enzyme is involved in biosynthesis of L-colitose, a 3,6-dideoxyhexose found in the O-antigen
of Gram-negative lipopolysaccharides, where it catalyses the reaction in the reverse direction. The
enzyme also performs the NAD(P)H-dependent epimerisation at C-5 of the sugar. The enzyme from
Yersinia pseudotuberculosis is Si-specific with respect to NAD(P)H [49].

References: [49]

[EC 1.1.1.356 created 2013]

EC 1.1.1.357
Accepted name: 3α-hydroxysteroid 3-dehydrogenase

Reaction: a 3α-hydroxysteroid + NAD(P)+ = a 3-oxosteroid + NAD(P)H + H+

Other name(s): 3α-hydroxysteroid dehydrogenase; AKR1C4 (gene name); AKR1C2 (gene name); hsdA (gene name)
Systematic name: 3α-hydroxysteroid:NAD(P)+ 3-oxidoreductase
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Comments: The enzyme acts on multiple 3α-hydroxysteroids, such as androsterone and 5 α-dihydrotestosterone.
The mammalian enzymes are involved in inactivation of steroid hormones, while the bacte-
rial enzymes are involved in steroid degradation. This entry stands for enzymes whose stereo-
specificity with respect to NAD+ or NADP+ is not known. [cf. EC 1.1.1.50, 3α-hydroxysteroid 3-
dehydrogenase (Si-specific) and EC 1.1.1.213, 3α-hydroxysteroid 3-dehydrogenase (Re-specific)].

References: [811, 1896, 2893, 2585, 2691]

[EC 1.1.1.357 created 2013]

EC 1.1.1.358
Accepted name: 2-dehydropantolactone reductase

Reaction: (R)-pantolactone + NADP+ = 2-dehydropantolactone + NADPH + H+

Other name(s): 2-oxopantoyl lactone reductase; 2-ketopantoyl lactone reductase; ketopantoyl lactone reductase; 2-
dehydropantoyl-lactone reductase

Systematic name: (R)-pantolactone:NADP+ oxidoreductase
Comments: The enzyme participates in an alternative pathway for biosynthesis of (R)-pantothenate (vitamin B5).

This entry covers enzymes whose stereo specificity for NADP+ is not known. cf. EC 1.1.1.168 2-
dehydropantolactone reductase (Re-specific) and EC 1.1.1.214, 2-dehydropantolactone reductase (Si-
specific).

References: [1416]

[EC 1.1.1.358 created 2013]

EC 1.1.1.359
Accepted name: aldose 1-dehydrogenase [NAD(P)+]

Reaction: an aldopyranose + NAD(P)+ = an aldono-1,5-lactone + NAD(P)H + H+

Systematic name: an aldopyranose:NAD(P)+ 1-oxidoreductase
Comments: The enzyme from the archaeon Sulfolobus solfataricus shows broad specificity towards aldoses (D-

glucose, D-galactose, D-xylose, L-arabinose, 6-deoxy-D-glucose, D-fucose) and can utilize NAD+ and
NADP+ with similar catalytic efficiency. It is involved in aldose catabolism via the branched variant
of the Entner-Doudoroff pathway.

References: [1196, 3557, 2121, 3856, 2540, 1336]

[EC 1.1.1.359 created 2013]

EC 1.1.1.360
Accepted name: glucose/galactose 1-dehydrogenase

Reaction: (1) D-glucopyranose + NADP+ = D-glucono-1,5-lactone + NADPH + H+

(2) D-galactopyranose + NADP+ = D-galactono-1,5-lactone + NADPH + H+

Other name(s): GdhA; dual-specific glucose/galactose dehydrogenase; glucose (galactose) dehydrogenase; glu-
cose/galactose dehydrogenase

Systematic name: D-glucose/D-galactose 1-dehydrogenase (NADPH)
Comments: A zinc protein. The enzyme from the archaeon Picrophilus torridus is involved in glucose and galac-

tose catabolism via the nonphosphorylative variant of the Entner-Doudoroff pathway. It shows 20-
fold higher activity with NADP+ compared to NAD+. The oxidation of D-glucose and D-galactose
is catalysed at a comparable rate (cf. EC 1.1.1.119, glucose 1-dehydrogenase (NADP+) and EC
1.1.1.120, galactose 1-dehydrogenase (NADP+)).

References: [91, 2540]

[EC 1.1.1.360 created 2013]

EC 1.1.1.361
Accepted name: glucose-6-phosphate 3-dehydrogenase
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Reaction: D-glucose 6-phosphate + NAD+ = 3-dehydro-D-glucose 6-phosphate + NADH + H+

Other name(s): ntdC (gene name)
Systematic name: D-glucose-6-phosphate:NAD+ oxidoreductase

Comments: The enzyme, found in the bacterium Bacillus subtilis, is involved in a kanosamine biosynthesis path-
way.

References: [4037]

[EC 1.1.1.361 created 2013]

EC 1.1.1.362
Accepted name: aklaviketone reductase

Reaction: aklavinone + NADP+ = aklaviketone + NADPH + H+

Other name(s): dauE (gene name); aknU (gene name)
Systematic name: aklavinone:NADP+ oxidoreductase

Comments: The enzyme is involved in the synthesis of the aklavinone aglycone, a common precursor for several
anthracycline antibiotics including aclacinomycins, daunorubicin and doxorubicin. The enzyme from
the Gram-negative bacterium Streptomyces sp. C5 produces daunomycin.

References: [818]

[EC 1.1.1.362 created 2013]

EC 1.1.1.363
Accepted name: glucose-6-phosphate dehydrogenase [NAD(P)+]

Reaction: D-glucose 6-phosphate + NAD(P)+ = 6-phospho-D-glucono-1,5-lactone + NAD(P)H + H+

Other name(s): G6PDH; G6PD; Glc6PD
Systematic name: D-glucose-6-phosphate:NAD(P)+ 1-oxidoreductase

Comments: The enzyme catalyses a step of the pentose phosphate pathway. The enzyme from the Gram-positive
bacterium Leuconostoc mesenteroides prefers NADP+ while the enzyme from the Gram-negative
bacterium Gluconacetobacter xylinus prefers NAD+. cf. EC 1.1.1.49, glucose-6-phosphate dehydro-
genase (NADP+) and EC 1.1.1.388, glucose-6-phosphate dehydrogenase (NAD+).

References: [2872, 2181, 669, 3102]

[EC 1.1.1.363 created 2013, modified 2015]

EC 1.1.1.364
Accepted name: dTDP-4-dehydro-6-deoxy-α-D-gulose 4-ketoreductase

Reaction: dTDP-6-deoxy-α-D-allose + NAD(P)+ = dTDP-4-dehydro-6-deoxy-α-D-gulose + NAD(P)H + H+

Other name(s): dTDP-4-dehydro-6-deoxygulose reductase; tylD (gene name); gerKI (gene name); chmD (gene
name); mydI (gene name)

Systematic name: dTDP-6-deoxy-α-D-allose:NAD(P)+ oxidoreductase
Comments: The enzyme forms an activated deoxy-α-D-allose, which is converted to mycinose after attachment to

the aglycones of several macrolide antibiotics, including tylosin, chalcomycin, dihydrochalcomycin,
and mycinamicin II.

References: [211, 99, 3882, 2066]

[EC 1.1.1.364 created 2013]

EC 1.1.1.365
Accepted name: D-galacturonate reductase

Reaction: L-galactonate + NADP+ = D-galacturonate + NADPH + H+

Other name(s): GalUR; gar1 (gene name)
Systematic name: L-galactonate:NADP+ oxidoreductase
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Comments: The enzyme from plants is involved in ascorbic acid (vitamin C) biosynthesis [1663, 32]. The en-
zyme from the fungus Trichoderma reesei (Hypocrea jecorina) is involved in a eukaryotic degradation
pathway of D-galacturonate. It is also active with D-glucuronate and glyceraldehyde [2085]. Neither
enzyme shows any activity with NADH.

References: [1663, 32, 2085, 2411]

[EC 1.1.1.365 created 2013]

EC 1.1.1.366
Accepted name: L-idonate 5-dehydrogenase (NAD+)

Reaction: L-idonate + NAD+ = 5-dehydro-D-gluconate + NADH + H+

Systematic name: L-idonate:NAD+ oxidoreductase
Comments: Involved in the catabolism of ascorbate (vitamin C) to tartrate. No activity is observed with NADP+

(cf. EC 1.1.1.264, L-idonate 5-dehydrogenase).
References: [772]

[EC 1.1.1.366 created 2013]

EC 1.1.1.367
Accepted name: UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase

Reaction: UDP-2-acetamido-2,6-dideoxy-β-L-talose + NAD(P)+ = UDP-2-acetamido-2,6-β-L-arabino-hexul-4-
ose + NAD(P)H + H+

Other name(s): WbjC; Cap5F
Systematic name: UDP-2-acetamido-2,6-dideoxy-L-talose:NADP+ oxidoreductase

Comments: Part of the biosynthesis of UDP-N-acetyl-L-fucosamine. Isolated from the bacteria Pseudomonas
aeruginosa and Staphylococcus aureus.

References: [1973, 2660, 2570]

[EC 1.1.1.367 created 2014]

EC 1.1.1.368
Accepted name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase

Reaction: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA + NAD+ = 6-oxocyclohex-1-ene-1-carbonyl-CoA +
NADH + H+

Systematic name: 6-hydroxycyclohex-1-ene-1-carbonyl-CoA:NAD+ 6-oxidoreductase
Comments: The enzyme participates in the central benzoyl-CoA degradation pathway of some anaerobic bacteria

such as Thauera aromatica.
References: [2112]

[EC 1.1.1.368 created 2014]

EC 1.1.1.369
Accepted name: D-chiro-inositol 1-dehydrogenase

Reaction: 1D-chiro-inositol + NAD+ = 2D-2,3,5/4,6-pentahydroxycyclohexanone + NADH + H+

Other name(s): DCI 1-dehydrogenase; IolG
Systematic name: 1D-chiro-inositol:NAD+ 1-oxidoreductase

Comments: The enzyme, found in the bacterium Bacillus subtilis, also catalyses the reaction of EC 1.1.1.18, inos-
itol 2-dehydrogenase, and can also use D-glucose and D-xylose. It shows trace activity with D-ribose
and D-fructose [3118]. It is part of a myo-inositol/D-chiro-inositol degradation pathway leading to
acetyl-CoA.

References: [3118, 4376]

[EC 1.1.1.369 created 2014]
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EC 1.1.1.370
Accepted name: scyllo-inositol 2-dehydrogenase (NAD+)

Reaction: scyllo-inositol + NAD+ = 2,4,6/3,5-pentahydroxycyclohexanone + NADH + H+

Other name(s): iolX (gene name)
Systematic name: scyllo-inositol:NAD+ 2-oxidoreductase

Comments: The enzyme, found in the bacterium Bacillus subtilis, has no activity with NADP+ [cf. EC 1.1.1.371,
scyllo-inositol 2-dehydrogenase (NADP+)]. It is part of a scyllo-inositol degradation pathway leading
to acetyl-CoA.

References: [2623]

[EC 1.1.1.370 created 2014]

EC 1.1.1.371
Accepted name: scyllo-inositol 2-dehydrogenase (NADP+)

Reaction: scyllo-inositol + NADP+ = 2,4,6/3,5-pentahydroxycyclohexanone + NADPH + H+

Other name(s): iolW (gene name)
Systematic name: scyllo-inositol:NADP+ 2-oxidoreductase

Comments: The enzyme, found in the bacterium Bacillus subtilis, has no activity with NAD+ [cf. EC 1.1.1.370,
scyllo-inositol 2-dehydrogenase (NAD+)].

References: [2623]

[EC 1.1.1.371 created 2014]

EC 1.1.1.372
Accepted name: D/L-glyceraldehyde reductase

Reaction: (1) glycerol + NADP+ = L-glyceraldehyde + NADPH + H+

(2) glycerol + NADP+ = D-glyceraldehyde + NADPH + H+

Other name(s): gld1 (gene name); gaaD (gene name)
Systematic name: glycerol:NADP+ oxidoreductase (D/L-glyceraldehyde-forming)

Comments: The enzyme takes part in a D-galacturonate degradation pathway in the fungi Aspergillus niger and
Trichoderma reesei (Hypocrea jecorina). It has equal activity with D- and L-glyceraldehyde, and can
also reduce glyoxal and methylglyoxal. The reaction is only observed in the direction of glyceralde-
hyde reduction.

References: [2249, 2411]

[EC 1.1.1.372 created 2014]

EC 1.1.1.373
Accepted name: sulfolactaldehyde 3-reductase

Reaction: 2,3-dihydroxypropane-1-sulfonate + NAD+ = 2-hydroxy-3-oxopropane-1-sulfonate + NADH + H+

Other name(s): yihU (gene name)
Systematic name: 2,3-dihydroxypropane-1-sulfonate:NAD+ 3-oxidoreductase

Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in the degradation path-
way of sulfoquinovose, the polar headgroup of sulfolipids found in the photosynthetic membranes of
all higher plants, mosses, ferns, algae, and most photosynthetic bacteria, as well as the surface layer of
some archaea.

References: [795]

[EC 1.1.1.373 created 2014]

EC 1.1.1.374
Accepted name: UDP-N-acetylglucosamine 3-dehydrogenase

Reaction: UDP-N-acetyl-α-D-glucosamine + NAD+ = UDP-2-acetamido-3-dehydro-2-deoxy-α-D-
glucopyranose + NADH + H+
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Systematic name: UDP-N-acetyl-α-D-glucosamine:NAD+ 3-oxidoreductase
Comments: The enzyme from the archaeon Methanococcus maripaludis is activated by KCl (200 mM).
References: [2729]

[EC 1.1.1.374 created 2014]

EC 1.1.1.375
Accepted name: L-2-hydroxycarboxylate dehydrogenase [NAD(P)+]

Reaction: a (2S)-2-hydroxycarboxylate + NAD(P)+ = a 2-oxocarboxylate + NAD(P)H + H+

Other name(s): MdhII; lactate/malate dehydrogenase
Systematic name: (2S)-2-hydroxycarboxylate:NAD(P)+ oxidoreductase

Comments: The enzyme from the archaeon Methanocaldococcus jannaschii catalyses the reversible oxida-
tion of (2R)-3-sulfolactate and (S)-malate to 3-sulfopyruvate and oxaloacetate, respectively (note
that (2R)-3-sulfolactate has the same stereochemical configuration as (2S)-2-hydroxycarboxylates)
[1261]. The enzyme can use both NADH and NADPH, although activity is higher with NADPH
[1261, 2163, 2353]. The oxidation of (2R)-3-sulfolactate was observed only in the presence of
NADP+ [1261]. The same organism also possesses an NAD+-specific enzyme with similar activity,
cf. EC 1.1.1.337, L-2-hydroxycarboxylate dehydrogenase (NAD+).

References: [1261, 2163, 2353]

[EC 1.1.1.375 created 2014]

EC 1.1.1.376
Accepted name: L-arabinose 1-dehydrogenase [NAD(P)+]

Reaction: L-arabinose + NAD(P)+ = L-arabinono-1,4-lactone + NAD(P)H + H+

Other name(s): L-arabino-aldose dehydrogenase
Systematic name: L-arabinose:NAD(P)+ 1-oxidoreductase

Comments: The enzymes from the bacterium Azospirillum brasilense and the archaeon Haloferax volcanii are
part of the L-arabinose degradation pathway and prefer NADP+ over NAD+. In vitro the enzyme
from Azospirillum brasilense shows also high catalytic efficiency with D-galactose.

References: [2822, 4145, 1753]

[EC 1.1.1.376 created 2014]

EC 1.1.1.377
Accepted name: L-rhamnose 1-dehydrogenase (NADP+)

Reaction: L-rhamnose + NADP+ = L-rhamnono-1,4-lactone + NADPH + H+

Systematic name: L-rhamnose:NADP+ 1-oxidoreductase
Comments: The enzyme from the archaeon Thermoplasma acidophilum is part of the non-phosphorylative degra-

dation pathway for L-rhamnose. The enzyme differs in cofactor specificity from EC 1.1.1.173, L-
rhamnose 1-dehydrogenase, which is specific for NAD+.

References: [1920]

[EC 1.1.1.377 created 2014]

EC 1.1.1.378
Accepted name: L-rhamnose 1-dehydrogenase [NAD(P)+]

Reaction: L-rhamnose + NAD(P)+ = L-rhamnono-1,4-lactone + NAD(P)H + H+

Systematic name: L-rhamnose:NAD(P)+ 1-oxidoreductase
Comments: The enzyme, which occurs in the bacteria Azotobacter vinelandii and Sphingomonas sp. SKA58, is

part of the non-phosphorylative degradation pathway for L-rhamnose. The enzyme differs in cofactor
specificity from EC 1.1.1.173, L-rhamnose 1-dehydrogenase, which is specific for NAD+ and EC
1.1.1.377, L-rhamnose 1-dehydrogenase (NADP+).

References: [4147, 4146]
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[EC 1.1.1.378 created 2014]

EC 1.1.1.379
Accepted name: (R)-mandelate dehydrogenase

Reaction: (R)-mandelate + NAD+ = phenylglyoxylate + NADH + H+

Other name(s): ManDH2; D-ManDH2; D-mandelate dehydrogenase (ambiguous)
Systematic name: (R)-mandelate:NAD+ 2-oxidoreductase

Comments: The enzyme, found in bacteria and fungi, can also accept a number of substituted mandelate deriva-
tives, such as 3-hydroxymandelate, 4-hydroxymandelate, 2-methoxymandelate, 4-hydroxy-3-
methoxymandelate and 3-hydroxy-4-methoxymandelate. The enzyme has no activity with (S)-
mandelate (cf. EC 1.1.99.31, (S)-mandelate dehydrogenase) [173, 174]. The enzyme transfers the
pro-R-hydrogen from NADH [174].

References: [173, 174]

[EC 1.1.1.379 created 2014]

EC 1.1.1.380
Accepted name: L-gulonate 5-dehydrogenase

Reaction: L-gulonate + NAD+ = D-fructuronate + NADH + H+

Systematic name: L-gulonate:NAD+ 5-oxidoreductase
Comments: The enzyme, characterized from the bacterium Halomonas elongata, participates in a pathway for

L-gulonate degradation.
References: [656, 4201]

[EC 1.1.1.380 created 2014]

EC 1.1.1.381
Accepted name: 3-hydroxy acid dehydrogenase

Reaction: L-allo-threonine + NADP+ = aminoacetone + CO2 + NADPH + H+ (overall reaction)
(1a) L-allo-threonine + NADP+ = L-2-amino-3-oxobutanoate + NADPH + H+

(1b) L-2-amino-3-oxobutanoate = aminoacetone + CO2 (spontaneous)
Other name(s): ydfG (gene name); YMR226c (gene name)

Systematic name: L-allo-threonine:NADP+ 3-oxidoreductase
Comments: The enzyme, purified from the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae,

shows activity with a range of 3- and 4-carbon 3-hydroxy acids. The highest activity is seen with L-
allo-threonine and D-threonine. The enzyme from Escherichia coli also shows high activity with L-
serine, D-serine, (S)-3-hydroxy-2-methylpropanoate and (R)-3-hydroxy-2-methylpropanoate. The
enzyme has no activity with NAD+ or L-threonine (cf. EC 1.1.1.103, L-threonine 3-dehydrogenase).

References: [1097]

[EC 1.1.1.381 created 2014, modified 2015]

EC 1.1.1.382
Accepted name: ketol-acid reductoisomerase (NAD+)

Reaction: (2R)-2,3-dihydroxy-3-methylbutanoate + NAD+ = (2S)-2-hydroxy-2-methyl-3-oxobutanoate +
NADH + H+

Systematic name: (2R)-2,3-dihydroxy-3-methylbutanoate:NAD+ oxidoreductase (isomerizing)
Comments: The enzyme, characterized from the bacteria Thermacetogenium phaeum and Desulfococcus oleovo-

rans and from the archaeon Archaeoglobus fulgidus, is specific for NADH [cf. EC 1.1.1.86, ketol-acid
reductoisomerase (NADP+) and EC 1.1.1.383, ketol-acid reductoisomerase [NAD(P)+]].

References: [403]

[EC 1.1.1.382 created 2015]
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EC 1.1.1.383
Accepted name: ketol-acid reductoisomerase [NAD(P)+]

Reaction: (2R)-2,3-dihydroxy-3-methylbutanoate + NAD(P)+ = (2S)-2-hydroxy-2-methyl-3-oxobutanoate +
NAD(P)H + H+

Systematic name: (2R)-2,3-dihydroxy-3-methylbutanoate:NAD(P)+ oxidoreductase (isomerizing)
Comments: The enzyme, characterized from the bacteria Hydrogenobaculum sp. and Syntrophomonas wolfei

subsp. wolfei and from the archaea Metallosphaera sedula and Ignisphaera aggregans, can use both
NADH and NADPH with similar efficiency [cf. EC 1.1.1.86, ketol-acid reductoisomerase (NADP+)
and EC 1.1.1.382, ketol-acid reductoisomerase (NAD+)].

References: [403]

[EC 1.1.1.383 created 2015]

EC 1.1.1.384
Accepted name: dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose 3-reductase

Reaction: dTDP-4-dehydro-2,6-dideoxy-α-D-glucose + NADP+ = dTDP-3,4-didehydro-2,6-dideoxy-α-D-
glucose + NADPH + H+

Other name(s): KijD10; dTDP-4-keto-2,6-dideoxy-D-glucose 3-oxidoreductase; dTDP-4-dehydro-2,6-dideoxy-α-D-
glucose 3-oxidoreductase

Systematic name: dTDP-4-dehydro-2,6-dideoxy-α-D-glucose:NADP+ 3-oxidoreductase
Comments: The enzyme is involved in the biosynthesis of several deoxysugars, including L-digitoxose, L- and

D-olivose, L-oliose, D-mycarose and forosamine.
References: [35, 4110, 1553, 2065]

[EC 1.1.1.384 created 2015]

EC 1.1.1.385
Accepted name: dihydroanticapsin dehydrogenase

Reaction: L-dihydroanticapsin + NAD+ = L-anticapsin + NADH + H+

Other name(s): BacC; ywfD (gene name)
Systematic name: L-dihydroanticapsin:NAD+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Bacillus subtilis, is involved in the biosynthesis of the
nonribosomally synthesized dipeptide antibiotic bacilysin, composed of L-alanine and L-anticapsin.

References: [2942]

[EC 1.1.1.385 created 2015]

EC 1.1.1.386
Accepted name: ipsdienol dehydrogenase

Reaction: (R)-ipsdienol + NAD(P)+ = ipsdienone + NAD(P)H + H+

Other name(s): IDOLDH
Systematic name: (R)-ipsdienol:NAD(P)+ oxidoreductase

Comments: The enzyme is involved in pheromone production by the pine engraver beetle, Ips pini.
References: [1015]

[EC 1.1.1.386 created 2015]

EC 1.1.1.387
Accepted name: L-serine 3-dehydrogenase (NAD+)

Reaction: L-serine + NAD+ = 2-aminoacetaldehyde + CO2 + NADH + H+ (overall reaction)
(1a) L-serine + NAD+ = 2-aminomalonate semialdehyde + NADH + H+

(1b) 2-aminomalonate semialdehyde = 2-aminoacetaldehyde + CO2 (spontaneous)
Other name(s): NAD+-dependent L-serine dehydrogenase

87

http://www.enzyme-database.org/query.php?ec=1.1.1.383
http://www.enzyme-database.org/query.php?ec=1.1.1.384
http://www.enzyme-database.org/query.php?ec=1.1.1.385
http://www.enzyme-database.org/query.php?ec=1.1.1.386
http://www.enzyme-database.org/query.php?ec=1.1.1.387


Systematic name: L-serine:NAD+ 3-oxidoreductase
Comments: The enzyme, purified from the bacterium Pseudomonas aeruginosa, also shows activity with L-

threonine (cf. EC 1.1.1.103, L-threonine 3-dehydrogenase). The enzyme has only very low activity
with NADP+ [cf. EC 1.1.1.276, serine 3-dehydrogenase (NADP+)].

References: [3837]

[EC 1.1.1.387 created 2015]

EC 1.1.1.388
Accepted name: glucose-6-phosphate dehydrogenase (NAD+)

Reaction: D-glucose 6-phosphate + NAD+ = 6-phospho-D-glucono-1,5-lactone + NADH + H+

Other name(s): Glc6PDH; azf (gene name); archaeal zwischenferment
Systematic name: D-glucose-6-phosphate:NAD+ 1-oxidoreductase

Comments: The enzyme catalyses a step of the pentose phosphate pathway. The enzyme from the archaeon
Haloferax volcanii is specific for NAD+. cf. EC 1.1.1.363, glucose-6-phosphate dehydrogenase
[NAD(P)+] and EC 1.1.1.49, glucose-6-phosphate dehydrogenase (NADP+).

References: [3003]

[EC 1.1.1.388 created 2015]

EC 1.1.1.389
Accepted name: 2-dehydro-3-deoxy-L-galactonate 5-dehydrogenase

Reaction: 2-dehydro-3-deoxy-L-galactonate + NAD+ = 3-deoxy-D-glycero-2,5-hexodiulosonate + NADH + H+

Systematic name: 2-dehydro-3-deoxy-L-galactonate:NAD+ 5-oxidoreductase
Comments: The enzyme, characterized from agarose-degrading bacteria, is involved in a degradation pathway for

3,6-anhydro-α-L-galactopyranose, a major component of the polysaccharides of red macroalgae.
References: [2179]

[EC 1.1.1.389 created 2015]

EC 1.1.1.390
Accepted name: sulfoquinovose 1-dehydrogenase

Reaction: sulfoquinovose + NAD+ = 6-deoxy-6-sulfo-D-glucono-1,5-lactone + NADH + H+

Systematic name: 6-deoxy-6-sulfo-D-glucopyranose:NAD+ 1-oxidoreductase
Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfo-

quinovose degradation pathway. Activity with NADP+ is only 4% of that with NAD+.
References: [994]

[EC 1.1.1.390 created 2015]

EC 1.1.1.391
Accepted name: 3β-hydroxycholanate 3-dehydrogenase (NAD+)

Reaction: isolithocholate + NAD+ = 3-oxo-5β-cholan-24-oate + NADH + H+

Other name(s): 3β-hydroxysteroid dehydrogenase
Systematic name: isolithocholate:NAD+ 3-oxidoreductase

Comments: This bacterial enzyme is involved, along with EC 1.1.1.52, 3α-hydroxycholanate dehydrogenase
(NAD+), or EC 1.1.1.392, 3α-hydroxycholanate dehydrogenase (NADP+), in the modification of
secondary bile acids to form 3β-bile acids (also known as iso-bile acids). The enzyme catalyses the
reaction in the reduction direction in vivo. Also acts on related 3-oxo bile acids. cf. EC 1.1.1.393, 3β-
hydroxycholanate 3-dehydrogenase (NADP+).

References: [915, 916, 805]

[EC 1.1.1.391 created 2016]
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EC 1.1.1.392
Accepted name: 3α-hydroxycholanate dehydrogenase (NADP+)

Reaction: lithocholate + NADP+ = 3-oxo-5β-cholan-24-oate + NADPH + H+

Other name(s): α-hydroxy-cholanate dehydrogenase (ambiguous)
Systematic name: lithocholate:NADP+ 3-oxidoreductase

Comments: This bacterial enzyme is involved in the modification of secondary bile acids to form 3β-bile acids
(also known as iso-bile acids) via a 3-oxo intermediate. The enzyme catalyses a reversible reaction in
vitro. Also acts on related bile acids. cf. EC 1.1.1.52, 3α-hydroxycholanate dehydrogenase (NAD+).

References: [805]

[EC 1.1.1.392 created 2016]

EC 1.1.1.393
Accepted name: 3β-hydroxycholanate 3-dehydrogenase (NADP+)

Reaction: isolithocholate + NADP+ = 3-oxo-5β-cholan-24-oate + NADPH + H+

Other name(s): 3β-hydroxysteroid dehydrogenase (ambiguous)
Systematic name: isolithocholate:NADP+ 3-oxidoreductase

Comments: This bacterial enzyme is involved, along with EC 1.1.1.52, 3α-hydroxycholanate dehydrogenase
(NAD+), or EC 1.1.1.392, 3α-hydroxycholanate dehydrogenase (NADP+), in the modification of
secondary bile acids to form 3β-bile acids (also known as iso-bile acids). The enzyme catalyses the
reaction in the reduction direction in vivo. Also acts on related 3-oxo bile acids. cf. EC 1.1.1.391, 3β-
hydroxycholanate 3-dehydrogenase (NAD+).

References: [42, 805]

[EC 1.1.1.393 created 2016]

EC 1.1.1.394
Accepted name: aurachin B dehydrogenase

Reaction: aurachin B + NAD+ + H2O = 4-[(2E,6E)-farnesyl]-4-hydroxy-2-methyl-3-oxo-3,4-dihydroquinoline
1-oxide + NADH + H+ (overall reaction)
(1a) 4-[(2E,6E)-farnesyl]-3,4-dihydroxy-2-methyl-3,4-dihydroquinoline 1-oxide + NAD+ = 4-
[(2E,6E)-farnesyl]-4-hydroxy-2-methyl-3-oxo-3,4-dihydroquinoline 1-oxide + NADH + H+

(1b) aurachin B + H2O = 4-[(2E,6E)-farnesyl]-3,4-dihydroxy-2-methyl-3,4-dihydroquinoline 1-oxide
(spontaneous)

Other name(s): AuaH
Systematic name: aurachin B:NAD+ 3-oxidoreductase

Comments: The enzyme from the bacterium Stigmatella aurantiaca catalyses the final step in the conversion
of aurachin C to aurachin B. In vivo the enzyme catalyses the reduction of 4-[(2E,6E)-farnesyl]-4-
hydroxy-2-methyl-3-oxo-3,4-dihydroquinoline-1-oxide to form 4-[(2E,6E)-farnesyl]-2-methyl-1-oxo-
3,4-dihydroquinoline-3,4-diol (note that the reactions written above proceed from right to left), which
then undergoes a spontaneous dehydration to form aurachin B.

References: [1846]

[EC 1.1.1.394 created 2016]

EC 1.1.1.395
Accepted name: 3α-hydroxy bile acid-CoA-ester 3-dehydrogenase

Reaction: a 3α-hydroxy bile acid CoA ester + NAD+ = a 3-oxo bile acid CoA ester + NADH + H+

Other name(s): baiA1 (gene name); baiA2 (gene name); baiA3 (gene name)
Systematic name: 3α-hydroxy-bile-acid-CoA-ester:NAD+ 3-oxidoreductase

Comments: This bacterial enzyme is involved in the 7-dehydroxylation process associated with bile acid degrada-
tion. The enzyme has very little activity with unconjugated bile acid substrates. It has similar activity
with choloyl-CoA, chenodeoxycholoyl-CoA, deoxycholoyl-CoA, and lithocholoyl-CoA.

References: [2381, 294]
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[EC 1.1.1.395 created 2016]

EC 1.1.1.396
Accepted name: bacteriochlorophyllide a dehydrogenase

Reaction: (1) 3-deacetyl-3-(1-hydroxyethyl)bacteriochlorophyllide a + NAD+ = bacteriochlorophyllide a +
NADH + H+

(2) 3-devinyl-3-(1-hydroxyethyl)chlorophyllide a + NAD+ = 3-acetyl-3-devinylchlorophyllide a +
NADH + H+

Other name(s): bchC (gene name)
Systematic name: 3-deacetyl-3-(1-hydroxyethyl)bacteriochlorophyllide-a:NAD+ oxidoreductase (bacteriochlorophyl-

lide a-forming)
Comments: The enzyme, together with EC 1.3.7.15, chlorophyllide-a reductase, and EC 4.2.1.165,

chlorophyllide-a 31-hydratase, is involved in the conversion of chlorophyllide a to bacteriochloro-
phyllide a. The enzymes can act in multiple orders, resulting in the formation of different intermedi-
ates, but the final product of the cumulative action of the three enzymes is always bacteriochlorophyl-
lide a. The enzyme oxidizes a hydroxyl group on ring A, converting it to an oxo group.

References: [4169, 2485, 2131]

[EC 1.1.1.396 created 2016]

EC 1.1.1.397
Accepted name: β-methylindole-3-pyruvate reductase

Reaction: (2S,3R)-2-hydroxy-3-(indol-3-yl)butanoate + NAD+ = (R)-3-(indol-3-yl)-2-oxobutanoate + NADH +
H+

Other name(s): ind2 (gene name)
Systematic name: (2S,3R)-2-hydroxy-3-(indol-3-yl)butanoate:NAD+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Streptomyces griseus, participates in the biosynthesis
of indolmycin, an antibacterial drug that inhibits the bacterial tryptophan—tRNA ligase (EC 6.1.1.2).

References: [878]

[EC 1.1.1.397 created 2016]

EC 1.1.1.398
Accepted name: 2-glutathionyl-2-methylbut-3-en-1-ol dehydrogenase

Reaction: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol + 2 NAD+ + H2O = 2-(glutathion-S-yl)-2-methylbut-3-
enoate + 2 NADH + 2 H+ (overall reaction)
(1a) 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol + NAD+ = 2-(glutathion-S-yl)-2-methylbut-3-enal +
NADH + H+

(1b) 2-(glutathion-S-yl)-2-methylbut-3-enal + NAD+ + H2O = 2-(glutathion-S-yl)-2-methylbut-3-
enoate + NADH + H+

Other name(s): isoH (gene name); 4-hydroxy-3-glutathionyl-3-methylbut-1-ene dehydrogenase
Systematic name: 2-(glutathion-S-yl)-2-methylbut-3-en-1-ol:NAD+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Rhodococcus sp. AD45, is involved in isoprene degra-
dation.

References: [4006]

[EC 1.1.1.398 created 2016]

EC 1.1.1.399
Accepted name: 2-oxoglutarate reductase

Reaction: (R)-2-hydroxyglutarate + NAD+ = 2-oxoglutarate + NADH + H+

Other name(s): serA (gene name)
Systematic name: (R)-2-hydroxyglutarate:NAD+ 2-oxidireductase
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Comments: The enzyme catalyses a reversible reaction. The enzyme from the bacterium Peptoniphilus asaccha-
rolyticus is specific for (R)-2-hydroxyglutarate [2202, 1764]. The SerA enzyme from the bacterium
Escherichia coli can also accept (S)-2-hydroxyglutarate with a much higher Km, and also catalyses the
activity of EC 1.1.1.95, phosphoglycerate dehydrogenase [4459].

References: [2202, 1764, 4459]

[EC 1.1.1.399 created 2016]

EC 1.1.1.400
Accepted name: 2-methyl-1,2-propanediol dehydrogenase

Reaction: 2-methylpropane-1,2-diol + NAD+ = 2-hydroxy-2-methylpropanal + NADH + H+

Other name(s): mpdB (gene name)
Systematic name: 2-methylpropane-1,2-diol:NAD+ 1-oxidoreductase

Comments: This bacterial enzyme is involved in the degradation pathways of the alkene 2-methylpropene and the
fuel additive tert-butyl methyl ether (MTBE), a widely occurring groundwater contaminant.

References: [1004, 2044]

[EC 1.1.1.400 created 2016]

EC 1.1.1.401
Accepted name: 2-dehydro-3-deoxy-L-rhamnonate dehydrogenase (NAD+)

Reaction: 2-dehydro-3-deoxy-L-rhamnonate + NAD+ = 2,4-didehydro-3-deoxy-L-rhamnonate + NADH + H+

Other name(s): 2-keto-3-deoxy-L-rhamnonate dehydrogenase
Systematic name: 2-dehydro-3-deoxy-L-rhamnonate:NAD+ 4-oxidoreductase

Comments: The enzyme, characterized from the bacteria Sphingomonas sp. SKA58 and Sulfobacillus thermosul-
fidooxidans, is involved in the non-phosphorylative degradation pathway for L-rhamnose. It does not
show any detectable activity with NADP+ or with other aldoses.

References: [4146, 158]

[EC 1.1.1.401 created 2016]

EC 1.1.1.402
Accepted name: D-erythritol 1-phosphate dehydrogenase

Reaction: D-erythritol 1-phosphate + NADP+ = D-erythrulose 1-phosphate + NADPH + H+

Other name(s): eryB (gene name)
Systematic name: D-erythritol-1-phosphate 2-oxidoreductase

Comments: The enzyme, characterized from the pathogenic bacterium Brucella abortus, which causes brucellosis
in livestock, participates in erythritol catabolism.

References: [3602, 3308, 198]

[EC 1.1.1.402 created 2016]

EC 1.1.1.403
Accepted name: D-threitol dehydrogenase (NAD+)

Reaction: D-threitol + NAD+ = D-erythrulose + NADH + H+

Other name(s): dthD (gene name)
Systematic name: D-threitol:NAD+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Mycobacterium smegmatis, participates in the degrada-
tion of D-threitol.

References: [1594]

[EC 1.1.1.403 created 2016]
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EC 1.1.1.404
Accepted name: tetrachlorobenzoquinone reductase

Reaction: 2,3,5,6-tetrachlorohydroquinone + NAD+ = 2,3,5,6-tetrachloro-1,4-benzoquinone + NADH + H+

Other name(s): pcpD (gene name); TCBQ reductase
Systematic name: 2,3,5,6-tetrachlorohydroquinone:NAD+ oxidoreductase

Comments: Contains FMN. The enzyme, characterized from the bacterium Sphingobium chlorophenolicum, par-
ticipates in the degradation of pentachlorophenol.

References: [571, 4296]

[EC 1.1.1.404 created 2017]

EC 1.1.1.405
Accepted name: ribitol-5-phosphate 2-dehydrogenase (NADP+)

Reaction: D-ribitol 5-phosphate + NADP+ = D-ribulose 5-phosphate + NADPH + H+

Other name(s): acs1 (gene name); bcs1 (gene name); tarJ (gene name); ribulose-5-phosphate reductase; ribulose-5-P
reductase; D-ribulose 5-phosphate reductase

Systematic name: D-ribitol-5-phosphate:NADP+ 2-oxidoreductase
Comments: Requires Zn2+. The enzyme, characterized in bacteria, is specific for NADP. It is part of the syn-

thesis pathway of CDP-ribitol. In Haemophilus influenzae it is part of a multifunctional enzyme
also catalysing EC 2.7.7.40, D-ribitol-5-phosphate cytidylyltransferase. cf. EC 1.1.1.137, ribitol-5-
phosphate 2-dehydrogenase.

References: [4491, 2980, 2981, 222]

[EC 1.1.1.405 created 2017]

EC 1.1.1.406
Accepted name: galactitol 2-dehydrogenase (L-tagatose-forming)

Reaction: galactitol + NAD+ = L-tagatose + NADH + H+

Other name(s): GatDH
Systematic name: galactitol:NAD+ 2-oxidoreductase (L-tagatose-forming)

Comments: The enzyme, characterized in the bacterium Rhodobacter sphaeroides, has a wide subtrate specificity.
In addition to galactitol, it primarily oxidizes D-threitol and xylitol, and in addition to L-tagatose, it
primarily reduces L-erythrulose, D-ribulose and L-glyceraldehyde. It is specific for NAD+. The en-
zyme also shows activity with D-tagatose (cf. EC 1.1.1.16, galactitol 2-dehydrogenase).

References: [3383, 504]

[EC 1.1.1.406 created 2017]

EC 1.1.1.407
Accepted name: D-altritol 5-dehydrogenase

Reaction: D-altritol + NAD+ = D-tagatose + NADH + H+

Systematic name: D-altritol:NAD+ 5-oxidoreductase
Comments: The enzyme, characterized in Agrobacterium fabrum C58, also has low activity with D-mannitol and

D-arabinitol. It is part of a D-altritol degradation pathway.
References: [4202]

[EC 1.1.1.407 created 2017]

EC 1.1.1.408
Accepted name: 4-phospho-D-threonate 3-dehydrogenase

Reaction: 4-phospho-D-threonate + NAD+ = glycerone phosphate + CO2 + NADH + H+ (overall reaction)
(1a) 4-phospho-D-threonate + NAD+ = 3-dehydro-4-phospho-D-erythronate + NADH + H+

(1b) 3-dehydro-4-phospho-D-erythronate = glycerone phosphate + CO2 (spontaneous)
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Other name(s): pdxA2 (gene name) (ambiguous)
Systematic name: 4-phospho-D-threonate:NAD+ 3-oxidoreductase

Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-threonate catabolism.
References: [4447]

[EC 1.1.1.408 created 2017]

EC 1.1.1.409
Accepted name: 4-phospho-D-erythronate 3-dehydrogenase

Reaction: 4-phospho-D-erythronate + NAD+ = glycerone phosphate + CO2 + NADH + H+ (overall reaction)
(1a) 4-phospho-D-erythronate + NAD+ = 3-dehydro-4-phospho-L-threonate + NADH + H+

(1b) 3-dehydro-4-phospho-L-threonate = glycerone phosphate + CO2 (spontaneous)
Other name(s): pdxA2 (gene name) (ambiguous)

Systematic name: 4-phospho-D-erythronate:NAD+ 3-oxidoreductase
Comments: The enzyme, characterized from bacteria, is involved in a pathway for D-erythronate catabolism.
References: [4447]

[EC 1.1.1.409 created 2017]

EC 1.1.1.410
Accepted name: D-erythronate 2-dehydrogenase

Reaction: D-erythronate + NAD+ = 2-dehydro-D-erythronate + NADH + H+

Other name(s): denD (gene name)
Systematic name: D-erythronate:NAD+ 2-oxidoreductase

Comments: The enzyme, characterized from bacteria, is involved in D-erythronate catabolism.
References: [4447]

[EC 1.1.1.410 created 2017]

EC 1.1.1.411
Accepted name: L-threonate 2-dehydrogenase

Reaction: L-threonate + NAD+ = 2-dehydro-L-erythronate + NADH + H+

Other name(s): ltnD (gene name)
Systematic name: L-threonate:NAD+ 2-oxidoreductase

Comments: The enzyme, characterized from bacteria, is involved in L-threonate catabolism.
References: [4447]

[EC 1.1.1.411 created 2017]

EC 1.1.1.412
Accepted name: 2-alkyl-3-oxoalkanoate reductase

Reaction: a (2R,3S)-2-alkyl-3-hydroxyalkanoate + NADP+ = an (R)-2-alkyl-3-oxoalkanoate + NADPH + H+

Other name(s): oleD (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate:NADP+ oxidoreductase

Comments: The enzyme, found in certain bacterial species, is part of a pathway for the production of olefins.
References: [347]

[EC 1.1.1.412 created 2017]

EC 1.1.1.413
Accepted name: A-factor type γ-butyrolactone 1′-reductase (1S-forming)

Reaction: a (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one + NADP+ = a (3R,4R)-3-
alkanoyl-4-(hydroxymethyl)oxolan-2-one + NADPH + H+

93

http://www.enzyme-database.org/query.php?ec=1.1.1.409
http://www.enzyme-database.org/query.php?ec=1.1.1.410
http://www.enzyme-database.org/query.php?ec=1.1.1.411
http://www.enzyme-database.org/query.php?ec=1.1.1.412
http://www.enzyme-database.org/query.php?ec=1.1.1.413


Other name(s): barS1 (gene name)
Systematic name: (3R,4R)-3-[(1S)-1-hydroxyalkyl]-4-(hydroxymethyl)oxolan-2-one:NADP+ 1′-oxidoreductase

Comments: The enzyme, which is found in bacteria that produce virginiae-butanolide (VB) type γ-butyrolactone
autoregulators, reduces its substrate stereospecifically, forming a hydroxyl group in the (S) configura-
tion.

References: [3492]

[EC 1.1.1.413 created 2017]

EC 1.1.1.414
Accepted name: L-galactonate 5-dehydrogenase

Reaction: L-galactonate + NAD+ = D-tagaturonate + NADH + H+

Other name(s): lgoD (gene name); lgaC (gene name)
Systematic name: L-galactonate:NAD+ 5-oxidoreductase

Comments: The enzyme, reported from the human gut bacteria Escherichia coli and Bacteroides vulgatus, partici-
pates in an L-galactonate degradation pathway.

References: [655, 2073, 1524]

[EC 1.1.1.414 created 2018]

EC 1.1.1.415
Accepted name: noscapine synthase

Reaction: narcotine hemiacetal + NAD+ = noscapine + NADH + H+

Other name(s): NOS (gene name)
Systematic name: narcotine hemiacetal:NAD+ 1-oxidoreductase

Comments: The enzyme, characterized from the plant Papaver somniferum (opium poppy), catalyses the last step
in the biosynthesis of the isoquinoline alkaloid noscapine.

References: [576, 2237]

[EC 1.1.1.415 created 2018]

EC 1.1.1.416
Accepted name: isopyridoxal dehydrogenase (5-pyridoxolactone-forming)

Reaction: isopyridoxal + NAD+ = 5-pyridoxolactone + NADH + H+

Systematic name: isopyridoxal:NAD+ oxidoreductase (5-pyridoxolactone-forming)
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in the degradation

of pyridoxine. The enzyme also catalyses the activity of EC 1.2.1.102, isopyridoxal dehydrogenase
(5-pyridoxate-forming).

References: [2183]

[EC 1.1.1.416 created 2018]

EC 1.1.2 With a cytochrome as acceptor

[1.1.2.1 Transferred entry. glycerolphosphate dehydrogenase. As the acceptor is now known, the enzyme has been trans-
ferred to EC 1.1.5.3, glycerol-3-phosphate dehydrogenase.]

[EC 1.1.2.1 created 1961, deleted 1965]

EC 1.1.2.2
Accepted name: mannitol dehydrogenase (cytochrome)

Reaction: D-mannitol + a ferricytochrome c = D-fructose + a ferrocytochrome c + 2 H+

Other name(s): polyol dehydrogenase
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Systematic name: D-mannitol:cytochrome-c 2-oxidoreductase
Comments: The enzyme from the bacterium Gluconobacter oxydans acts on polyols with a D-lyxo configuration,

such as D-mannitol and D-sorbitol, with preference towards the former.
References: [117, 604]

[EC 1.1.2.2 created 1961]

EC 1.1.2.3
Accepted name: L-lactate dehydrogenase (cytochrome)

Reaction: (S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H+

Other name(s): lactic acid dehydrogenase; cytochrome b2 (flavin-free derivative of flavocytochrome b2); flavocy-
tochrome b2; L-lactate cytochrome c reductase; L(+)-lactate:cytochrome c oxidoreductase; dehy-
drogenase, lactate (cytochrome); L-lactate cytochrome c oxidoreductase; lactate dehydrogenase (cy-
tochrome); lactic cytochrome c reductase

Systematic name: (S)-lactate:ferricytochrome-c 2-oxidoreductase
Comments: Identical with cytochrome b2; a flavohemoprotein (FMN).
References: [108, 107, 154, 2831]

[EC 1.1.2.3 created 1961]

EC 1.1.2.4
Accepted name: D-lactate dehydrogenase (cytochrome)

Reaction: (R)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H+

Other name(s): lactic acid dehydrogenase; D-lactate (cytochrome) dehydrogenase; cytochrome-dependent D-(-)-
lactate dehydrogenase; D-lactate-cytochrome c reductase; D-(-)-lactic cytochrome c reductase

Systematic name: (R)-lactate:cytochrome-c 2-oxidoreductase
Comments: A flavoprotein (FAD).
References: [1277, 1278, 2830, 2831]

[EC 1.1.2.4 created 1961]

EC 1.1.2.5
Accepted name: D-lactate dehydrogenase (cytochrome c-553)

Reaction: (R)-lactate + 2 ferricytochrome c-553 = pyruvate + 2 ferrocytochrome c-553 + 2 H+

Systematic name: (R)-lactate:cytochrome-c-553 2-oxidoreductase
Comments: The enzyme from the sulfate-reducing bacterium Desulfovibrio vulgaris can also act on (R)-2-

hydroxybutanoate.
References: [2842]

[EC 1.1.2.5 created 1989]

EC 1.1.2.6
Accepted name: polyvinyl alcohol dehydrogenase (cytochrome)

Reaction: polyvinyl alcohol + ferricytochrome c = oxidized polyvinyl alcohol + ferrocytochrome c + H+

Other name(s): PVA dehydrogenase; PVADH
Systematic name: polyvinyl alcohol:ferricytochrome-c oxidoreductase

Comments: A quinoprotein. The enzyme is involved in bacterial polyvinyl alcohol degradation. Some Gram-
negative bacteria degrade polyvinyl alcohol by importing it into the periplasmic space, where it is
oxidized by polyvinyl alcohol dehydrogenase, an enzyme that is coupled to the respiratory chain via
cytochrome c. The enzyme contains a pyrroloquinoline quinone cofactor.

References: [3497, 3499, 2383, 1520, 1589, 1858]

[EC 1.1.2.6 created 1989 as EC 1.1.99.23, transferred 2010 to EC 1.1.2.6]
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EC 1.1.2.7
Accepted name: methanol dehydrogenase (cytochrome c)

Reaction: a primary alcohol + 2 ferricytochrome cl = an aldehyde + 2 ferrocytochrome cl + 2 H+

Other name(s): methanol dehydrogenase; MDH
Systematic name: methanol:cytochrome c oxidoreductase

Comments: A periplasmic quinoprotein alcohol dehydrogenase that only occurs in methylotrophic bacteria. It
uses the novel specific cytochrome cl as acceptor. Acts on a wide range of primary alcohols, including
ethanol, duodecanol, chloroethanol, cinnamyl alcohol, and also formaldehyde. Activity is stimulated
by ammonia or methylamine. It is usually assayed with phenazine methosulfate. Like all other quino-
protein alcohol dehydrogenases it has an 8-bladed ‘propeller’ structure, a calcium ion bound to the
PQQ in the active site and an unusual disulfide ring structure in close proximity to the PQQ. It differs
from EC 1.1.2.8, alcohol dehydrogenase (cytochrome c), in having a high affinity for methanol and in
having a second essential small subunit (no known function).

References: [96, 97, 885, 3298, 680, 311, 4276, 27, 95, 4220]

[EC 1.1.2.7 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.7]

EC 1.1.2.8
Accepted name: alcohol dehydrogenase (cytochrome c)

Reaction: a primary alcohol + 2 ferricytochrome c = an aldehyde + 2 ferrocytochrome c + 2 H+

Other name(s): type I quinoprotein alcohol dehydrogenase; quinoprotein ethanol dehydrogenase
Systematic name: alcohol:cytochrome c oxidoreductase

Comments: A periplasmic PQQ-containing quinoprotein. Occurs in Pseudomonas and Rhodopseudomonas. The
enzyme from Pseudomonas aeruginosa uses a specific inducible cytochrome c550 as electron accep-
tor. Acts on a wide range of primary and secondary alcohols, but not methanol. It has a homodimeric
structure [contrasting with the heterotetrameric structure of EC 1.1.2.7, methanol dehydrogenase (cy-
tochrome c)]. It is routinely assayed with phenazine methosulfate as electron acceptor. Activity is
stimulated by ammonia or amines. Like all other quinoprotein alcohol dehydrogenases it has an 8-
bladed ‘propeller’ structure, a calcium ion bound to the PQQ in the active site and an unusual disul-
fide ring structure in close proximity to the PQQ.

References: [3261, 3920, 3386, 1875, 1864, 2504]

[EC 1.1.2.8 created 1972 as EC 1.1.99.8, modified 1982, part transferred 2010 to EC 1.1.2.8]

EC 1.1.2.9
Accepted name: 1-butanol dehydrogenase (cytochrome c)

Reaction: butan-1-ol + 2 ferricytochrome c = butanal + 2 ferrocytochrome c + 2 H+

Other name(s): BDH
Systematic name: butan-1-ol:ferricytochrome c oxidoreductase

Comments: This periplasmic quinoprotein alcohol dehydrogenase, characterized from the bacterium Thauera bu-
tanivorans, is involved in butane degradation. It contains both pyrroloquinoline quinone (PQQ) and
heme c prosthetic groups. cf. EC 1.1.5.11, 1-butanol dehydrogenase (quinone).

References: [4018, 4019, 4020]

[EC 1.1.2.9 created 2016]

EC 1.1.3 With oxygen as acceptor

[1.1.3.1 Deleted entry. glycolate oxidase. Now included with EC 1.1.3.15 (S)-2-hydroxy-acid oxidase]

[EC 1.1.3.1 created 1961, deleted 1984]

EC 1.1.3.2
Accepted name: L-lactate oxidase
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Reaction: (S)-lactate + O2 = pyruvate + H2O2
Other name(s): lctO (gene name); LOX

Systematic name: (S)-lactate:oxygen 2-oxidoreductase
Comments: Contains flavin mononucleotide (FMN). The best characterized enzyme is that from the bacterium

Aerococcus viridans. The enzyme is widely used in biosensors to measure the lactate concentration in
blood and other tissues.

References: [887, 2356, 1198, 3972, 1124, 3659]

[EC 1.1.3.2 created 1961, transferred 1972 to EC 1.13.12.4, reinstated 2018]

[1.1.3.3 Deleted entry. malate oxidase. Now classified as EC 1.1.5.4, malate dehydrogenase (quinone). ]

[EC 1.1.3.3 created 1961, deleted 2014]

EC 1.1.3.4
Accepted name: glucose oxidase

Reaction: β-D-glucose + O2 = D-glucono-1,5-lactone + H2O2
Other name(s): glucose oxyhydrase; corylophyline; penatin; glucose aerodehydrogenase; microcid; β-D-glucose oxi-

dase; D-glucose oxidase; D-glucose-1-oxidase; β-D-glucose:quinone oxidoreductase; glucose oxyhy-
drase; deoxin-1; GOD

Systematic name: β-D-glucose:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD).
References: [260, 675, 1872, 1873]

[EC 1.1.3.4 created 1961]

EC 1.1.3.5
Accepted name: hexose oxidase

Reaction: D-glucose + O2 = D-glucono-1,5-lactone + H2O2
Systematic name: D-hexose:oxygen 1-oxidoreductase

Comments: A copper glycoprotein. Also oxidizes D-galactose, D-mannose, maltose, lactose and cellobiose.
References: [228, 229, 3724]

[EC 1.1.3.5 created 1961, modified 1976]

EC 1.1.3.6
Accepted name: cholesterol oxidase

Reaction: cholesterol + O2 = cholest-5-en-3-one + H2O2
Other name(s): cholesterol- O2 oxidoreductase; 3β-hydroxy steroid oxidoreductase; 3β-hydroxysteroid:oxygen oxi-

doreductase
Systematic name: cholesterol:oxygen oxidoreductase

Comments: Contains FAD. Cholesterol oxidases are secreted bacterial bifunctional enzymes that catalyse the first
two steps in the degradation of cholesterol. The enzyme catalyses the oxidation of the 3β-hydroxyl
group to a keto group, and the isomerization of the double bond in the oxidized steroid ring system
from the ∆5 position to ∆6 position (cf. EC 5.3.3.1, steroid ∆-isomerase).

References: [3181, 3615, 2348, 4069]

[EC 1.1.3.6 created 1961, modified 1982, modified 2012]

EC 1.1.3.7
Accepted name: aryl-alcohol oxidase

Reaction: an aromatic primary alcohol + O2 = an aromatic aldehyde + H2O2
Other name(s): aryl alcohol oxidase; veratryl alcohol oxidase; arom. alcohol oxidase

Systematic name: aryl-alcohol:oxygen oxidoreductase
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Comments: Oxidizes many primary alcohols containing an aromatic ring; best substrates are (2-
naphthyl)methanol and 3-methoxybenzyl alcohol.

References: [989]

[EC 1.1.3.7 created 1965]

EC 1.1.3.8
Accepted name: L-gulonolactone oxidase

Reaction: L-gulono-1,4-lactone + O2 = L-ascorbate + H2O2 (overall reaction)
(1a) L-gulono-1,4-lactone + O2 = L-xylo-hex-2-ulono-1,4-lactone + H2O2
(1b) L-xylo-hex-2-ulono-1,4-lactone = L-ascorbate (spontaneous)

Other name(s): L-gulono-γ-lactone: O2 oxidoreductase; L-gulono-γ-lactone oxidase; L-gulono-γ-
lactone:oxidoreductase; GLO

Systematic name: L-gulono-1,4-lactone:oxygen 3-oxidoreductase
Comments: A microsomal flavoprotein (FAD). The product spontaneously isomerizes to L-ascorbate. While most

higher animals can synthesize asborbic acid, primates and guinea pigs cannot [2794].
References: [1664, 1951, 2794, 554]

[EC 1.1.3.8 created 1965, modified 2001, modified 2006]

EC 1.1.3.9
Accepted name: galactose oxidase

Reaction: D-galactose + O2 = D-galacto-hexodialdose + H2O2
Other name(s): D-galactose oxidase; β-galactose oxidase

Systematic name: D-galactose:oxygen 6-oxidoreductase
Comments: A copper protein.
References: [144]

[EC 1.1.3.9 created 1965]

EC 1.1.3.10
Accepted name: pyranose oxidase

Reaction: D-glucose + O2 = 2-dehydro-D-glucose + H2O2
Other name(s): glucose 2-oxidase; pyranose-2-oxidase

Systematic name: pyranose:oxygen 2-oxidoreductase
Comments: A flavoprotein (FAD). Also oxidizes D-xylose, L-sorbose and D-glucono-1,5-lactone, which have the

same ring conformation and configuration at C-2, C-3 and C-4.
References: [1722, 2346, 2760, 3256]

[EC 1.1.3.10 created 1972]

EC 1.1.3.11
Accepted name: L-sorbose oxidase

Reaction: L-sorbose + O2 = 5-dehydro-D-fructose + H2O2
Systematic name: L-sorbose:oxygen 5-oxidoreductase

Comments: Also acts on D-glucose, D-galactose and D-xylose, but not on D-fructose. 2,6-Dichloroindophenol can
act as acceptor.

References: [4304]

[EC 1.1.3.11 created 1972]

EC 1.1.3.12
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Accepted name: pyridoxine 4-oxidase
Reaction: pyridoxine + O2 = pyridoxal + H2O2

Other name(s): pyridoxin 4-oxidase; pyridoxol 4-oxidase
Systematic name: pyridoxine:oxygen 4-oxidoreductase

Comments: A flavoprotein. Can also use 2,6-dichloroindophenol as an acceptor.
References: [3736]

[EC 1.1.3.12 created 1972, modified 1976]

EC 1.1.3.13
Accepted name: alcohol oxidase

Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase

Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an

FAD cofactor [1721, 3746]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola
and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4361]. The en-
zyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-
chain and secondary alcohols.

References: [1721, 2791, 3746, 4361]

[EC 1.1.3.13 created 1972]

EC 1.1.3.14
Accepted name: catechol oxidase (dimerizing)

Reaction: 4 catechol + 3 O2 = 2 dibenzo[1,4]dioxin-2,3-dione + 6 H2O
Systematic name: catechol:oxygen oxidoreductase (dimerizing)

References: [2696]

[EC 1.1.3.14 created 1972]

EC 1.1.3.15
Accepted name: (S)-2-hydroxy-acid oxidase

Reaction: an (S)-2-hydroxy carboxylate + O2 = a 2-oxo carboxylate + H2O2
Other name(s): hydroxy-acid oxidase A; hydroxy-acid oxidase B; glycolate oxidase; L-2-hydroxy acid oxidase; hy-

droxyacid oxidase A; L-α-hydroxy acid oxidase
Systematic name: (S)-2-hydroxy carboxylate:oxygen 2-oxidoreductase

Comments: A flavoprotein (FMN). Exists as two major isoenzymes; the A form preferentially oxidizes short-
chain aliphatic hydroxy acids, and was previously listed as EC 1.1.3.1, glycolate oxidase; the B form
preferentially oxidizes long-chain and aromatic hydroxy acids. The rat isoenzyme B also acts as EC
1.4.3.2, L-amino-acid oxidase.

References: [316, 1077, 2076, 2713, 2715, 3002, 3405, 1770]

[EC 1.1.3.15 created 1972 (EC 1.1.3.1 created 1961, incorporated 1984)]

EC 1.1.3.16
Accepted name: ecdysone oxidase

Reaction: ecdysone + O2 = 3-dehydroecdysone + H2O2
Other name(s): β-ecdysone oxidase

Systematic name: ecdysone:oxygen 3-oxidoreductase
Comments: 2,6-Dichloroindophenol can act as an acceptor.
References: [2029]
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[EC 1.1.3.16 created 1976]

EC 1.1.3.17
Accepted name: choline oxidase

Reaction: choline + 2 O2 + H2O = betaine + 2 H2O2 (overall reaction)
(1a) choline + O2 = betaine aldehyde + H2O2
(1b) betaine aldehyde + O2 + H2O = betaine + H2O2

Systematic name: choline:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD). In many bacteria, plants and animals, the osmoprotectant betaine is synthesized

using different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine
aldehyde into betaine. In plants, the first reaction is catalysed by EC 1.14.15.7, choline monooxyge-
nase, whereas in animals and many bacteria, it is catalysed by either membrane-bound choline de-
hydrogenase (EC 1.1.99.1) or soluble choline oxidase (EC 1.1.3.17) [4077]. The enzyme involved in
the second step, EC 1.2.1.8, betaine-aldehyde dehydrogenase, appears to be the same in those plants,
animals and bacteria that use two separate enzymes.

References: [1640, 3246, 3122, 1137, 983, 4077, 984, 1134]

[EC 1.1.3.17 created 1978, modified 2005, modified 2007]

EC 1.1.3.18
Accepted name: secondary-alcohol oxidase

Reaction: a secondary alcohol + O2 = a ketone + H2O2
Other name(s): polyvinyl alcohol oxidase; secondary alcohol oxidase

Systematic name: secondary-alcohol:oxygen oxidoreductase
Comments: Acts on secondary alcohols with five or more carbons, and polyvinyl alcohols with molecular mass

over 300 Da. The Pseudomonas enzyme contains one atom of non-heme iron per molecule.
References: [2625, 3289, 3755, 3756]

[EC 1.1.3.18 created 1981]

EC 1.1.3.19
Accepted name: 4-hydroxymandelate oxidase (decarboxylating)

Reaction: (S)-4-hydroxymandelate + O2 = 4-hydroxybenzaldehyde + CO2 + H2O2
Other name(s): L-4-hydroxymandelate oxidase (decarboxylating); (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate:oxygen

1-oxidoreductase; (S)-4-hydroxymandelate:oxygen 1-oxidoreductase; 4-hydroxymandelate oxidase
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase (decarboxylating)

Comments: A flavoprotein (FAD), requires Mn2+. The enzyme from the bacterium Pseudomonas putida is in-
volved in the degradation of mandelate.

References: [290]

[EC 1.1.3.19 created 1984, modified 2014]

EC 1.1.3.20
Accepted name: long-chain-alcohol oxidase

Reaction: a long-chain alcohol + O2 = a long-chain aldehyde + H2O2
Other name(s): long-chain fatty alcohol oxidase; fatty alcohol oxidase; fatty alcohol:oxygen oxidoreductase; long-

chain fatty acid oxidase
Systematic name: long-chain-alcohol:oxygen oxidoreductase

Comments: Oxidizes long-chain fatty alcohols; best substrate is dodecyl alcohol.
References: [2612, 2613, 583, 4462, 584]

[EC 1.1.3.20 created 1984, modified 2010]
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EC 1.1.3.21
Accepted name: glycerol-3-phosphate oxidase

Reaction: sn-glycerol 3-phosphate + O2 = glycerone phosphate + H2O2
Other name(s): glycerol phosphate oxidase; glycerol-1-phosphate oxidase; glycerol phosphate oxidase; L-α-

glycerophosphate oxidase; α-glycerophosphate oxidase; L-α-glycerol-3-phosphate oxidase
Systematic name: sn-glycerol-3-phosphate:oxygen 2-oxidoreductase

Comments: A flavoprotein (FAD).
References: [1150, 1989]

[EC 1.1.3.21 created 1984]

[1.1.3.22 Transferred entry. xanthine oxidase. Now EC 1.17.3.2, xanthine oxidase. The enzyme was incorrectly classified as
acting on a CH-OH group]

[EC 1.1.3.22 created 1961 as EC 1.2.3.2, transferred 1984 to EC 1.1.3.22, modified 1989, deleted 2004]

EC 1.1.3.23
Accepted name: thiamine oxidase

Reaction: thiamine + 2 O2 + H2O = thiamine acetic acid + 2 H2O2
Other name(s): thiamin dehydrogenase; thiamine dehydrogenase; thiamin:oxygen 5-oxidoreductase

Systematic name: thiamine:oxygen 5-oxidoreductase
Comments: A flavoprotein (FAD). The product differs from thiamine in replacement of -CH2.CH2.OH by -

CH2.COOH; the two-step oxidation proceeds without the release of the intermediate aldehyde from
the enzyme.

References: [920, 1234, 2751]

[EC 1.1.3.23 created 1984]

[1.1.3.24 Transferred entry. L-galactonolactone oxidase. Now EC 1.3.3.12, L-galactonolactone oxidase. The enzyme had
been incorrectly classified as acting upon a CH-OH donor rather than a CH-CH donor]

[EC 1.1.3.24 created 1984, deleted 2006]

[1.1.3.25 Transferred entry. cellobiose oxidase. Now included with EC 1.1.99.18, cellobiose dehydrogenase (acceptor)]

[EC 1.1.3.25 created 1986, deleted 2005]

[1.1.3.26 Transferred entry. columbamine oxidase. Now EC 1.21.3.2, columbamine oxidase]

[EC 1.1.3.26 created 1989, deleted 2002]

EC 1.1.3.27
Accepted name: hydroxyphytanate oxidase

Reaction: L-2-hydroxyphytanate + O2 = 2-oxophytanate + H2O2
Other name(s): L-2-hydroxyphytanate:oxygen 2-oxidoreductase

Systematic name: L-2-hydroxyphytanate:oxygen 2-oxidoreductase
References: [3991]

[EC 1.1.3.27 created 1990]

EC 1.1.3.28
Accepted name: nucleoside oxidase

Reaction: inosine + O2 = 9-riburonosylhypoxanthine + H2O
(1a) 2 inosine + O2 = 2 5′-dehydroinosine + 2 H2O
(1b) 2 5′-dehydroinosine + O2 = 2 9-riburonosylhypoxanthine

Systematic name: nucleoside:oxygen 5′-oxidoreductase
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Comments: Other purine and pyrimidine nucleosides (as well as 2′-deoxyribonucleosides) are substrates, but ri-
bose and nucleotides are not substrates. The overall reaction takes place in two separate steps, with
the 5′-dehydro nucleoside being released from the enzyme to serve as substrate for the second reac-
tion. This enzyme differs from EC 1.1.3.39, nucleoside oxidase (H2O2-forming), as it produces water
rather than hydrogen peroxide.

References: [1676, 1675]

[EC 1.1.3.28 created 1992, modified 2001]

EC 1.1.3.29
Accepted name: N-acylhexosamine oxidase

Reaction: N-acetyl-D-glucosamine + O2 = N-acetyl-D-glucosaminate + H2O2
Other name(s): N-acyl-D-hexosamine oxidase; N-acyl-β-D-hexosamine:oxygen 1-oxidoreductase

Systematic name: N-acyl-D-hexosamine:oxygen 1-oxidoreductase
Comments: Also acts on N-glycolylglucosamine, N-acetylgalactosamine and, more slowly, on N-

acetylmannosamine.
References: [1569]

[EC 1.1.3.29 created 1992]

EC 1.1.3.30
Accepted name: polyvinyl-alcohol oxidase

Reaction: polyvinyl alcohol + O2 = oxidized polyvinyl alcohol + H2O2
Other name(s): dehydrogenase, polyvinyl alcohol; PVA oxidase

Systematic name: polyvinyl-alcohol:oxygen oxidoreductase
References: [3498, 3499]

[EC 1.1.3.30 created 1992]

[1.1.3.31 Deleted entry. methanol oxidase. Cannot be distinguished from EC 1.1.3.13, alcohol oxidase]

[EC 1.1.3.31 created 1992, deleted 2003]

[1.1.3.32 Transferred entry. (S)-stylopine synthase. Now EC 1.14.21.1, (S)-stylopine synthase]

[EC 1.1.3.32 created 1999, deleted 2002]

[1.1.3.33 Transferred entry. S-cheilanthifoline synthase. Now EC 1.14.21.2, (S)-cheilanthifoline synthase]

[EC 1.1.3.33 created 1999, deleted 2002]

[1.1.3.34 Transferred entry. berbamunine synthase. Now EC 1.14.21.3, berbamunine synthase]

[EC 1.1.3.34 created 1999, deleted 2002]

[1.1.3.35 Transferred entry. salutaridine synthase. Now EC 1.14.21.4, salutaridine synthase]

[EC 1.1.3.35 created 1999, deleted 2002]

[1.1.3.36 Transferred entry. (S)-canadine synthase. Now EC 1.14.21.5, (S)-canadine synthase]

[EC 1.1.3.36 created 1999, deleted 2002]

EC 1.1.3.37
Accepted name: D-arabinono-1,4-lactone oxidase

Reaction: D-arabinono-1,4-lactone + O2 = dehydro-D-arabinono-1,4-lactone + H2O2
Other name(s): D-arabinono-γ-lactone oxidase; ALO

Systematic name: D-arabinono-1,4-lactone:oxygen oxidoreductase
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Comments: A flavoprotein (FAD). L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone can
also act as substrates but D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone
and D-gulono-1,4-lactone cannot [1605]. With L-galactono-1,4-lactone as substrate, the product is
L-ascorbate [2162]. The product dehydro-D-arabinono-1,4-lactone had previously been referred to
erroneously as D-erythroascorbate (CAS no.: 5776-48-7; formula: C6H8O6), although it was referred
to as a five-carbon compound [1605].

References: [1605, 1606, 2162]

[EC 1.1.3.37 created 1999]

EC 1.1.3.38
Accepted name: vanillyl-alcohol oxidase

Reaction: vanillyl alcohol + O2 = vanillin + H2O2
Other name(s): 4-hydroxy-2-methoxybenzyl alcohol oxidase

Systematic name: vanillyl alcohol:oxygen oxidoreductase
Comments: Vanillyl-alcohol oxidase from Penicillium simplicissimum contains covalently bound FAD. It converts

a wide range of 4-hydroxybenzyl alcohols and 4-hydroxybenzylamines into the corresponding aldehy-
des. The allyl group of 4-allylphenols is also converted into the -CH=CH-CH2OH group.

References: [761, 1047]

[EC 1.1.3.38 created 1999]

EC 1.1.3.39
Accepted name: nucleoside oxidase (H2O2-forming)

Reaction: adenosine + 2 O2 + H2O = 9-riburonosyladenine + 2 H2O2 (overall reaction)
(1a) adenosine + O2 = 5′-dehydroadenosine + H2O2
(1b) 5′-dehydroadenosine + O2 + H2O = 9-riburonosyladenine + H2O2

Systematic name: nucleoside:oxygen 5′-oxidoreductase (H2O2-forming)
Comments: A heme-containing flavoprotein (FAD). Other purine and pyrimidine nucleosides (as well as 2′-

deoxyribonucleosides and arabinosides) are substrates, but ribose and nucleotides are not substrates.
The overall reaction takes place in two separate steps, with the 5′-dehydro nucleoside being released
from the enzyme to serve as substrate for the second reaction. This enzyme differs from EC 1.1.3.28,
nucleoside oxidase, as it produces hydrogen peroxide rather than water.

References: [1999]

[EC 1.1.3.39 created 2001]

EC 1.1.3.40
Accepted name: D-mannitol oxidase

Reaction: mannitol + O2 = mannose + H2O2
Other name(s): mannitol oxidase; D-arabitol oxidase

Systematic name: mannitol:oxygen oxidoreductase (cyclizing)
Comments: Also catalyses the oxidation of D-arabinitol and, to a lesser extent, D-glucitol (sorbitol), whereas L-

arabinitol is not a good substrate. The enzyme from the snails Helix aspersa and Arion ater is found
in a specialised tubular organelle that has been termed the mannosome.

References: [4065, 2138]

[EC 1.1.3.40 created 2001]

EC 1.1.3.41
Accepted name: alditol oxidase

Reaction: an alditol + O2 = an aldose + H2O2
Other name(s): xylitol oxidase; xylitol:oxygen oxidoreductase; AldO
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Systematic name: alditol:oxygen oxidoreductase
Comments: The enzyme from Streptomyces sp. IKD472 and from Streptomyces coelicolor is a monomeric oxi-

dase containing one molecule of FAD per molecule of protein [4326, 1484]. While xylitol (five car-
bons) and sorbitol (6 carbons) are the preferred substrates, other alditols, including L-threitol (four
carbons), D-arabinitol (five carbons), D-galactitol (six carbons) and D-mannitol (six carbons) can also
act as substrates, but more slowly [4326, 1484]. Belongs in the vanillyl-alcohol-oxidase family of en-
zymes [1484].

References: [4326, 1484, 1036]

[EC 1.1.3.41 created 2002, modified 2008]

EC 1.1.3.42
Accepted name: prosolanapyrone-II oxidase

Reaction: prosolanapyrone II + O2 = prosolanapyrone III + H2O2
Other name(s): Sol5 (ambiguous); SPS (ambiguous); solanapyrone synthase (bifunctional enzyme: prosolanapyrone

II oxidase/prosolanapyrone III cycloisomerase); prosolanapyrone II oxidase
Systematic name: prosolanapyrone-II:oxygen 3′-oxidoreductase

Comments: The enzyme is involved in the biosynthesis of the phytotoxin solanapyrone by some fungi. The bi-
functional enzyme catalyses the oxidation of prosolanapyrone II and the subsequent Diels Alder
cycloisomerization of the product prosolanapyrone III to (-)-solanapyrone A (cf. EC 5.5.1.20,
prosolanapyrone III cycloisomerase).

References: [1822, 1832, 1831]

[EC 1.1.3.42 created 2011]

EC 1.1.3.43
Accepted name: paromamine 6′-oxidase

Reaction: paromamine + O2 = 6′-dehydroparomamine + H2O2
Other name(s): btrQ (gene name); neoG (gene name); kanI (gene name); tacB (gene name); neoQ (obsolete gene

name)
Systematic name: paromamine:oxygen 6′-oxidoreductase

Comments: Contains FAD. Involved in the biosynthetic pathways of several clinically important aminocycli-
tol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. Works in combination
with EC 2.6.1.93, neamine transaminase, to replace the 6′-hydroxy group of paromamine with an
amino group. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 1.1.3.44, 6′′′-
hydroxyneomycin C oxidase.

References: [1592, 4406, 631]

[EC 1.1.3.43 created 2012]

EC 1.1.3.44
Accepted name: 6′′′-hydroxyneomycin C oxidase

Reaction: 6′′′-deamino-6′′′-hydroxyneomycin C + O2 = 6′′′-deamino-6′′′-oxoneomycin C + H2O2
Other name(s): neoG (gene name); neoQ (obsolete gene name)

Systematic name: 6′′′-deamino-6′′′-hydroxyneomycin C:oxygen 6′′′-oxidoreductase
Comments: Contains FAD. Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin

family. Works in combination with EC 2.6.1.95, neomycin C transaminase, to replace the 6′′′-hydroxy
group of 6′′′-hydroxyneomycin C with an amino group. Also catalyses EC 1.1.3.43, paromamine 6′-
oxidase.

References: [1592, 631]

[EC 1.1.3.44 created 2012]

104

http://www.enzyme-database.org/query.php?ec=1.1.3.42
http://www.enzyme-database.org/query.php?ec=1.1.3.43
http://www.enzyme-database.org/query.php?ec=1.1.3.44


EC 1.1.3.45
Accepted name: aclacinomycin-N oxidase

Reaction: aclacinomycin N + O2 = aclacinomycin A + H2O2
Other name(s): AknOx (ambiguous); aclacinomycin oxidoreductase (ambiguous)

Systematic name: aclacinomycin-N:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This bifunctional enzyme is a secreted flavin-dependent enzyme that is in-

volved in the modification of the terminal sugar residues in the biosynthesis of aclacinomycins. The
enzyme utilizes the same active site to catalyse the oxidation of the rhodinose moiety of aclacino-
mycin N to the cinerulose A moiety of aclacinomycin A and the oxidation of the latter to the L-
aculose moiety of aclacinomycin Y (cf. EC 1.3.3.14, aclacinomycin A oxidase).

References: [60, 3725]

[EC 1.1.3.45 created 2013]

EC 1.1.3.46
Accepted name: 4-hydroxymandelate oxidase

Reaction: (S)-4-hydroxymandelate + O2 = 2-(4-hydroxyphenyl)-2-oxoacetate + H2O2
Other name(s): 4HmO; HmO

Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase
Comments: A flavoprotein (FMN). The enzyme from the bacterium Amycolatopsis orientalis is involved in

the biosynthesis of L-(4-hydroxyphenyl)glycine and L-(3,5-dihydroxyphenyl)glycine, two non-
proteinogenic amino acids occurring in the vancomycin group of antibiotics.

References: [1599, 2234]

[EC 1.1.3.46 created 2014]

EC 1.1.3.47
Accepted name: 5-(hydroxymethyl)furfural oxidase

Reaction: 5-(hydroxymethyl)furfural + 3 O2 + 2 H2O = furan-2,5-dicarboxylate + 3 H2O2 (overall reaction)
(1a) 5-(hydroxymethyl)furfural + O2 = furan-2,5-dicarbaldehyde + H2O2
(1b) furan-2,5-dicarbaldehyde + H2O = 5-(dihydroxymethyl)furan-2-carbaldehyde (spontaneous)
(1c) 5-(dihydroxymethyl)furan-2-carbaldehyde + O2 = 5-formylfuran-2-carboxylate + H2O2
(1d) 5-formylfuran-2-carboxylate + H2O = 5-(dihydroxymethyl)furan-2-carboxylate (spontaneous)
(1e) 5-(dihydroxymethyl)furan-2-carboxylate + O2 = furan-2,5-dicarboxylate + H2O2

Systematic name: 5-(hydroxymethyl)furfural:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Methylovorus sp. strain MP688, is involved in the

degradation and detoxification of 5-(hydroxymethyl)furfural. The enzyme acts only on alcohol groups
and requires the spontaneous hydration of aldehyde groups for their oxidation [826]. The enzyme has
a broad substrate range that overlaps with EC 1.1.3.7, aryl-alcohol oxidase.

References: [2030, 825, 826]

[EC 1.1.3.47 created 2014]

EC 1.1.3.48
Accepted name: 3-deoxy-α-D-manno-octulosonate 8-oxidase

Reaction: 3-deoxy-α-D-manno-octulopyranosonate + O2 = 3,8-dideoxy-8-oxo-α-D-manno-octulosonate + H2O2
Other name(s): kdnB (gene name)

Systematic name: 3-deoxy-α-D-manno-octulopyranosonate:oxygen 8-oxidoreductase
Comments: The enzyme, characterized from the bacterium Shewanella oneidensis, is involved in the formation

of 8-amino-3,8-dideoxy-α-D-manno-octulosonate, an aminated form of Kdo found in lipopolysac-
charides of members of the Shewanella genus. cf. EC 2.6.1.109, 8-amino-3,8-dideoxy-α-D-manno-
octulosonate transaminase.

References: [1162]
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[EC 1.1.3.48 created 2015]

EC 1.1.3.49
Accepted name: (R)-mandelonitrile oxidase

Reaction: (R)-mandelonitrile + O2 = benzoyl cyanide + H2O2
Other name(s): ChuaMOX (gene name)

Systematic name: (R)-mandelonitrile:oxygen oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the millipede Chamberlinius hualienensis, is segre-

gated from its substrate, which is contained in special sacs. The sacs are ruptured during defensive
behavior, allowing the enzyme and substrate to mix in special reaction chambers leading to produc-
tion of the defensive chemical benzoyl cyanide.

References: [1667]

[EC 1.1.3.49 created 2016]

EC 1.1.4 With a disulfide as acceptor

[1.1.4.1 Transferred entry. vitamin-K-epoxide reductase (warfarin-sensitive). Now EC 1.17.4.4, vitamin-K-epoxide reduc-
tase (warfarin-sensitive)]

[EC 1.1.4.1 created 1989, deleted 2014]

[1.1.4.2 Transferred entry. vitamin-K-epoxide reductase (warfarin-insensitive). Now EC 1.17.4.5, vitamin-K-epoxide reduc-
tase (warfarin-insensitive)]

[EC 1.1.4.2 created 1989, deleted 2014]

EC 1.1.5 With a quinone or similar compound as acceptor

[1.1.5.1 Deleted entry. cellobiose dehydrogenase (quinone). Now known to be proteolytic product of EC 1.1.99.18, cellobiose
dehydrogenase (acceptor)]

[EC 1.1.5.1 created 1983, deleted 2002]

EC 1.1.5.2
Accepted name: glucose 1-dehydrogenase (PQQ, quinone)

Reaction: D-glucose + ubiquinone = D-glucono-1,5-lactone + ubiquinol
Other name(s): quinoprotein glucose dehydrogenase; membrane-bound glucose dehydrogenase; mGDH; glucose de-

hydrogenase (PQQ-dependent); glucose dehydrogenase (pyrroloquinoline-quinone); quinoprotein
D-glucose dehydrogenase

Systematic name: D-glucose:ubiquinone oxidoreductase
Comments: Integral membrane protein containing PQQ as prosthetic group. It also contains bound ubiquinone

and Mg2+ or Ca2+. Electron acceptor is membrane ubiquinone but usually assayed with phenazine
methosulfate. Like in all other quinoprotein alcohol dehydrogenases the catalytic domain has an 8-
bladed propeller structure. It occurs in a wide range of bacteria. Catalyses a direct oxidation of the
pyranose form of D-glucose to the lactone and thence to D-gluconate in the periplasm. Oxidizes other
monosaccharides including the pyranose forms of pentoses.

References: [4302, 806, 886, 72, 683, 685, 938, 1717, 937, 2676]

[EC 1.1.5.2 created 1982 as EC 1.1.99.17, transferred 2003 to EC 1.1.5.2, modified 2010]

EC 1.1.5.3
Accepted name: glycerol-3-phosphate dehydrogenase

Reaction: sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol
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Other name(s): α-glycerophosphate dehydrogenase; α-glycerophosphate dehydrogenase (acceptor); anaerobic
glycerol-3-phosphate dehydrogenase; DL-glycerol 3-phosphate oxidase (misleading); FAD-dependent
glycerol-3-phosphate dehydrogenase; FAD-dependent sn-glycerol-3-phosphate dehydrogenase; FAD-
GPDH; FAD-linked glycerol 3-phosphate dehydrogenase; FAD-linked L-glycerol-3-phosphate de-
hydrogenase; flavin-linked glycerol-3-phosphate dehydrogenase; flavoprotein-linked L-glycerol
3-phosphate dehydrogenase; glycerol 3-phosphate cytochrome c reductase (misleading); glyc-
erol phosphate dehydrogenase; glycerol phosphate dehydrogenase (acceptor); glycerol phosphate
dehydrogenase (FAD); glycerol-3-phosphate CoQ reductase; glycerol-3-phosphate dehydroge-
nase (flavin-linked); glycerol-3-phosphate:CoQ reductase; glycerophosphate dehydrogenase; L-3-
glycerophosphate-ubiquinone oxidoreductase; L-glycerol-3-phosphate dehydrogenase (ambigu-
ous); L-glycerophosphate dehydrogenase; mGPD; mitochondrial glycerol phosphate dehydroge-
nase; NAD+-independent glycerol phosphate dehydrogenase; pyridine nucleotide-independent L-
glycerol 3-phosphate dehydrogenase; sn-glycerol 3-phosphate oxidase (misleading); sn-glycerol-
3-phosphate dehydrogenase; sn-glycerol-3-phosphate:(acceptor) 2-oxidoreductase; sn-glycerol-3-
phosphate:acceptor 2-oxidoreductase

Systematic name: sn-glycerol 3-phosphate:quinone oxidoreductase
Comments: This flavin-dependent dehydrogenase is an essential membrane enzyme, functioning at the central

junction of glycolysis, respiration and phospholipid biosynthesis. In bacteria, the enzyme is localized
to the cytoplasmic membrane [4100], while in eukaryotes it is tightly bound to the outer surface of
the inner mitochondrial membrane [3394]. In eukaryotes, this enzyme, together with the cytosolic
enzyme EC 1.1.1.8, glycerol-3-phosphate dehydrogenase (NAD+), forms the glycerol-3-phosphate
shuttle by which NADH produced in the cytosol, primarily from glycolysis, can be reoxidized to
NAD+ by the mitochondrial electron-transport chain [2343]. This shuttle plays a critical role in trans-
ferring reducing equivalents from cytosolic NADH into the mitochondrial matrix [94, 2145]. Insect
flight muscle uses only CoQ10 as the physiological quinone whereas hamster and rat mitochondria use
mainly CoQ9 [3132]. The enzyme is activated by calcium [2343].

References: [3192, 3394, 2343, 3132, 3476, 4100, 94, 2145]

[EC 1.1.5.3 created 1961 as EC 1.1.2.1, transferred 1965 to EC 1.1.99.5, transferred 2009 to EC 1.1.5.3]

EC 1.1.5.4
Accepted name: malate dehydrogenase (quinone)

Reaction: (S)-malate + a quinone = oxaloacetate + reduced quinone
Other name(s): FAD-dependent malate-vitamin K reductase; malate-vitamin K reductase; (S)-malate:(acceptor) oxi-

doreductase; L-malate-quinone oxidoreductase; malate:quinone oxidoreductase; malate quinone ox-
idoreductase; MQO; malate:quinone reductase; malate dehydrogenase (acceptor); FAD-dependent
malate dehydrogenase

Systematic name: (S)-malate:quinone oxidoreductase
Comments: A flavoprotein (FAD). Vitamin K and several other quinones can act as acceptors. Different from EC

1.1.1.37 (malate dehydrogenase (NAD+)), EC 1.1.1.82 (malate dehydrogenase (NADP+)) and EC
1.1.1.299 (malate dehydrogenase [NAD(P)+]).

References: [1641, 1642, 3149, 2594, 1833]

[EC 1.1.5.4 created 1978 as EC 1.1.99.16, transferred 2009 to EC 1.1.5.4]

EC 1.1.5.5
Accepted name: alcohol dehydrogenase (quinone)

Reaction: ethanol + ubiquinone = acetaldehyde + ubiquinol
Other name(s): type III ADH; membrane associated quinohaemoprotein alcohol dehydrogenase

Systematic name: alcohol:quinone oxidoreductase
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Comments: Only described in acetic acid bacteria where it is involved in acetic acid production. Associated with
membrane. Electron acceptor is membrane ubiquinone. A model structure suggests that, like all other
quinoprotein alcohol dehydrogenases, the catalytic subunit has an 8-bladed propeller structure, a cal-
cium ion bound to the PQQ in the active site and an unusual disulfide ring structure in close proximity
to the PQQ; the catalytic subunit also has a heme c in the C-terminal domain. The enzyme has two
additional subunits, one of which contains three molecules of heme c. It does not require amines for
activation. It has a restricted substrate specificity, oxidizing a few primary alcohols (C2 to C6), but not
methanol, secondary alcohols and some aldehydes. It is assayed with phenazine methosulfate or with
ferricyanide.

References: [1233, 3512, 593, 1061, 2457, 2463, 2460, 2461, 684]

[EC 1.1.5.5 created 2009, modified 2010]

[1.1.5.6 Transferred entry. formate dehydrogenase-N. Now EC 1.17.5.3, formate dehydrogenase-N]

[EC 1.1.5.6 created 2010, deleted 2017]

EC 1.1.5.7
Accepted name: cyclic alcohol dehydrogenase (quinone)

Reaction: a cyclic alcohol + a quinone = a cyclic ketone + a quinol
Other name(s): cyclic alcohol dehydrogenase; MCAD

Systematic name: cyclic alcohol:quinone oxidoreductase
Comments: This enzyme oxidizes a wide variety of cyclic alcohols. Some minor enzyme activity is found with

aliphatic secondary alcohols and sugar alcohols, but not primary alcohols. The enzyme is unable to
catalyse the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. This enzyme differs
from EC 1.1.5.5, alcohol dehydrogenase (quinone), which shows activity with ethanol [2604].

References: [2604]

[EC 1.1.5.7 created 2010]

EC 1.1.5.8
Accepted name: quinate dehydrogenase (quinone)

Reaction: quinate + quinone = 3-dehydroquinate + quinol
Other name(s): NAD(P)+-independent quinate dehydrogenase; quinate:pyrroloquinoline-quinone 5-oxidoreductase

Systematic name: quinate:quinol 3-oxidoreductase
Comments: The enzyme is membrane-bound. Does not use NAD(P)+ as acceptor. Contains pyrroloquinoline-

quinone.
References: [4008, 16, 4021]

[EC 1.1.5.8 created 1992 as EC 1.1.99.25, modified 2004, transferred 2010 to EC 1.1.5.8]

EC 1.1.5.9
Accepted name: glucose 1-dehydrogenase (FAD, quinone)

Reaction: D-glucose + a quinone = D-glucono-1,5-lactone + a quinol
Other name(s): glucose dehydrogenase (Aspergillus); FAD-dependent glucose dehydrogenase; D-glucose:(acceptor)

1-oxidoreductase; glucose dehydrogenase (acceptor); gdh (gene name)
Systematic name: D-glucose:quinone 1-oxidoreductase

Comments: A glycoprotein containing one mole of FAD per mole of enzyme. 2,6-Dichloroindophenol can act as
acceptor. cf. EC 1.1.5.2, glucose 1-dehydrogenase (PQQ, quinone).

References: [171, 526, 2303, 1650, 3764, 3765]

[EC 1.1.5.9 created 1972 as EC 1.1.99.10, modified 1976, transferred 2013 to EC 1.1.5.9]

EC 1.1.5.10
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Accepted name: D-2-hydroxyacid dehydrogenase (quinone)
Reaction: (R)-2-hydroxyacid + a quinone = 2-oxoacid + a quinol

Other name(s): (R)-2-hydroxy acid dehydrogenase; (R)-2-hydroxy-acid:(acceptor) 2-oxidoreductase; D-lactate dehy-
drogenase (ambiguous)

Systematic name: (R)-2-hydroxyacid:quinone oxidoreductase
Comments: The enzyme from mammalian kidney contains one mole of FAD per mole of enzyme.(R)-lactate, (R)-

malate and meso-tartrate are good substrates. Ubiquinone-1 and the dye 2,6-dichloroindophenol can
act as acceptors; NAD+ and NADP+ are not acceptors.

References: [3944, 3945, 485, 486]

[EC 1.1.5.10 created 2014]

EC 1.1.5.11
Accepted name: 1-butanol dehydrogenase (quinone)

Reaction: butan-1-ol + a quinone = butanal + a quinol
Other name(s): BOH

Systematic name: butan-1-ol:quinone oxidoreductase
Comments: This periplasmic quinoprotein alcohol dehydrogenase, characterized from the bacterium Thauera bu-

tanivorans, is involved in butane degradation. It contains a pyrroloquinoline quinone (PQQ) pros-
thetic group. cf. EC 1.1.2.9, 1-butanol dehydrogenase (cytochrome c).

References: [4019, 4020]

[EC 1.1.5.11 created 2016]

EC 1.1.5.12
Accepted name: D-lactate dehydrogenase (quinone)

Reaction: (R)-lactate + a quinone = pyruvate + a quinol
Other name(s): dld (gene name)

Systematic name: (R)-lactate:quinone 2-oxidoreductase
Comments: The enzyme is an FAD-dependent peripheral membrane dehydrogenase that participates in respi-

ration. Electrons derived from D-lactate oxidation are transferred to the membrane soluble quinone
pool.

References: [2007, 1126, 2456, 2974, 899]

[EC 1.1.5.12 created 2017]

EC 1.1.9 With a copper protein as acceptor

EC 1.1.9.1
Accepted name: alcohol dehydrogenase (azurin)

Reaction: a primary alcohol + azurin = an aldehyde + reduced azurin
Other name(s): type II quinoprotein alcohol dehydrogenase; quinohaemoprotein ethanol dehydrogenase; QHEDH;

ADHIIB
Systematic name: alcohol:azurin oxidoreductase

Comments: A soluble, periplasmic PQQ-containing quinohemoprotein. Also contains a single heme c. Occurs in
Comamonas and Pseudomonas. Does not require an amine activator. Oxidizes a wide range of pri-
mary and secondary alcohols, and also aldehydes and large substrates such as sterols; methanol is not
a substrate. Usually assayed with phenazine methosulfate or ferricyanide. Like all other quinoprotein
alcohol dehydrogenases it has an 8-bladed propeller structure, a calcium ion bound to the PQQ in the
active site and an unusual disulfide ring structure in close proximity to the PQQ.

References: [1291, 762, 3920, 2464, 580, 2915]

[EC 1.1.9.1 created 2010 as EC 1.1.98.1; transferred 2011 to EC 1.1.9.1]
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EC 1.1.98 With other, known, physiological acceptors

[1.1.98.1 Transferred entry. Now EC 1.1.9.1, alcohol dehydrogenase (azurin)]

[EC 1.1.98.1 created 2010, deleted 2011]

EC 1.1.98.2
Accepted name: glucose-6-phosphate dehydrogenase (coenzyme-F420)

Reaction: D-glucose 6-phosphate + oxidized coenzyme F420 = 6-phospho-D-glucono-1,5-lactone + reduced
coenzyme F420

Other name(s): coenzyme F420-dependent glucose-6-phosphate dehydrogenase; F420-dependent glucose-6-phosphate
dehydrogenase; FGD1; Rv0407; F420-dependent glucose-6-phosphate dehydrogenase 1

Systematic name: D-glucose-6-phosphate:F420 1-oxidoreductase
Comments: The enzyme is very specific for D-glucose 6-phosphate. No activity with NAD+, NADP+, FAD and

FMN [3076].
References: [3076, 209, 3077]

[EC 1.1.98.2 created 2010 as EC 1.1.99.34, transferred 2011 to EC 1.1.98.2]

EC 1.1.98.3
Accepted name: decaprenylphospho-β-D-ribofuranose 2-dehydrogenase

Reaction: trans,octacis-decaprenylphospho-β-D-ribofuranose + FAD = trans,octacis-decaprenylphospho-β-D-
erythro-pentofuranosid-2-ulose + FADH2

Other name(s): decaprenylphosphoryl-β-D-ribofuranose 2′-epimerase; Rv3790; DprE1; decaprenylphospho-β-D-
ribofuranose 2-oxidase

Systematic name: trans,octacis-decaprenylphospho-β-D-ribofuranose:FAD 2-oxidoreductase
Comments: The enzyme, isolated from the bacterium Mycobacterium smegmatis, is involved, along with EC

1.1.1.333, decaprenylphospho-D-erythro-pentofuranosid-2-ulose 2-reductase, in the epimerization
of trans,octacis-decaprenylphospho-β-D-ribofuranose to trans,octacis-decaprenylphospho-β-D-
arabinofuranose, the arabinosyl donor for the biosynthesis of mycobacterial cell wall arabinan poly-
mers.

References: [3179, 3925]

[EC 1.1.98.3 created 2012, modified 2014]

EC 1.1.98.4
Accepted name: F420H2:quinone oxidoreductase

Reaction: a quinol + oxidized coenzyme F420 = a quinone + reduced coenzyme F420
Other name(s): FqoF protein

Systematic name: quinol:coenzyme-F420 oxidoreductase
Comments: An enzyme complex that contains FAD and iron-sulfur clusters. The enzyme has been described in

the archaea Methanosarcina mazei and Archaeoglobus fulgidus.
References: [422, 2082, 3]

[EC 1.1.98.4 created 2013]

EC 1.1.98.5
Accepted name: secondary-alcohol dehydrogenase (coenzyme-F420)

Reaction: R-CHOH-R′ + oxidized coenzyme F420 = R-CO-R′ + reduced coenzyme F420
Other name(s): F420-dependent alcohol dehydrogenase; secondary alcohol:F420 oxidoreductase; F420-dependent sec-

ondary alcohol dehydrogenase
Systematic name: secondary-alcohol:coenzyme F420 oxidoreductase

Comments: The enzyme isolated from the methanogenic archaea Methanogenium liminatans catalyses the re-
versible oxidation of various secondary and cyclic alcohols to the corresponding ketones.
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References: [322, 139]

[EC 1.1.98.5 created 2013]

EC 1.1.98.6
Accepted name: ribonucleoside-triphosphate reductase (formate)

Reaction: ribonucleoside 5′-triphosphate + formate = 2′-deoxyribonucleoside 5′-triphosphate + CO2 + H2O
Other name(s): nrdD (gene name); class III ribonucleoside-triphosphate reductase; anaerobic ribonucleotide reduc-

tase; anaerobic ribonucleoside-triphosphate reductase
Systematic name: ribonucleoside-5′-triphosphate:formate 2′-oxidoreductase

Comments: The enzyme, which is expressed in the bacterium Escherichia coli during anaerobic growth, con-
tains an iron sulfur center. The active form of the enzyme contains an oxygen-sensitive glycyl (1-
amino-2-oxoethan-1-yl) radical that is generated by the activating enzyme NrdG via chemistry involv-
ing S-adenosylmethionine (SAM) and a [4Fe-4S] cluster. The glycyl radical is involved in genera-
tion of a transient thiyl (sulfanyl) radical on a cysteine residue, which attacks the substrate, forming
a ribonucleotide 3′-radical, followed by water loss to form a ketyl (α-oxoalkyl) radical. The ketyl
radical gains an electron from a cysteine residue and a proton from formic acid, forming 3′-keto-
deoxyribonucleotide and generating a thiosulfuranyl (1λ4-disulfan-1-yl) radical bridge between me-
thionine and cysteine residues. Oxidation of formate by the thiosulfuranyl radical results in the release
of CO2 and regeneration of the thiyl radical. cf. EC 1.17.4.1, ribonucleoside-diphosphate reductase
and EC 1.17.4.2, ribonucleoside-triphosphate reductase (thioredoxin).

References: [939, 2658, 2659, 2876, 4162]

[EC 1.1.98.6 created 2017]

EC 1.1.99 With unknown physiological acceptors

EC 1.1.99.1
Accepted name: choline dehydrogenase

Reaction: choline + acceptor = betaine aldehyde + reduced acceptor
Other name(s): choline oxidase; choline-cytochrome c reductase; choline:(acceptor) oxidoreductase;

choline:(acceptor) 1-oxidoreductase
Systematic name: choline:acceptor 1-oxidoreductase

Comments: A quinoprotein. In many bacteria, plants and animals, the osmoprotectant betaine is synthesized using
different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine alde-
hyde into betaine. In plants, the first reaction is catalysed by EC 1.14.15.7, choline monooxygenase,
whereas in animals and many bacteria, it is catalysed by either membrane-bound choline dehydro-
genase (EC 1.1.99.1) or soluble choline oxidase (EC 1.1.3.17) [4077]. The enzyme involved in the
second step, EC 1.2.1.8, betaine-aldehyde dehydrogenase, appears to be the same in plants, animals
and bacteria.

References: [75, 912, 1136, 4077]

[EC 1.1.99.1 created 1961, modified 1989, modified 2005]

EC 1.1.99.2
Accepted name: L-2-hydroxyglutarate dehydrogenase

Reaction: (S)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): α-ketoglutarate reductase; α-hydroxyglutarate dehydrogenase; L-α-hydroxyglutarate de-

hydrogenase; hydroxyglutaric dehydrogenase; α-hydroxyglutarate oxidoreductase; L-α-
hydroxyglutarate:NAD+ 2-oxidoreductase; α-hydroxyglutarate dehydrogenase (NAD+ specific); (S)-
2-hydroxyglutarate:(acceptor) 2-oxidoreductase

Systematic name: (S)-2-hydroxyglutarate:acceptor 2-oxidoreductase
References: [4163]
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[EC 1.1.99.2 created 1961, modified 2013]

EC 1.1.99.3
Accepted name: gluconate 2-dehydrogenase (acceptor)

Reaction: D-gluconate + acceptor = 2-dehydro-D-gluconate + reduced acceptor
Other name(s): gluconate oxidase; gluconate dehydrogenase; gluconic dehydrogenase; D-gluconate dehydrogenase;

gluconic acid dehydrogenase; 2-ketogluconate reductase; D-gluconate dehydrogenase, 2-keto-D-
gluconate-yielding; D-gluconate:(acceptor) 2-oxidoreductase

Systematic name: D-gluconate:acceptor 2-oxidoreductase
Comments: A flavoprotein (FAD).
References: [2459, 3117]

[EC 1.1.99.3 created 1961, modified 1976, modified 1989]

EC 1.1.99.4
Accepted name: dehydrogluconate dehydrogenase

Reaction: 2-dehydro-D-gluconate + acceptor = 2,5-didehydro-D-gluconate + reduced acceptor
Other name(s): ketogluconate dehydrogenase; α-ketogluconate dehydrogenase; 2-keto-D-gluconate dehydrogenase;

2-oxogluconate dehydrogenase
Systematic name: 2-dehydro-D-gluconate:acceptor 2-oxidoreductase

Comments: A flavoprotein.
References: [747, 3510]

[EC 1.1.99.4 created 1961, modified 1989]

[1.1.99.5 Transferred entry. glycerol-3-phosphate dehydrogenase. As the acceptor is now known, the enzyme has been
transferred to EC 1.1.5.3, glycerol-3-phosphate dehydrogenase.]

[EC 1.1.99.5 created 1961 as EC 1.1.2.1, transferred 1965 to EC 1.1.99.5, deleted 2009]

EC 1.1.99.6
Accepted name: D-lactate dehydrogenase (acceptor)

Reaction: (R)-lactate + acceptor = pyruvate + reduced acceptor
Other name(s): D-2-hydroxy acid dehydrogenase; D-2-hydroxy-acid dehydrogenase; (R)-2-hydroxy-acid:acceptor 2-

oxidoreductase
Systematic name: (R)-lactate:acceptor 2-oxidoreductase

Comments: The zinc flavoprotein (FAD) from the archaeon Archaeoglobus fulgidus cannot utilize NAD+, cy-
tochrome c, methylene blue or dimethylnaphthoquinone as acceptors. In vitro it is active with artificial
electron acceptors such as 2,6-dichlorophenolindophenol, but the physiological acceptor is not yet
known.

References: [3151]

[EC 1.1.99.6 created 1965, modified 2013]

EC 1.1.99.7
Accepted name: lactate—malate transhydrogenase

Reaction: (S)-lactate + oxaloacetate = pyruvate + malate
Other name(s): malate-lactate transhydrogenase

Systematic name: (S)-lactate:oxaloacetate oxidoreductase
Comments: Catalyses hydrogen transfer from C3 or C4 (S)-2-hydroxy acids to 2-oxo acids. It contains tightly

bound nicotinamide nucleotide in its active centre. This prosthetic group cannot be removed without
denaturation of the protein.

References: [63, 64]
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[EC 1.1.99.7 created 1972]

[1.1.99.8 Transferred entry. alcohol dehydrogenase (acceptor). Now EC 1.1.2.7, methanol dehydrogenase (cytochrome c)
and EC 1.1.2.8, alcohol dehydrogenase (cytochrome c).]

[EC 1.1.99.8 created 1972, modified 1982, deleted 2010]

EC 1.1.99.9
Accepted name: pyridoxine 5-dehydrogenase

Reaction: pyridoxine + acceptor = isopyridoxal + reduced acceptor
Other name(s): pyridoxal-5-dehydrogenase; pyridoxol 5-dehydrogenase; pyridoxin 5-dehydrogenase; pyridoxine de-

hydrogenase; pyridoxine 5′-dehydrogenase; pyridoxine:(acceptor) 5-oxidoreductase
Systematic name: pyridoxine:acceptor 5-oxidoreductase

Comments: A flavoprotein (FAD).
References: [3736]

[EC 1.1.99.9 created 1972, modified 1976]

[1.1.99.10 Transferred entry. glucose dehydrogenase (acceptor). Now EC 1.1.5.9, glucose 1-dehydrogenase (FAD, quinone)]

[EC 1.1.99.10 created 1972, modified 1976, deleted 2013]

EC 1.1.99.11
Accepted name: fructose 5-dehydrogenase

Reaction: D-fructose + acceptor = 5-dehydro-D-fructose + reduced acceptor
Other name(s): fructose 5-dehydrogenase (acceptor); D-fructose dehydrogenase; D-fructose:(acceptor) 5-

oxidoreductase
Systematic name: D-fructose:acceptor 5-oxidoreductase

Comments: 2,6-Dichloroindophenol can act as acceptor.
References: [71, 4303]

[EC 1.1.99.11 created 1972]

EC 1.1.99.12
Accepted name: sorbose dehydrogenase

Reaction: L-sorbose + acceptor = 5-dehydro-D-fructose + reduced acceptor
Other name(s): L-sorbose:(acceptor) 5-oxidoreductase

Systematic name: L-sorbose:acceptor 5-oxidoreductase
Comments: 2,6-Dichloroindophenol can act as acceptor.
References: [3317]

[EC 1.1.99.12 created 1972]

EC 1.1.99.13
Accepted name: glucoside 3-dehydrogenase

Reaction: sucrose + acceptor = 3-dehydro-α-D-glucosyl-β-D-fructofuranoside + reduced acceptor
Other name(s): D-glucoside 3-dehydrogenase; D-aldohexopyranoside dehydrogenase; D-aldohexoside:cytochrome

c oxidoreductase; D-glucoside 3-dehydrogenase; hexopyranoside-cytochrome c oxidoreductase; D-
aldohexoside:(acceptor) 3-oxidoreductase

Systematic name: D-aldohexoside:acceptor 3-oxidoreductase
Comments: A flavoprotein (FAD). The enzyme acts on D-glucose, D-galactose, D-glucosides and D-galactosides,

but D-glucosides react more rapidly than D-galactosides.
References: [1436]
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[EC 1.1.99.13 created 1972]

EC 1.1.99.14
Accepted name: glycolate dehydrogenase

Reaction: glycolate + acceptor = glyoxylate + reduced acceptor
Other name(s): glycolate oxidoreductase; glycolic acid dehydrogenase; glycolate:(acceptor) 2-oxidoreductase

Systematic name: glycolate:acceptor 2-oxidoreductase
Comments: Also acts on (R)-lactate. 2,6-Dichloroindophenol and phenazine methosulfate can act as acceptors.
References: [2297]

[EC 1.1.99.14 created 1978]

[1.1.99.15 Transferred entry. 5,10-methylenetetrahydrofolate reductase (FADH2). Now EC 1.5.1.20, methylenetetrahydro-
folate reductase [NAD(P)H]]

[EC 1.1.99.15 created 1978, deleted 1980]

[1.1.99.16 Transferred entry. malate dehydrogenase (acceptor). As the acceptor is now known, the enzyme has been trans-
ferred to EC 1.1.5.4, malate dehydrogenase (quinone).]

[EC 1.1.99.16 created 1978, deleted 2009]

[1.1.99.17 Transferred entry. glucose dehydrogenase (pyrroloquinoline-quinone). Now EC 1.1.5.2, quinoprotein glucose
dehydrogenase]

[EC 1.1.99.17 created 1982, deleted 2003]

EC 1.1.99.18
Accepted name: cellobiose dehydrogenase (acceptor)

Reaction: cellobiose + acceptor = cellobiono-1,5-lactone + reduced acceptor
Other name(s): cellobiose dehydrogenase; cellobiose oxidoreductase; Phanerochaete chrysosporium cellobiose

oxidoreductase; CBOR; cellobiose oxidase; cellobiose:oxygen 1-oxidoreductase; CDH; cel-
lobiose:(acceptor) 1-oxidoreductase

Systematic name: cellobiose:acceptor 1-oxidoreductase
Comments: Also acts, more slowly, on cello-oligosaccharides, lactose and D-glucosyl-1,4-β-D-mannose. The

enzyme from the white rot fungus Phanerochaete chrysosporium is unusual in having two redoxin
domains, one containing a flavin and the other a protoheme group. It transfers reducing equivalents
from cellobiose to two types of redox acceptor: two-electron oxidants, including redox dyes, benzo-
quinones, and molecular oxygen, and one-electron oxidants, including semiquinone species, iron(II)
complexes, and the model acceptor cytochrome c [2430]. 2,6-Dichloroindophenol can act as acceptor
in vitro.

References: [673, 782, 783, 1331, 186, 1348, 151, 152, 2430]

[EC 1.1.99.18 created 1983, modified 2002 (EC 1.1.5.1 created 1983, incorporated 2002, EC 1.1.3.25 created 1986, incorporated 2005)]

[1.1.99.19 Transferred entry. uracil dehydrogenase. Now EC 1.17.99.4, uracil/thymine dehydrogenase]

[EC 1.1.99.19 created 1961 as EC 1.2.99.1, transferred 1984 to EC 1.1.99.19, deleted 2006]

EC 1.1.99.20
Accepted name: alkan-1-ol dehydrogenase (acceptor)

Reaction: primary alcohol + acceptor = aldehyde + reduced acceptor
Other name(s): polyethylene glycol dehydrogenase; alkan-1-ol:(acceptor) oxidoreductase

Systematic name: alkan-1-ol:acceptor oxidoreductase
Comments: A quinoprotein. Acts on C3-C16 linear-chain saturated primary alcohols, C4-C7 aldehydes and on

non-ionic surfactants containing polyethylene glycol residues, such as Tween 40 and 60, but not
on methanol and only very slowly on ethanol. 2,6-Dichloroindophenol can act as acceptor. cf. EC
1.1.99.8 alcohol dehydrogenase (acceptor).
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References: [1859, 1860]

[EC 1.1.99.20 created 1989]

EC 1.1.99.21
Accepted name: D-sorbitol dehydrogenase (acceptor)

Reaction: D-sorbitol + acceptor = L-sorbose + reduced acceptor
Other name(s): D-sorbitol:(acceptor) 1-oxidoreductase

Systematic name: D-sorbitol:acceptor 1-oxidoreductase
Comments: A flavoprotein (FAD).
References: [3511]

[EC 1.1.99.21 created 1989]

EC 1.1.99.22
Accepted name: glycerol dehydrogenase (acceptor)

Reaction: glycerol + acceptor = glycerone + reduced acceptor
Other name(s): glycerol:(acceptor) 1-oxidoreductase

Systematic name: glycerol:acceptor 1-oxidoreductase
Comments: A quinoprotein. Also acts, more slowly, on a number of other polyols including D-sorbitol, D-

arabinitol, meso-erythritol, ribitol and propane-1,2-diol.
References: [76]

[EC 1.1.99.22 created 1989]

[1.1.99.23 Transferred entry. polyvinyl-alcohol dehydrogenase (acceptor). Now EC 1.1.2.6, polyvinyl alcohol dehydroge-
nase (cytochrome)]

[EC 1.1.99.23 created 1989, deleted 2010]

EC 1.1.99.24
Accepted name: hydroxyacid-oxoacid transhydrogenase

Reaction: (S)-3-hydroxybutanoate + 2-oxoglutarate = acetoacetate + (R)-2-hydroxyglutarate
Other name(s): transhydrogenase, hydroxy acid-oxo acid

Systematic name: (S)-3-hydroxybutanoate:2-oxoglutarate oxidoreductase
Comments: 4-Hydroxybutanoate and (R)-2-hydroxyglutarate can also act as donors; 4-oxobutanoate can also act

as acceptor.
References: [1850]

[EC 1.1.99.24 created 1992]

[1.1.99.25 Transferred entry. quinate dehydrogenase (pyrroloquinoline-quinone). Now EC 1.1.5.8, quinate dehydrogenase
(quinone)]

[EC 1.1.99.25 created 1992, modified 2004, deleted 2010]

EC 1.1.99.26
Accepted name: 3-hydroxycyclohexanone dehydrogenase

Reaction: 3-hydroxycyclohexanone + acceptor = cyclohexane-1,3-dione + reduced acceptor
Systematic name: 3-hydroxycyclohexanone:acceptor 1-oxidoreductase

Comments: 2,6-Dichloroindophenol and methylene blue can act as acceptors.
References: [741]

[EC 1.1.99.26 created 1992]
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EC 1.1.99.27
Accepted name: (R)-pantolactone dehydrogenase (flavin)

Reaction: (R)-pantolactone + acceptor = 2-dehydropantolactone + reduced acceptor
Other name(s): 2-dehydropantolactone reductase (flavin); 2-dehydropantoyl-lactone reductase (flavin); (R)-

pantoyllactone dehydrogenase (flavin)
Systematic name: (R)-pantolactone:acceptor oxidoreductase (flavin-containing)

Comments: High specificity for (R)-pantolactone. Phenazine methosulfate (PMS) can act as acceptor. The enzyme
has been studied in the bacterium Nocardia asteroides and shown to be membrane-bound and induced
by 1,2-propanediol. The FMN cofactor is non-covalently bound.

References: [1830]

[EC 1.1.99.27 created 1999]

EC 1.1.99.28
Accepted name: glucose-fructose oxidoreductase

Reaction: D-glucose + D-fructose = D-gluconolactone + D-glucitol
Systematic name: D-glucose:D-fructose oxidoreductase

Comments: D-mannose, D-xylose, D-galactose, 2-deoxy-D-glucose and L-arabinose will function as aldose sub-
strates, but with low affinities. The ketose substrate must be in the open-chain form. The apparent
affinity for fructose is low, because little of the fructose substrate is in the open-chain form. Xylulose
and glycerone (dihydroxyacetone) will replace fructose, but they are poor substrates. The enzyme
from Zymomonas mobilis contains tightly bound NADP+.

References: [4419, 1394, 1808]

[EC 1.1.99.28 created 1999]

EC 1.1.99.29
Accepted name: pyranose dehydrogenase (acceptor)

Reaction: (1) a pyranose + acceptor = a pyranos-2-ulose (or a pyranos-3-ulose or a pyranos-2,3-diulose) + re-
duced acceptor
(2) a pyranoside + acceptor = a pyranosid-3-ulose (or a pyranosid-3,4-diulose) + reduced acceptor

Other name(s): pyranose dehydrogenase; pyranose-quinone oxidoreductase; quinone-dependent pyranose dehydroge-
nase; PDH

Systematic name: pyranose:acceptor oxidoreductase
Comments: Requires FAD. A number of aldoses and ketoses in pyranose form, as well as glycosides, gluco-

oligosaccharides, sucrose and lactose can act as a donor. 1,4-Benzoquinone or ferricenium ion (fer-
rocene oxidized by removal of one electron) can serve as acceptor. Unlike EC 1.1.3.10, pyranose
oxidase, this fungal enzyme does not interact with O2 and exhibits extremely broad substrate tol-
erance with variable regioselectivity (C-3, C-2 or C-3 + C-2 or C-3 + C-4) for (di)oxidation of dif-
ferent sugars. D-Glucose is exclusively or preferentially oxidized at C-3 (depending on the enzyme
source), but can also be oxidized at C-2 + C-3. The enzyme also acts on 1→4-α- and 1→4-β-gluco-
oligosaccharides, non-reducing gluco-oligosaccharides and L-arabinose, which are not substrates of
EC 1.1.3.10. Sugars are oxidized in their pyranose but not in their furanose form.

References: [4055, 4057, 4058, 4054, 4056]

[EC 1.1.99.29 created 2004]

EC 1.1.99.30
Accepted name: 2-oxo-acid reductase

Reaction: a (2R)-hydroxy-carboxylate + acceptor = a 2-oxo-carboxylate + reduced acceptor
Other name(s): (2R)-hydroxycarboxylate-viologen-oxidoreductase; HVOR; 2-oxoacid reductase

Systematic name: (2R)-hydroxy-carboxylate:acceptor oxidoreductase

116

http://www.enzyme-database.org/query.php?ec=1.1.99.27
http://www.enzyme-database.org/query.php?ec=1.1.99.28
http://www.enzyme-database.org/query.php?ec=1.1.99.29
http://www.enzyme-database.org/query.php?ec=1.1.99.30


Comments: Contains [4Fe-4S] and a mononucleotide molybdenum (pyranopterin) cofactor. Has broad substrate
specificity, with 2-oxo-monocarboxylates and 2-oxo-dicarboxylates acting as substrates. Branching in
a substrate at the C-3 position results in loss of activity. The enzyme from Proteus sp. is inactivated
by oxygen.

References: [3923, 2771]

[EC 1.1.99.30 created 2004]

EC 1.1.99.31
Accepted name: (S)-mandelate dehydrogenase

Reaction: (S)-mandelate + acceptor = phenylglyoxylate + reduced acceptor
Other name(s): MDH

Systematic name: (S)-mandelate:acceptor 2-oxidoreductase
Comments: This enzyme is a member of the FMN-dependent α-hydroxy-acid oxidase/dehydrogenase family

[2190]. While all enzymes of this family oxidize the (S)-enantiomer of an α-hydroxy acid to an α-
oxo acid, the ultimate oxidant (oxygen, intramolecular heme or some other acceptor) depends on
the particular enzyme. This enzyme transfers the electron pair from FMNH2 to a component of the
electron transport chain, most probably ubiquinone [2190, 808]. It is part of a metabolic pathway in
Pseudomonads that allows these organisms to utilize mandelic acid, derivatized from the common soil
metabolite amygdalin, as the sole source of carbon and energy [808]. The enzyme has a large active-
site pocket and preferentially binds substrates with longer sidechains, e.g. 2-hydroxyoctanoate rather
than 2-hydroxybutyrate [2190]. It also prefers substrates that, like (S)-mandelate, have β unsatura-
tion, e.g. (indol-3-yl)glycolate compared with (indol-3-yl)lactate [2190]. Esters of mandelate, such as
methyl (S)-mandelate, are also substrates [807].

References: [2190, 808, 807]

[EC 1.1.99.31 created 2006]

EC 1.1.99.32
Accepted name: L-sorbose 1-dehydrogenase

Reaction: L-sorbose + acceptor = 1-dehydro-L-sorbose + reduced acceptor
Other name(s): SDH

Systematic name: L-sorbose:acceptor 1-oxidoreductase
Comments: The product, L-sorbosone, is an intermediate in bacterial 2-keto-L-gulonic-acid formation. The activ-

ity of this membrane-bound enzyme is stimulated by Fe(III) or Co2+ but is inhibited by Cu2+. The
enzyme is highly specific for L-sorbose as other sugars, such as glucose, mannitol and sorbitol, are not
substrates. Phenazine methosulfate and DCIP can act as artificial acceptors.

References: [3714]

[EC 1.1.99.32 created 2008]

[1.1.99.33 Transferred entry. formate dehydrogenase (acceptor). Now EC 1.17.99.7, formate dehydrogenase (acceptor)]

[EC 1.1.99.33 created 2010, deleted 2017]

[1.1.99.34 Transferred entry. glucose-6-phosphate dehydrogenase (coenzyme-F420). As the acceptor is now known, the
enzyme has been transferred to EC 1.1.98.2, glucose-6-phosphate dehydrogenase (coenzyme-F420)]

[EC 1.1.99.34 created 2010, deleted 2011]

EC 1.1.99.35
Accepted name: soluble quinoprotein glucose dehydrogenase

Reaction: D-glucose + acceptor = D-glucono-1,5-lactone + reduced acceptor
Other name(s): soluble glucose dehydrogenase; sGDH; glucose dehydrogenase (PQQ-dependent)

Systematic name: D-glucose:acceptor oxidoreductase
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Comments: Soluble periplasmic enzyme containing PQQ as prosthetic group, bound to a calcium ion. Electron
acceptor is not known. It is assayed with Wurster’s Blue or phenazine methosulfate. It has negligible
sequence or structure similarity to other quinoproteins. It catalyses an exceptionally high rate of ox-
idation of a wide range of aldose sugars, including D-glucose, galactose, arabinose and xylose, and
also the disaccharides lactose, cellobiose and maltose. It has been described only in Acinetobacter
calcoaceticus.

References: [1178, 848, 632, 2458, 2914, 2462]

[EC 1.1.99.35 created 2010]

EC 1.1.99.36
Accepted name: alcohol dehydrogenase (nicotinoprotein)

Reaction: ethanol + acceptor = acetaldehyde + reduced acceptor
Other name(s): NDMA-dependent alcohol dehydrogenase; nicotinoprotein alcohol dehydrogenase; np-ADH;

ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: ethanol:acceptor oxidoreductase

Comments: Contains Zn2+. Nicotinoprotein alcohol dehydrogenases are unique medium-chain dehydroge-
nases/reductases (MDR) alcohol dehydrogenases that have a tightly bound NAD+/NADH cofactor
that does not dissociate during the catalytic process. Instead, the cofactor is regenerated by a sec-
ond substrate or electron carrier. While the in vivo electron acceptor is not known, N,N-dimethyl-4-
nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-dimethylaniline, can serve this
function in vitro. The enzyme from the Gram-positive bacterium Amycolatopsis methanolica can ac-
cept many primary alcohols as substrates, including benzylalcohol [2892].

References: [2892, 3008, 3358, 3007, 2820]

[EC 1.1.99.36 created 2010]

EC 1.1.99.37
Accepted name: methanol dehydrogenase (nicotinoprotein)

Reaction: methanol + acceptor = formaldehyde + reduced acceptor
Other name(s): NDMA-dependent methanol dehydrogenase; nicotinoprotein methanol dehydrogenase;

methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase
Systematic name: methanol:acceptor oxidoreductase

Comments: Contains Zn2+ and Mg2+. Nicotinoprotein methanol dehydrogenases have a tightly bound
NADP+/NADPH cofactor that does not dissociate during the catalytic process. Instead, the cofac-
tor is regenerated by a second substrate or electron carrier. While the in vivo electron acceptor is
not known, N,N-dimethyl-4-nitrosoaniline (NDMA), which is reduced to 4-(hydroxylamino)-N,N-
dimethylaniline, can serve this function in vitro. The enzyme has been detected in several Gram-
positive methylotrophic bacteria, including Amycolatopsis methanolica, Rhodococcus rhodochrous
and Rhodococcus erythropolis [4064, 2892, 464]. These enzymes are decameric, and possess a 5-fold
symmetry [1467]. Some of the enzymes can also dismutate formaldehyde to methanol and formate
[2940].

References: [4064, 2892, 464, 1467, 2940]

[EC 1.1.99.37 created 2010]

EC 1.1.99.38
Accepted name: 2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent)

Reaction: 2-deoxy-scyllo-inosamine + S-adenosyl-L-methionine = 3-amino-2,3-dideoxy-scyllo-inosose + 5′-
deoxyadenosine + L-methionine

Other name(s): btrN (gene name); 2-deoxy-scyllo-inosamine dehydrogenase (SAM-dependent)
Systematic name: 2-deoxy-scyllo-inosamine:S-adenosyl-L-methionine 1-oxidoreductase

Comments: Involved in the biosynthetic pathway of the aminoglycoside antibiotics of the butirosin family. The
enzyme from Bacillus circulans was shown to be a radical S-adenosyl-L-methionine (SAM) enzyme.
cf. EC 1.1.1.329, 2-deoxy-scyllo-inosamine dehydrogenase.
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References: [4364, 4365]

[EC 1.1.99.38 created 2012, modified 2013]

EC 1.1.99.39
Accepted name: D-2-hydroxyglutarate dehydrogenase

Reaction: (R)-2-hydroxyglutarate + acceptor = 2-oxoglutarate + reduced acceptor
Other name(s): D2HGDH (gene name)

Systematic name: (R)-2-hydroxyglutarate:acceptor 2-oxidoreductase
Comments: Contains FAD. The enzyme has no activity with NAD+ or NADP+, and was assayed in vitro using

artificial electron acceptors. It has lower activity with (R)-lactate, (R)-2-hydroxybutyrate and meso-
tartrate, and no activity with the (S) isomers. The mammalian enzyme is stimulated by Zn2+, Co2+

and Mn2+.
References: [952, 7]

[EC 1.1.99.39 created 2013]

EC 1.1.99.40
Accepted name: (R)-2-hydroxyglutarate—pyruvate transhydrogenase

Reaction: (R)-2-hydroxyglutarate + pyruvate = 2-oxoglutarate + (R)-lactate
Other name(s): DLD3 (gene name)

Systematic name: (R)-2-hydroxyglutarate:pyruvate oxidoreductase [(R)-lactate-forming]
Comments: The enzyme, characterized in the yeast Saccharomyces cerevisiae, also functions as EC 1.1.2.4, D-

lactate dehydrogenase (cytochrome), and is active with oxaloacetate as electron acceptor forming (R)-
malate.

References: [237]

[EC 1.1.99.40 created 2017]

EC 1.1.99.41
Accepted name: 3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase

Reaction: (1) (3R)-3-hydroxy-16-methoxy-2,3-dihydrotabersonine + acceptor = (3R)-3-hydroxy-16-methoxy-
1,2-didehydro-2,3-dihydrotabersonine + reduced acceptor
(2) (3R)-3-hydroxy-2,3-dihydrotabersonine + acceptor = (3R)-3-hydroxy-1,2-didehydro-2,3-
dihydrotabersonine + reduced acceptor

Other name(s): T3R; tabersonine 3-reductase
Systematic name: (3R)-3-hydroxy-16-methoxy-2,3-dihydrotabersonine:acceptor oxidoreductase

Comments: This enzyme is involved in the biosynthesis of vindoline and vindorosine in the plant Catharanthus
roseus (Madagascar periwinkle). In vivo, it functions in the direction of reduction. It has no activity
with 3-epoxylated compounds, which can form spontaneously from its unstable substrates.

References: [3085]

[EC 1.1.99.41 created 2017]

EC 1.1.99.42
Accepted name: 4-pyridoxic acid dehydrogenase

Reaction: 4-pyridoxate + acceptor = 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylate + reduced acceptor
Other name(s): mlr6792 (locus name)

Systematic name: 4-pyridoxate:acceptor 5-oxidoreductase
Comments: The enzyme, characterized from the bacteria Pseudomonas sp. MA-1 and Mesorhizobium loti, par-

ticipates in the degradation of pyridoxine (vitamin B6). It is membrane bound and contains FAD. The
enzyme has been assayed in vitro in the presence of the artificial electron acceptor dichloroindophenol
(DCPIP).

References: [4299, 1173]
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[EC 1.1.99.42 created 2018]

EC 1.2 Acting on the aldehyde or oxo group of donors
This subclass contains enzymes that oxidize aldehydes to the corresponding acids; when this acid is concomitantly phosphory-
lated or acetylates CoA, this is indicated in parentheses. Oxo groups may be oxidized either with addition of water and cleavage
of a carbon-carbon bond or, in the case of ring compounds, by addition of the elements of water and dehydrogenation. Sub-
subclasses are based on the acceptor: NAD+ or NADP+ (EC 1.2.1), a cytochrome (EC 1.2.2), oxygen (EC 1.2.3), a disulfide (EC
1.2.4), an iron-sulfur protein (EC 1.2.7), or some other acceptor (EC 1.2.99).

EC 1.2.1 With NAD+ or NADP+ as acceptor

[1.2.1.1 Deleted entry. glutathione-dependent formaldehyde dehydrogenase. This enzyme was classified on the basis of an
incorrect reaction. It has been replaced by two enzymes, EC 1.1.1.284, S-(hydroxymethyl)glutathione dehydrogenase and EC
4.4.1.22, S-(hydroxymethyl)glutathione synthase]

[EC 1.2.1.1 created 1961, modified 1982, modified 2002, deleted 2005]

[1.2.1.2 Transferred entry. formate dehydrogenase. Now EC 1.17.1.9, formate dehydrogenase]

[EC 1.2.1.2 created 1961, deleted 2017]

EC 1.2.1.3
Accepted name: aldehyde dehydrogenase (NAD+)

Reaction: an aldehyde + NAD+ + H2O = a carboxylate + NADH + H+

Other name(s): CoA-independent aldehyde dehydrogenase; m-methylbenzaldehyde dehydrogenase; NAD-aldehyde
dehydrogenase; NAD-dependent 4-hydroxynonenal dehydrogenase; NAD-dependent aldehyde dehy-
drogenase; NAD-linked aldehyde dehydrogenase; propionaldehyde dehydrogenase; aldehyde dehy-
drogenase (NAD)

Systematic name: aldehyde:NAD+ oxidoreductase
Comments: Wide specificity, including oxidation of D-glucuronolactone to D-glucarate.
References: [1712, 3096]

[EC 1.2.1.3 created 1961 (EC 1.1.1.70 created 1965, incorporated 1978)]

EC 1.2.1.4
Accepted name: aldehyde dehydrogenase (NADP+)

Reaction: an aldehyde + NADP+ + H2O = a carboxylate + NADPH + H+

Other name(s): NADP-acetaldehyde dehydrogenase; NADP-dependent aldehyde dehydrogenase; aldehyde dehydro-
genase (NADP)

Systematic name: aldehyde:NADP+ oxidoreductase
References: [15, 1712, 2721, 3425]

[EC 1.2.1.4 created 1961]

EC 1.2.1.5
Accepted name: aldehyde dehydrogenase [NAD(P)+]

Reaction: an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + H+

Other name(s): ALDH
Systematic name: aldehyde:NAD(P)+ oxidoreductase

References: [307, 1712, 1933, 3637, 3806]

[EC 1.2.1.5 created 1961]
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[1.2.1.6 Deleted entry. benzaldehyde dehydrogenase]

[EC 1.2.1.6 created 1961, deleted 1965]

EC 1.2.1.7
Accepted name: benzaldehyde dehydrogenase (NADP+)

Reaction: benzaldehyde + NADP+ + H2O = benzoate + NADPH + 2 H+

Other name(s): NADP-linked benzaldehyde dehydrogenase; benzaldehyde dehydrogenase (NADP)
Systematic name: benzaldehyde:NADP+ oxidoreductase

References: [1312, 3612]

[EC 1.2.1.7 created 1961]

EC 1.2.1.8
Accepted name: betaine-aldehyde dehydrogenase

Reaction: betaine aldehyde + NAD+ + H2O = betaine + NADH + 2 H+

Other name(s): betaine aldehyde oxidase; BADH; betaine aldehyde dehydrogenase; BetB
Systematic name: betaine-aldehyde:NAD+ oxidoreductase

Comments: In many bacteria, plants and animals, the osmoprotectant betaine is synthesized in two steps: (1)
choline to betaine aldehyde and (2) betaine aldehyde to betaine. This enzyme is involved in the sec-
ond step and appears to be the same in plants, animals and bacteria. In contrast, different enzymes are
involved in the first reaction. In plants, this reaction is catalysed by EC 1.14.15.7 (choline monooxy-
genase), whereas in animals and many bacteria it is catalysed by either membrane-bound EC 1.1.99.1
(choline dehydrogenase) or soluble EC 1.1.3.17 (choline oxidase) [4077]. In some bacteria, betaine is
synthesized from glycine through the actions of EC 2.1.1.156 (glycine/sarcosine N-methyltransferase)
and EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase).

References: [3240, 2287, 2824, 1751, 4077]

[EC 1.2.1.8 created 1961, modified 2005, modified 2011]

EC 1.2.1.9
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (NADP+)

Reaction: D-glyceraldehyde 3-phosphate + NADP+ + H2O = 3-phospho-D-glycerate + NADPH + 2 H+

Other name(s): triosephosphate dehydrogenase; dehydrogenase, glyceraldehyde phosphate (nicotinamide ade-
nine dinucleotide phosphate); glyceraldehyde phosphate dehydrogenase (NADP); glyceraldehyde
3-phosphate dehydrogenase (NADP); NADP-glyceraldehyde phosphate dehydrogenase; NADP-
glyceraldehyde-3-phosphate dehydrogenase; glyceraldehyde-3-phosphate:NADP reductase; nonphos-
phorylating glyceraldehyde-3-phosphate dehydrogenase; glyceraldehyde-3-phosphate dehydrogenase
(NADP)

Systematic name: D-glyceraldehyde-3-phosphate:NADP+ oxidoreductase
References: [3235]

[EC 1.2.1.9 created 1961]

EC 1.2.1.10
Accepted name: acetaldehyde dehydrogenase (acetylating)

Reaction: acetaldehyde + CoA + NAD+ = acetyl-CoA + NADH + H+

Other name(s): aldehyde dehydrogenase (acylating); ADA; acylating acetaldehyde dehyrogenase; DmpF; BphJ
Systematic name: acetaldehyde:NAD+ oxidoreductase (CoA-acetylating)
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Comments: Also acts, more slowly, on glycolaldehyde, propanal and butanal. In several bacterial species this
enzyme forms a bifunctional complex with EC 4.1.3.39, 4-hydroxy-2-oxovalerate aldolase. The en-
zymes from the bacteria Burkholderia xenovorans and Thermus thermophilus also perform the reac-
tion of EC 1.2.1.87, propanal dehydrogenase (propanoylating). Involved in the meta-cleavage path-
way for the degradation of phenols, methylphenols and catechols. NADP+ can replace NAD+ but the
rate of reaction is much slower [3049].

References: [457, 3558, 3049, 178, 177]

[EC 1.2.1.10 created 1961, modified 2006, modified 2011]

EC 1.2.1.11
Accepted name: aspartate-semialdehyde dehydrogenase

Reaction: L-aspartate 4-semialdehyde + phosphate + NADP+ = L-4-aspartyl phosphate + NADPH + H+

Other name(s): aspartate semialdehyde dehydrogenase; aspartic semialdehyde dehydrogenase; L-aspartate-β-
semialdehyde:NADP+ oxidoreductase (phosphorylating); aspartic β-semialdehyde dehydrogenase;
ASA dehydrogenase

Systematic name: L-aspartate-4-semialdehyde:NADP+ oxidoreductase (phosphorylating)
References: [309, 1712]

[EC 1.2.1.11 created 1961]

EC 1.2.1.12
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)

Reaction: D-glyceraldehyde 3-phosphate + phosphate + NAD+ = 3-phospho-D-glyceroyl phosphate + NADH +
H+

Other name(s): triosephosphate dehydrogenase; dehydrogenase, glyceraldehyde phosphate; phosphoglycer-
aldehyde dehydrogenase; 3-phosphoglyceraldehyde dehydrogenase; NAD+-dependent glyc-
eraldehyde phosphate dehydrogenase; glyceraldehyde phosphate dehydrogenase (NAD+);
glyceraldehyde-3-phosphate dehydrogenase (NAD+); NADH-glyceraldehyde phosphate dehydro-
genase; glyceraldehyde-3-P-dehydrogenase

Systematic name: D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)
Comments: Also acts very slowly on D-glyceraldehyde and some other aldehydes; thiols can replace phosphate.
References: [496, 662, 1338, 4026, 4129]

[EC 1.2.1.12 created 1961]

EC 1.2.1.13
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating)

Reaction: D-glyceraldehyde 3-phosphate + phosphate + NADP+ = 3-phospho-D-glyceroyl phosphate + NADPH
+ H+

Other name(s): triosephosphate dehydrogenase (NADP+); dehydrogenase, glyceraldehyde phosphate (nicotinamide
adenine dinucleotide phosphate) (phosphorylating); glyceraldehyde phosphate dehydrogenase (nicoti-
namide adenine dinucleotide phosphate) (phosphorylating); NADP+-glyceraldehyde-3-phosphate de-
hydrogenase; NADP+-glyceraldehyde phosphate dehydrogenase; NADP+-dependent glyceraldehyde
phosphate dehydrogenase; NADP+-triose phosphate dehydrogenase; glyceraldehyde-3-phosphate de-
hydrogenase (NADP+) (phosphorylating); GAPDH

Systematic name: D-glyceraldehyde-3-phosphate:NADP+ oxidoreductase (phosphorylating)
References: [398, 1197, 3235]

[EC 1.2.1.13 created 1961]

[1.2.1.14 Transferred entry. IMP dehydrogenase. Now EC 1.1.1.205, IMP dehydrogenase]

[EC 1.2.1.14 created 1961, deleted 1984]
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EC 1.2.1.15
Accepted name: malonate-semialdehyde dehydrogenase

Reaction: 3-oxopropanoate + NAD(P)+ + H2O = malonate + NAD(P)H + 2 H+

Systematic name: 3-oxopropanoate:NAD(P)+ oxidoreductase
References: [2702]

[EC 1.2.1.15 created 1965]

EC 1.2.1.16
Accepted name: succinate-semialdehyde dehydrogenase [NAD(P)+]

Reaction: succinate semialdehyde + NAD(P)+ + H2O = succinate + NAD(P)H + 2 H+

Other name(s): succinate semialdehyde dehydrogenase (nicotinamide adenine dinucleotide (phosphate)); succinate-
semialdehyde dehydrogenase [NAD(P)]

Systematic name: succinate-semialdehyde:NAD(P)+ oxidoreductase
References: [1712, 1715, 2790]

[EC 1.2.1.16 created 1965]

EC 1.2.1.17
Accepted name: glyoxylate dehydrogenase (acylating)

Reaction: glyoxylate + CoA + NADP+ = oxalyl-CoA + NADPH + H+

Systematic name: glyoxylate:NADP+ oxidoreductase (CoA-oxalylating)
References: [3091]

[EC 1.2.1.17 created 1965]

EC 1.2.1.18
Accepted name: malonate-semialdehyde dehydrogenase (acetylating)

Reaction: 3-oxopropanoate + CoA + NAD(P)+ = acetyl-CoA + CO2 + NAD(P)H
Other name(s): malonic semialdehyde oxidative decarboxylase

Systematic name: 3-oxopropanoate:NAD(P)+ oxidoreductase (decarboxylating, CoA-acetylating)
References: [1433, 1712, 4300]

[EC 1.2.1.18 created 1965]

EC 1.2.1.19
Accepted name: aminobutyraldehyde dehydrogenase

Reaction: 4-aminobutanal + NAD+ + H2O = 4-aminobutanoate + NADH + 2 H+

Other name(s): γ-guanidinobutyraldehyde dehydrogenase (ambiguous); ABAL dehydrogenase; 4-
aminobutyraldehyde dehydrogenase; 4-aminobutanal dehydrogenase; γ-aminobutyraldehyde dehy-
droganase; 1-pyrroline dehydrogenase; ABALDH; YdcW

Systematic name: 4-aminobutanal:NAD+ 1-oxidoreductase
Comments: The enzyme from some species exhibits broad substrate specificity and has a marked preference for

straight-chain aldehydes (up to 7 carbon atoms) as substrates [1305]. The plant enzyme also acts on
4-guanidinobutanal (cf. EC 1.2.1.54 γ-guanidinobutyraldehyde dehydrogenase). As 1-pyrroline and 4-
aminobutanal are in equilibrium and can be interconverted spontaneously, 1-pyrroline may act as the
starting substrate. The enzyme forms part of the arginine-catabolism pathway [3301] and belongs in
the aldehyde dehydrogenase superfamily [1305].

References: [478, 1712, 1713, 2443, 4372, 3066, 3065, 3301, 1305]

[EC 1.2.1.19 created 1965, modified 1989 (EC 1.5.1.35 created 2006, incorporated 2007)]
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EC 1.2.1.20
Accepted name: glutarate-semialdehyde dehydrogenase

Reaction: 5-oxopentanoate + NAD+ + H2O = glutarate + NADH + 2 H+

Other name(s): glutarate semialdehyde dehydrogenase
Systematic name: glutarate-semialdehyde:NAD+ oxidoreductase

References: [1626]

[EC 1.2.1.20 created 1965]

EC 1.2.1.21
Accepted name: glycolaldehyde dehydrogenase

Reaction: glycolaldehyde + NAD+ + H2O = glycolate + NADH + 2 H+

Other name(s): glycol aldehyde dehydrogenase
Systematic name: glycolaldehyde:NAD+ oxidoreductase

References: [755]

[EC 1.2.1.21 created 1972]

EC 1.2.1.22
Accepted name: lactaldehyde dehydrogenase

Reaction: (S)-lactaldehyde + NAD+ + H2O = (S)-lactate + NADH + 2 H+

Other name(s): L-lactaldehyde:NAD oxidoreductase; nicotinamide adenine dinucleotide (NAD)-linked dehydroge-
nase

Systematic name: (S)-lactaldehyde:NAD+ oxidoreductase
References: [3165, 3610]

[EC 1.2.1.22 created 1972]

EC 1.2.1.23
Accepted name: 2-oxoaldehyde dehydrogenase (NAD+)

Reaction: a 2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + H+

Other name(s): α-ketoaldehyde dehydrogenase; methylglyoxal dehydrogenase; NAD+-linked α-ketoaldehyde dehy-
drogenase; 2-ketoaldehyde dehydrogenase; NAD+-dependent α-ketoaldehyde dehydrogenase

Systematic name: 2-oxoaldehyde:NAD+ 2-oxidoreductase
Comments: Not identical with EC 1.2.1.49 2-oxoaldehyde dehydrogenase (NADP+).
References: [2598, 3139, 3141]

[EC 1.2.1.23 created 1972, modified 1986]

EC 1.2.1.24
Accepted name: succinate-semialdehyde dehydrogenase (NAD+)

Reaction: succinate semialdehyde + NAD+ + H2O = succinate + NADH + 2 H+

Other name(s): succinate semialdehyde dehydrogenase (NAD+); succinic semialdehyde dehydrogenase (NAD+);
succinyl semialdehyde dehydrogenase (NAD+); succinate semialdehyde:NAD+ oxidoreductase

Systematic name: succinate-semialdehyde:NAD+ oxidoreductase
Comments: This enzyme participates in the degradation of glutamate and 4-aminobutyrate. It is similar to

EC 1.2.1.79 [succinate-semialdehyde dehydrogenase (NADP+)], and EC 1.2.1.16 [succinate-
semialdehyde dehydrogenase (NAD(P)+)], but is specific for NAD+.

References: [52, 3269, 458]

[EC 1.2.1.24 created 1972, modified 2010]
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EC 1.2.1.25
Accepted name: 2-oxoisovalerate dehydrogenase (acylating)

Reaction: 3-methyl-2-oxobutanoate + CoA + NAD+ = 2-methylpropanoyl-CoA + CO2 + NADH
Other name(s): 2-oxoisovalerate dehydrogenase; α-ketoisovalerate dehydrogenase

Systematic name: 3-methyl-2-oxobutanoate:NAD+ 2-oxidoreductase (CoA-methyl-propanoylating)
Comments: Also acts on (S)-3-methyl-2-oxopentanoate and 4-methyl-2-oxopentanoate.
References: [2727]

[EC 1.2.1.25 created 1972]

EC 1.2.1.26
Accepted name: 2,5-dioxovalerate dehydrogenase

Reaction: 2,5-dioxopentanoate + NADP+ + H2O = 2-oxoglutarate + NADPH + 2 H+

Other name(s): 2-oxoglutarate semialdehyde dehydrogenase; α-ketoglutaric semialdehyde dehydrogenase
Systematic name: 2,5-dioxopentanoate:NADP+ 5-oxidoreductase

References: [22]

[EC 1.2.1.26 created 1972]

EC 1.2.1.27
Accepted name: methylmalonate-semialdehyde dehydrogenase (CoA-acylating)

Reaction: 2-methyl-3-oxopropanoate + CoA + H2O + NAD+ = propanoyl-CoA + HCO3
− + NADH

Other name(s): MSDH; MMSA dehydrogenase; iolA (gene name); methylmalonate-semialdehyde dehydrogenase
(acylating)

Systematic name: 2-methyl-3-oxopropanoate:NAD+ 3-oxidoreductase (CoA-propanoylating)
Comments: Also converts 3-oxopropanoate into acetyl-CoA [3651]. The reaction occurs in two steps with the

decarboxylation process preceding CoA-binding [3651]. Bicarbonate rather than CO2 is released as a
final product [3651].

References: [3573, 882, 3651]

[EC 1.2.1.27 created 1972, modified 2014]

EC 1.2.1.28
Accepted name: benzaldehyde dehydrogenase (NAD+)

Reaction: benzaldehyde + NAD+ + H2O = benzoate + NADH + 2 H+

Other name(s): benzaldehyde (NAD) dehydrogenase; benzaldehyde dehydrogenase (NAD)
Systematic name: benzaldehyde:NAD+ oxidoreductase

References: [1312]

[EC 1.2.1.28 created 1972]

EC 1.2.1.29
Accepted name: aryl-aldehyde dehydrogenase

Reaction: an aromatic aldehyde + NAD+ + H2O = an aromatic acid + NADH + H+

Systematic name: aryl-aldehyde:NAD+ oxidoreductase
Comments: Oxidizes a number of aromatic aldehydes, but not aliphatic aldehydes.
References: [3109]

[EC 1.2.1.29 created 1972]

EC 1.2.1.30
Accepted name: aryl-aldehyde dehydrogenase (NADP+)
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Reaction: an aromatic aldehyde + NADP+ + AMP + diphosphate + H2O = an aromatic acid + NADPH + H+ +
ATP

Other name(s): aromatic acid reductase; aryl-aldehyde dehydrogenase (NADP)
Systematic name: aryl-aldehyde:NADP+ oxidoreductase (ATP-forming)

References: [1297, 1299]

[EC 1.2.1.30 created 1972]

EC 1.2.1.31
Accepted name: L-aminoadipate-semialdehyde dehydrogenase

Reaction: (S)-2-amino-6-oxohexanoate + NAD(P)+ + H2O = L-2-aminoadipate + NAD(P)H + H+ (overall reac-
tion)
(1a) (S)-2-amino-6-oxohexanoate = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + H2O (spontaneous)
(1b) (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + NAD(P)+ + 2 H2O = L-2-aminoadipate +
NAD(P)H + H+

Other name(s): aminoadipate semialdehyde dehydrogenase; 2-aminoadipate semialdehyde dehydrogenase; α-
aminoadipate-semialdehyde dehydrogenase; α-aminoadipate reductase; 2-aminoadipic semialde-
hyde dehydrogenase; L-α-aminoadipate δ-semialdehyde oxidoreductase; L-α-aminoadipate δ-
semialdehyde:NAD+ oxidoreductase; L-α-aminoadipate δ-semialdehyde:nicotinamide adenine din-
ucleotide oxidoreductase; L-2-aminoadipate 6-semialdehyde:NAD(P)+ 6-oxidoreductase

Systematic name: (S)-2-amino-6-oxohexanoate:NAD(P)+ 6-oxidoreductase
Comments: (S)-2-amino-6-oxohexanoate undergoes a spontaneous dehydration forming the cyclic (S)-2,3,4,5-

tetrahydropyridine-2-carboxylate, which serves as a substrate for the hydrogenation reaction.
References: [479, 3214, 764, 1091]

[EC 1.2.1.31 created 1972, modified 2011]

EC 1.2.1.32
Accepted name: aminomuconate-semialdehyde dehydrogenase

Reaction: 2-aminomuconate 6-semialdehyde + NAD+ + H2O = 2-aminomuconate + NADH + 2 H+

Other name(s): 2-aminomuconate semialdehyde dehydrogenase; 2-hydroxymuconic acid semialdehyde dehydroge-
nase; 2-hydroxymuconate semialdehyde dehydrogenase; α-aminomuconic ε-semialdehyde dehydro-
genase; α-hydroxymuconic ε-semialdehyde dehydrogenase; 2-hydroxymuconic semialdehyde dehy-
drogenase

Systematic name: 2-aminomuconate-6-semialdehyde:NAD+ 6-oxidoreductase
Comments: Also acts on 2-hydroxymuconate semialdehyde.
References: [1627]

[EC 1.2.1.32 created 1972]

EC 1.2.1.33
Accepted name: (R)-dehydropantoate dehydrogenase

Reaction: (R)-4-dehydropantoate + NAD+ + H2O = (R)-3,3-dimethylmalate + NADH + 2 H+

Other name(s): D-aldopantoate dehydrogenase; D-2-hydroxy-3,3-dimethyl-3-formylpropionate:diphosphopyridine
nucleotide (DPN+) oxidoreductase

Systematic name: (R)-4-dehydropantoate:NAD+ 4-oxidoreductase
References: [2360]

[EC 1.2.1.33 created 1972]

[1.2.1.34 Transferred entry. D-mannonate dehydrogenase (NAD(P)+). Now EC 1.1.1.131, mannuronate reductase]

[EC 1.2.1.34 created 1972, deleted 1983 [transferred to EC 1.1.1.180, deleted 1984]]

[1.2.1.35 Transferred entry. uronate dehydrogenase. Now EC 1.1.1.203, uronate dehydrogenase]
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[EC 1.2.1.35 created 1972, deleted 1984]

EC 1.2.1.36
Accepted name: retinal dehydrogenase

Reaction: retinal + NAD+ + H2O = retinoate + NADH + 2 H+

Other name(s): cytosolic retinal dehydrogenase
Systematic name: retinal:NAD+ oxidoreductase

Comments: A metalloflavoprotein (FAD). Acts on both the 11-trans- and 13-cis-forms of retinal.
References: [2587]

[EC 1.2.1.36 created 1972]

[1.2.1.37 Transferred entry. xanthine dehydrogenase. Now EC 1.17.1.4, xanthine dehydrogenase]

[EC 1.2.1.37 created 1972, deleted 1984]

EC 1.2.1.38
Accepted name: N-acetyl-γ-glutamyl-phosphate reductase

Reaction: N-acetyl-L-glutamate 5-semialdehyde + NADP+ + phosphate = N-acetyl-L-glutamyl 5-phosphate +
NADPH + H+

Other name(s): reductase, acetyl-γ-glutamyl phosphate; N-acetylglutamate 5-semialdehyde dehydrogenase; N-
acetylglutamic γ-semialdehyde dehydrogenase; N-acetyl-L-glutamate γ-semialdehyde:NADP+ oxi-
doreductase (phosphorylating)

Systematic name: N-acetyl-L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase (phosphorylating)
References: [163, 1217]

[EC 1.2.1.38 created 1972]

EC 1.2.1.39
Accepted name: phenylacetaldehyde dehydrogenase

Reaction: phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + 2 H+

Systematic name: phenylacetaldehyde:NAD+ oxidoreductase
References: [1092]

[EC 1.2.1.39 created 1976]

[1.2.1.40 Deleted entry. 3α,7α,12α-trihydroxycholestan-26-al 26-oxidoreductase. The activity is part of EC 1.14.13.15,
cholestanetriol 26-monooxygenase]

[EC 1.2.1.40 created 1976, deleted 2012]

EC 1.2.1.41
Accepted name: glutamate-5-semialdehyde dehydrogenase

Reaction: L-glutamate 5-semialdehyde + phosphate + NADP+ = L-glutamyl 5-phosphate + NADPH + H+

Other name(s): β-glutamylphosphate reductase; γ-glutamyl phosphate reductase; β-glutamylphosphate reductase;
glutamate semialdehyde dehydrogenase; glutamate-γ-semialdehyde dehydrogenase

Systematic name: L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase (phosphorylating)
References: [162]

[EC 1.2.1.41 created 1976]

EC 1.2.1.42
Accepted name: hexadecanal dehydrogenase (acylating)

Reaction: hexadecanal + CoA + NAD+ = hexadecanoyl-CoA + NADH + H+
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Other name(s): fatty acyl-CoA reductase
Systematic name: hexadecanal:NAD+ oxidoreductase (CoA-acylating)

Comments: Also acts, more slowly, on octadecanoyl-CoA.
References: [1763]

[EC 1.2.1.42 created 1978]

[1.2.1.43 Transferred entry. formate dehydrogenase (NADP+). Now EC 1.17.1.10, formate dehydrogenase (NADP+)]

[EC 1.2.1.43 created 1978, deleted 2017]

EC 1.2.1.44
Accepted name: cinnamoyl-CoA reductase

Reaction: cinnamaldehyde + CoA + NADP+ = cinnamoyl-CoA + NADPH + H+

Other name(s): feruloyl-CoA reductase; cinnamoyl-coenzyme A reductase; ferulyl-CoA reductase; feruloyl coenzyme
A reductase; p-hydroxycinnamoyl coenzyme A reductase; cinnamoyl-CoA:NADPH reductase

Systematic name: cinnamaldehyde:NADP+ oxidoreductase (CoA-cinnamoylating)
Comments: Acts also on a number of substituted cinnamoyl esters of coenzyme A.
References: [1298, 3314, 4175]

[EC 1.2.1.44 created 1978]

[1.2.1.45 Transferred entry. 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase. Now EC 1.1.1.312, 2-hydroxy-
4-carboxymuconate semialdehyde hemiacetal dehydrogenase.]

[EC 1.2.1.45 created 1978, deleted 2011]

EC 1.2.1.46
Accepted name: formaldehyde dehydrogenase

Reaction: formaldehyde + NAD+ + H2O = formate + NADH + 2 H+

Other name(s): NAD-linked formaldehyde dehydrogenase; NAD-dependent formaldehyde dehydrogenase
Systematic name: formaldehyde:NAD+ oxidoreductase

References: [1535]

[EC 1.2.1.46 created 1982]

EC 1.2.1.47
Accepted name: 4-trimethylammoniobutyraldehyde dehydrogenase

Reaction: 4-trimethylammoniobutanal + NAD+ + H2O = 4-trimethylammoniobutanoate + NADH + 2 H+

Other name(s): 4-trimethylaminobutyraldehyde dehydrogenase; 4-N-trimethylaminobutyraldehyde dehydrogenase
Systematic name: 4-trimethylammoniobutanal:NAD+ 1-oxidoreductase

References: [3143]

[EC 1.2.1.47 created 1983]

EC 1.2.1.48
Accepted name: long-chain-aldehyde dehydrogenase

Reaction: a long-chain aldehyde + NAD+ + H2O = a long-chain carboxylate + NADH + 2 H+

Other name(s): long-chain aliphatic aldehyde dehydrogenase; long-chain fatty aldehyde dehydrogenase; fatty
aldehyde:NAD+ oxidoreductase

Systematic name: long-chain-aldehyde:NAD+ oxidoreductase
Comments: The best substrate is dodecylaldehyde.
References: [234, 2612, 2613]
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[EC 1.2.1.48 created 1984]

EC 1.2.1.49
Accepted name: 2-oxoaldehyde dehydrogenase (NADP+)

Reaction: a 2-oxoaldehyde + NADP+ + H2O = a 2-oxo carboxylate + NADPH + H+

Other name(s): α-ketoaldehyde dehydrogenase; methylglyoxal dehydrogenase; NADP+-linked α-ketoaldehyde dehy-
drogenase; 2-ketoaldehyde dehydrogenase; NADP+-dependent α-ketoaldehyde dehydrogenase

Systematic name: 2-oxoaldehyde:NADP+ 2-oxidoreductase
Comments: Not identical with EC 1.2.1.23 2-oxoaldehyde dehydrogenase (NAD+).
References: [3139, 3141]

[EC 1.2.1.49 created 1986]

EC 1.2.1.50
Accepted name: long-chain acyl-protein thioester reductase

Reaction: a long-chain aldehyde + [protein]-L-cysteine + NADP+ = a [protein]-S-(long-chain fatty acyl)-L-
cysteine + NADPH + H+

Other name(s): luxC (gene name); acyl-CoA reductase; acyl coenzyme A reductase; long-chain-aldehyde:NADP+

oxidoreductase (acyl-CoA-forming); long-chain-fatty-acyl-CoA reductase
Systematic name: long-chain-aldehyde:NADP+ oxidoreductase (protein thioester-forming)

Comments: Together with a hydrolase component (EC 3.1.2.2 and EC 3.1.2.14) and a synthetase component (EC
6.2.1.19), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain
aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme is acylated by re-
ceiving an acyl group from EC 6.2.1.19, and catalyses the reduction of the acyl group, releasing the
aldehyde product. The enzyme is also able to accept the acyl group from a long-chain acyl-CoA.

References: [3187, 4091, 2255]

[EC 1.2.1.50 created 1986, modified 2016]

EC 1.2.1.51
Accepted name: pyruvate dehydrogenase (NADP+)

Reaction: pyruvate + CoA + NADP+ = acetyl-CoA + CO2 + NADPH
Systematic name: pyruvate:NADP+ 2-oxidoreductase (CoA-acetylating)

Comments: The Euglena enzyme can also use FAD or methylviologen as acceptor, more slowly. The enzyme is
inhibited by oxygen.

References: [1658, 1659]

[EC 1.2.1.51 created 1989]

EC 1.2.1.52
Accepted name: oxoglutarate dehydrogenase (NADP+)

Reaction: 2-oxoglutarate + CoA + NADP+ = succinyl-CoA + CO2 + NADPH
Other name(s): oxoglutarate dehydrogenase (NADP)

Systematic name: 2-oxoglutarate:NADP+ 2-oxidoreductase (CoA-succinylating)
Comments: The Euglena enzyme can also use NAD+ as acceptor, but more slowly.
References: [1658]

[EC 1.2.1.52 created 1989]

EC 1.2.1.53
Accepted name: 4-hydroxyphenylacetaldehyde dehydrogenase
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Reaction: 4-hydroxyphenylacetaldehyde + NAD+ + H2O = 4-hydroxyphenylacetate + NADH + 2 H+

Other name(s): 4-HPAL dehydrogenase
Systematic name: 4-hydroxyphenylacetaldehyde:NAD+ oxidoreductase

Comments: With EC 4.2.1.87 octopamine dehydratase, brings about the metabolism of octopamine in Pseu-
domonas.

References: [712]

[EC 1.2.1.53 created 1989]

EC 1.2.1.54
Accepted name: γ-guanidinobutyraldehyde dehydrogenase

Reaction: 4-guanidinobutanal + NAD+ + H2O = 4-guanidinobutanoate + NADH + 2 H+

Other name(s): α-guanidinobutyraldehyde dehydrogenase; 4-guanidinobutyraldehyde dehydrogenase; GBAL dehy-
drogenase

Systematic name: 4-guanidinobutanal:NAD+ 1-oxidoreductase
Comments: Involved in the degradation of arginine in Pseudomonas putida (cf. EC 1.2.1.19 aminobutyraldehyde

dehydrogenase).
References: [4372]

[EC 1.2.1.54 created 1989]

[1.2.1.55 Transferred entry. (R)-3-hydroxyacid ester dehydrogenase. Now EC 1.1.1.279, (R)-3-hydroxyacid-ester dehydro-
genase]

[EC 1.2.1.55 created 1990, deleted 2003]

[1.2.1.56 Transferred entry. (S)-3-hydroxyacid ester dehydrogenase. Now EC 1.1.1.280, (S)-3-hydroxyacid-ester dehydro-
genase]

[EC 1.2.1.56 created 1990, deleted 2003]

EC 1.2.1.57
Accepted name: butanal dehydrogenase

Reaction: butanal + CoA + NAD(P)+ = butanoyl-CoA + NAD(P)H + H+

Systematic name: butanal:NAD(P)+ oxidoreductase (CoA-acylating)
Comments: Also acts on acetaldehyde, but more slowly.
References: [2927]

[EC 1.2.1.57 created 1992]

EC 1.2.1.58
Accepted name: phenylglyoxylate dehydrogenase (acylating)

Reaction: phenylglyoxylate + NAD+ + CoA = benzoyl-S-CoA + CO2 + NADH
Systematic name: phenylglyoxylate:NAD+ oxidoreductase

Comments: Requires thiamine diphosphate as cofactor. The enzyme from the denitrifying bacterium Azoarcus
evansii is specific for phenylglyoxylate. 2-Oxoisovalerate is oxidized at 15% of the rate for phenyl-
glyoxylate. Also reduces viologen dyes. Contains iron-sulfur centres and FAD.

References: [1521]

[EC 1.2.1.58 created 1999]

EC 1.2.1.59
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (phosphorylating)

Reaction: D-glyceraldehyde 3-phosphate + phosphate + NAD(P)+ = 3-phospho-D-glyceroyl phosphate +
NAD(P)H + H+
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Other name(s): triosephosphate dehydrogenase (NAD(P)); glyceraldehyde-3-phosphate dehydrogenase (NAD(P))
(phosphorylating)

Systematic name: D-glyceraldehyde 3-phosphate:NAD(P)+ oxidoreductase (phosphorylating)
Comments: NAD+ and NADP+ can be used as cofactors with similar efficiency, unlike EC 1.2.1.12

glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) and EC 1.2.1.13 glyceraldehyde-3-
phosphate dehydrogenase (NADP+) (phosphorylating), which are NAD+- and NADP+-dependent,
respectively.

References: [3989, 3990]

[EC 1.2.1.59 created 1999]

EC 1.2.1.60
Accepted name: 5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydrogenase

Reaction: 5-carboxymethyl-2-hydroxymuconate semialdehyde + H2O + NAD+ = 5-carboxymethyl-2-
hydroxymuconate + NADH + 2 H+

Other name(s): carboxymethylhydroxymuconic semialdehyde dehydrogenase
Systematic name: 5-carboxymethyl-2-hydroxymuconic-semialdehyde:NAD+ oxidoreductase

Comments: Involved in the tyrosine degradation pathway in Arthrobacter sp.
References: [313, 66, 657, 1159]

[EC 1.2.1.60 created 2000]

EC 1.2.1.61
Accepted name: 4-hydroxymuconic-semialdehyde dehydrogenase

Reaction: 4-hydroxymuconic semialdehyde + NAD+ + H2O = maleylacetate + NADH + 2 H+

Systematic name: 4-hydroxymuconic-semialdehyde:NAD+ oxidoreductase
Comments: Involved in the 4-nitrophenol degradation pathway.
References: [3589]

[EC 1.2.1.61 created 2000]

EC 1.2.1.62
Accepted name: 4-formylbenzenesulfonate dehydrogenase

Reaction: 4-formylbenzenesulfonate + NAD+ + H2O = 4-sulfobenzoate + NADH + 2 H+

Systematic name: 4-formylbenzenesulfonate:NAD+ oxidoreductase
Comments: Involved in the toluene-4-sulfonate degradation pathway.
References: [1789, 1787]

[EC 1.2.1.62 created 2000]

EC 1.2.1.63
Accepted name: 6-oxohexanoate dehydrogenase

Reaction: 6-oxohexanoate + NADP+ + H2O = adipate + NADPH + 2 H+

Systematic name: 6-oxohexanoate:NADP+ oxidoreductase
Comments: Last step in the cyclohexanol degradation pathway in Acinetobacter sp.
References: [752, 857]

[EC 1.2.1.63 created 2000]

EC 1.2.1.64
Accepted name: 4-hydroxybenzaldehyde dehydrogenase (NAD+)

Reaction: 4-hydroxybenzaldehyde + NAD+ + H2O = 4-hydroxybenzoate + NADH + 2 H+
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Other name(s): p-hydroxybenzaldehyde dehydrogenase (ambiguous); 4-hydroxybenzaldehyde dehydrogenase (am-
biguous)

Systematic name: 4-hydroxybenzaldehyde:NAD+ oxidoreductase
Comments: The bacterial enzyme (characterized from an unidentified denitrifying bacterium) is involved

in an anaerobic toluene degradation pathway. The plant enzyme is involved in formation of 4-
hydroxybenzoate, a cell wall-bound phenolic acid that plays a major role in plant defense against
pathogens. cf. EC 1.2.1.96, 4-hydroxybenzaldehyde dehydrogenase (NADP+).

References: [362, 3541]

[EC 1.2.1.64 created 2000, modified 2015]

EC 1.2.1.65
Accepted name: salicylaldehyde dehydrogenase

Reaction: salicylaldehyde + NAD+ + H2O = salicylate + NADH + 2 H+

Systematic name: salicylaldehyde:NAD+ oxidoreductase
Comments: Involved in the naphthalene degradation pathway in some bacteria.
References: [908]

[EC 1.2.1.65 created 2000, modified 2011]

[1.2.1.66 Transferred entry. mycothiol-dependent formaldehyde dehydrogenase. Now EC 1.1.1.306, S-(hydroxymethyl)mycothiol
dehydrogenase]

[EC 1.2.1.66 created 2000, deleted 2010]

EC 1.2.1.67
Accepted name: vanillin dehydrogenase

Reaction: vanillin + NAD+ + H2O = vanillate + NADH + 2 H+

Systematic name: vanillin:NAD+ oxidoreductase
References: [3036]

[EC 1.2.1.67 created 2000]

EC 1.2.1.68
Accepted name: coniferyl-aldehyde dehydrogenase

Reaction: coniferyl aldehyde + H2O + NAD(P)+ = ferulate + NAD(P)H + 2 H+

Systematic name: coniferyl aldehyde:NAD(P)+ oxidoreductase
Comments: Also oxidizes other aromatic aldehydes, but not aliphatic aldehydes.
References: [9]

[EC 1.2.1.68 created 2000]

EC 1.2.1.69
Accepted name: fluoroacetaldehyde dehydrogenase

Reaction: fluoroacetaldehyde + NAD+ + H2O = fluoroacetate + NADH + 2 H+

Systematic name: fluoroacetaldehyde:NAD+ oxidoreductase
Comments: The enzyme from Streptomyces cattleya has a high affinity for fluoroacetate and glycolaldehyde but

not for acetaldehyde.
References: [2670, 2671]

[EC 1.2.1.69 created 2003]

EC 1.2.1.70
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Accepted name: glutamyl-tRNA reductase
Reaction: L-glutamate 1-semialdehyde + NADP+ + tRNAGlu = L-glutamyl-tRNAGlu + NADPH + H+

Systematic name: L-glutamate-semialdehyde:NADP+ oxidoreductase (L-glutamyl-tRNAGlu-forming)
Comments: This enzyme forms part of the pathway for the biosynthesis of 5-aminolevulinate from glutamate,

known as the C5 pathway. The route shown in the diagram is used in most eubacteria, and in all ar-
chaebacteria, algae and plants. However, in the α-proteobacteria, EC 2.3.1.37, 5-aminolevulinate syn-
thase, is used in an alternative route to produce the product 5-aminolevulinate from succinyl-CoA and
glycine. This route is found in the mitochondria of fungi and animals, organelles that are considered
to be derived from an endosymbiotic α-proteobacterium. Although higher plants do not possess EC
2.3.1.37, the protistan Euglena gracilis possesses both the C5 pathway and EC 2.3.1.37.

References: [4063, 3037, 3353]

[EC 1.2.1.70 created 2004]

EC 1.2.1.71
Accepted name: succinylglutamate-semialdehyde dehydrogenase

Reaction: N-succinyl-L-glutamate 5-semialdehyde + NAD+ + H2O = N-succinyl-L-glutamate + NADH + 2 H+

Other name(s): succinylglutamic semialdehyde dehydrogenase; N-succinylglutamate 5-semialdehyde dehydrogenase;
SGSD; AruD; AstD

Systematic name: N-succinyl-L-glutamate 5-semialdehyde:NAD+ oxidoreductase
Comments: This is the fourth enzyme in the arginine succinyltransferase (AST) pathway for the catabolism

of arginine [4151]. This pathway converts the carbon skeleton of arginine into glutamate, with
the concomitant production of ammonia and conversion of succinyl-CoA into succinate and CoA.
The five enzymes involved in this pathway are EC 2.3.1.109 (arginine N-succinyltransferase), EC
3.5.3.23 (N-succinylarginine dihydrolase), EC 2.6.1.11 (acetylornithine transaminase), EC 1.2.1.71
(succinylglutamate-semialdehyde dehydrogenase) and EC 3.5.1.96 (succinylglutamate desuccinylase)
[3927, 704].

References: [4151, 4152, 3927, 1685, 3379, 704, 705]

[EC 1.2.1.71 created 2006]

EC 1.2.1.72
Accepted name: erythrose-4-phosphate dehydrogenase

Reaction: D-erythrose 4-phosphate + NAD+ + H2O = 4-phosphoerythronate + NADH + 2 H+

Other name(s): erythrose 4-phosphate dehydrogenase; E4PDH; GapB; Epd dehydrogenase; E4P dehydrogenase
Systematic name: D-erythrose 4-phosphate:NAD+ oxidoreductase

Comments: This enzyme was originally thought to be a glyceraldehyde-3-phosphate dehydrogenase (EC
1.2.1.12), but this has since been disproved, as glyceraldehyde 3-phosphate is not a substrate
[4458, 359]. Forms part of the pyridoxal-5′-phosphate coenzyme biosynthesis pathway in Escherichia
coli, along with EC 1.1.1.290 (4-phosphoerythronate dehydrogenase), EC 2.6.1.52 (phosphoserine
transaminase), EC 1.1.1.262 (4-hydroxythreonine-4-phosphate dehydrogenase), EC 2.6.99.2 (pyridox-
ine 5′-phosphate synthase) and EC 1.4.3.5 (pyridoxamine-phosphate oxidase).

References: [4458, 359, 4342]

[EC 1.2.1.72 created 2006]

EC 1.2.1.73
Accepted name: sulfoacetaldehyde dehydrogenase

Reaction: 2-sulfoacetaldehyde + H2O + NAD+ = sulfoacetate + NADH + 2 H+

Other name(s): SafD
Systematic name: 2-sulfoacetaldehyde:NAD+ oxidoreductase
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Comments: This reaction is part of a bacterial pathway that can utilize the amino group of taurine as a sole source
of nitrogen for growth. At physiological concentrations, NAD+ cannot be replaced by NADP+. The
enzyme is specific for sulfoacetaldehyde, as formaldehyde, acetaldehyde, betaine aldehyde, propanal,
glyceraldehyde, phosphonoacetaldehyde, glyoxylate, glycolaldehyde and 2-oxobutyrate are not sub-
strates.

References: [2056]

[EC 1.2.1.73 created 2008]

EC 1.2.1.74
Accepted name: abieta-7,13-dien-18-al dehydrogenase

Reaction: abieta-7,13-dien-18-al + H2O + NAD+ = abieta-7,13-dien-18-oate + NADH + H+

Other name(s): abietadienal dehydrogenase (ambiguous)
Systematic name: abieta-7,13-dien-18-al:NAD+ oxidoreductase

Comments: Abietic acid is the principle component of conifer resin. This enzyme catalyses the last step of the
pathway of abietic acid biosynthesis in Abies grandis (grand fir). The activity has been demonstrated
in cell-free stem extracts of A. grandis, was present in the cytoplasm, and required NAD+ as cofactor
[1115]. The enzyme is expressed constitutively at a high level, and is not inducible by wounding of
the plant tissue [1117].

References: [1115, 1117]

[EC 1.2.1.74 created 2009, modified 2012]

EC 1.2.1.75
Accepted name: malonyl-CoA reductase (malonate semialdehyde-forming)

Reaction: malonate semialdehyde + CoA + NADP+ = malonyl-CoA + NADPH + H+

Other name(s): NADP-dependent malonyl CoA reductase; malonyl CoA reductase (NADP); malonyl CoA reductase
(malonate semialdehyde-forming)

Systematic name: malonate semialdehyde:NADP+ oxidoreductase (malonate semialdehyde-forming)
Comments: Requires Mg2+. Catalyses the reduction of malonyl-CoA to malonate semialdehyde, a key step in

the 3-hydroxypropanoate and the 3-hydroxypropanoate/4-hydroxybutanoate cycles, autotrophic CO2
fixation pathways found in some green non-sulfur phototrophic bacteria and some thermoacidophilic
archaea, respectively [3671, 265]. The enzyme from Sulfolobus tokodaii has been purified, and found
to contain one RNA molecule per two subunits [51]. The enzyme from Chloroflexus aurantiacus is
bifunctional, and also catalyses the next reaction in the pathway, EC 1.1.1.298 [3-hydroxypropionate
dehydrogenase (NADP+)] [1604].

References: [3671, 265, 51, 1604]

[EC 1.2.1.75 created 2009]

EC 1.2.1.76
Accepted name: succinate-semialdehyde dehydrogenase (acylating)

Reaction: succinate semialdehyde + CoA + NADP+ = succinyl-CoA + NADPH + H+

Other name(s): succinyl-coA reductase; coenzyme-A-dependent succinate-semialdehyde dehydrogenase
Systematic name: succinate semialdehyde:NADP+ oxidoreductase (CoA-acylating)

Comments: Catalyses the NADPH-dependent reduction of succinyl-CoA to succinate semialdehyde. The enzyme
has been described in Clostridium kluyveri, where it participates in succinate fermentation [3571],
and in Metallosphaera sedula, where it participates in the 3-hydroxypropanonate/4-hydroxybutanoate
cycle, an autotrophic CO2 fixation pathway found in some thermoacidophilic archaea [51, 265].

References: [3571, 51, 265]

[EC 1.2.1.76 created 2009]
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EC 1.2.1.77
Accepted name: 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+)

Reaction: 3,4-didehydroadipyl-CoA semialdehyde + NADP+ + H2O = 3,4-didehydroadipyl-CoA + NADPH +
H+

Other name(s): BoxD; 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase
Systematic name: 3,4-didehydroadipyl-CoA semialdehyde:NADP+ oxidoreductase

Comments: This enzyme catalyses a step in the aerobic benzoyl-coenzyme A catabolic pathway in Azoarcus evan-
sii and Burkholderia xenovorans.

References: [1187, 167]

[EC 1.2.1.77 created 2010]

EC 1.2.1.78
Accepted name: 2-formylbenzoate dehydrogenase

Reaction: 2-formylbenzoate + NAD+ + H2O = o-phthalic acid + NADH + H+

Other name(s): 2-carboxybenzaldehyde dehydrogenase; 2CBAL dehydrogenase; PhdK
Systematic name: 2-formylbenzoate:NAD+ oxidoreductase

Comments: The enzyme is involved in phenanthrene degradation.
References: [1692, 1955]

[EC 1.2.1.78 created 2010]

EC 1.2.1.79
Accepted name: succinate-semialdehyde dehydrogenase (NADP+)

Reaction: succinate semialdehyde + NADP+ + H2O = succinate + NADPH + 2 H+

Other name(s): succinic semialdehyde dehydrogenase (NADP+); succinyl semialdehyde dehydrogenase (NADP+);
succinate semialdehyde:NADP+ oxidoreductase; NADP-dependent succinate-semialdehyde dehydro-
genase; GabD

Systematic name: succinate-semialdehyde:NADP+ oxidoreductase
Comments: This enzyme participates in the degradation of glutamate and 4-aminobutyrate. It is similar to EC

1.2.1.24 [succinate-semialdehyde dehydrogenase (NAD+)], and EC 1.2.1.16 [succinate-semialdehyde
dehydrogenase (NAD(P)+)], but is specific for NADP+. The enzyme from Escherichia coli is 20-fold
more active with NADP+ than NAD+ [1707].

References: [208, 1707]

[EC 1.2.1.79 created 2010]

EC 1.2.1.80
Accepted name: long-chain acyl-[acyl-carrier-protein] reductase

Reaction: a long-chain aldehyde + an [acyl-carrier protein] + NAD(P)+ = a long-chain acyl-[acyl-carrier pro-
tein] + NAD(P)H + H+

Other name(s): long-chain acyl-[acp] reductase; fatty acyl-[acyl-carrier-protein] reductase; acyl-[acp] reductase
Systematic name: long-chain-aldehyde:NAD(P)+ oxidoreductase (acyl-[acyl-carrier protein]-forming)

Comments: Catalyses the reaction in the opposite direction. This enzyme, purified from the cyanobacterium Syne-
chococcus elongatus PCC 7942, catalyses the NAD(P)H-dependent reduction of an activated fatty
acid (acyl-[acp]) to the corresponding aldehyde. Together with EC 4.1.99.5, octadecanal decarbony-
lase, it is involved in alkane biosynthesis. The natural substrates of the enzyme are C16 and C18 acti-
vated fatty acids. Requires Mg2+.

References: [3365]

[EC 1.2.1.80 created 2011]

EC 1.2.1.81
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Accepted name: sulfoacetaldehyde dehydrogenase (acylating)
Reaction: 2-sulfoacetaldehyde + CoA + NADP+ = sulfoacetyl-CoA + NADPH + H+

Other name(s): SauS
Systematic name: 2-sulfoacetaldehyde:NADP+ oxidoreductase (CoA-acetylating)

Comments: The enzyme is involved in degradation of sulfoacetate. In this pathway the reaction is catalysed in the
reverse direction. The enzyme is specific for sulfoacetaldehyde and NADP+.

References: [4165]

[EC 1.2.1.81 created 2011]

EC 1.2.1.82
Accepted name: β-apo-4′-carotenal oxygenase

Reaction: 4′-apo-β,ψ-caroten-4′-al + NAD+ + H2O = neurosporaxanthin + NADH + 2 H+

Other name(s): β-apo-4′-carotenal dehydrogenase; YLO-1; carD (gene name)
Systematic name: 4′-apo-β,ψ-carotenal:NAD+ oxidoreductase

Comments: Neurosporaxanthin is responsible for the orange color of of Neurospora.
References: [968, 814]

[EC 1.2.1.82 created 2011]

EC 1.2.1.83
Accepted name: 3-succinoylsemialdehyde-pyridine dehydrogenase

Reaction: 4-oxo-4-(pyridin-3-yl)butanal + NADP+ + H2O = 4-oxo-4-(pyridin-3-yl)butanoate + NADPH + H+

Systematic name: 4-oxo-4-(pyridin-3-yl)butanal:NADP+ oxidoreductase
Comments: The enzyme has been characterized from the soil bacterium Pseudomonas sp. HZN6. It participates in

the nicotine degradation pathway.
References: [3080]

[EC 1.2.1.83 created 2012]

EC 1.2.1.84
Accepted name: alcohol-forming fatty acyl-CoA reductase

Reaction: a long-chain acyl-CoA + 2 NADPH + 2 H+ = a long-chain alcohol + 2 NADP+ + CoA
Other name(s): FAR (gene name); long-chain acyl-CoA:NADPH reductase

Systematic name: NADPH:long-chain acyl-CoA reductase
Comments: The enzyme has been characterized from the plant Simmondsia chinensis (jojoba). The alcohol is

formed by a four-electron reduction of fatty acyl-CoA. Although the reaction proceeds through an
aldehyde intermediate, a free aldehyde is not released. The recombinant enzyme was shown to accept
saturated and mono-unsaturated fatty acyl-CoAs of 16 to 22 carbons.

References: [2514]

[EC 1.2.1.84 created 2012]

EC 1.2.1.85
Accepted name: 2-hydroxymuconate-6-semialdehyde dehydrogenase

Reaction: 2-hydroxymuconate-6-semialdehyde + NAD+ + H2O = (2Z,4E)-2-hydroxyhexa-2,4-dienedioate +
NADH + 2 H+

Other name(s): xylG (gene name); praB (gene name)
Systematic name: 2-hydroxymuconate-6-semialdehyde:NAD+ oxidoreductase

Comments: This substrate for this enzyme is formed by meta ring cleavage of catechol (EC 1.13.11.2, catechol
2,3-dioxygenase), and is an intermediate in the bacterial degradation of several aromatic compounds.
Has lower activity with benzaldehyde [1653]. Activity with NAD+ is more than 10-fold higher than
with NADP+ [1824]. cf. EC 1.2.1.32, aminomuconate-semialdehyde dehydrogenase.

References: [1653, 2895, 1824]
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[EC 1.2.1.85 created 2012]

EC 1.2.1.86
Accepted name: geranial dehydrogenase

Reaction: geranial + H2O + NAD+ = geranate + NADH + H+

Other name(s): GaDH; geoB (gene name)
Systematic name: geranial:NAD+ oxidoreductase

Comments: Does not act on neral.
References: [4242, 2312]

[EC 1.2.1.86 created 2012]

EC 1.2.1.87
Accepted name: propanal dehydrogenase (CoA-propanoylating)

Reaction: propanal + CoA + NAD+ = propanoyl-CoA + NADH + H+

Other name(s): BphJ
Systematic name: propanal:NAD+ oxidoreductase (CoA-propanoylating)

Comments: The enzyme forms a bifunctional complex with EC 4.1.3.43, 4-hydroxy-2-oxohexanoate aldolase,
with a tight channel connecting the two subunits [1,2,3]. Also acts, more slowly, on glycolaldehyde
and butanal. In Pseudomonas species the enzyme forms a bifunctional complex with EC 4.1.3.39, 4-
hydroxy-2-oxovalerate aldolase. The enzymes from the bacteria Burkholderia xenovorans and Ther-
mus thermophilus also perform the reaction of EC 1.2.1.10, acetaldehyde dehydrogenase (acetylat-
ing). NADP+ can replace NAD+ with a much slower rate [177].

References: [178, 503, 177]

[EC 1.2.1.87 created 2013]

EC 1.2.1.88
Accepted name: L-glutamate γ-semialdehyde dehydrogenase

Reaction: L-glutamate 5-semialdehyde + NAD+ + H2O = L-glutamate + NADH + H+

Other name(s): 1-pyrroline-5-carboxylate dehydrogenase; ∆1-pyrroline-5-carboxylate dehydrogenase; 1-pyrroline
dehydrogenase; pyrroline-5-carboxylate dehydrogenase; pyrroline-5-carboxylic acid dehydrogenase;
L-pyrroline-5-carboxylate-NAD+ oxidoreductase; 1-pyrroline-5-carboxylate:NAD+ oxidoreductase;
∆1-pyrroline-5-carboxylic acid dehydrogenase

Systematic name: L-glutamate γ-semialdehyde:NAD+ oxidoreductase
Comments: This enzyme catalyses the irreversible oxidation of glutamate-γ-semialdehyde to glutamate as part

of the proline degradation pathway. (S)-1-pyrroline-5-carboxylate, the product of the first enzyme
of the pathway (EC 1.5.5.2, proline dehydrogenase) is in spontaneous equilibrium with its tautomer
L-glutamate γ-semialdehyde. In many bacterial species, both activities are carried out by a single bi-
functional enzyme [1034, 416].The enzyme can also oxidize other 1-pyrrolines, e.g. 3-hydroxy-1-
pyrroline-5-carboxylate is converted into 4-hydroxyglutamate and (R)-1-pyrroline-5-carboxylate is
converted into D-glutamate. NADP+ can also act as acceptor, but with lower activity [1646].

References: [21, 3673, 1034, 416, 1646]

[EC 1.2.1.88 created 1972 as EC 1.5.1.12, modified 2008, transferred 2013 to EC 1.2.1.88]

EC 1.2.1.89
Accepted name: D-glyceraldehyde dehydrogenase (NADP+)

Reaction: D-glyceraldehyde + NADP+ + H2O = D-glycerate + NADPH + H+

Other name(s): glyceraldehyde dehydrogenase; GADH
Systematic name: D-glyceraldehyde:NADP+ oxidoreductase

Comments: The enzyme from the archaea Thermoplasma acidophilum and Picrophilus torridus is involved in
the non-phosphorylative Entner-Doudoroff pathway. cf. EC 1.2.99.8, glyceraldehyde dehydrogenase
(FAD-containing).
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References: [1784, 3158]

[EC 1.2.1.89 created 2014]

EC 1.2.1.90
Accepted name: glyceraldehyde-3-phosphate dehydrogenase [NAD(P)+]

Reaction: D-glyceraldehyde 3-phosphate + NAD(P)+ + H2O = 3-phospho-D-glycerate + NAD(P)H + 2 H+

Other name(s): non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase; GAPN
Systematic name: D-glyceraldehyde-3-phosphate:NAD(P)+ oxidoreductase

Comments: The enzyme is part of the modified Embden-Meyerhof-Parnas pathway of the archaeon Thermopro-
teus tenax. cf. EC 1.2.1.9 [glyceraldehyde-3-phosphate dehydrogenase (NADP+)].

References: [430, 431, 3026, 2298]

[EC 1.2.1.90 created 2014]

EC 1.2.1.91
Accepted name: 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase

Reaction: 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde + NADP+ + H2O = 3-oxo-5,6-dehydrosuberyl-CoA +
NADPH + H+

Other name(s): paaZ (gene name)
Systematic name: 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde:NADP+ oxidoreductase

Comments: The enzyme from Escherichia coli is a bifunctional fusion protein that also catalyses EC 3.3.2.12,
oxepin-CoA hydrolase. Combined the two activities result in a two-step conversion of oxepin-CoA to
3-oxo-5,6-dehydrosuberyl-CoA, part of an aerobic phenylacetate degradation pathway.

References: [1001, 1673, 3853]

[EC 1.2.1.91 created 2011 as EC 1.17.1.7, transferred 2014 to EC 1.2.1.91]

EC 1.2.1.92
Accepted name: 3,6-anhydro-α-L-galactose dehydrogenase

Reaction: 3,6-anhydro-α-L-galactopyranose + NAD(P)+ + H2O = 3,6-anhydro-L-galactonate + NAD(P)H + H+

Systematic name: 3,6-anhydro-α-L-galactopyranose:NAD(P)+ 1-oxidoredutase
Comments: The enzyme, characterized from the marine bacterium Vibrio sp. EJY3, is involved in a degradation

pathway for 3,6-anhydro-α-L-galactose, a major component of the polysaccharides produced by red
macroalgae, such as agarose and porphyran.

References: [4413]

[EC 1.2.1.92 created 2014]

[1.2.1.93 Transferred entry. formate dehydrogenase (NAD+, ferredoxin). Now EC 1.17.1.11, formate dehydrogenase (NAD+,
ferredoxin)]

[EC 1.2.1.93 created 2015, deleted 2017]

EC 1.2.1.94
Accepted name: farnesal dehydrogenase

Reaction: (2E,6E)-farnesal + NAD+ + H2O = (2E,6E)-farnesoate + NADH + 2 H+

Other name(s): AaALDH3
Systematic name: farnesal:NAD+ oxidoreductase

Comments: Invoved in juvenile hormone production in insects. The enzyme was described from the corpora al-
lata of Drosophila melanogaster (fruit fly), Manduca sexta (tobacco hornworm) and Aedes aegypti
(dengue mosquito).

References: [2354, 175, 3197]
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[EC 1.2.1.94 created 2015]

EC 1.2.1.95
Accepted name: L-2-aminoadipate reductase

Reaction: (S)-2-amino-6-oxohexanoate + NADP+ + AMP + diphosphate = L-2-aminoadipate + NADPH + H+ +
ATP (overall reaction)
(1a) L-2-aminoadipyl-[LYS2 peptidyl-carrier-protein] + AMP + diphosphate = L-2-aminoadipate +
holo-[LYS2 peptidyl-carrier-protein] + ATP
(1b) (S)-2-amino-6-oxohexanoate + holo-[LYS2 peptidyl-carrier-protein] + NADP+ = L-2-
aminoadipyl-[LYS2 peptidyl-carrier-protein] + NADPH + H+

Other name(s): LYS2; α-aminoadipate reductase
Systematic name: (S)-2-amino-6-oxohexanoate:NADP+ oxidoreductase (ATP-forming)

Comments: This enzyme, characterized from the yeast Saccharomyces cerevisiae, catalyses the reduction of L-
2-aminoadipate to (S)-2-amino-6-oxohexanoate during L-lysine biosynthesis. An adenylation do-
main activates the substrate at the expense of ATP hydrolysis, and forms L-2-aminoadipate adenylate,
which is attached to a peptidyl-carrier protein (PCP) domain. Binding of NADPH results in reductive
cleavage of the acyl-S-enzyme intermediate, releasing (S)-2-amino-6-oxohexanoate. Different from
EC 1.2.1.31, L-aminoadipate-semialdehyde dehydrogenase, which catalyses a similar transformation
in the opposite direction without ATP hydrolysis.

References: [927]

[EC 1.2.1.95 created 2015]

EC 1.2.1.96
Accepted name: 4-hydroxybenzaldehyde dehydrogenase (NADP+)

Reaction: 4-hydroxybenzaldehyde + NADP+ + H2O = 4-hydroxybenzoate + NADPH + 2 H+

Other name(s): p-hydroxybenzaldehyde dehydrogenase (ambiguous); pchA (gene name)
Systematic name: 4-hydroxybenzaldehyde:NADP+ oxidoreductase

Comments: Involved in the aerobic pathway for degradation of toluene, 4-methylphenol, and 2,4-xylenol by sev-
eral Pseudomonas strains. The enzyme is also active with 4-hydroxy-3-methylbenzaldehyde. cf. EC
1.2.1.64, 4-hydroxybenzaldehyde dehydrogenase (NAD+).

References: [4192, 578]

[EC 1.2.1.96 created 2015]

EC 1.2.1.97
Accepted name: 3-sulfolactaldehyde dehydrogenase

Reaction: (2S)-3-sulfolactaldehyde + NAD(P)+ + H2O = (2S)-3-sulfolactate + NAD(P)H + H+

Other name(s): SLA dehydrogenase
Systematic name: (2S)-3-sulfolactaldehyde:NAD(P)+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Pseudomonas putida SQ1, participates in a sulfo-
quinovose degradation pathway. Also acts on succinate semialdehyde.

References: [994]

[EC 1.2.1.97 created 2015]

EC 1.2.1.98
Accepted name: 2-hydroxy-2-methylpropanal dehydrogenase

Reaction: 2-hydroxy-2-methylpropanal + NAD+ + H2O = 2-hydroxy-2-methylpropanoate + NADH + H+

Other name(s): mpdC (gene name)
Systematic name: 2-hydroxy-2-methylpropanal:NAD+ oxidoreductase

Comments: This bacterial enzyme is involved in the degradation pathways of the alkene 2-methylpropene and the
fuel additive tert-butyl methyl ether (MTBE), a widely occurring groundwater contaminant.

References: [1004]
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[EC 1.2.1.98 created 2016]

EC 1.2.1.99
Accepted name: 4-(γ-glutamylamino)butanal dehydrogenase

Reaction: 4-(γ-L-glutamylamino)butanal + NAD(P)+ + H2O = 4-(γ-L-glutamylamino)butanoate + NAD(P)H +
H+

Other name(s): puuC (gene name)
Systematic name: 4-(γ-L-glutamylamino)butanal:NAD(P)+ oxidoreductase

Comments: The enzyme, characterized from the bacterium Escherichia coli, is involved in a putrescine catabolic
pathway. It has a broad substrate range, and can also catalyse the activities of EC 1.2.1.19, aminobu-
tyraldehyde dehydrogenase, and EC 1.2.1.24, succinate-semialdehyde dehydrogenase (NAD+).

References: [2090, 1748, 3380]

[EC 1.2.1.99 created 2017]

EC 1.2.1.100
Accepted name: 5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase

Reaction: 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylate + NAD+ + H2O = 3-hydroxy-2-methylpyridine-
4,5-dicarboxylate + NADH + H+

Other name(s): mlr6793 (locus name)
Systematic name: 5-formyl-3-hydroxy-2-methylpyridine-4-carboxylate:NAD+ 5-oxidoreductase

Comments: The enzyme, characterized from the bacteria Pseudomonas sp. MA-1 and Mesorhizobium loti, partici-
pates in the degradation of pyridoxine (vitamin B6).

References: [2183, 4363, 2646]

[EC 1.2.1.100 created 2018]

EC 1.2.1.101
Accepted name: L-tyrosine reductase

Reaction: L-tyrosinal + NADP+ + AMP + diphosphate = L-tyrosine + NADPH + H+ + ATP
Other name(s): lnaA (gene name); lnbA (gene name)

Systematic name: (2S)-2-amino-3-(4-hydroxyphenyl)propanal:NADP+ oxidoreductase (ATP-forming)
Comments: The enzyme, characterized from the ascomycete fungus Aspergillus flavus, is specific for L-tyrosine.

It contains three domains - an adenylation domain, a peptidyl-carrier protein (PCP) domain, and a
reductase domain, and requires activation by attachment of a phosphopantetheinyl group. The enzyme
activates its substrate to an adenylate form, followed by a transfer to the PCP domain. The resulting
thioester is subsequently transferred to the reductase domain, where it is reduced to the aldehyde.

References: [1039]

[EC 1.2.1.101 created 2018]

EC 1.2.1.102
Accepted name: isopyridoxal dehydrogenase (5-pyridoxate-forming)

Reaction: isopyridoxal + NAD+ + H2O = 5-pyridoxate + NADH + H+

Systematic name: isopyridoxal:NAD+ oxidoreductase (5-pyridoxate-forming)
Comments: The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in the degradation

of pyridoxine. The enzyme also catalyses the activity of EC 1.1.1.416, isopyridoxal dehydrogenase
(5-pyridoxolactone-forming).

References: [2183]

[EC 1.2.1.102 created 2018]
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EC 1.2.2 With a cytochrome as acceptor

EC 1.2.2.1
Accepted name: formate dehydrogenase (cytochrome)

Reaction: formate + 2 ferricytochrome b1 = CO2 + 2 ferrocytochrome b1 + 2 H+

Other name(s): formate dehydrogenase; formate:cytochrome b1 oxidoreductase
Systematic name: formate:ferricytochrome-b1 oxidoreductase

References: [1142]

[EC 1.2.2.1 created 1961]

[1.2.2.2 Deleted entry. pyruvate dehydrogenase (cytochrome). Now covered by EC 1.2.5.1, pyruvate dehydrogenase (quinone)]

[EC 1.2.2.2 created 1961, deleted 2010]

[1.2.2.3 Transferred entry. formate dehydrogenase (cytochrome-c-553). Now EC 1.17.2.3, formate dehydrogenase (cytochrome-
c-553)]

[EC 1.2.2.3 created 1981, deleted 2017]

EC 1.2.2.4
Accepted name: carbon-monoxide dehydrogenase (cytochrome b-561)

Reaction: CO + H2O + 2 ferricytochrome b-561 = CO2 + 2 H+ + 2 ferrocytochrome b-561
Other name(s): carbon monoxide oxidase; carbon monoxide oxygenase (cytochrome b-561); carbon monox-

ide:methylene blue oxidoreductase; CO dehydrogenase; carbon-monoxide dehydrogenase
Systematic name: carbon monoxide,water:cytochrome b-561 oxidoreductase

Comments: Contains molybdopterin cytosine dinucleotide, FAD and [2Fe-2S]-clusters. Oxygen, methylene blue
and iodonitrotetrazolium chloride can act as nonphysiological electron acceptors.

References: [2518, 1706, 2519, 844, 1384]

[EC 1.2.2.4 created 1999 (EC 1.2.3.10 created 1990, incorporated 2003), modified 2003]

EC 1.2.3 With oxygen as acceptor

EC 1.2.3.1
Accepted name: aldehyde oxidase

Reaction: an aldehyde + H2O + O2 = a carboxylate + H2O2
Other name(s): quinoline oxidase; retinal oxidase

Systematic name: aldehyde:oxygen oxidoreductase
Comments: Contains molybdenum, [2Fe-2S] centres and FAD. The enzyme from liver exhibits a broad sub-

strate specificity, and is involved in the metabolism of xenobiotics, including the oxidation of N-
heterocycles and aldehydes and the reduction of N-oxides, nitrosamines, hydroxamic acids, azo dyes,
nitropolycyclic aromatic hydrocarbons, and sulfoxides [2057, 4383]. The enzyme is also responsible
for the oxidation of retinal, an activity that was initially attributed to a distinct enzyme (EC 1.2.3.11,
retinal oxidase) [3904, 1591].

References: [1245, 1979, 2368, 2057, 3904, 4383, 1591, 3955]

[EC 1.2.3.1 created 1961, modified 2002, modified 2004, modified 2012]

[1.2.3.2 Transferred entry. xanthine oxidase. Now EC 1.17.3.2, xanthine oxidase]

[EC 1.2.3.2 created 1961, deleted 1984]

EC 1.2.3.3
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Accepted name: pyruvate oxidase
Reaction: pyruvate + phosphate + O2 = acetyl phosphate + CO2 + H2O2

Other name(s): pyruvic oxidase; phosphate-dependent pyruvate oxidase
Systematic name: pyruvate:oxygen 2-oxidoreductase (phosphorylating)

Comments: A flavoprotein (FAD) requiring thiamine diphosphate. Two reducing equivalents are transferred from
the resonant carbanion/enamine forms of 2-hydroxyethyl-thiamine-diphosphate to the adjacent flavin
cofactor, yielding 2-acetyl-thiamine diphosphate (AcThDP) and reduced flavin. FADH2 is reoxidized
by O2 to yield H2O2 and FAD and AcThDP is cleaved phosphorolytically to acetyl phosphate and
thiamine diphosphate [3898].

References: [4218, 3898]

[EC 1.2.3.3 created 1961]

EC 1.2.3.4
Accepted name: oxalate oxidase

Reaction: oxalate + O2 + 2 H+ = 2 CO2 + H2O2
Other name(s): aero-oxalo dehydrogenase; oxalic acid oxidase

Systematic name: oxalate:oxygen oxidoreductase
Comments: Contains Mn2+ as a cofactor. The enzyme is not a flavoprotein as had been thought [3171].
References: [748, 2043, 3171]

[EC 1.2.3.4 created 1961]

EC 1.2.3.5
Accepted name: glyoxylate oxidase

Reaction: glyoxylate + H2O + O2 = oxalate + H2O2
Systematic name: glyoxylate:oxygen oxidoreductase

References: [1825]

[EC 1.2.3.5 created 1972]

EC 1.2.3.6
Accepted name: pyruvate oxidase (CoA-acetylating)

Reaction: pyruvate + CoA + O2 = acetyl-CoA + CO2 + H2O2
Systematic name: pyruvate:oxygen 2-oxidoreductase (CoA-acetylating)

Comments: A flavoprotein (FAD). May be identical with EC 1.2.7.1 pyruvate synthase.
References: [3157, 3793]

[EC 1.2.3.6 created 1976]

EC 1.2.3.7
Accepted name: indole-3-acetaldehyde oxidase

Reaction: (indol-3-yl)acetaldehyde + H2O + O2 = (indol-3-yl)acetate + H2O2
Other name(s): indoleacetaldehyde oxidase; IAAld oxidase; AO1; indole-3-acetaldehyde:oxygen oxidoreductase

Systematic name: (indol-3-yl)acetaldehyde:oxygen oxidoreductase
Comments: A hemoprotein. This enzyme is an isoform of aldehyde oxidase (EC 1.2.3.1). It has a preference for

aldehydes having an indole-ring structure as substrate [3436, 3440]. It may play a role in plant hor-
mone biosynthesis as its activity is higher in the auxin-overproducing mutant, super-root1, than in
wild-type Arabidopsis thaliana [3440]. While (indol-3-yl)acetaldehyde is the preferred substrate, it
also oxidizes indole-3-carbaldehyde and acetaldehyde, but more slowly. The enzyme from maize con-
tains FAD, iron and molybdenum [2037].

References: [372, 2573, 3110, 2037, 2036, 3436, 3440]
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[EC 1.2.3.7 created 1984, modified 2004, modified 2006]

EC 1.2.3.8
Accepted name: pyridoxal oxidase

Reaction: pyridoxal + H2O + O2 = 4-pyridoxate + (?)
Systematic name: pyridoxal:oxygen 4-oxidoreductase

Comments: A molybdenum protein.
References: [1370, 4136]

[EC 1.2.3.8 created 1984]

EC 1.2.3.9
Accepted name: aryl-aldehyde oxidase

Reaction: an aromatic aldehyde + O2 + H2O = an aromatic carboxylate + H2O2
Systematic name: aryl-aldehyde:oxygen oxidoreductase

Comments: Acts on benzaldehyde, vanillin and a number of other aromatic aldehydes, but not on aliphatic aldehy-
des or sugars.

References: [692]

[EC 1.2.3.9 created 1986, modified 2002]

[1.2.3.10 Deleted entry. carbon-monoxide oxidase. Activity due to EC 1.2.2.4 carbon-monoxide dehydrogenase (cytochrome
b-561)]

[EC 1.2.3.10 created 1990, deleted 2003]

[1.2.3.11 Deleted entry. retinal oxidase. Now included with EC 1.2.3.1, aldehyde oxidase]

[EC 1.2.3.11 created 1990, modified 2002, deleted 2011]

[1.2.3.12 Transferred entry. vanillate demethylase. Now EC 1.14.13.82, vanillate monooxygenase]

[EC 1.2.3.12 created 2000, deleted 2003]

EC 1.2.3.13
Accepted name: 4-hydroxyphenylpyruvate oxidase

Reaction: 2 4-hydroxyphenylpyruvate + O2 = 2 4-hydroxyphenylacetate + 2 CO2
Systematic name: 4-hydroxyphenylpyruvate:oxygen oxidoreductase (decarboxylating)

Comments: Involved in tyrosine degradation pathway in Arthrobacter sp.
References: [313]

[EC 1.2.3.13 created 2000]

EC 1.2.3.14
Accepted name: abscisic-aldehyde oxidase

Reaction: abscisic aldehyde + H2O + O2 = abscisate + H2O2
Other name(s): abscisic aldehyde oxidase; AAO3; AOd; AOδ

Systematic name: abscisic-aldehyde:oxygen oxidoreductase
Comments: Acts on both (+)- and (-)-abscisic aldehyde. Involved in the abscisic-acid biosynthesis pathway in

plants, along with EC 1.1.1.288, (xanthoxin dehydrogenase), EC 1.13.11.51 (9-cis-epoxycarotenoid
dioxygenase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase]. While abscisic aldehyde is the
best substrate, the enzyme also acts with indole-3-aldehyde, 1-naphthaldehyde and benzaldehyde as
substrates, but more slowly [3441].

References: [3281, 3442, 3441]
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[EC 1.2.3.14 created 2005]

EC 1.2.3.15
Accepted name: (methyl)glyoxal oxidase

Reaction: (1) glyoxal + H2O + O2 = glyoxylate + H2O2
(2) 2-oxopropanal + H2O + O2 = pyruvate + H2O2

Other name(s): glx1 (gene name); glx2 (gene name)
Systematic name: (methyl)glyoxal:oxygen oxidoreductase

Comments: The enzyme, originally characterized from the white rot fungus Phanerochaete chrysosporium, uti-
lizes a free radical-coupled copper complex for catalysis.

References: [1886, 1885, 1888, 4198]

[EC 1.2.3.15 created 2016]

EC 1.2.4 With a disulfide as acceptor

EC 1.2.4.1
Accepted name: pyruvate dehydrogenase (acetyl-transferring)

Reaction: pyruvate + [dihydrolipoyllysine-residue acetyltransferase] lipoyllysine = [dihydrolipoyllysine-residue
acetyltransferase] S-acetyldihydrolipoyllysine + CO2

Other name(s): MtPDC (mitochondrial pyruvate dehydrogenase complex); pyruvate decarboxylase; pyruvate
dehydrogenase; pyruvate dehydrogenase (lipoamide); pyruvate dehydrogenase complex; pyru-
vate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating); pyruvic acid dehydro-
genase; pyruvic dehydrogenase

Systematic name: pyruvate:[dihydrolipoyllysine-residue acetyltransferase]-lipoyllysine 2-oxidoreductase (decarboxylat-
ing, acceptor-acetylating)

Comments: Contains thiamine diphosphate. It is a component (in multiple copies) of the multienzyme
pyruvate dehydrogenase complex in which it is bound to a core of molecules of EC 2.3.1.12,
dihydrolipoyllysine-residue acetyltransferase, which also binds multiple copies of EC 1.8.1.4, dihy-
drolipoyl dehydrogenase. It does not act on free lipoamide or lipoyllysine, but only on the lipoyllysine
residue in EC 2.3.1.12.

References: [2838, 3419, 2983]

[EC 1.2.4.1 created 1961, modified 2003]

EC 1.2.4.2
Accepted name: oxoglutarate dehydrogenase (succinyl-transferring)

Reaction: 2-oxoglutarate + [dihydrolipoyllysine-residue succinyltransferase] lipoyllysine =
[dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine + CO2

Other name(s): 2-ketoglutarate dehydrogenase; 2-oxoglutarate dehydrogenase; 2-oxoglutarate: lipoate oxidoreduc-
tase; 2-oxoglutarate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-succinylating); α-
ketoglutarate dehydrogenase; αketoglutaric acid dehydrogenase; α-ketoglutaric dehydrogenase; α-
oxoglutarate dehydrogenase; AKGDH; OGDC; ketoglutaric dehydrogenase; oxoglutarate decarboxy-
lase; oxoglutarate dehydrogenase; oxoglutarate dehydrogenase (lipoamide)

Systematic name: 2-oxoglutarate:[dihydrolipoyllysine-residue succinyltransferase]-lipoyllysine 2-oxidoreductase (decar-
boxylating, acceptor-succinylating)

Comments: Contains thiamine diphosphate. It is a component of the multienzyme 2-oxoglutarate dehydro-
genase complex in which multiple copies of it are bound to a core of molecules of EC 2.3.1.61,
dihydrolipoyllysine-residue succinyltransferase, which also binds multiple copies of EC 1.8.1.4, dihy-
drolipoyl dehydrogenase. It does not act on free lipoamide or lipoyllysine, but only on the lipoyllysine
residue in EC 2.3.1.61.

References: [2431, 2838, 3302, 2983]
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[EC 1.2.4.2 created 1961, modified 1980, modified 1986, modified 2003]

[1.2.4.3 Deleted entry. 2-oxoisocaproate dehydrogenase. Now included with EC 1.2.4.4, 3-methyl-2-oxobutanoate dehydro-
genase (2-methylpropanoyl-transferring)]

[EC 1.2.4.3 created 1972, deleted 1978]

EC 1.2.4.4
Accepted name: 3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring)

Reaction: 3-methyl-2-oxobutanoate + [dihydrolipoyllysine-residue (2-methylpropanoyl)transferase]
lipoyllysine = [dihydrolipoyllysine-residue (2-methylpropanoyl)transferase] S-(2-
methylpropanoyl)dihydrolipoyllysine + CO2

Other name(s): 2-oxoisocaproate dehydrogenase; 2-oxoisovalerate (lipoate) dehydrogenase; 3-methyl-2-oxobutanoate
dehydrogenase (lipoamide); 3-methyl-2-oxobutanoate:lipoamide oxidoreductase (decarboxylating
and acceptor-2-methylpropanoylating); α-keto-α-methylvalerate dehydrogenase; α-ketoisocaproate
dehydrogenase; α-ketoisocaproic dehydrogenase; α-ketoisocaproic-α-keto-α-methylvaleric dehy-
drogenase; α-ketoisovalerate dehydrogenase; α-oxoisocaproate dehydrogenase; BCKDH; BCOAD;
branched chain keto acid dehydrogenase; branched-chain (-2-oxoacid) dehydrogenase (BCD);
branched-chain 2-keto acid dehydrogenase; branched-chain 2-oxo acid dehydrogenase; branched-
chain α-keto acid dehydrogenase; branched-chain α-oxo acid dehydrogenase; branched-chain keto
acid dehydrogenase; branched-chain ketoacid dehydrogenase; dehydrogenase, 2-oxoisovalerate
(lipoate); dehydrogenase, branched chain α-keto acid

Systematic name: 3-methyl-2-oxobutanoate:[dihydrolipoyllysine-residue (2-methylpropanoyl)transferase]-lipoyllysine
2-oxidoreductase (decarboxylating, acceptor-2-methylpropanoylating)

Comments: Contains thiamine diphosphate. It acts not only on 3-methyl-2-oxobutanaoate, but also on 4-methyl-
2-oxopentanoate and (S)-3-methyl-2-oxopentanoate, so that it acts on the 2-oxo acids that derive from
the action of transaminases on valine, leucine and isoleucine. It is a component of the multienzyme 3-
methyl-2-oxobutanoate dehydrogenase complex in which multiple copies of it are bound to a core of
molecules of EC 2.3.1.168, dihydrolipoyllysine-residue (2-methylpropanoyl)transferase, which also
binds multiple copies of EC 1.8.1.4, dihydrolipoyl dehydrogenase. It does not act on free lipoamide or
lipoyllysine, but only on the lipoyllysine residue in EC 2.3.1.168.

References: [371, 649, 745, 2996, 2983]

[EC 1.2.4.4 created 1972 (EC 1.2.4.3 created 1972, incorporated 1978), modified 2003]

EC 1.2.5 With a quinone or similar compound as acceptor

EC 1.2.5.1
Accepted name: pyruvate dehydrogenase (quinone)

Reaction: pyruvate + ubiquinone + H2O = acetate + CO2 + ubiquinol
Other name(s): pyruvate dehydrogenase; pyruvic dehydrogenase; pyruvic (cytochrome b1) dehydrogenase;

pyruvate:ubiquinone-8-oxidoreductase; pyruvate oxidase (ambiguous); pyruvate dehydrogenase (cy-
tochrome) (incorrect)

Systematic name: pyruvate:ubiquinone oxidoreductase
Comments: Flavoprotein (FAD) [3144]. This bacterial enzyme is located on the inner surface of the cytoplas-

mic membrane and coupled to the respiratory chain via ubiquinone [707, 2013]. Does not accept
menaquinone. Activity is greatly enhanced by lipids [4,5,6]. Requires thiamine diphosphate [2837].
The enzyme can also form acetoin [276].

References: [3144, 707, 2013, 465, 4102, 4415, 2837, 276]

[EC 1.2.5.1 created 2010]

EC 1.2.5.2
Accepted name: aldehyde dehydrogenase (quinone)
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Reaction: an aldehyde + a quinone + H2O = a carboxylate + a quinol
Other name(s): aldehyde dehydrogenase (acceptor)

Systematic name: aldehyde:quinone oxidoreductase
Comments: Wide specificity; acts on straight-chain aldehydes up to C10, aromatic aldehydes, glyoxylate and glyc-

eraldehyde. The enzymes contains a PQQ cofactor and multiple hemes that deliver the electrons to the
membrane quinone pool.

References: [70, 74, 2957, 1232]

[EC 1.2.5.2 created 1983 as EC 1.2.99.3, modified 1989, transferred 2015 to EC 1.2.5.2 ]

EC 1.2.5.3
Accepted name: aerobic carbon monoxide dehydrogenase

Reaction: CO + a quinone + H2O = CO2 + a quinol
Other name(s): MoCu-CODH; coxSML (gene names); molybdoenzyme carbon monoxide dehydrogenase

Systematic name: carbon-monoxide:quinone oxidoreductase
Comments: This enzyme, found in carboxydotrophic bacteria, catalyses the oxidation of CO to CO2 under aerobic

conditions. The enzyme contains a binuclear Mo-Cu cluster in which the copper is ligated to a molyb-
dopterin center via a sulfur bridge. The enzyme also contains two [2Fe-2S] clusters and FAD, and
belongs to the xanthine oxidoreductase family. The CO2 that is produced is assimilated by the Calvin-
Benson-Basham cycle, while the electrons are transferred to a quinone via the FAD site, and continue
through the electron transfer chain to a dioxygen terminal acceptor [4213]. cf. EC 1.2.7.4, anaerobic
carbon monoxide dehydrogenase.

References: [1280, 843, 1226, 3172, 4213, 2978, 1503]

[EC 1.2.5.3 created 2016]

EC 1.2.7 With an iron-sulfur protein as acceptor

EC 1.2.7.1
Accepted name: pyruvate synthase

Reaction: pyruvate + CoA + 2 oxidized ferredoxin = acetyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+

Other name(s): pyruvate oxidoreductase; pyruvate synthetase; pyruvate:ferredoxin oxidoreductase; pyruvic-
ferredoxin oxidoreductase; 2-oxobutyrate synthase; α-ketobutyrate-ferredoxin oxidoreductase;
2-ketobutyrate synthase; α-ketobutyrate synthase; 2-oxobutyrate-ferredoxin oxidoreductase; 2-
oxobutanoate:ferredoxin 2-oxidoreductase (CoA-propionylating); 2-oxobutanoate:ferredoxin 2-
oxidoreductase (CoA-propanoylating)

Systematic name: pyruvate:ferredoxin 2-oxidoreductase (CoA-acetylating)
Comments: Contains thiamine diphosphate and [4Fe-4S] clusters. The enzyme also decarboxylates 2-oxobutyrate

with lower efficiency, but shows no activity with 2-oxoglutarate. This enzyme is a member of the 2-
oxoacid oxidoreductases, a family of enzymes that oxidatively decarboxylate different 2-oxoacids to
form their CoA derivatives, and are differentiated based on their substrate specificity. For examples
of other members of this family, see EC 1.2.7.3, 2-oxoglutarate synthase and EC 1.2.7.7, 3-methyl-2-
oxobutanoate dehydrogenase (ferredoxin).

References: [970, 1177, 3978, 3979, 551]

[EC 1.2.7.1 created 1972, modified 2003, modified 2013]

[1.2.7.2 Deleted entry. 2-oxobutyrate synthase. Now included with EC 1.2.7.1, pyruvate synthase.]

[EC 1.2.7.2 created 1972, deleted 2013]

EC 1.2.7.3
Accepted name: 2-oxoglutarate synthase

Reaction: 2-oxoglutarate + CoA + 2 oxidized ferredoxin = succinyl-CoA + CO2 + 2 reduced ferredoxin + 2 H+
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Other name(s): 2-ketoglutarate ferredoxin oxidoreductase; 2-oxoglutarate:ferredoxin oxidoreductase; KGOR;
2-oxoglutarate ferredoxin oxidoreductase; 2-oxoglutarate:ferredoxin 2-oxidoreductase (CoA-
succinylating)

Systematic name: 2-oxoglutarate:ferredoxin oxidoreductase (decarboxylating)
Comments: The enzyme contains thiamine diphosphate and two [4Fe-4S] clusters. Highly specific for 2-

oxoglutarate. This enzyme is a member of the 2-oxoacid oxidoreductases, a family of enzymes that
oxidatively decarboxylate different 2-oxoacids to form their CoA derivatives, and are differentiated
based on their substrate specificity. For examples of other members of this family, see EC 1.2.7.1,
pyruvate synthase and EC 1.2.7.7, 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin).

References: [438, 1177, 858, 2373, 3409]

[EC 1.2.7.3 created 1972, modified 2005]

EC 1.2.7.4
Accepted name: anaerobic carbon-monoxide dehydrogenase

Reaction: CO + H2O + 2 oxidized ferredoxin = CO2 + 2 reduced ferredoxin + 2 H+

Other name(s): Ni-CODH; carbon-monoxide dehydrogenase (ferredoxin)
Systematic name: carbon-monoxide,water:ferredoxin oxidoreductase

Comments: This prokaryotic enzyme catalyses the reversible reduction of CO2 to CO. The electrons are trans-
ferred to redox proteins such as ferredoxin. In purple sulfur bacteria and methanogenic archaea it
catalyses the oxidation of CO to CO2, which is incorporated by the Calvin-Benson-Basham cycle or
released, respectively. In acetogenic and sulfate-reducing microbes it catalyses the reduction of CO2
to CO, which is incorporated into acetyl CoA by EC 2.3.1.169, CO-methylating acetyl CoA synthase,
with which the enzyme forms a tight complex in those organisms. The enzyme contains five metal
clusters per homodimeric enzyme: two nickel-iron-sulfur clusters called the C-Clusters, one [4Fe-
4S] D-cluster; and two [4Fe-4S] B-clusters. In methanogenic archaea additional [4Fe-4S] clusters
exist, presumably as part of the electron transfer chain. In purple sulfur bacteria the enzyme forms
complexes with the Ni-Fe-S protein EC 1.12.7.2, ferredoxin hydrogenase, which catalyse the overall
reaction: CO + H2O = CO2 + H2. cf. EC 1.2.5.3, aerobic carbon monoxide dehydrogenase.

References: [3101, 820, 342, 870, 845, 865, 491]

[EC 1.2.7.4 created 2003 (EC 1.2.99.2 created 1982, modified 1990, modified 2003, incorporated 2015), modified 2016]

EC 1.2.7.5
Accepted name: aldehyde ferredoxin oxidoreductase

Reaction: an aldehyde + H2O + 2 oxidized ferredoxin = a carboxylate + 2 H+ + 2 reduced ferredoxin
Other name(s): AOR

Systematic name: aldehyde:ferredoxin oxidoreductase
Comments: This is an oxygen-sensitive enzyme that contains tungsten-molybdopterin and iron-sulfur clus-

ters. Catalyses the oxidation of aldehydes (including crotonaldehyde, acetaldehyde, formaldehyde
and glyceraldehyde) to their corresponding acids. However, it does not oxidize glyceraldehyde 3-
phosphate [see EC 1.2.7.6, glyceraldehyde-3-phosphate dehydrogenase (ferredoxin)]. Can use ferre-
doxin or methylviologen but not NAD(P)+ as electron acceptor.

References: [2649, 1760, 537, 3244]

[EC 1.2.7.5 created 2003]

EC 1.2.7.6
Accepted name: glyceraldehyde-3-phosphate dehydrogenase (ferredoxin)

Reaction: D-glyceraldehyde-3-phosphate + H2O + 2 oxidized ferredoxin = 3-phospho-D-glycerate + 2 H+ + 2
reduced ferredoxin

Other name(s): GAPOR; glyceraldehyde-3-phosphate Fd oxidoreductase; glyceraldehyde-3-phosphate ferredoxin
reductase

Systematic name: D-glyceraldehyde-3-phosphate:ferredoxin oxidoreductase
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Comments: Contains tungsten-molybdopterin and iron-sulfur clusters. This enzyme is thought to function in
place of glyceralde-3-phosphate dehydrogenase and possibly phosphoglycerate kinase in the novel
Embden-Meyerhof-type glycolytic pathway found in Pyrococcus furiosus [2650]. It is specific for
glyceraldehyde-3-phosphate.

References: [2650, 3244]

[EC 1.2.7.6 created 2003]

EC 1.2.7.7
Accepted name: 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin)

Reaction: 3-methyl-2-oxobutanoate + CoA + 2 oxidized ferredoxin = S-(2-methylpropanoyl)-CoA + CO2 + 2
reduced ferredoxin + H+

Other name(s): 2-ketoisovalerate ferredoxin reductase; 3-methyl-2-oxobutanoate synthase (ferredoxin); VOR;
branched-chain ketoacid ferredoxin reductase; branched-chain oxo acid ferredoxin reductase; keto-
valine-ferredoxin oxidoreductase; ketoisovalerate ferredoxin reductase; 2-oxoisovalerate ferredoxin
reductase

Systematic name: 3-methyl-2-oxobutanoate:ferredoxin oxidoreductase (decarboxylating; CoA-2-methylpropanoylating)
Comments: The enzyme is CoA-dependent and contains thiamine diphosphate and iron-sulfur clusters. Preferen-

tially utilizes 2-oxo-acid derivatives of branched chain amino acids, e.g. 3-methyl-2-oxopentanoate,
4-methyl-2-oxo-pentanoate, and 2-oxobutanoate. This enzyme is a member of the 2-oxoacid oxi-
doreductases, a family of enzymes that reversibly catalyse the oxidative decarboxylation of different
2-oxoacids to form their CoA derivatives, and are differentiated based on their substrate specificity.
For examples of other members of this family, see EC 1.2.7.1, pyruvate synthase, and EC 1.2.7.3, 2-
oxoglutarate synthase.

References: [436, 1458, 3851, 3409]

[EC 1.2.7.7 created 2003]

EC 1.2.7.8
Accepted name: indolepyruvate ferredoxin oxidoreductase

Reaction: (indol-3-yl)pyruvate + CoA + 2 oxidized ferredoxin = S-2-(indol-3-yl)acetyl-CoA + CO2 + 2 reduced
ferredoxin + H+

Other name(s): 3-(indol-3-yl)pyruvate synthase (ferredoxin); IOR
Systematic name: 3-(indol-3-yl)pyruvate:ferredoxin oxidoreductase (decarboxylating, CoA-indole-acetylating)

Comments: Contains thiamine diphosphate and [4Fe-4S] clusters. Preferentially utilizes the transaminated forms
of aromatic amino acids and can use phenylpyruvate and p-hydroxyphenylpyruvate as substrates.
This enzyme, which is found in archaea, is a member of the 2-oxoacid oxidoreductases, a family of
enzymes that oxidatively decarboxylate different 2-oxoacids to form their CoA derivatives, and are
differentiated based on their substrate specificity. For examples of other members of this family, see
EC 1.2.7.3, 2-oxoglutarate synthase and EC 1.2.7.7, 3-methyl-2-oxobutanoate dehydrogenase (ferre-
doxin).

References: [2374, 3526, 3851, 3409]

[EC 1.2.7.8 created 2003]

[1.2.7.9 Deleted entry. 2-oxoglutarate ferredoxin oxidoreductase. This enzyme is identical to EC 1.2.7.3, 2-oxoglutarate
synthase]

[EC 1.2.7.9 created 2003, deleted 2005]

EC 1.2.7.10
Accepted name: oxalate oxidoreductase

Reaction: oxalate + oxidized ferredoxin = 2 CO2 + reduced ferredoxin
Systematic name: oxalate:ferredoxin oxidoreductase
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Comments: Contains thiamine diphosphate and [4Fe-4S] clusters. Acceptors include ferredoxin and the nickel-
dependent carbon monoxide dehydrogenase (EC 1.2.7.4)

References: [743, 3005]

[EC 1.2.7.10 created 2011]

EC 1.2.7.11
Accepted name: 2-oxoacid oxidoreductase (ferredoxin)

Reaction: a 2-oxocarboxylate + CoA + 2 oxidized ferredoxin = an acyl-CoA + CO2 + 2 reduced ferredoxin + 2
H+

Other name(s): OFOR
Systematic name: 2-oxocarboxylate:ferredoxin 2-oxidoreductase (decarboxylating, CoA-acylating)

Comments: Contains thiamine diphosphate and [4Fe-4S] clusters [4444]. This enzyme is a member of the 2-
oxoacid oxidoreductases, a family of enzymes that oxidatively decarboxylate different 2-oxoacids
to form their CoA derivatives, and are differentiated based on their substrate specificity. For exam-
ple, see EC 1.2.7.3, 2-oxoglutarate synthase and EC 1.2.7.7, 3-methyl-2-oxobutanoate dehydrogenase
(ferredoxin).

References: [1883, 4444, 1104, 1105, 2803, 2941]

[EC 1.2.7.11 created 2013]

EC 1.2.7.12
Accepted name: formylmethanofuran dehydrogenase

Reaction: a formylmethanofuran + H2O + 2 oxidized ferredoxin [iron-sulfur] cluster = CO2 + a methanofuran +
2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

Other name(s): formylmethanofuran:acceptor oxidoreductase
Systematic name: formylmethanofuran:ferredoxin oxidoreductase

Comments: Contains a molybdopterin cofactor. In some organisms an additional subunit enables the incorpora-
tion of tungsten when molybdenum availability is low. The enzyme catalyses a reversible reaction in
methanogenic archaea, and is involved in methanogenesis from CO2 as well as the oxidation of coen-
zyme M to CO2. The reaction is endergonic, and is driven by coupling with the soluble CoB-CoM
heterodisulfide reductase via electron bifurcation.

References: [1819, 283, 282, 4066, 2515, 1826]

[EC 1.2.7.12 created 1992 as EC 1.2.99.5, transferred 2017 to EC 1.2.7.12]

EC 1.2.98 With an iron-sulfur protein as acceptor

EC 1.2.98.1
Accepted name: formaldehyde dismutase

Reaction: 2 formaldehyde + H2O = formate + methanol
Other name(s): aldehyde dismutase; cannizzanase; nicotinoprotein aldehyde dismutase

Systematic name: formaldehyde:formaldehyde oxidoreductase
Comments: The enzyme contains a tightly but noncovalently bound NADP(H) cofactor, as well as Zn2+ and

Mg2+. Enzyme-bound NADPH formed by oxidation of formaldehyde to formate is oxidized back to
NADP+ by reaction with a second formaldehyde, yielding methanol. The enzyme from the bacterium
Mycobacterium sp. DSM 3803 also catalyses the reactions of EC 1.1.99.36, alcohol dehydrogenase
(nicotinoprotein) and EC 1.1.99.37, methanol dehydrogenase (nicotinoprotein) [2940]. Formaldehyde
and acetaldehyde can act as donors; formaldehyde, acetaldehyde and propanal can act as acceptors
[1837, 1840].

References: [1837, 1840, 2940]

[EC 1.2.98.1 created 1986 as EC 1.2.99.4, modified 2012, transferred 2015 to EC 1.2.98.1]
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EC 1.2.99 With unknown physiological acceptors

[1.2.99.1 Transferred entry. uracil dehydrogenase. Now EC 1.17.99.4, uracil/thymine dehydrogenase]

[EC 1.2.99.1 created 1961, deleted 1984]

[1.2.99.2 Transferred entry. carbon-monoxide dehydrogenase (acceptor). Now EC 1.2.7.4, carbon-monoxide dehydrogenase
(ferredoxin) ]

[EC 1.2.99.2 created 1982, modified 1990, modified 2003, deleted 2016]

[1.2.99.3 Transferred entry. aldehyde dehydrogenase (pyrroloquinoline-quinone). Now EC 1.2.5.2, aldehyde dehydrogenase
(quinone)]

[EC 1.2.99.3 created 1983, modified 1989, deleted 2015]

[1.2.99.4 Transferred entry. formaldehyde dismutase. Now EC 1.2.98.1, formaldehyde dismutase.]

[EC 1.2.99.4 created 1986, modified 2012, deleted 2015]

[1.2.99.5 Transferred entry. formylmethanofuran dehydrogenase. Now EC 1.2.7.12, formylmethanofuran dehydrogenase]

[EC 1.2.99.5 created 1992, deleted 2017]

EC 1.2.99.6
Accepted name: carboxylate reductase

Reaction: an aldehyde + acceptor + H2O = a carboxylate + reduced acceptor
Other name(s): aldehyde:(acceptor) oxidoreductase

Systematic name: aldehyde:acceptor oxidoreductase
Comments: A tungsten protein. Methylviologen can act as acceptor. In the reverse direction, non-activated acids

are reduced by reduced viologens to aldehydes, but not to the corresponding alcohols.
References: [4190]

[EC 1.2.99.6 created 1992]

EC 1.2.99.7
Accepted name: aldehyde dehydrogenase (FAD-independent)

Reaction: an aldehyde + H2O + acceptor = a carboxylate + reduced acceptor
Other name(s): aldehyde oxidase; aldehyde oxidoreductase; Mop; AORDd

Systematic name: aldehyde:acceptor oxidoreductase (FAD-independent)
Comments: Belongs to the xanthine oxidase family of enzymes. The enzyme from Desulfovibrio sp. contains a

molybdenum-molybdopterin-cytosine dinucleotide (MCD) complex and two types of [2Fe-2S] cluster
per monomer, but does not contain FAD.

References: [3955, 880, 86, 3227]

[EC 1.2.99.7 created 2004]

EC 1.2.99.8
Accepted name: glyceraldehyde dehydrogenase (FAD-containing)

Reaction: D-glyceraldehyde + H2O + acceptor = D-glycerate + reduced acceptor
Other name(s): glyceraldehyde oxidoreductase

Systematic name: D-glyceraldehyde:acceptor oxidoreductase (FAD-containing)
Comments: The enzyme from the archaeon Sulfolobus acidocaldarius catalyses the oxidation of D-glyceraldehyde

in the nonphosphorylative Entner-Doudoroff pathway. With 2,6-dichlorophenolindophenol as ar-
tificial electron acceptor, the enzyme shows a broad substrate range, but is most active with D-
glyceraldehyde. It is not known which acceptor is utilized in vivo. The iron-sulfur protein contains
FAD and molybdopterin guanine dinucleotide.
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References: [1813]

[EC 1.2.99.8 created 2013]

[1.2.99.9 Transferred entry. formate dehydrogenase (coenzyme F420). Now EC 1.17.98.3, formate dehydrogenase (coenzyme
F420)]

[EC 1.2.99.9 created 2014, deleted 2017]

EC 1.2.99.10
Accepted name: 4,4′-diapolycopenoate synthase

Reaction: (1) 4,4′-diapolycopen-4-al + H2O + acceptor = 4,4′-diapolycopen-4-oate + reduced acceptor
(2) 4,4′-diapolycopene-4,4′-dial + 2 H2O + 2 acceptor = 4,4′-diapolycopene-4,4′-dioate + 2 reduced
acceptor

Other name(s): crtNc; 4,4′-diapolycopenealdehyde oxidase (misleading)
Systematic name: 4,4′-diapolycopen-4-al,donor:oxygen oxidoreductase (4,4′-diapolycopen-4-oate-forming)

Comments: The enzyme has been described from the bacteria Methylomonas sp. 16a and Bacillus indicus.
References: [3821, 3633]

[EC 1.2.99.10 created 2017]

EC 1.3 Acting on the CH-CH group of donors
This subclass contains enzymes that introduce a double-bond into the substrate by direct dehydrogenation at a carbon-carbon
single bond. Sub-subclasses are based on the acceptor: NAD+ or NADP+ (EC 1.3.1), a cytochrome (EC 1.3.2), oxygen (EC
1.3.3), a quinone or related compound (EC 1.3.5), an iron-sulfur protein (EC 1.3.7), a flavin (EC 1.3.8) or some other acceptor
(EC 1.3.99).

EC 1.3.1 With NAD+ or NADP+ as acceptor

EC 1.3.1.1
Accepted name: dihydropyrimidine dehydrogenase (NAD+)

Reaction: (1) 5,6-dihydrouracil + NAD+ = uracil + NADH + H+

(2) 5,6-dihydrothymine + NAD+ = thymine + NADH + H+

Other name(s): dihydropyrimidine dehydrogenase; dihydrothymine dehydrogenase; pyrimidine reductase; thymine
reductase; uracil reductase; dihydrouracil dehydrogenase (NAD+)

Systematic name: 5,6-dihydropyrimidine:NAD+ oxidoreductase
Comments: An iron-sulfur flavoenzyme. The enzyme was originally discovered in the uracil-fermenting bac-

terium, Clostridium uracilicum, which utilizes uracil and thymine as nitrogen and carbon sources for
growth [489]. Since then the enzyme was found in additional organisms including Alcaligenes eutro-
phus [3377], Pseudomonas strains [1918, 4182] and Escherichia coli [4181, 1492].

References: [489, 3377, 1918, 4182, 4181, 1492]

[EC 1.3.1.1 created 1961, modified 2011]

EC 1.3.1.2
Accepted name: dihydropyrimidine dehydrogenase (NADP+)

Reaction: 5,6-dihydrouracil + NADP+ = uracil + NADPH + H+

Other name(s): dihydrothymine dehydrogenase; dihydrouracil dehydrogenase (NADP+); 4,5-dihydrothymine: oxi-
doreductase; DPD; DHPDH; dehydrogenase, dihydrouracil (nicotinamide adenine dinucleotide phos-
phate); DHU dehydrogenase; hydropyrimidine dehydrogenase; dihydropyrimidine dehydrogenase
(NADP)
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Systematic name: 5,6-dihydrouracil:NADP+ 5-oxidoreductase
Comments: Also acts on dihydrothymine.
References: [1080, 3516]

[EC 1.3.1.2 created 1961, modified 1986]

EC 1.3.1.3
Accepted name: ∆4-3-oxosteroid 5β-reductase

Reaction: (1) 5β-cholestan-3-one + NADP+ = cholest-4-en-3-one + NADPH + H+

(2) 17,21-dihydroxy-5β-pregnane-3,11,20-trione + NADP+ = cortisone + NADPH + H+

Other name(s): 3-oxo-∆4-steroid 5β-reductase; 5β-reductase; androstenedione 5β-reductase; cholestenone 5β-
reductase; cortisone 5β-reductase; cortisone β-reductase; cortisone ∆4-5β-reductase; steroid
5β-reductase; testosterone 5β-reductase; ∆4-3-ketosteroid 5β-reductase; ∆4-5β-reductase; ∆4-
hydrogenase; 4,5β-dihydrocortisone:NADP+ ∆4-oxidoreductase; 3-oxo-5β-steroid:NADP+ ∆4-
oxidoreductase

Systematic name: 5β-cholestan-3-one:NADP+ 4,5-oxidoreductase
Comments: The enzyme from human efficiently catalyses the reduction of progesterone, androstenedione, 17α-

hydroxyprogesterone and testosterone to 5β-reduced metabolites; it can also act on aldosterone, corti-
costerone and cortisol, but to a lesser extent [546]. The bile acid intermediates 7α,12α-dihydroxy-4-
cholesten-3-one and 7α-hydroxy-4-cholesten-3-one can also act as substrates [2022].

References: [1031, 419, 2216, 3906, 3712, 1121, 2867, 546, 2022]

[EC 1.3.1.3 created 1961 (EC 1.3.1.23 created 1972, incorporated 2005), modified 2005]

[1.3.1.4 Transferred entry. EC 1.3.1.4, cortisone α-reductase, transferred to EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase
(NADP+)]

[EC 1.3.1.4 created 1965, deleted 2012]

EC 1.3.1.5
Accepted name: cucurbitacin ∆23-reductase

Reaction: 23,24-dihydrocucurbitacin B + NAD(P)+ = cucurbitacin B + NAD(P)H + H+

Other name(s): NAD(P)H: cucurbitacin B ∆23-oxidoreductase
Systematic name: 23,24-dihydrocucurbitacin:NAD(P)+ ∆23-oxidoreductase

Comments: Requires Mn2+. Fe2+ or Zn2+ can replace Mn2+ to some extent.
References: [3340, 3342]

[EC 1.3.1.5 created 1965, modified 2011]

EC 1.3.1.6
Accepted name: fumarate reductase (NADH)

Reaction: succinate + NAD+ = fumarate + NADH + H+

Other name(s): NADH-fumarate reductase; NADH-dependent fumarate reductase; fumarate reductase (NADH2)
Systematic name: succinate:NAD+ oxidoreductase

References: [1558]

[EC 1.3.1.6 created 1972]

EC 1.3.1.7
Accepted name: meso-tartrate dehydrogenase

Reaction: meso-tartrate + NAD+ = dihydroxyfumarate + NADH + H+

Systematic name: meso-tartrate:NAD+ oxidoreductase
References: [2004]
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[EC 1.3.1.7 created 1972]

EC 1.3.1.8
Accepted name: acyl-CoA dehydrogenase (NADP+)

Reaction: acyl-CoA + NADP+ = 2,3-dehydroacyl-CoA + NADPH + H+

Other name(s): 2-enoyl-CoA reductase; dehydrogenase, acyl coenzyme A (nicotinamide adenine dinucleotide phos-
phate); enoyl coenzyme A reductase; crotonyl coenzyme A reductase; crotonyl-CoA reductase; acyl-
CoA dehydrogenase (NADP+)

Systematic name: acyl-CoA:NADP+ 2-oxidoreductase
Comments: The liver enzyme acts on enoyl-CoA derivatives of carbon chain length 4 to 16, with optimum activity

on 2-hexenoyl-CoA. In Escherichia coli, cis-specific and trans-specific enzymes exist [EC 1.3.1.37
cis-2-enoyl-CoA reductase (NADPH) and EC 1.3.1.38 trans-2-enoyl-CoA reductase (NADPH)].

References: [853, 3449]

[EC 1.3.1.8 created 1972, modified 1986]

EC 1.3.1.9
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADH)

Reaction: an acyl-[acyl-carrier protein] + NAD+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADH +
H+

Other name(s): enoyl-[acyl carrier protein] reductase; enoyl-ACP reductase; NADH-enoyl acyl carrier protein reduc-
tase; NADH-specific enoyl-ACP reductase; acyl-[acyl-carrier-protein]:NAD+ oxidoreductase; fabI
(gene name)

Systematic name: acyl-[acyl-carrier protein]:NAD+ oxidoreductase
Comments: The enzyme catalyses an essential step in fatty acid biosynthesis, the reduction of the 2,3-double bond

in enoyl-acyl-[acyl-carrier-protein] derivatives of the elongating fatty acid moiety. The enzyme from
the bacterium Escherichia coli accepts substrates with carbon chain length from 4 to 18 [4405]. The
FAS-I enzyme from the bacterium Mycobacterium tuberculosis prefers substrates with carbon chain
length from 12 to 24 carbons.

References: [3496, 4157, 4405]

[EC 1.3.1.9 created 1972, modified 2013]

EC 1.3.1.10
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific)

Reaction: an acyl-[acyl-carrier protein] + NADP+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADPH +
H+

Other name(s): acyl-ACP dehydrogenase (ambiguous); enoyl-[acyl carrier protein] (reduced nicotinamide adenine
dinucleotide phosphate) reductase; NADPH 2-enoyl Co A reductase; enoyl acyl-carrier-protein reduc-
tase (ambiguous); enoyl-ACP reductase (ambiguous); acyl-[acyl-carrier-protein]:NADP+ oxidoreduc-
tase (B-specific); acyl-[acyl-carrier protein]:NADP+ oxidoreductase (B-specific); enoyl-[acyl-carrier-
protein] reductase (NADPH, B-specific)

Systematic name: acyl-[acyl-carrier protein]:NADP+ oxidoreductase (Si-specific)
Comments: One of the activities of EC 2.3.1.86, fatty-acyl-CoA synthase system, an enzyme found in yeasts (As-

comycota and Basidiomycota). Catalyses the reduction of enoyl-acyl-[acyl-carrier protein] deriva-
tives of carbon chain length from 4 to 16. The yeast enzyme is Si-specific with respect to NADP+. cf.
EC 1.3.1.39, enoyl-[acyl-carrier-protein] reductase (NADPH, Re-specific) and EC 1.3.1.104, enoyl-
[acyl-carrier-protein] reductase (NADPH), which describes enzymes whose stereo-specificity towards
NADPH is not known. See also EC 1.3.1.9, enoyl-[acyl-carrier-protein] reductase (NADH).

References: [3455]

[EC 1.3.1.10 created 1972, modified 1986, modified 2013, modified 2014, modified 2018]
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EC 1.3.1.11
Accepted name: 2-coumarate reductase

Reaction: 3-(2-hydroxyphenyl)propanoate + NAD+ = 2-coumarate + NADH + H+

Other name(s): melilotate dehydrogenase
Systematic name: 3-(2-hydroxyphenyl)propanoate:NAD+ oxidoreductase

References: [2215]

[EC 1.3.1.11 created 1972]

EC 1.3.1.12
Accepted name: prephenate dehydrogenase

Reaction: prephenate + NAD+ = 4-hydroxyphenylpyruvate + CO2 + NADH
Other name(s): hydroxyphenylpyruvate synthase; chorismate mutase—prephenate dehydrogenase

Systematic name: prephenate:NAD+ oxidoreductase (decarboxylating)
Comments: This enzyme in the enteric bacteria also possesses chorismate mutase activity (EC 5.4.99.5 chorismate

mutase) and converts chorismate into prephenate.
References: [1985]

[EC 1.3.1.12 created 1972]

EC 1.3.1.13
Accepted name: prephenate dehydrogenase (NADP+)

Reaction: prephenate + NADP+ = 4-hydroxyphenylpyruvate + CO2 + NADPH
Other name(s): prephenate dehydrogenase; prephenate (nicotinamide adenine dinucleotide phosphate) dehydroge-

nase; prephenate dehydrogenase (NADP)
Systematic name: prephenate:NADP+ oxidoreductase (decarboxylating)

References: [1149]

[EC 1.3.1.13 created 1972]

EC 1.3.1.14
Accepted name: dihydroorotate dehydrogenase (NAD+)

Reaction: (S)-dihydroorotate + NAD+ = orotate + NADH + H+

Other name(s): orotate reductase (NADH); orotate reductase (NADH2); DHOdehase (ambiguous); DHOD (ambigu-
ous); DHODase (ambiguous); dihydroorotate oxidase, pyrD (gene name)

Systematic name: (S)-dihydroorotate:NAD+ oxidoreductase
Comments: Binds FMN, FAD and a [2Fe-2S] cluster. The enzyme consists of two subunits, an FMN binding cat-

alytic subunit and a FAD and iron-sulfur binding electron transfer subunit [2785]. The reaction, which
takes place in the cytosol, is the only redox reaction in the de-novo biosynthesis of pyrimidine nu-
cleotides. Other class 1 dihydroorotate dehydrogenases use either fumarate (EC 1.3.98.1) or NADP+

(EC 1.3.1.15) as electron acceptor. The membrane bound class 2 dihydroorotate dehydrogenase (EC
1.3.5.2) uses quinone as electron acceptor.

References: [1073, 1074, 2248, 2785, 3242, 1799, 2394]

[EC 1.3.1.14 created 1972, modified 2011]

EC 1.3.1.15
Accepted name: dihydroorotate dehydrogenase (NADP+)

Reaction: (S)-dihydroorotate + NADP+ = orotate + NADPH + H+

Other name(s): orotate reductase; dihydro-orotic dehydrogenase; L-5,6-dihydro-orotate:NAD+ oxidoreductase; oro-
tate reductase (NADPH)

Systematic name: (S)-dihydroorotate:NADP+ oxidoreductase
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Comments: Binds FMN and FAD [3957]. Other class 1 dihydroorotate dehydrogenases use either fumarate (EC
1.3.98.1) or NAD+ (EC 1.3.1.14) as electron acceptor. The membrane bound class 2 dihydroorotate
dehydrogenase (EC 1.3.5.2) uses quinone as electron acceptor .

References: [3835, 3957]

[EC 1.3.1.15 created 1972, modified 2011]

EC 1.3.1.16
Accepted name: β-nitroacrylate reductase

Reaction: 3-nitropropanoate + NADP+ = 3-nitroacrylate + NADPH + H+

Systematic name: 3-nitropropanoate:NADP+ oxidoreductase
References: [3470]

[EC 1.3.1.16 created 1972]

EC 1.3.1.17
Accepted name: 3-methyleneoxindole reductase

Reaction: 3-methyl-1,3-dihydroindol-2-one + NADP+ = 3-methylene-1,3-dihydro-2H-indol-2-one + NADPH +
H+

Other name(s): 3-methyloxindole:NADP+ oxidoreductase
Systematic name: 3-methyl-1,3-dihydroindol-2-one:NADP+ oxidoreductase

References: [2642]

[EC 1.3.1.17 created 1972]

EC 1.3.1.18
Accepted name: kynurenate-7,8-dihydrodiol dehydrogenase

Reaction: 7,8-dihydro-7,8-dihydroxykynurenate + NAD+ = 7,8-dihydroxykynurenate + NADH + H+

Other name(s): 7,8-dihydro-7,8-dihydroxykynurenate dehydrogenase; 7,8-dihydroxykynurenic acid 7,8-diol dehydro-
genase

Systematic name: 7,8-dihydro-7,8-dihydroxykynurenate:NAD+ oxidoreductase
References: [3816]

[EC 1.3.1.18 created 1972]

EC 1.3.1.19
Accepted name: cis-1,2-dihydrobenzene-1,2-diol dehydrogenase

Reaction: cis-1,2-dihydrobenzene-1,2-diol + NAD+ = catechol + NADH + H+

Other name(s): cis-benzene glycol dehydrogenase; cis-1,2-dihydrocyclohexa-3,5-diene (nicotinamide adenine dinu-
cleotide) oxidoreductase;

Systematic name: cis-1,2-dihydrobenzene-1,2-diol:NAD+ oxidoreductase
References: [148, 1200]

[EC 1.3.1.19 created 1972]

EC 1.3.1.20
Accepted name: trans-1,2-dihydrobenzene-1,2-diol dehydrogenase

Reaction: trans-1,2-dihydrobenzene-1,2-diol + NADP+ = catechol + NADPH + H+

Other name(s): dihydrodiol dehydrogenase
Systematic name: trans-1,2-dihydrobenzene-1,2-diol:NADP+ oxidoreductase

References: [150]
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[EC 1.3.1.20 created 1972]

EC 1.3.1.21
Accepted name: 7-dehydrocholesterol reductase

Reaction: cholesterol + NADP+ = cholesta-5,7-dien-3β-ol + NADPH + H+

Other name(s): DHCR7 (gene name); 7-DHC reductase; 7-dehydrocholesterol dehydrogenase/cholesterol oxidase;
∆7-sterol reductase

Systematic name: cholesterol:NADP+ ∆7-oxidoreductase
Comments: The enzyme is part of the cholesterol biosynthesis pathway.
References: [791, 2586]

[EC 1.3.1.21 created 1972, modified 2013]

EC 1.3.1.22
Accepted name: 3-oxo-5α-steroid 4-dehydrogenase (NADP+)

Reaction: a 3-oxo-5α-steroid + NADP+ = a 3-oxo-∆4-steroid + NADPH + H+

Other name(s): cholestenone 5α-reductase; testosterone ∆4-5α-reductase; steroid 5α-reductase; 3-oxosteroid
∆4-dehydrogenase; 5α-reductase; steroid 5α-hydrogenase; 3-oxosteroid 5α-reductase; testos-
terone ∆4-hydrogenase; 4-ene-3-oxosteroid 5α-reductase; reduced nicotinamide adenine dinu-
cleotide phosphate:∆4-3-ketosteroid 5α-oxidoreductase; 4-ene-5α-reductase; ∆4-3-ketosteroid 5α-
oxidoreductase; cholest-4-en-3-one 5α-reductase; testosterone 5α-reductase; 3-oxo-5α-steroid 4-
dehydrogenase

Systematic name: 3-oxo-5α-steroid:NADP+ ∆4-oxidoreductase
Comments: The enzyme catalyses the conversion of assorted 3-oxo-∆4 steroids into their corresponding 5α form.

Substrates for the mammalian enzyme include testosterone, progesterone, and corticosterone. Sub-
strates for the plant enzyme are brassinosteroids such as campest-4-en-3-one and (22α)-hydroxy-
campest-4-en-3-one. cf. EC 1.3.99.5, 3-oxo-5α-steroid 4-dehydrogenase (acceptor).

References: [2217, 3471, 585, 3313, 3093, 3030, 2225, 3231]

[EC 1.3.1.22 created 1972, modified 2012]

[1.3.1.23 Deleted entry. cholestenone β-reductase. The enzyme is identical to EC 1.3.1.3, ∆4-3-oxosteroid 5β-reductase]

[EC 1.3.1.23 created 1972, deleted 2005]

EC 1.3.1.24
Accepted name: biliverdin reductase

Reaction: bilirubin + NAD(P)+ = biliverdin + NAD(P)H + H+

Systematic name: bilirubin:NAD(P)+ oxidoreductase
References: [3539]

[EC 1.3.1.24 created 1972]

EC 1.3.1.25
Accepted name: 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase

Reaction: (1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ = catechol + CO2 + NADH + H+

Other name(s): 3,5-cyclohexadiene-1,2-diol-1-carboxylate dehydrogenase; 3,5-cyclohexadiene-1,2-diol-1-
carboxylic acid dehydrogenase; dihydrodihydroxybenzoate dehydrogenase; DHBDH; cis-1,2-
dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase; 2-hydro-1,2-dihydroxybenzoate de-
hydrogenase; cis-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate:NAD+ oxidoreductase; dihydrodi-
hydroxybenzoate dehydrogenase; (1R,6R)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate:NAD+

oxidoreductase (decarboxylating)
Systematic name: (1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate:NAD+ oxidoreductase (decarboxylating)

References: [3161, 2759]
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[EC 1.3.1.25 created 1976, modified 2004 (EC 1.3.1.55 created 1999, incorporated 2004)]

[1.3.1.26 Transferred entry. dihydrodipicolinate reductase. Now EC 1.17.1.8, 4-hydroxy-tetrahydrodipicolinate reductase.]

[EC 1.3.1.26 created 1976, modified 2011, deleted 2013]

EC 1.3.1.27
Accepted name: 2-hexadecenal reductase

Reaction: hexadecanal + NADP+ = 2-trans-hexadecenal + NADPH + H+

Other name(s): 2-alkenal reductase; hexadecanal: NADP+ oxidoreductase
Systematic name: hexadecanal:NADP+ ∆2-oxidoreductase

Comments: Specific for long chain 2-trans- and 2-cis-alkenals, with chain length optimum around 14 to 16 carbon
atoms.

References: [3654]

[EC 1.3.1.27 created 1976]

EC 1.3.1.28
Accepted name: 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase

Reaction: (2S,3S)-2,3-dihydro-2,3-dihydroxybenzoate + NAD+ = 2,3-dihydroxybenzoate + NADH + H+

Other name(s): 2,3-DHB dehydrogenase; 2,3-dihydro-2,3-dihydroxybenzoate:NAD+ oxidoreductase
Systematic name: (2S,3S)-2,3-dihydro-2,3-dihydroxybenzoate:NAD+ oxidoreductase

References: [4395]

[EC 1.3.1.28 created 1972 as EC 1.1.1.109, transferred 1976 to EC 1.3.1.28]

EC 1.3.1.29
Accepted name: cis-1,2-dihydro-1,2-dihydroxynaphthalene dehydrogenase

Reaction: (1R,2S)-1,2-dihydronaphthalene-1,2-diol + NAD+ = naphthalene-1,2-diol + NADH + H+

Other name(s): (+)-cis-naphthalene dihydrodiol dehydrogenase; naphthalene dihydrodiol dehydrogenase; cis-
dihydrodiol naphthalene dehydrogenase; cis-1,2-dihydronaphthalene-1,2-diol:NAD+ 1,2-
oxidoreductase

Systematic name: (1R,2S)-1,2-dihydronaphthalene-1,2-diol:NAD+ 1,2-oxidoreductase
Comments: Also acts, at half the rate, on cis-anthracene dihydrodiol and cis-phenanthrene dihydrodiol.
References: [2959]

[EC 1.3.1.29 created 1976]

[1.3.1.30 Transferred entry. EC 1.3.1.30, progesterone 5α-reductase, transferred to EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase
(NADP+).]

[EC 1.3.1.30 created 1978, deleted 2012]

EC 1.3.1.31
Accepted name: 2-enoate reductase

Reaction: butanoate + NAD+ = but-2-enoate + NADH + H+

Other name(s): enoate reductase
Systematic name: butanoate:NAD+ ∆2-oxidoreductase

Comments: An iron-sulfur-flavoprotein (FAD). Acts (in the reverse direction) on a wide range of alkyl and aryl
αβ-unsaturated carboxylate ions; but-2-enoate was the best substrate tested.

References: [3896]

[EC 1.3.1.31 created 1982]
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EC 1.3.1.32
Accepted name: maleylacetate reductase

Reaction: 3-oxoadipate + NAD(P)+ = 2-maleylacetate + NAD(P)H + H+

Other name(s): maleolylacetate reductase
Systematic name: 3-oxoadipate:NAD(P)+ oxidoreductase

References: [1127, 1128]

[EC 1.3.1.32 created 1983]

EC 1.3.1.33
Accepted name: protochlorophyllide reductase

Reaction: chlorophyllide a + NADP+ = protochlorophyllide + NADPH + H+

Other name(s): NADPH2-protochlorophyllide oxidoreductase; NADPH-protochlorophyllide oxidoreductase;
NADPH-protochlorophyllide reductase; protochlorophyllide oxidoreductase (ambiguous); pro-
tochlorophyllide photooxidoreductase; light-dependent protochlorophyllide reductase

Systematic name: chlorophyllide-a:NADP+ 7,8-oxidoreductase
Comments: The enzyme catalyses a light-dependent trans-reduction of the D-ring of protochlorophyllide; the

product has the (7S,8S)-configuration.
References: [105, 1284]

[EC 1.3.1.33 created 1984]

EC 1.3.1.34
Accepted name: 2,4-dienoyl-CoA reductase (NADPH)

Reaction: trans-2,3-didehydroacyl-CoA + NADP+ = trans,trans-2,3,4,5-tetradehydroacyl-CoA + NADPH + H+

Other name(s): 4-enoyl-CoA reductase (NADPH2); 4-enoyl coenzyme A (reduced nicotinamide adenine dinucleotide
phosphate) reductase; 4-enoyl-CoA reductase; 2,4-dienoyl-CoA reductase (NADPH2)

Systematic name: trans-2,3-didehydroacyl-CoA:NADP+ 4-oxidoreductase
Comments: Best substrates for reduction contain a 2,4-diene structure with a chain-length of 8 or 10
References: [853, 2078]

[EC 1.3.1.34 created 1984, modified 1986]

[1.3.1.35 Transferred entry. phosphatidylcholine desaturase. Now EC 1.14.19.22, microsomal oleoyl-lipid 12-desaturase]

[EC 1.3.1.35 created 1984, deleted 2015]

EC 1.3.1.36
Accepted name: geissoschizine dehydrogenase

Reaction: geissoschizine + NADP+ = 4,21-didehydrogeissoschizine + NADPH
Systematic name: geissoschizine:NADP+ 4,21-oxidoreductase

Comments: Involved in the interconversion of heteroyohimbine alkaloids in Catharanthus roseus.
References: [2998]

[EC 1.3.1.36 created 1986]

EC 1.3.1.37
Accepted name: cis-2-enoyl-CoA reductase (NADPH)

Reaction: acyl-CoA + NADP+ = cis-2,3-dehydroacyl-CoA + NADPH + H+

Other name(s): NADPH-dependent cis-enoyl-CoA reductase; reductase, cis-2-enoyl coenzyme A; cis-2-enoyl-
coenzyme A reductase; cis-2-enoyl-CoA reductase (NADPH)

Systematic name: acyl-CoA:NADP+ cis-2-oxidoreductase
Comments: Not identical with EC 1.3.1.38 trans-2-enoyl-CoA reductase (NADPH) [cf. EC 1.3.1.8 acyl-CoA de-

hydrogenase (NADP+)].
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References: [2580]

[EC 1.3.1.37 created 1986]

EC 1.3.1.38
Accepted name: trans-2-enoyl-CoA reductase (NADPH)

Reaction: acyl-CoA + NADP+ = trans-2,3-dehydroacyl-CoA + NADPH + H+

Other name(s): NADPH-dependent trans-2-enoyl-CoA reductase; reductase, trans-enoyl coenzyme A; trans-2-enoyl-
CoA reductase (NADPH2)

Systematic name: acyl-CoA:NADP+ trans-2-oxidoreductase
Comments: Not identical with EC 1.3.1.37 cis-2-enoyl-CoA reductase (NADPH) [cf. EC 1.3.1.8 acyl-CoA dehy-

drogenase (NADP+)].
References: [2580]

[EC 1.3.1.38 created 1986]

EC 1.3.1.39
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADPH, Re-specific)

Reaction: an acyl-[acyl-carrier protein] + NADP+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADPH +
H+

Other name(s): acyl-ACP dehydrogenase; enoyl-[acyl carrier protein] (reduced nicotinamide adenine dinucleotide
phosphate) reductase; NADPH 2-enoyl Co A reductase; enoyl-ACp reductase; enoyl-[acyl-carrier-
protein] reductase (NADPH2, A-specific); acyl-[acyl-carrier-protein]:NADP+ oxidoreductase
(A-specific); enoyl-[acyl-carrier-protein] reductase (NADPH, A-specific); acyl-[acyl-carrier
protein]:NADP+ oxidoreductase (A-specific)

Systematic name: acyl-[acyl-carrier protein]:NADP+ oxidoreductase (Re-specific)
Comments: This enzyme completes each cycle of fatty acid elongation by catalysing the stereospecific reduction

of the double bond at position 2 of a growing fatty acid chain, while linked to an acyl-carrier protein.
It is one of the activities of EC 2.3.1.85, fatty-acid synthase system. The mammalian enzyme is Re-
specific with respect to NADP+. cf. EC 1.3.1.10, enoyl-[acyl-carrier-protein] reductase (NADPH,
Si-specific) and EC 1.3.1.104, enoyl-[acyl-carrier-protein] reductase (NADPH).

References: [883, 506]

[EC 1.3.1.39 created 1986, modified 2013, modified 2018]

EC 1.3.1.40
Accepted name: 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate reductase

Reaction: 2,6-dioxo-6-phenylhexanoate + NADP+ = 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate + NADPH +
H+

Other name(s): 2-hydroxy-6-oxo-phenylhexa-2,4-dienoate (reduced nicotinamide adenine dinucleotide phosphate)
reductase

Systematic name: 2,6-dioxo-6-phenylhexanoate:NADP+ ∆2-oxidoreductase
Comments: Broad specificity; reduces a number of compounds produced by Pseudomonas from aromatic hydro-

carbons by ring fission.
References: [2883]

[EC 1.3.1.40 created 1989]

EC 1.3.1.41
Accepted name: xanthommatin reductase

Reaction: 5,12-dihydroxanthommatin + NAD+ = xanthommatin + NADH + H+

Systematic name: 5,12-dihydroxanthommatin:NAD+ oxidoreductase
Comments: From Drosophila melanogaster.
References: [3311]
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[EC 1.3.1.41 created 1989]

EC 1.3.1.42
Accepted name: 12-oxophytodienoate reductase

Reaction: 8-[(1R,2R)-3-oxo-2-(Z)-pent-2-enylcyclopentyl]octanoate + NADP+ = (15Z)-12-oxophyto-10,15-
dienoate + NADPH + H+

Other name(s): 12-oxo-phytodienoic acid reductase
Systematic name: 8-[(1R,2R)-3-oxo-2-(Z)-pent-2-enylcyclopentyl]octanoate:NADP+ 4-oxidoreductase

Comments: Involved in the conversion of linolenate into jasmonate in Zea mays.
References: [4039]

[EC 1.3.1.42 created 1989]

EC 1.3.1.43
Accepted name: arogenate dehydrogenase

Reaction: L-arogenate + NAD+ = L-tyrosine + NADH + CO2
Other name(s): arogenic dehydrogenase (ambiguous); cyclohexadienyl dehydrogenase; pretyrosine dehydrogenase

(ambiguous); L-arogenate:NAD+ oxidoreductase; arogenate dehydrogenase (NAD+)
Systematic name: L-arogenate:NAD+ oxidoreductase (decarboxylating)

Comments: Arogenate dehydrogenases may utilize NAD+ (EC 1.3.1.43), NADP+ (EC 1.3.1.78), or both (EC
1.3.1.79). NAD+-specific enzymes have been reported from some bacteria [463] and plants [462].
Some enzymes also possess the activity of EC 1.3.1.12, prephenate dehydrogenase.

References: [3640, 463, 462, 2473, 2267, 4425]

[EC 1.3.1.43 created 1989, modified 2003, modified 2005, modified 2015]

EC 1.3.1.44
Accepted name: trans-2-enoyl-CoA reductase (NAD+)

Reaction: acyl-CoA + NAD+ = trans-didehydroacyl-CoA + NADH + H+

Other name(s): trans-2-enoyl-CoA reductase (NAD)
Systematic name: acyl-CoA:NAD+ trans-2-oxidoreductase

Comments: The enzyme from Euglena gracilis acts on crotonoyl-CoA and, more slowly, on trans-hex-2-enoyl-
CoA and trans-oct-2-enoyl-CoA.

References: [1657]

[EC 1.3.1.44 created 1989]

EC 1.3.1.45
Accepted name: 2′-hydroxyisoflavone reductase

Reaction: vestitone + NADP+ = 2′-hydroxyformononetin + NADPH + H+

Other name(s): NADPH:2′-hydroxyisoflavone oxidoreductase; isoflavone reductase; 2′,7-dihydroxy-4′,5′-
methylenedioxyisoflavone reductase

Systematic name: vestitone:NADP+ oxidoreductase
Comments: In the reverse reaction, a 2′-hydroxyisoflavone is reduced to an isoflavanone; 2′-

hydroxypseudobaptigenin also acts. Involved in the biosynthesis of the pterocarpin phytoalexins
medicarpin and maackiain.

References: [3890]

[EC 1.3.1.45 created 1990]

EC 1.3.1.46
Accepted name: biochanin-A reductase
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Reaction: dihydrobiochanin A + NADP+ = biochanin A + NADPH + H+

Systematic name: dihydrobiochanin-A:NADP+ ∆2-oxidoreductase
Comments: Some other isoflavones are reduced to the corresponding isoflavanones.
References: [3890]

[EC 1.3.1.46 created 1990]

EC 1.3.1.47
Accepted name: α-santonin 1,2-reductase

Reaction: 1,2-dihydrosantonin + NAD(P)+ = α-santonin + NAD(P)H + H+

Systematic name: 1,2-dihydrosantonin:NAD(P)+ 1,2-oxidoreductase
References: [2692]

[EC 1.3.1.47 created 1990]

EC 1.3.1.48
Accepted name: 13,14-dehydro-15-oxoprostaglandin 13-reductase

Reaction: 11α-hydroxy-9,15-dioxoprostanoate + NAD(P)+ = (13E)-11α-hydroxy-9,15-dioxoprost-13-enoate +
NAD(P)H + H+

Other name(s): 15-oxo-∆13-prostaglandin reductase; ∆13-15-ketoprostaglandin reductase; 15-ketoprostaglandin
∆13-reductase; prostaglandin ∆13-reductase; prostaglandin 13-reductase; (5Z)-(15S)-11α-hydroxy-
9,15-dioxoprostanoate:NAD(P)+ ∆13-oxidoreductase; (5Z)-11α-hydroxy-9,15-dioxoprost-5-
enoate:NAD(P)+ ∆13-oxidoreductase

Systematic name: 11α-hydroxy-9,15-dioxoprostanoate:NAD(P)+ ∆13-oxidoreductase
Comments: Reduces 13,14-dehydro-15-oxoprostaglandins to 13,14-dihydro derivatives. The enzyme from pla-

centa is specific for NAD+.
References: [1374, 1723]

[EC 1.3.1.48 created 1990, modified 2014]

EC 1.3.1.49
Accepted name: cis-3,4-dihydrophenanthrene-3,4-diol dehydrogenase

Reaction: (+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+ = phenanthrene-3,4-diol + NADH + H+

Systematic name: (+)-cis-3,4-dihydrophenanthrene-3,4-diol:NAD+ 3,4-oxidoreductase
References: [2686]

[EC 1.3.1.49 created 1992]

[1.3.1.50 Deleted entry. tetrahydroxynaphthalene reductase. Now EC 1.1.1.252 tetrahydroxynaphthalene reductase]

[EC 1.3.1.50 created 1992, deleted 1999]

EC 1.3.1.51
Accepted name: 2′-hydroxydaidzein reductase

Reaction: 2′-hydroxy-2,3-dihydrodaidzein + NADP+ = 2′-hydroxydaidzein + NADPH + H+

Other name(s): NADPH:2′-hydroxydaidzein oxidoreductase; HDR; 2′-hydroxydihydrodaidzein:NADP+ 2′-
oxidoreductase

Systematic name: 2′-hydroxy-2,3-dihydrodaidzein:NADP+ 2′-oxidoreductase
Comments: In the reverse reaction, the 2′-hydroxyisoflavone (2′-hydroxydaidzein) is reduced to an isoflavanone.

Also acts on 2′-hydroxyformononetin and to a small extent on 2′-hydroxygenistein. Involved in the
biosynthesis of the phytoalexin glyceollin. The isoflavones biochanin A, daidzein and genestein as
well as the flavonoids apigenin, kaempferol and quercetin do not act as substrates.

References: [1018]
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[EC 1.3.1.51 created 1992, modified 2004]

[1.3.1.52 Transferred entry. 2-methyl-branched-chain-enoyl-CoA reductase. Now EC 1.3.8.5, 2-methyl-branched-chain-
enoyl-CoA reductase]

[EC 1.3.1.52 created 1992, deleted 2012]

EC 1.3.1.53
Accepted name: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase

Reaction: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate + NAD+ = 3,4-dihydroxybenzoate +
CO2 + NADH

Other name(s): (1R,2S)-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; terephthalate 1,2-cis-
dihydrodiol dehydrogenase; cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,4-dicarboxylate:NAD+ ox-
idoreductase (decarboxylating)

Systematic name: (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate:NAD+ oxidoreductase
Comments: Requires FeII. Involved in the terephthalate degradation pathway in bacteria [4127].
References: [3299, 4127]

[EC 1.3.1.53 created 1999 (EC 1.3.1.61 created 2000, incorporated 2007)]

EC 1.3.1.54
Accepted name: precorrin-6A reductase

Reaction: precorrin-6B + NADP+ = precorrin-6A + NADPH + H+

Other name(s): precorrin-6X reductase; precorrin-6Y:NADP+ oxidoreductase
Systematic name: precorrin-6B:NADP+ oxidoreductase

References: [318, 4137]

[EC 1.3.1.54 created 1999, modified 2004]

[1.3.1.55 Deleted entry. cis-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase. Enzyme is identical to EC
1.3.1.25, 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase]

[EC 1.3.1.55 created 1999, deleted 2004]

EC 1.3.1.56
Accepted name: cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase

Reaction: cis-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+ = biphenyl-2,3-diol + NADH + H+

Other name(s): 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase
Systematic name: cis-3-phenylcyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase

Comments: Catalyses the second step in the biphenyl degradation pathway in bacteria.
References: [3766, 1108, 1531]

[EC 1.3.1.56 created 2000]

EC 1.3.1.57
Accepted name: phloroglucinol reductase

Reaction: dihydrophloroglucinol + NADP+ = phloroglucinol + NADPH + H+

Systematic name: dihydrophloroglucinol:NADP+ oxidoreductase
Comments: Involved in the gallate anaerobic degradation pathway in bacteria.
References: [1332]

[EC 1.3.1.57 created 2000]

EC 1.3.1.58
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Accepted name: 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase
Reaction: cis-5,6-dihydroxy-4-isopropylcyclohexa-1,3-dienecarboxylate + NAD+ = 2,3-dihydroxy-p-cumate +

NADH + H+

Systematic name: cis-2,3-dihydroxy-2,3-dihydro-p-cumate:NAD+ oxidoreductase
Comments: Involved in the p-cymene degradation pathway in Pseudomonas putida.
References: [909]

[EC 1.3.1.58 created 2000]

[1.3.1.59 Deleted entry. 1,2-dihydroxy-3-methyl-1,2-dihydrobenzoate dehydrogenase. No evidence in the paper cited that
the enzyme exists]

[EC 1.3.1.59 created 2000, deleted 2006]

EC 1.3.1.60
Accepted name: dibenzothiophene dihydrodiol dehydrogenase

Reaction: cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene + NAD+ = 1,2-dihydroxydibenzothiophene + NADH
+ H+

Systematic name: cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene:NAD+ oxidoreductase
Comments: Involved in the dibenzothiophene degradation pathway in bacteria.
References: [2110, 798]

[EC 1.3.1.60 created 2000]

[1.3.1.61 Deleted entry. terephthalate 1,2-cis-dihydrodiol dehydrogenase. Enzyme is identical to EC 1.3.1.53, (3S,4R)-3,4-
dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase]

[EC 1.3.1.61 created 2000, deleted 2007]

EC 1.3.1.62
Accepted name: pimeloyl-CoA dehydrogenase

Reaction: pimeloyl-CoA + NAD+ = 6-carboxyhex-2-enoyl-CoA + NADH + H+

Systematic name: pimeloyl-CoA:NAD+ oxidoreductase
Comments: Involved in the benzoate degradation (anaerobic) pathway in bacteria.
References: [1145]

[EC 1.3.1.62 created 2000]

[1.3.1.63 Transferred entry. 2,4-dichlorobenzoyl-CoA reductase. Now EC 1.21.1.2, 2,4-dichlorobenzoyl-CoA reductase]

[EC 1.3.1.63 created 2000, modified 2011, deleted 2015]

EC 1.3.1.64
Accepted name: phthalate 4,5-cis-dihydrodiol dehydrogenase

Reaction: cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate + NAD+ = 4,5-dihydroxyphthalate +
NADH + H+

Systematic name: cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate:NAD+ oxidoreductase
Comments: Involved in the phthalate degradation pathway in bacteria.
References: [212]

[EC 1.3.1.64 created 2000]

EC 1.3.1.65
Accepted name: 5,6-dihydroxy-3-methyl-2-oxo-1,2,5,6-tetrahydroquinoline dehydrogenase

Reaction: 5,6-dihydroxy-3-methyl-2-oxo-1,2,5,6-tetrahydroquinoline + NAD+ = 5,6-dihydroxy-3-methyl-2-
oxo-1,2-dihydroquinoline + NADH + H+
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Systematic name: 5,6-dihydroxy-3-methyl-2-oxo-1,2,5,6-tetrahydroquinoline:NAD+ oxidoreductase
Comments: Acts in the reverse direction to form part of the 3-methylquinoline degradation pathway in bacteria.
References: [3343]

[EC 1.3.1.65 created 2000]

EC 1.3.1.66
Accepted name: cis-dihydroethylcatechol dehydrogenase

Reaction: cis-1,2-dihydro-3-ethylcatechol + NAD+ = 3-ethylcatechol + NADH + H+

Systematic name: cis-1,2-dihydro-3-ethylcatechol:NAD+ oxidoreductase
Comments: Involved in the ethylbenzene degradation pathway in bacteria.
References: [1199]

[EC 1.3.1.66 created 2000]

EC 1.3.1.67
Accepted name: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate dehydrogenase

Reaction: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate + NAD(P)+ = 4-methylcatechol +
NAD(P)H + CO2

Systematic name: cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate:NAD(P)+ oxidoreductase (decarboxy-
lating)

Comments: Involved in the p-xylene degradation pathway in bacteria.
References: [4194]

[EC 1.3.1.67 created 2000]

EC 1.3.1.68
Accepted name: 1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate dehydrogenase

Reaction: 1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate + NAD+ = 3-methylcatechol + NADH +
CO2

Systematic name: 1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate:NAD+ oxidoreductase (decarboxylating)
Comments: Involved in the o-xylene degradation pathway in bacteria.
References: [1497]

[EC 1.3.1.68 created 2000]

EC 1.3.1.69
Accepted name: zeatin reductase

Reaction: dihydrozeatin + NADP+ = zeatin + NADPH + H+

Systematic name: dihydrozeatin:NADP+ oxidoreductase
Comments: Previously classified erroneously as EC 1.1.1.242.
References: [2414]

[EC 1.3.1.69 created 1992 as EC 1.1.1.242, transferred 2001 to EC 1.3.1.69]

EC 1.3.1.70
Accepted name: ∆14-sterol reductase

Reaction: 4,4-dimethyl-5α-cholesta-8,24-dien-3β-ol + NADP+ = 4,4-dimethyl-5α-cholesta-8,14,24-trien-3β-ol
+ NADPH + H+

Systematic name: 4,4-dimethyl-5α-cholesta-8,24-dien-3β-ol:NADP+ ∆14-oxidoreductase
Comments: This enzyme acts on a range of steroids with a 14(15)-double bond.
References: [365, 2924]
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[EC 1.3.1.70 created 2001]

EC 1.3.1.71
Accepted name: ∆24(241)-sterol reductase

Reaction: ergosterol + NADP+ = ergosta-5,7,22,24(241)-tetraen-3β-ol + NADPH + H+

Other name(s): sterol ∆24(28)-methylene reductase; sterol ∆24(28)-reductase
Systematic name: ergosterol:NADP+ ∆24(241)-oxidoreductase

Comments: Acts on a range of steroids with a 24(241)-double bond.
References: [2752, 4500]

[EC 1.3.1.71 created 2001, modified 2002]

EC 1.3.1.72
Accepted name: ∆24-sterol reductase

Reaction: 5α-cholest-7-en-3β-ol + NADP+ = 5α-cholesta-7,24-dien-3β-ol + NADPH + H+

Other name(s): lanosterol ∆24-reductase
Systematic name: sterol:NADP+ ∆24-oxidoreductase

Comments: Acts on a range of steroids with a 24(25)-double bond, including lanosterol, desmosterol and zymos-
terol.

References: [159]

[EC 1.3.1.72 created 2001]

EC 1.3.1.73
Accepted name: 1,2-dihydrovomilenine reductase

Reaction: 17-O-acetylnorajmaline + NADP+ = 1,2-dihydrovomilenine + NADPH + H+

Systematic name: 17-O-acetylnorajmaline:NADP+ oxidoreductase
Comments: Forms part of the ajmaline biosynthesis pathway.
References: [1153]

[EC 1.3.1.73 created 2002]

EC 1.3.1.74
Accepted name: 2-alkenal reductase [NAD(P)+]

Reaction: a n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+

Other name(s): NAD(P)H-dependent alkenal/one oxidoreductase; NADPH:2-alkenal α,β-hydrogenase; 2-alkenal re-
ductase

Systematic name: n-alkanal:NAD(P)+ 2-oxidoreductase
Comments: Highly specific for 4-hydroxynon-2-enal and non-2-enal. Alk-2-enals of shorter chain have lower

affinities. Exhibits high activities also for alk-2-enones such as but-3-en-2-one and pent-3-en-2-one.
Inactive with cyclohex-2-en-1-one and 12-oxophytodienoic acid. Involved in the detoxication of α,β-
unsaturated aldehydes and ketones [cf. EC 1.3.1.102, 2-alkenal reductase (NADP+)].

References: [2384, 815]

[EC 1.3.1.74 created 2003, modified 2014]

EC 1.3.1.75
Accepted name: 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (NADPH)

Reaction: protochlorophyllide a + NADP+ = 3,8-divinyl protochlorophyllide a + NADPH + H+

Other name(s): DVR (gene name); bciA (gene name); [4-vinyl]chlorophyllide a reductase; 4VCR; chlorophyllide-
a:NADP+ oxidoreductase; divinyl chlorophyllide a 8-vinyl-reductase; plant-type divinyl chlorophyl-
lide a 8-vinyl-reductase
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Systematic name: protochlorophyllide-a:NADP+ C-81-oxidoreductase
Comments: The enzyme, found in higher plants, green algae, and some phototrophic bacteria, is involved in the

production of monovinyl versions of (bacterio)chlorophyll pigments from their divinyl precursors.
It can also act on 3,8-divinyl chlorophyllide a. cf. EC 1.3.7.13, 3,8-divinyl protochlorophyllide a 8-
vinyl-reductase (ferredoxin).

References: [3928, 2938, 2939, 2017, 2687, 587]

[EC 1.3.1.75 created 2003, modified 2016]

EC 1.3.1.76
Accepted name: precorrin-2 dehydrogenase

Reaction: precorrin-2 + NAD+ = sirohydrochlorin + NADH + H+

Other name(s): Met8p; SirC; CysG
Systematic name: precorrin-2:NAD+ oxidoreductase

Comments: This enzyme catalyses the second of three steps leading to the formation of siroheme from uropor-
phyrinogen III. The first step involves the donation of two S-adenosyl-L-methionine-derived methyl
groups to carbons 2 and 7 of uroporphyrinogen III to form precorrin-2 (EC 2.1.1.107, uroporphyrin-
III C-methyltransferase) and the third step involves the chelation of ferrous iron to sirohydrochlorin
to form siroheme (EC 4.99.1.4, sirohydrochlorin ferrochelatase). In Saccharomyces cerevisiae, the
last two steps are carried out by a single bifunctional enzyme, Met8p. In some bacteria, steps 1-3 are
catalysed by a single multifunctional protein called CysG, whereas in Bacillus megaterium, three sep-
arate enzymes carry out each of the steps, with SirC being responsible for the above reaction.

References: [3395, 4137]

[EC 1.3.1.76 created 2004]

EC 1.3.1.77
Accepted name: anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming]

Reaction: a (2R,3R)-flavan-3-ol + 2 NAD(P)+ = an anthocyanidin with a 3-hydroxy group + 2 NAD(P)H + H+

Other name(s): ANR (gene name) (ambiguous); flavan-3-ol:NAD(P)+ oxidoreductase; anthocyanidin reductase (am-
biguous)

Systematic name: (2R,3R)-flavan-3-ol:NAD(P)+ 3,4-oxidoreductase
Comments: The enzyme participates in the flavonoid biosynthesis pathway found in plants. It catalyses the dou-

ble reduction of anthocyanidins, producing (2R,3R)-flavan-3-ol monomers required for the formation
of proanthocyanidins. While the enzyme from the legume Medicago truncatula (MtANR) can use
both NADPH and NADH as reductant, that from the crucifer Arabidopsis thaliana (AtANR) uses
only NADPH. Also, while the substrate preference of MtANR is cyanidin¿pelargonidin¿delphinidin,
the reverse preference is found with AtANR. cf. EC 1.3.1.112, anthocyanidin reductase [(2S)-flavan-
3-ol-forming].

References: [4278, 4277, 2933]

[EC 1.3.1.77 created 2004, modified 2016]

EC 1.3.1.78
Accepted name: arogenate dehydrogenase (NADP+)

Reaction: L-arogenate + NADP+ = L-tyrosine + NADPH + CO2
Other name(s): arogenic dehydrogenase (ambiguous); pretyrosine dehydrogenase (ambiguous); TyrAAT1; TyrAAT2;

TyrAa
Systematic name: L-arogenate:NADP+ oxidoreductase (decarboxylating)

Comments: Arogenate dehydrogenases may utilize NAD+ (EC 1.3.1.43), NADP+ (EC 1.3.1.78), or both (EC
1.3.1.79). NADP+-dependent enzymes usually predominate in higher plants.The enzyme from the
cyanobacterium Synechocystis sp. PCC 6803 and the TyrAAT1 isoform of the plant Arabidopsis
thaliana cannot use prephenate as a substrate, while the Arabidopsis isoform TyrAAT2 can use it very
poorly [3193, 346].
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References: [1140, 3193, 346]

[EC 1.3.1.78 created 2005]

EC 1.3.1.79
Accepted name: arogenate dehydrogenase [NAD(P)+]

Reaction: L-arogenate + NAD(P)+ = L-tyrosine + NAD(P)H + CO2
Other name(s): arogenic dehydrogenase (ambiguous); cyclohexadienyl dehydrogenase; pretyrosine dehydrogenase

(ambiguous)
Systematic name: L-arogenate:NAD(P)+ oxidoreductase (decarboxylating)

Comments: Arogenate dehydrogenases may utilize NAD+ (EC 1.3.1.43), NADP+ (EC 1.3.1.78), or both (EC
1.3.1.79). Enzymes that can utilize both cofactors have been reported from some Proteobacteria, in-
cluding Burkholderia caryophylli, Burkholderia cepacia, Pseudomonas marginata and Delftia aci-
dovorans.

References: [463]

[EC 1.3.1.79 created 2005]

[1.3.1.80 Transferred entry. red chlorophyll catabolite reductase. Now classified as EC 1.3.7.12, red chlorophyll catabolite
reductase]

[EC 1.3.1.80 created 2007, deleted 2016]

EC 1.3.1.81
Accepted name: (+)-pulegone reductase

Reaction: (1) (–)-menthone + NADP+ = (+)-pulegone + NADPH + H+

(2) (+)-isomenthone + NADP+ = (+)-pulegone + NADPH + H+

Systematic name: (–)-menthone:NADP+ oxidoreductase
Comments: NADH cannot replace NADPH as reductant. The ∆8,9-double bond of (+)-cis-isopulegone and the

∆1,2-double bond of (±)-piperitone are not substrates. The enzyme from peppermint (Mentha ×
piperita) converts (+)-pulegone into both (–)-menthone and (+)-isomenthone at a ratio of 70:30 for
native enzyme but it does not catalyse the reverse reaction. This enzyme is a member of the medium-
chain dehydrogenase/reductase superfamily.

References: [3191]

[EC 1.3.1.81 created 2008]

EC 1.3.1.82
Accepted name: (-)-isopiperitenone reductase

Reaction: (+)-cis-isopulegone + NADP+ = (-)-isopiperitenone + NADPH + H+

Systematic name: (+)-cis-isopulegone:NADP+ oxidoreductase
Comments: The reaction occurs in the opposite direction to that shown above. The enzyme participates in the

menthol-biosynthesis pathway of Mentha plants. (+)-Pulegone, (+)-cis-isopulegone and (-)-menthone
are not substrates. The enzyme has a preference for NADPH as the reductant, with NADH being a
poor substitute [3191]. The enzyme is highly regioselective for the reduction of the endocyclic 1,2-
double bond, and is stereoselective, producing only the 1R-configured product. It is a member of the
short-chain dehydrogenase/reductase superfamily.

References: [697, 3191]

[EC 1.3.1.82 created 2008]

EC 1.3.1.83
Accepted name: geranylgeranyl diphosphate reductase

Reaction: phytyl diphosphate + 3 NADP+ = geranylgeranyl diphosphate + 3 NADPH + 3 H+
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Other name(s): geranylgeranyl reductase; CHL P
Systematic name: geranylgeranyl-diphosphate:NADP+ oxidoreductase

Comments: This enzyme also acts on geranylgeranyl-chlorophyll a. The reaction occurs in three steps. Which
order the three double bonds are reduced is not known.

References: [3574, 3805, 1876]

[EC 1.3.1.83 created 2009]

EC 1.3.1.84
Accepted name: acrylyl-CoA reductase (NADPH)

Reaction: propanoyl-CoA + NADP+ = acryloyl-CoA + NADPH + H+

Systematic name: propanoyl-CoA:NADP+ oxidoreductase
Comments: Catalyses a step in the 3-hydroxypropanoate/4-hydroxybutanoate cycle, an autotrophic CO2 fixa-

tion pathway found in some thermoacidophilic archaea [265]. The enzyme from Sulfolobus tokodaii
does not act on either NADH or crotonyl-CoA [3852]. Different from EC 1.3.1.8, which acts only on
enoyl-CoA derivatives of carbon chain length 4 to 16. Contains Zn2+.

References: [265, 3852]

[EC 1.3.1.84 created 2009, modified 2014]

EC 1.3.1.85
Accepted name: crotonyl-CoA carboxylase/reductase

Reaction: (2S)-ethylmalonyl-CoA + NADP+ = (E)-but-2-enoyl-CoA + CO2 + NADPH + H+

Other name(s): CCR; crotonyl-CoA reductase (carboxylating)
Systematic name: (2S)-ethylmalonyl-CoA:NADP+ oxidoreductase (decarboxylating)

Comments: The reaction is catalysed in the reverse direction. This enzyme, isolated from the bacterium
Rhodobacter sphaeroides, catalyses (E)-but-2-enoyl-CoA-dependent oxidation of NADPH in the
presence of CO2. When CO2 is absent, the enzyme catalyses the reduction of (E)-but-2-enoyl-CoA
to butanoyl-CoA, but with only 10% of maximal activity (relative to (E)-but-2-enoyl-CoA carboxyla-
tion).

References: [961, 962]

[EC 1.3.1.85 created 2011]

EC 1.3.1.86
Accepted name: crotonyl-CoA reductase

Reaction: butanoyl-CoA + NADP+ = (E)-but-2-enoyl-CoA + NADPH + H+

Other name(s): butyryl-CoA dehydrogenase; butyryl dehydrogenase; unsaturated acyl-CoA reductase; ethylene re-
ductase; enoyl-coenzyme A reductase; unsaturated acyl coenzyme A reductase; butyryl coenzyme A
dehydrogenase; short-chain acyl CoA dehydrogenase; short-chain acyl-coenzyme A dehydrogenase;
3-hydroxyacyl CoA reductase; butanoyl-CoA:(acceptor) 2,3-oxidoreductase; CCR

Systematic name: butanoyl-CoA:NADP+ 2,3-oxidoreductase
Comments: Catalyses the reaction in the reverse direction. This enzyme from Streptomyces collinus is specific

for (E)-but-2-enoyl-CoA, and is proposed to provide butanoyl-CoA as a starter unit for straight-chain
fatty acid biosynthesis.

References: [4092]

[EC 1.3.1.86 created 2011]

EC 1.3.1.87
Accepted name: 3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate dehydrogenase

Reaction: (1) 3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+ = 3-(2,3-
dihydroxyphenyl)propanoate + NADH + H+
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(2) (2E)-3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+ = (2E)-3-(2,3-
dihydroxyphenyl)prop-2-enoate + NADH + H+

Other name(s): hcaB (gene name); cis-dihydrodiol dehydrogenase; 2,3-dihydroxy-2,3-dihydro-phenylpropionate de-
hydrogenase

Systematic name: 3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate:NAD+ oxidoreductase
Comments: This enzyme catalyses a step in the pathway of phenylpropanoid compounds degradation.
References: [813]

[EC 1.3.1.87 created 2011]

EC 1.3.1.88
Accepted name: tRNA-dihydrouridine16/17 synthase [NAD(P)+]

Reaction: (1) 5,6-dihydrouracil16 in tRNA + NAD(P)+ = uracil16 in tRNA + NAD(P)H + H+

(2) 5,6-dihydrouracil17 in tRNA + NAD(P)+ = uracil17 in tRNA + NAD(P)H + H+

Other name(s): Dus1p; tRNA-dihydrouridine synthase 1
Systematic name: tRNA-5,6-dihydrouracil16/17:NAD(P)+ oxidoreductase

Comments: A flavoprotein. The enzyme specifically modifies uracil16 and uracil17 in tRNA.
References: [4280, 4281]

[EC 1.3.1.88 created 2011]

EC 1.3.1.89
Accepted name: tRNA-dihydrouridine47 synthase [NAD(P)+]

Reaction: 5,6-dihydrouracil47 in tRNA + NAD(P)+ = uracil47 in tRNA + NAD(P)H + H+

Other name(s): Dus3p; tRNA-dihydrouridine synthase 3
Systematic name: tRNA-5,6-dihydrouracil47:NAD(P)+ oxidoreductase

Comments: A flavoenzyme. The enzyme specifically modifies uracil47 in tRNA.
References: [4280]

[EC 1.3.1.89 created 2011]

EC 1.3.1.90
Accepted name: tRNA-dihydrouridine20a/20b synthase [NAD(P)+]

Reaction: (1) 5,6-dihydrouracil20a in tRNA + NAD(P)+ = uracil20a in tRNA + NAD(P)H + H+

(2) 5,6-dihydrouracil20b in tRNA + NAD(P)+ = uracil20b in tRNA + NAD(P)H + H+

Other name(s): Dus4p
Systematic name: tRNA-5,6-dihydrouracil20a/20b:NAD(P)+ oxidoreductase

Comments: A flavoenzyme. The enzyme specifically modifies uracil20a and uracil20b in tRNA.
References: [4280]

[EC 1.3.1.90 created 2011]

EC 1.3.1.91
Accepted name: tRNA-dihydrouridine20 synthase [NAD(P)+]

Reaction: 5,6-dihydrouracil20 in tRNA + NAD(P)+ = uracil20 in tRNA + NAD(P)H + H+

Other name(s): Dus2p; tRNA-dihydrouridine synthase 2
Systematic name: tRNA-5,6-dihydrouracil20:NAD(P)+ oxidoreductase

Comments: A flavoenzyme [3184]. The enzyme specifically modifies uracil20 in tRNA.
References: [4280, 4281, 3184, 1841]

[EC 1.3.1.91 created 2011]
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EC 1.3.1.92
Accepted name: artemisinic aldehyde ∆11(13)-reductase

Reaction: (11R)-dihydroartemisinic aldehyde + NADP+ = artemisinic aldehyde + NADPH + H+

Other name(s): Dbr2
Systematic name: artemisinic aldehyde:NADP+ oxidoreductase

Comments: Cloned from Artemisia annua. In addition to the reduction of artemisinic aldehyde it is also able to a
lesser extent to reduce artemisinic alcohol and artemisinic acid. Part of the biosyntheis of artemisinin.

References: [277, 4448]

[EC 1.3.1.92 created 2012]

EC 1.3.1.93
Accepted name: very-long-chain enoyl-CoA reductase

Reaction: a very-long-chain acyl-CoA + NADP+ = a very-long-chain trans-2,3-dehydroacyl-CoA + NADPH +
H+

Other name(s): TSC13 (gene name); CER10 (gene name)
Systematic name: very-long-chain acyl-CoA:NADP+ oxidoreductase

Comments: This is the fourth component of the elongase, a microsomal protein complex responsible for extending
palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. cf. EC
2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA
reductase, and EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] dehydratase.

References: [2003, 1131, 2104, 4468]

[EC 1.3.1.93 created 2012]

EC 1.3.1.94
Accepted name: polyprenol reductase

Reaction: ditrans,polycis-dolichol + NADP+ = ditrans,polycis-polyprenol + NADPH + H+

Other name(s): SRD5A3 (gene name); DFG10 (gene name)
Systematic name: ditrans,polycis-dolichol:NADP+ 2,3-oxidoreductase

Comments: The reaction occurs in the reverse direction with reduction of the terminal double bond next to the
alcohol group. Isolated from human fetal brain tissue but present in all eukaryotes. In mammalian
cells dolichols are predominantly 18-21 isoprene units in length.

References: [3279, 493]

[EC 1.3.1.94 created 2012]

EC 1.3.1.95
Accepted name: acrylyl-CoA reductase (NADH)

Reaction: propanoyl-CoA + NAD+ = acryloyl-CoA + NADH + H+

Systematic name: propanoyl-CoA:NAD+ oxidoreductase
Comments: Contains FAD. The reaction is catalysed in the opposite direction to that shown. The enzyme from

the bacterium Clostridium propionicum is a complex that includes an electron-transfer flavoprotein
(ETF). The ETF is reduced by NADH and transfers the electrons to the active site. Catalyses a step in
a pathway for L-alanine fermentation to propanoate [1483]. cf. EC 1.3.1.84, acrylyl-CoA reductase
(NADPH).

References: [1483, 1809]

[EC 1.3.1.95 created 2012]

EC 1.3.1.96
Accepted name: Botryococcus squalene synthase

Reaction: squalene + diphosphate + NADP+ = presqualene diphosphate + NADPH + H+
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Other name(s): SSL-2 (gene name)
Systematic name: squalene:NADP+ oxidoreductase

Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. cf. EC
2.5.1.21, squalene synthase, where squalene is formed directly from farnesyl diphosphate.

References: [2784]

[EC 1.3.1.96 created 2012]

EC 1.3.1.97
Accepted name: botryococcene synthase

Reaction: C30 botryococcene + NADP+ + diphosphate = presqualene diphosphate + NADPH + H+

Other name(s): SSL-3 (gene name)
Systematic name: C30 botryococcene:NADP+ oxidoreductase

Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. Involved in
the production of botryococcenes, which are triterpenoid hydrocarbons of isoprenoid origin produced
in large amount by this alga.

References: [2784]

[EC 1.3.1.97 created 2012]

EC 1.3.1.98
Accepted name: UDP-N-acetylmuramate dehydrogenase

Reaction: UDP-N-acetyl-α-D-muramate + NADP+ = UDP-N-acetyl-3-O-(1-carboxyvinyl)-α-D-glucosamine +
NADPH + H+

Other name(s): MurB reductase; UDP-N-acetylenolpyruvoylglucosamine reductase; UDP-N-acetylglucosamine-
enoylpyruvate reductase; UDP-GlcNAc-enoylpyruvate reductase; uridine diphosphoacetylpyruvoyl-
glucosamine reductase; uridine diphospho-N-acetylglucosamine-enolpyruvate reductase; uridine-5′-
diphospho-N-acetyl-2-amino-2-deoxy-3-O-lactylglucose:NADP-oxidoreductase

Systematic name: UDP-N-acetyl-α-D-muramate:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). NADH can to a lesser extent replace NADPH.
References: [3795, 3796, 4003]

[EC 1.3.1.98 created 1976 as EC 1.1.1.158, modified 1983, modified 2002, transferred 2013 to EC 1.3.1.98]

EC 1.3.1.99
Accepted name: iridoid synthase

Reaction: (6E)-8-oxogeranial + NAD(P)H + H+ = cis-trans-nepetalactol + NAD(P)+

Systematic name: 8-oxogeranial:NAD(P)+ oxidoreductase (cyclizing, cis-trans-nepetalactol forming)
Comments: Isolated from the plant Catharanthus roseus. The reaction may involve cyclization via a Diels-Alder

or Michael reaction. Iridoids are involved in the biosynthesis of many indole alkaloids. The cyclic
hemiacetal is readily hydrolysed to the corresponding dial.

References: [1192]

[EC 1.3.1.99 created 2013]

EC 1.3.1.100
Accepted name: chanoclavine-I aldehyde reductase

Reaction: dihydrochanoclavine-I aldehyde + NADP+ = chanoclavine-I aldehyde + NADPH + H+

Other name(s): FgaOx3; easA (gene name)
Systematic name: chanoclavine-I aldehyde:NAD+ oxidoreductase
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Comments: Contains FMN. The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alka-
loid produced by some fungi of the Trichocomaceae family. The enzyme catalyses the reduction of
chanoclavine-I aldehyde to dihydrochanoclavine-I aldehyde. This hydrolyses spontaneously to form
6,8-dimethyl-6,7-didehydroergoline, which is converted to festuclavine by EC 1.5.1.44, festuclavine
dehydrogenase.

References: [682, 582, 4097, 4279]

[EC 1.3.1.100 created 2013]

EC 1.3.1.101
Accepted name: 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase [NAD(P)H]

Reaction: 2,3-bis-(O-phytanyl)-sn-glycerol 1-phosphate + 8 NAD(P)+ = 2,3-bis-(O-geranylgeranyl)-sn-glycerol
1-phosphate + 8 NAD(P)H + 8 H+

Other name(s): digeranylgeranylglycerophospholipid reductase; Ta0516m (gene name); DGGGPL reductase; 2,3-
digeranylgeranylglycerophospholipid reductase

Systematic name: 2,3-bis-(O-phytany)l-sn-glycerol 1-phosphate:NAD(P)+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme from the archaeon Thermoplasma acidophilum is involved in the

biosynthesis of membrane lipids. In vivo the reaction occurs in the reverse direction with the forma-
tion of 2,3-bis-O-phytanyl-sn-glycerol 1-phosphate. cf. EC 1.3.7.11, 2,3-bis-O-geranylgeranyl-sn-
glycero-phospholipid reductase.

References: [2795, 2796, 4286]

[EC 1.3.1.101 created 2013]

EC 1.3.1.102
Accepted name: 2-alkenal reductase (NADP+)

Reaction: an n-alkanal + NADP+ = an alk-2-enal + NADPH + H+

Other name(s): NADPH-dependent alkenal/one oxidoreductase; NADPH:2-alkenal α,β-hydrogenase
Systematic name: n-alkanal:NADP+ 2-oxidoreductase

Comments: Shows highest activity with 1-nitrocyclohexene but also has significant activity with 2-methylpentenal
and trans-cinnamaldehyde [2387]. Involved in the detoxication of α,β-unsaturated aldehydes
and ketones. Has very low activity with NAD as reductant (cf. EC 1.3.1.74, 2-alkenal reductase
[NAD(P)+]).

References: [1518, 2454, 2387]

[EC 1.3.1.102 created 2013]

EC 1.3.1.103
Accepted name: 2-haloacrylate reductase

Reaction: (S)-2-chloropropanoate + NADP+ = 2-chloroacrylate + NADPH + H+

Other name(s): CAA43 (gene name)
Systematic name: (S)-2-chloropropanoate:NADP+ oxidoreductase

Comments: The enzyme acts in the degradation pathway of unsaturated organohalogen compounds by the bac-
terium Burkholderia sp. WS.

References: [2087]

[EC 1.3.1.103 created 2013]

EC 1.3.1.104
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADPH)

Reaction: an acyl-[acyl-carrier protein] + NADP+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADPH +
H+
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Other name(s): acyl-ACP dehydrogenase (ambiguous); enoyl-[acyl carrier protein] (reduced nicotinamide adenine
dinucleotide phosphate) reductase; NADPH 2-enoyl Co A reductase; enoyl-ACP reductase (ambigu-
ous); fabL (gene name)

Systematic name: acyl-[acyl-carrier protein]:NADP+ oxidoreductase
Comments: The enzyme completes each cycle of fatty acid elongation by catalysing the stereospecific reduction

of the double bond at position 2 of a growing fatty acid chain, while linked to the acyl-carrier pro-
tein, in an NADPH-dependent manner. This entry stands for enzymes whose stereo-specificity with
respect to NADP+ is not known. [cf. EC 1.3.1.39 enoyl-[acyl-carrier-protein] reductase (NADPH, Re-
specific), EC 1.3.1.10, enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific) and EC 1.3.1.9,
enoyl-[acyl-carrier-protein] reductase (NADH)].

References: [1448, 1914, 1912]

[EC 1.3.1.104 created 2013]

EC 1.3.1.105
Accepted name: 2-methylene-furan-3-one reductase

Reaction: 4-hydroxy-2,5-dimethylfuran-3(2H)-one + NADP+ = 4-hydroxy-5-methyl-2-methylenefuran-3(2H)-
one + NADPH + H+

Other name(s): FaEO; SIEO; enone oxidoreductase; 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NAD(P)+ oxidoreduc-
tase

Systematic name: 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NADP+ oxidoreductase
Comments: The enzyme was dicovered in strawberry (Fragaria x ananassa), where it produces furaneol, one of

the major aroma compounds in the fruits. It has also been detected in tomato (Solanum lycopersicum)
and pineapple (Ananas comosus). The enzyme can also act on derivatives substituted at the methylene
functional group. The enzyme from the yeast Saccharomyces cerevisiae acts on (2E)-2-ethylidene-4-
hydroxy-5-methylfuran-3(2H)-one and produces homofuraneol, an important aroma compound in soy
sauce and miso. NADPH is the preferred cofactor.

References: [3095, 1964, 3364, 3965]

[EC 1.3.1.105 created 2013]

EC 1.3.1.106
Accepted name: cobalt-precorrin-6A reductase

Reaction: cobalt-precorrin-6B + NAD+ = cobalt-precorrin-6A + NADH + H+

Other name(s): cbiJ (gene name)
Systematic name: cobalt-precorrin-6B:NAD+ oxidoreductase

Comments: The enzyme catalyses a step in the anaerobic (early cobalt insertion) pathway of adenosylcobalamin
biosynthesis. The enzyme from the bacterium Bacillus megaterium has no activity with NADPH. The
equivalent enzyme in the aerobic pathway is EC 1.3.1.54, precorrin-6A reductase.

References: [1922, 2609]

[EC 1.3.1.106 created 2014]

EC 1.3.1.107
Accepted name: sanguinarine reductase

Reaction: (1) dihydrosanguinarine + NAD(P)+ = sanguinarine + NAD(P)H + H+

(2) dihydrochelirubine + NAD(P)+ = chelirubine + NAD(P)H + H+

Systematic name: dihydrosanguinarine:NAD(P)+ oxidoreductase
Comments: The enzyme, purified from the California poppy (Eschscholzia californica), is involved in detoxifying

the phytoalexin sanguinarine produced by poppy itself (cf. EC 1.5.3.12, dihydrobenzophenanthridine
oxidase), when it binds to the cell wall of the poppy cell. The reaction with NADPH is up to three
times faster than that with NADH at low concentrations (¡10 uM) of the dinucleotide. At higher con-
centrations the reaction with NADPH is inhibited but not that with NADH [4166].

References: [4166, 4050]
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[EC 1.3.1.107 created 2014]

EC 1.3.1.108
Accepted name: caffeoyl-CoA reductase

Reaction: 3-(3,4-dihydroxyphenyl)propanoyl-CoA + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster =
(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl-CoA + 2 NADH + 2 oxidized ferredoxin [iron-sulfur]
cluster

Other name(s): electron-bifurcating caffeoyl-CoA reductase; caffeoyl-CoA reductase-Etf complex; hydrocaffeoyl-
CoA:NAD+,ferredoxin oxidoreductase

Systematic name: 3-(3,4-dihydroxyphenyl)propanoyl-CoA:NAD+,ferredoxin oxidoreductase
Comments: The enzyme, characterized from the bacterium Acetobacterium woodii, contains two [4Fe-4S] clus-

ters and FAD. The enzyme couples the endergonic ferredoxin reduction with NADH as reductant to
the exergonic reduction of caffeoyl-CoA with the same reductant. It uses the mechanism of electron
bifurcation to overcome the steep energy barrier in ferredoxin reduction. It also reduces 4-coumaroyl-
CoA and feruloyl-CoA.

References: [285]

[EC 1.3.1.108 created 2015]

EC 1.3.1.109
Accepted name: butanoyl-CoA dehydrogenase (NAD+, ferredoxin)

Reaction: butanoyl-CoA + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = (E)-but-2-enoyl-CoA + 2
NADH + 2 oxidized ferredoxin [iron-sulfur] cluster

Other name(s): bifurcating butyryl-CoA dehydrogenase; butyryl-CoA dehydrogenase/Etf complex; Etf-Bcd complex;
bifurcating butanoyl-CoA dehydrogenase; butanoyl-CoA dehydrogenase/Etf complex

Systematic name: butanoyl-CoA:NAD+, ferredoxin oxidoreductase
Comments: This flavin containg enzyme, isolated from the bacteria Acidaminococcus fermentans and butanoate-

producing Clostridia species, couples the exergonic reduction of (E)-but-2-enoyl-CoA to butanoyl-
CoA with NADH to the endergonic reduction of ferredoxin by NADH, using electron bifurcation to
overcome the steep energy barrier in ferredoxin reduction.

References: [2223, 3014, 617]

[EC 1.3.1.109 created 2015]

EC 1.3.1.110
Accepted name: lactate dehydrogenase (NAD+,ferredoxin)

Reaction: lactate + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = pyruvate + 2 NADH + 2 oxidized
ferredoxin [iron-sulfur] cluster

Other name(s): electron bifurcating LDH/Etf complex
Systematic name: lactate:NAD+,ferredoxin oxidoreductase

Comments: The enzyme, isolated from the bacterium Acetobacterium woodii, uses flavin-based electron confur-
cation to drive endergonic lactate oxidation with NAD+ as oxidant at the expense of simultaneous
exergonic electron flow from reduced ferredoxin to NAD+.

References: [4159]

[EC 1.3.1.110 created 2015]

EC 1.3.1.111
Accepted name: geranylgeranyl-bacteriochlorophyllide a reductase

Reaction: bacteriochlorophyll a + 3 NADP+ = geranylgeranyl bacteriochlorophyllide a + 3 NADPH + 3 H+

Other name(s): geranylgeranyl-bacteriopheophytin reductase; bchP (gene name)
Systematic name: bacteriochlorophyll-a:NADP+ oxidoreductase (geranylgeranyl-reducing)
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Comments: The enzyme catalyses the successive reduction of the geranylgeraniol esterifying group to phytol, re-
ducing three out of four double bonds, and transforming geranylgeranyl bacteriochlorophyllide a via
dihydrogeranylgeranyl bacteriochlorophyllide a and tetrahydrogeranylgeranyl bacteriochlorophyl-
lide a to bacteriochlorophyll a. The enzyme can also accept the pheophytin derivative geranylgeranyl
bacteriopheophytin, converting it to bacteriopheophytin a.

References: [341, 25, 26, 1388]

[EC 1.3.1.111 created 2016]

EC 1.3.1.112
Accepted name: anthocyanidin reductase [(2S)-flavan-3-ol-forming]

Reaction: (1) a (2S,3R)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+

(2) a (2S,3S)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+

Systematic name: (2S)-flavan-3-ol:NAD(P)+ oxidoreductase
Comments: The enzyme, characterized from Vitis vinifera (grape), participates in the flavonoid biosynthesis path-

way. It catalyses the double reduction of anthocyanidins, producing a mixture of (2S,3S)- and (2S,3R)-
flavan-3-ols. The enzyme catalyses sequential hydride transfers to C-2 and C-4, respectively. Epimer-
ization at C-3 is achieved by tautomerization that occurs between the two hydride transfers. cf. EC
1.3.1.77, anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming].

References: [1158, 1157]

[EC 1.3.1.112 created 2016]

EC 1.3.1.113
Accepted name: (4-alkanoyl-5-oxo-2,5-dihydrofuran-3-yl)methyl phosphate reductase

Reaction: a [(3S)-4-alkanoyl-5-oxooxolan-3-yl]methyl phosphate + NADP+ = a (4-alkanoyl-5-oxo-2,5-
dihydrofuran-3-yl)methyl phosphate + NADPH + H+

Other name(s): bprA (gene name); scbB (gene name)
Systematic name: [(3S)-4-alkanoyl-5-oxooxolan-3-yl]methyl phosphate:NADP+ oxidoreductase

Comments: The enzyme, characterized from the bacteria Streptomyces griseus and Streptomyces coelicolor, is
involved in the biosynthesis of γ-butyrolactone autoregulators that control secondary metabolism and
morphological development in Streptomyces bacteria.

References: [1835]

[EC 1.3.1.113 created 2017]

EC 1.3.1.114
Accepted name: 3-dehydro-bile acid ∆4,6-reductase

Reaction: (1) 3-oxocholan-24-oyl-CoA + NAD+ = 3-oxochol-4-en-24-oyl-CoA + NADH + H+

(2) 3-oxochol-4-en-24-oyl-CoA + NAD+ = 3-oxochol-4,6-dien-24-oyl-CoA + NADH + H+

(3) 12α-hydroxy-3-oxocholan-24-oyl-CoA + NAD+ = 12α-hydroxy-3-oxochol-4-en-24-oyl-CoA +
NADH + H+

(4) 12α-hydroxy-3-oxochol-4-en-24-oyl-CoA + NAD+ = 12α-hydroxy-3-oxochol-4,6-dien-24-oyl-
CoA + NADH + H+

Other name(s): baiN (gene name)
Systematic name: 3-oxocholan-24-oyl-CoA ∆4,6-oxidoreductase

Comments: Contains flavin. The enzyme, characterized from the bacterium Clostridium scindens, participates in
the bile acid 7α-dehydroxylation pathway. The enzyme catalyses two subsequent reductions of the
double bonds within the bile acid A/B rings, following 7α-dehydration.

References: [1399]

[EC 1.3.1.114 created 2018]
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EC 1.3.1.115
Accepted name: 3-oxocholoyl-CoA 4-desaturase

Reaction: (1) 7α,12α-dihydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7α,12α-dihydroxy-3-oxochol-4-en-24-oyl-
CoA + NADH + H+

(2) 7α-hydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7α-hydroxy-3-oxochol-4-en-24-oyl-CoA + NADH
+ H+

Other name(s): baiCD (gene name); 3-oxo-choloyl-CoA dehydrogenase
Systematic name: 3-oxocholoyl-CoA ∆4-oxidoreductase

Comments: Contains flavin. The enzyme, characterized from the bacterium Clostridium scindens, participates in
the bile acid 7α-dehydroxylation pathway. The enzyme catalyses the stereo-specific oxidation of its
substrates and has no activity with the 7β anomers. cf. EC 1.3.1.116, 7β-hydroxy-3-oxochol-24-oyl-
CoA 4-desaturase.

References: [1810]

[EC 1.3.1.115 created 2018]

EC 1.3.1.116
Accepted name: 7β-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase

Reaction: 7β-hydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7β-hydroxy-3-oxochol-4-en-24-oyl-CoA + NADH +
H+

Other name(s): baiH (gene name)
Systematic name: 7β-hydroxy-3-oxochol-24-oyl-CoA ∆4-oxidoreductase

Comments: Contains FAD and FMN. The enzyme, characterized from the bacterium Clostridium scindens, par-
ticipates in the bile acid 7α-dehydroxylation pathway. The enzyme catalyses the stereo-specific ox-
idation of its substrate and has no activity with the 7α anomer. cf. EC 1.3.1.115, 3-oxocholoyl-CoA
4-desaturase.

References: [203, 1056, 1810]

[EC 1.3.1.116 created 2018]

EC 1.3.1.117
Accepted name: hydroxycinnamoyl-CoA reductase

Reaction: (1) dihydro-4-coumaroyl-CoA + NADP+ = trans-4-coumaroyl-CoA + NADPH + H+

(2) dihydroferuloyl-CoA + NADP+ = trans-feruloyl-CoA + NADPH + H+

Other name(s): MdHCDBR; hydroxycinnamoyl-CoA double bond reductase
Systematic name: dihydro-4-coumaroyl-CoA:NADP+ 2,3-oxidoreductase

Comments: Isolated from Malus X domestica (apple). Involved in dihydrochalcone biosynthesis.
References: [1623]

[EC 1.3.1.117 created 2018]

EC 1.3.1.118
Accepted name: meromycolic acid enoyl-[acyl-carrier-protein] reductase

Reaction: a meromycolyl-[acyl-carrier protein] + NAD+ = a trans-∆2-meromycolyl-[acyl-carrier protein] +
NADH + H+

Other name(s): inhA (gene name)
Systematic name: meromycolyl-[acyl-carrier protein]:NAD+ oxidoreductase

Comments: InhA is a component of the fatty acid synthase (FAS) II system of Mycobacterium tuberculosis,
catalysing an enoyl-[acyl-carrier-protein] reductase step. The enzyme acts on very long and unsatu-
rated fatty acids that form the meromycolic component of mycolic acids. It extends FASI-derived C20
fatty acids to form C60 to C90 mycolic acids. The enzyme, which forms a homotetramer, is the target
of the preferred antitubercular drug isoniazid.

References: [3092, 3247, 2405, 4045, 1321, 612]
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[EC 1.3.1.118 created 2018]

EC 1.3.1.119
Accepted name: chlorobenzene dihydrodiol dehydrogenase

Reaction: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+ = 3-chlorocatechol + NADH + H+

Other name(s): tecB (gene name)
Systematic name: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase

Comments: This bacterial enzyme can transform various dihydrodiols of chlorobenzenes into the respective cate-
chols, including the dihydrodiols of mono-, di-, tri-, and tetra-chlorinated benzenes. It also accepts the
dihydrodiols of various chlorotoluenes. Substrates for the enzyme are generated by the broad spec-
trum EC 1.14.12.26, chlorobenzene dioxygenase.

References: [3603, 3032, 3033]

[EC 1.3.1.119 created 2018]

EC 1.3.2 With a cytochrome as acceptor

[1.3.2.1 Transferred entry. butyryl-CoA dehydrogenase. Now EC 1.3.99.2, butyryl-CoA dehydrogenase]

[EC 1.3.2.1 created 1961, deleted 1964]

[1.3.2.2 Transferred entry. acyl-CoA dehydrogenase. Now EC 1.3.99.3, acyl-CoA dehydrogenase]

[EC 1.3.2.2 created 1961, deleted 1964]

EC 1.3.2.3
Accepted name: L-galactonolactone dehydrogenase

Reaction: L-galactono-1,4-lactone + 4 ferricytochrome c = L-dehydroascorbate + 4 ferrocytochrome c + 4 H+

(overall reaction)
(1a) L-galactono-1,4-lactone + 2 ferricytochrome c = L-ascorbate + 2 ferrocytochrome c + 2 H+

(1b) L-ascorbate + 2 ferricytochrome c = L-dehydroascorbate + 2 ferrocytochrome c + 2 H+ (sponta-
neous)

Other name(s): galactonolactone dehydrogenase; L-galactono-γ-lactone dehydrogenase; L-galactono-γ-
lactone:ferricytochrome-c oxidoreductase; GLDHase; GLDase

Systematic name: L-galactono-1,4-lactone:ferricytochrome-c oxidoreductase
Comments: This enzyme catalyses the final step in the biosynthesis of L-ascorbic acid in higher plants and in

nearly all higher animals with the exception of primates and some birds [2904]. The enzyme is very
specific for its substrate L-galactono-1,4-lactone as D-galactono-γ-lactone, D-gulono-γ-lactone, L-
gulono-γ-lactone, D-erythronic-γ-lactone, D-xylonic-γ-lactone, L-mannono-γ-lactone, D-galactonate,
D-glucuronate and D-gluconate are not substrates [2904]. FAD, NAD+, NADP+ and O2 (cf. EC
1.3.3.12, L-galactonolactone oxidase) cannot act as electron acceptor [2904].

References: [2390, 2391, 1662, 2832, 2904]

[EC 1.3.2.3 created 1961, modified 2006]

EC 1.3.3 With oxygen as acceptor

[1.3.3.1 Transferred entry. dihydroorotate oxidase. Now EC 1.3.98.1 [dihydroorotate dehydrogenase (fumarate)]]

[EC 1.3.3.1 created 1961, deleted 2011]

[1.3.3.2 Transferred entry. now EC 1.14.21.6, lathosterol oxidase. NAD(P)H had not been included previously, so enzyme
had to be reclassified]

[EC 1.3.3.2 created 1972, deleted 2005]
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EC 1.3.3.3
Accepted name: coproporphyrinogen oxidase

Reaction: coproporphyrinogen III + O2 + 2 H+ = protoporphyrinogen-IX + 2 CO2 + 2 H2O
Other name(s): coproporphyrinogen III oxidase; coproporphyrinogenase

Systematic name: coproporphyrinogen:oxygen oxidoreductase (decarboxylating)
References: [214, 2495, 2010]

[EC 1.3.3.3 created 1972, modified 2003]

EC 1.3.3.4
Accepted name: protoporphyrinogen oxidase

Reaction: protoporphyrinogen IX + 3 O2 = protoporphyrin IX + 3 H2O2
Other name(s): protoporphyrinogen IX oxidase; protoporphyrinogenase; PPO; Protox; HemG; HemY

Systematic name: protoporphyrinogen-IX:oxygen oxidoreductase
Comments: This is the last common enzyme in the biosynthesis of chlorophylls and heme [561]. Two isoen-

zymes exist in plants: one in plastids and the other in mitochondria. This is the target enzyme of
phthalimide-type and diphenylether-type herbicides [561]. The enzyme from oxygen-dependent
species contains FAD [727]. Also slowly oxidizes mesoporphyrinogen IX.

References: [3046, 3047, 724, 4108, 665, 1003, 726, 561, 727]

[EC 1.3.3.4 created 1978, modified 2003]

EC 1.3.3.5
Accepted name: bilirubin oxidase

Reaction: 2 bilirubin + O2 = 2 biliverdin + 2 H2O
Other name(s): bilirubin oxidase M-1

Systematic name: bilirubin:oxygen oxidoreductase
References: [2668, 3804]

[EC 1.3.3.5 created 1984]

EC 1.3.3.6
Accepted name: acyl-CoA oxidase

Reaction: acyl-CoA + O2 = trans-2,3-dehydroacyl-CoA + H2O2
Other name(s): fatty acyl-CoA oxidase; acyl coenzyme A oxidase; fatty acyl-coenzyme A oxidase

Systematic name: acyl-CoA:oxygen 2-oxidoreductase
Comments: A flavoprotein (FAD). Acts on CoA derivatives of fatty acids with chain lengths from 8 to 18.
References: [1857, 2907]

[EC 1.3.3.6 created 1986]

EC 1.3.3.7
Accepted name: dihydrouracil oxidase

Reaction: 5,6-dihydrouracil + O2 = uracil + H2O2
Systematic name: 5,6-dihydrouracil:oxygen oxidoreductase

Comments: Also oxidizes dihydrothymine to thymine. A flavoprotein (FMN).
References: [2920]

[EC 1.3.3.7 created 1989]

EC 1.3.3.8
Accepted name: tetrahydroberberine oxidase

178

http://www.enzyme-database.org/query.php?ec=1.3.3.3
http://www.enzyme-database.org/query.php?ec=1.3.3.4
http://www.enzyme-database.org/query.php?ec=1.3.3.5
http://www.enzyme-database.org/query.php?ec=1.3.3.6
http://www.enzyme-database.org/query.php?ec=1.3.3.7
http://www.enzyme-database.org/query.php?ec=1.3.3.8


Reaction: (S)-tetrahydroberberine + 2 O2 = berberine + 2 H2O2
Other name(s): (S)-THB oxidase

Systematic name: (S)-tetrahydroberberine:oxygen oxidoreductase
Comments: The enzyme from Berberis sp. is a flavoprotein; that from Coptis japonica is not. (R)-

Tetrahydroberberines are not oxidized.
References: [68, 2860]

[EC 1.3.3.8 created 1990 (EC 1.5.3.8 created 1989, incorporated 1992)]

[1.3.3.9 Transferred entry. secologanin synthase. Now EC 1.14.19.62, secologanin synthase]

[EC 1.3.3.9 created 2002, deleted 2018]

EC 1.3.3.10
Accepted name: tryptophan α,β-oxidase

Reaction: L-tryptophan + O2 = α,β-didehydrotryptophan + H2O2
Other name(s): L-tryptophan 2′,3′-oxidase; L-tryptophan α,β-dehydrogenase

Systematic name: L-tryptophan:oxygen α,β-oxidoreductase
Comments: Requires heme. The enzyme from Chromobacterium violaceum is specific for tryptophan derivatives

possessing its carboxyl group free or as an amide or ester, and an unsubstituted indole ring. Also
catalyses the α,β dehydrogenation of L-tryptophan side chains in peptides. The product of the reac-
tion can hydrolyse spontaneously to form (indol-3-yl)pyruvate.

References: [1180, 1179]

[EC 1.3.3.10 created 2000 as EC 1.4.3.17, transferred 2003 to EC 1.3.3.10]

EC 1.3.3.11
Accepted name: pyrroloquinoline-quinone synthase

Reaction: 6-(2-amino-2-carboxyethyl)-7,8-dioxo-1,2,3,4,7,8-hexahydroquinoline-2,4-dicarboxylate + 3 O2 =
4,5-dioxo-4,5-dihydro-1H-pyrrolo[2,3-f ]quinoline-2,7,9-tricarboxylate + 2 H2O2 + 2 H2O

Other name(s): PqqC; 6-(2-amino-2-carboxyethyl)-7,8-dioxo-1,2,3,4,5,6,7,8-octahydroquinoline-2,4-
dicarboxylate:oxygen oxidoreductase (cyclizing) [incorrect]

Systematic name: 6-(2-amino-2-carboxyethyl)-7,8-dioxo-1,2,3,4,7,8-hexahydroquinoline-2,4-dicarboxylate:oxygen oxi-
doreductase (cyclizing)

Comments: So far only a single turnover of the enzyme has been observed, and the pyrroloquinoline quinone re-
mains bound to it. It is not yet known what releases the product in the bacterium.

References: [2363, 2362, 3919, 3921, 3414]

[EC 1.3.3.11 created 2005]

EC 1.3.3.12
Accepted name: L-galactonolactone oxidase

Reaction: L-galactono-1,4-lactone + O2 = L-ascorbate + H2O2
Other name(s): L-galactono-1,4-lactone oxidase

Systematic name: L-galactono-1,4-lactone:oxygen 3-oxidoreductase
Comments: A flavoprotein. Acts on the 1,4-lactones of L-galactonic, D-altronic, L-fuconic, D-arabinic and D-

threonic acids; not identical with EC 1.1.3.8 L-gulonolactone oxidase. (cf. EC 1.3.2.3 galactonolac-
tone dehydrogenase).

References: [321]

[EC 1.3.3.12 created 1984 as EC 1.1.3.24, transferred 2006 to EC 1.3.3.12]

EC 1.3.3.13
Accepted name: albonoursin synthase
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Reaction: cyclo(L-leucyl-L-phenylalanyl) + 2 O2 = albonoursin + 2 H2O2 (overall reaction)
(1a) cyclo(L-leucyl-L-phenylalanyl) + O2 = cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + H2O2
(1b) cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + O2 = albonoursin + H2O2

Other name(s): cyclo(dipeptide):oxygen oxidoreductase; cyclic dipeptide oxidase; AlbA
Systematic name: cyclo(L-leucyl-L-phenylalanyl):oxygen oxidoreductase

Comments: A flavoprotein from the bacterium Streptomyces noursei. The enzyme can also oxidize several
other cyclo dipeptides, the best being cyclo(L-tryptophyl-L-tryptophyl) and cyclo(L-phenylalanyl-
L-phenylalanyl) [1237, 2152].

References: [1237, 2152]

[EC 1.3.3.13 created 2013]

EC 1.3.3.14
Accepted name: aclacinomycin-A oxidase

Reaction: aclacinomycin A + O2 = aclacinomycin Y + H2O2
Other name(s): AknOx (ambiguous); aclacinomycin oxidoreductase (ambiguous)

Systematic name: aclacinomycin-A:oxygen oxidoreductase
Comments: A flavoprotein (FAD). This bifunctional enzyme is a secreted flavin-dependent enzyme that is in-

volved in the modification of the terminal sugar residues in the biosynthesis of aclacinomycins. The
enzyme utilizes the same active site to catalyse the oxidation of the rhodinose moiety of aclacino-
mycin N to the cinerulose A moiety of aclacinomycin A (cf. EC 1.1.3.45) and the oxidation of the
latter to the L-aculose moiety of aclacinomycin Y.

References: [4385, 60, 3725]

[EC 1.3.3.14 created 2013]

EC 1.3.3.15
Accepted name: coproporphyrinogen III oxidase (coproporphyrin-forming)

Reaction: coproporphyrinogen III + 3 O2 = coproporphyrin III + 3 H2O2
Other name(s): hemY (gene name)

Systematic name: coproporphyrinogen-III:oxygen oxidoreductase (coproporphyrin-forming)
Comments: Contains FAD. The enzyme, present in Gram-positive bacteria, participates in heme biosynthesis. It

can also catalyse the reaction of EC 1.3.3.4, protoporphyrinogen oxidase, at a lower level.
References: [1376, 665, 3078, 725]

[EC 1.3.3.15 created 2016]

EC 1.3.4 With a disulfide as acceptor

EC 1.3.4.1
Accepted name: fumarate reductase (CoM/CoB)

Reaction: fumarate + CoM + CoB = succinate + CoM-S-S-CoB
Other name(s): thiol:fumarate reductase; Tfr

Systematic name: fumarate CoM:CoB oxidoreductase (succinate-forming)
Comments: The enzyme, isolated from the archaeon Methanobacterium thermoautotrophicum, is very oxy-

gen sensitive. It cannot use reduced flavins, reduced coenzyme F420, or NAD(P)H as an electron
donor. Distinct from EC 1.3.1.6 [fumarate reductase (NADH)], EC 1.3.5.1 [succinate dehydrogenase
(ubiquinone)], and EC 1.3.5.4 [fumarate reductase (quinol)].

References: [1894, 1462]

[EC 1.3.4.1 created 2014 as EC 1.3.98.2, transferred 2014 to EC 1.3.4.1]
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EC 1.3.5 With a quinone or related compound as acceptor

EC 1.3.5.1
Accepted name: succinate dehydrogenase

Reaction: succinate + a quinone = fumarate + a quinol
Other name(s): succinate dehydrogenase (quinone); succinate dehydrogenase (ubiquinone); succinic dehydrogenase;

complex II (ambiguous); succinate dehydrogenase complex; SDH; succinate:ubiquinone oxidoreduc-
tase

Systematic name: succinate:quinone oxidoreductase
Comments: A flavoprotein (FAD) complex containing iron-sulfur centres. The enzyme is found in the inner mi-

tochondrial membrane in eukaryotes and the plasma membrane of many aerobic or facultative bacte-
ria and archaea. It catalyses succinate oxidation in the citric acid cycle and transfers the electrons to
quinones in the membrane, thus constituting a part of the aerobic respiratory chain (known as com-
plex II). In vivo the enzyme uses the quinone found in the organism - eukaryotic enzymes utilize
ubiquinone, bacterial enzymes utilize ubiquinone or menaquinone, and archaebacterial enzymes from
the Sulfolobus genus use caldariellaquinone. cf. EC 1.3.5.4, fumarate reductase (quinone).

References: [1942, 1420, 2595, 1014, 528, 2921, 2092]

[EC 1.3.5.1 created 1983 (EC 1.3.99.1 created 1961, incorporated 2014)]

EC 1.3.5.2
Accepted name: dihydroorotate dehydrogenase (quinone)

Reaction: (S)-dihydroorotate + a quinone = orotate + a quinol
Other name(s): dihydroorotate:ubiquinone oxidoreductase; (S)-dihydroorotate:(acceptor) oxidoreductase; (S)-

dihydroorotate:acceptor oxidoreductase; DHOdehase (ambiguous); DHOD (ambiguous); DHODase
(ambiguous); DHODH

Systematic name: (S)-dihydroorotate:quinone oxidoreductase
Comments: This Class 2 dihydroorotate dehydrogenase enzyme contains FMN [978]. The enzyme is found in

eukaryotes in the mitochondrial membrane, in cyanobacteria, and in some Gram-negative and Gram-
positive bacteria associated with the cytoplasmic membrane [2,5,6]. The reaction is the only redox
reaction in the de-novo biosynthesis of pyrimidine nucleotides [1510, 978]. The best quinone elec-
tron acceptors for the enzyme from bovine liver are ubiquinone-6 and ubiquinone-7, although simple
quinones, such as benzoquinone, can also act as acceptor at lower rates [1510]. Methyl-, ethyl-, tert-
butyl and benzyl (S)-dihydroorotates are also substrates, but methyl esters of (S)-1-methyl and (S)-3-
methyl and (S)-1,3-dimethyldihydroorotates are not [1510]. Class 1 dihydroorotate dehydrogenases
use either fumarate (EC 1.3.98.1), NAD+ (EC 1.3.1.14) or NADP+ (EC 1.3.1.15) as electron accep-
tor.

References: [1035, 1510, 157, 978, 305, 2732]

[EC 1.3.5.2 created 1983 as EC 1.3.99.11, transferred 2009 to EC 1.3.5.2, modified 2011]

EC 1.3.5.3
Accepted name: protoporphyrinogen IX dehydrogenase (menaquinone)

Reaction: protoporphyrinogen IX + 3 menaquinone = protoporphyrin IX + 3 menaquinol
Other name(s): HemG

Systematic name: protoporphyrinogen IX:menaquinone oxidoreductase
Comments: This enzyme enables Escherichia coli to synthesize heme in both aerobic and anaerobic environ-

ments.
References: [374]

[EC 1.3.5.3 created 2010]

EC 1.3.5.4
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Accepted name: fumarate reductase (quinol)
Reaction: succinate + a quinone = fumarate + a quinol

Other name(s): FRD; menaquinol-fumarate oxidoreductase; succinate dehydrogenase (menaquinone); succi-
nate:menaquinone oxidoreductase; fumarate reductase (menaquinone); complex II (ambiguous)

Systematic name: succinate:quinone oxidoreductase
Comments: The enzyme, which is found in anaerobic and facultative organisms such as bacteria, parasitic

helminthes, and lower marine organisms, utilizes low potential quinols, such as menaquinol and
rhodoquinol, to reduce fumarate as the final step of an anaerobic respiratory chain. The enzyme is
known as complex II of the electron transfer chain, similarly to EC 1.3.5.1, succinate dehydrogenase
(quinone), to which it is closely related.

References: [1468, 1689, 529, 1690, 4004]

[EC 1.3.5.4 created 2010, modified 2013]

EC 1.3.5.5
Accepted name: 15-cis-phytoene desaturase

Reaction: 15-cis-phytoene + 2 plastoquinone = 9,15,9′-tricis-ζ-carotene + 2 plastoquinol (overall reaction)
(1a) 15-cis-phytoene + plastoquinone = 15,9′-dicis-phytofluene + plastoquinol
(1b) 15,9′-dicis-phytofluene + plastoquinone = 9,15,9′-tricis-ζ-carotene + plastoquinol

Other name(s): phytoene desaturase (ambiguous); PDS; plant-type phytoene desaturase
Systematic name: 15-cis-phytoene:plastoquinone oxidoreductase

Comments: This enzyme is involved in carotenoid biosynthesis in plants and cyanobacteria. The enzyme from
Synechococcus can also use NAD+ and NADP+ as electron acceptor under anaerobic conditions. The
enzyme from Gentiana lutea shows no activity with NAD+ or NADP+ [397].

References: [397, 3381, 1057, 396]

[EC 1.3.5.5 created 2011]

EC 1.3.5.6
Accepted name: 9,9′-dicis-ζ-carotene desaturase

Reaction: 9,9′-dicis-ζ-carotene + 2 quinone = 7,9,7′,9′-tetracis-lycopene + 2 quinol (overall reaction)
(1a) 9,9′-dicis-ζ-carotene + a quinone = 7,9,9′-tricis-neurosporene + a quinol
(1b) 7,9,9′-tricis-neurosporene + a quinone = 7,9,7′,9′-tetracis-lycopene + a quinol

Other name(s): ζ-carotene desaturase; ZDS
Systematic name: 9,9′-dicis-ζ-corotene:quinone oxidoreductase

Comments: This enzyme is involved in carotenoid biosynthesis in plants and cyanobacteria.
References: [55, 1778, 394, 396]

[EC 1.3.5.6 created 1999 as EC 1.14.99.30, transferred 2011 to EC 1.3.5.6]

EC 1.3.7 With an iron-sulfur protein as acceptor

EC 1.3.7.1
Accepted name: 6-hydroxynicotinate reductase

Reaction: 6-oxo-1,4,5,6-tetrahydronicotinate + oxidized ferredoxin = 6-hydroxynicotinate + reduced ferredoxin
Other name(s): 6-oxotetrahydronicotinate dehydrogenase; 6-hydroxynicotinic reductase; HNA reductase; 1,4,5,6-

tetrahydro-6-oxonicotinate:ferredoxin oxidoreductase
Systematic name: 6-oxo-1,4,5,6-tetrahydronicotinate:ferredoxin oxidoreductase

References: [1538]

[EC 1.3.7.1 created 1972]
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EC 1.3.7.2
Accepted name: 15,16-dihydrobiliverdin:ferredoxin oxidoreductase

Reaction: 15,16-dihydrobiliverdin + oxidized ferredoxin = biliverdin IXα + reduced ferredoxin
Other name(s): PebA

Systematic name: 15,16-dihydrobiliverdin:ferredoxin oxidoreductase
Comments: Catalyses the two-electron reduction of biliverdin IXα at the C15 methine bridge. It has been pro-

posed that this enzyme and EC 1.3.7.3, phycoerythrobilin:ferredoxin oxidoreductase, function as a
dual enzyme complex in the conversion of biliverdin IXα into phycoerythrobilin.

References: [1055]

[EC 1.3.7.2 created 2002]

EC 1.3.7.3
Accepted name: phycoerythrobilin:ferredoxin oxidoreductase

Reaction: (3Z)-phycoerythrobilin + oxidized ferredoxin = 15,16-dihydrobiliverdin + reduced ferredoxin
Other name(s): PebB

Systematic name: (3Z)-phycoerythrobilin:ferredoxin oxidoreductase
Comments: Catalyses the two-electron reduction of the C2 and C31 diene system of 15,16-dihydrobiliverdin.

Specific for 15,16-dihydrobiliverdin. It has been proposed that this enzyme and EC 1.3.7.2, 15,16-
dihydrobiliverdin:ferredoxin oxidoreductase, function as a dual enzyme complex in the conversion of
biliverdin IXα to phycoerythrobilin.

References: [1055]

[EC 1.3.7.3 created 2002]

EC 1.3.7.4
Accepted name: phytochromobilin:ferredoxin oxidoreductase

Reaction: (3Z)-phytochromobilin + 2 oxidized ferredoxin = biliverdin IXα + 2 reduced ferredoxin
Other name(s): HY2; PPhi B synthase; phytochromobilin synthase

Systematic name: (3Z)-phytochromobilin:ferredoxin oxidoreductase
Comments: Catalyses the two-electron reduction of biliverdin IXα. Can use [2Fe-2S] ferredoxins from a num-

ber of sources as acceptor but not the [4Fe-4S] ferredoxin from Clostridium pasteurianum. The iso-
merization of (3Z)-phytochromobilin to (3E)-phytochromobilin is thought to occur prior to covalent
attachment to apophytochrome in the plant cell cytoplasm. Flavodoxins can be used instead of ferre-
doxin.

References: [1055, 2483, 3850]

[EC 1.3.7.4 created 2002]

EC 1.3.7.5
Accepted name: phycocyanobilin:ferredoxin oxidoreductase

Reaction: (3Z)-phycocyanobilin + 4 oxidized ferredoxin = biliverdin IXα + 4 reduced ferredoxin
Systematic name: (3Z)-phycocyanobilin:ferredoxin oxidoreductase

Comments: Catalyses the four-electron reduction of biliverdin IXα (2-electron reduction at both the A and D
rings). Reaction proceeds via an isolatable 2-electron intermediate, 181,182-dihydrobiliverdin. Flavo-
doxins can be used instead of ferredoxin. The direct conversion of biliverdin IXα (BV) to (3Z)-
phycocyanolbilin (PCB) in the cyanobacteria Synechocystis sp. PCC 6803, Anabaena sp. PCC7120
and Nostoc punctiforme is in contrast to the proposed pathways of PCB biosynthesis in the red alga
Cyanidium caldarium, which involves (3Z)-phycoerythrobilin (PEB) as an intermediate [227] and in
the green alga Mesotaenium caldariorum, in which PCB is an isolable intermediate.

References: [1055, 227, 4261]

[EC 1.3.7.5 created 2002, modified 2014]
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EC 1.3.7.6
Accepted name: phycoerythrobilin synthase

Reaction: (3Z)-phycoerythrobilin + 2 oxidized ferredoxin = biliverdin IXα + 2 reduced ferredoxin
Other name(s): PebS

Systematic name: (3Z)-phycoerythrobilin:ferredoxin oxidoreductase (from biliverdin IXα)
Comments: This enzyme, from a cyanophage infecting oceanic cyanobacteria of the Prochlorococcus

genus, uses a four-electron reduction to carry out the reactions catalysed by EC 1.3.7.2 (15,16-
dihydrobiliverdin:ferredoxin oxidoreductase) and EC 1.3.7.3 (phycoerythrobilin:ferredoxin oxidore-
ductase). 15,16-Dihydrobiliverdin is formed as a bound intermediate. Free 15,16-dihydrobiliverdin
can also act as a substrate to form phycoerythrobilin.

References: [733]

[EC 1.3.7.6 created 2008]

EC 1.3.7.7
Accepted name: ferredoxin:protochlorophyllide reductase (ATP-dependent)

Reaction: chlorophyllide a + oxidized ferredoxin + 2 ADP + 2 phosphate = protochlorophyllide a + reduced
ferredoxin + 2 ATP + 2 H2O

Other name(s): light-independent protochlorophyllide reductase
Systematic name: ATP-dependent ferredoxin:protochlorophyllide-a 7,8-oxidoreductase

Comments: Occurs in photosynthetic bacteria, cyanobacteria, green algae and gymnosperms. The enzyme cataly-
ses trans-reduction of the D-ring of protochlorophyllide; the product has the (7S,8S)-configuration.
Unlike EC 1.3.1.33 (protochlorophyllide reductase), light is not required. The enzyme contains a
[4Fe-4S] cluster, and structurally resembles the Fe protein/MoFe protein complex of nitrogenase (EC
1.18.6.1), which catalyses an ATP-driven reduction.

References: [1100, 2815, 2666]

[EC 1.3.7.7 created 2011, modified 2013]

EC 1.3.7.8
Accepted name: benzoyl-CoA reductase

Reaction: cyclohexa-1,5-diene-1-carbonyl-CoA + oxidized ferredoxin + 2 ADP + 2 phosphate = benzoyl-CoA +
reduced ferredoxin + 2 ATP + 2 H2O

Other name(s): benzoyl-CoA reductase (dearomatizing)
Systematic name: cyclohexa-1,5-diene-1-carbonyl-CoA:ferredoxin oxidoreductase (aromatizing, ATP-forming)

Comments: An iron-sulfur protein. Requires Mg2+ or Mn2+. Inactive towards aromatic acids that are not CoA es-
ters but will also catalyse the reaction: ammonia + acceptor + 2 ADP + 2 phosphate = hydroxylamine
+ reduced acceptor + 2 ATP + H2O. In the presence of reduced acceptor, but in the absence of oxidiz-
able substrate, the enzyme catalyses the hydrolysis of ATP to ADP plus phosphate.

References: [339, 2079]

[EC 1.3.7.8 created 1999 as EC 1.3.99.15, transferred 2011 to EC 1.3.7.8, modified 2011]

EC 1.3.7.9
Accepted name: 4-hydroxybenzoyl-CoA reductase

Reaction: benzoyl-CoA + oxidized ferredoxin + H2O = 4-hydroxybenzoyl-CoA + reduced ferredoxin
Other name(s): 4-hydroxybenzoyl-CoA reductase (dehydroxylating); 4-hydroxybenzoyl-CoA:(acceptor) oxidoreduc-

tase
Systematic name: benzoyl-CoA:acceptor oxidoreductase

Comments: A molybdenum-flavin-iron-sulfur protein that is involved in the anaerobic pathway of phenol
metabolism in bacteria. A ferredoxin with two [4Fe-4S] clusters functions as the natural electron
donor [392].

References: [1223, 1456, 392, 378, 1457]
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[EC 1.3.7.9 created 2000 as EC 1.3.99.20, transferred 2011 to EC 1.3.7.9]

[1.3.7.10 Transferred entry. pentalenolactone synthase. Now EC 1.14.19.8, pentalenolactone synthase]

[EC 1.3.7.10 created 2012, deleted 2013]

EC 1.3.7.11
Accepted name: 2,3-bis-O-geranylgeranyl-sn-glycero-phospholipid reductase

Reaction: a 2,3-bis-(O-phytanyl)-sn-glycero-phospholipid + 16 oxidized ferredoxin [iron-sulfur] cluster = a 2,3-
bis-(O-geranylgeranyl)-sn-glycero-phospholipid + 16 reduced ferredoxin [iron-sulfur] cluster + 16
H+

Other name(s): AF0464 (gene name); 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase (donor)
Systematic name: 2,3-bis-(O-phytanyl)-sn-glycero-phospholipid:ferredoxin oxidoreductase

Comments: A flavoprotein (FAD). The enzyme is involved in the biosynthesis of archaeal membrane lipids. It
catalyses the reduction of all 8 double bonds in 2,3-bis-O-geranylgeranyl-sn-glycero-phospholipids
and all 4 double bonds in 3-O-geranylgeranyl-sn-glycerol phospholipids with comparable activity.
Unlike EC 1.3.1.101, 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase [NAD(P)H], this
enzyme shows no activity with NADPH, and requires a dedicated ferredoxin [1674].

References: [2665, 3319, 3316, 1674]

[EC 1.3.7.11 created 2013 as EC 1.3.99.34, transferred 2015 to EC 1.3.7.11 ]

EC 1.3.7.12
Accepted name: red chlorophyll catabolite reductase

Reaction: primary fluorescent chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster = red chloro-
phyll catabolite + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

Other name(s): RCCR; RCC reductase; red Chl catabolite reductase
Systematic name: primary fluorescent chlorophyll catabolite:ferredoxin oxidoreductase

Comments: The enzyme participates in chlorophyll degradation, which occurs during leaf senescence and
fruit ripening in higher plants. The reaction requires reduced ferredoxin, which is generated from
NADPH produced either through the pentose-phosphate pathway or by the action of photosys-
tem I [3209, 4270]. This reaction takes place while red chlorophyll catabolite is still bound to EC
1.14.15.17, pheophorbide a oxygenase [3070]. Depending on the plant species used as the source
of enzyme, one of two possible C-1 epimers of primary fluorescent chlorophyll catabolite (pFCC),
pFCC-1 or pFCC-2, is normally formed, with all genera or species within a family producing the
same isomer [3070, 1575]. After modification and export, pFCCs are eventually imported into the
vacuole, where the acidic environment causes their non-enzymic conversion into colourless break-
down products called non-fluorescent chlorophyll catabolites (NCCs) [4270].

References: [3209, 4270, 3070, 1575, 3210]

[EC 1.3.7.12 created 2007 as EC 1.3.1.80, transferred 2016 to EC 1.3.7.12]

EC 1.3.7.13
Accepted name: 3,8-divinyl protochlorophyllide a 8-vinyl-reductase (ferredoxin)

Reaction: protochlorophyllide a + 2 oxidized ferredoxin [iron-sulfur] cluster = 3,8-divinyl protochlorophyllide a
+ 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

Other name(s): bciB (gene name); cyano-type divinyl chlorophyllide a 8-vinyl-reductase
Systematic name: protochlorophyllide-a:ferredoxin C-81-oxidoreductase

Comments: The enzyme, found in many phototrophic bacteria, land plants, and some green and red algae, is in-
volved in the production of monovinyl versions of (bacterio)chlorophyll pigments from their divinyl
precursors. Binds two [4Fe-4S] clusters and an FAD cofactor. It can also act on 3,8-divinyl chloro-
phyllide a, 3,8-divinyl chlorophyll a, and chlorophyll c2. cf. EC 1.3.1.75, 3,8-divinyl protochlorophyl-
lide a 8-vinyl-reductase (NADPH).

References: [587, 3325, 1682]

185

http://www.enzyme-database.org/query.php?ec=1.3.7.11
http://www.enzyme-database.org/query.php?ec=1.3.7.12
http://www.enzyme-database.org/query.php?ec=1.3.7.13


[EC 1.3.7.13 created 2016]

EC 1.3.7.14
Accepted name: 3,8-divinyl chlorophyllide a reductase

Reaction: bacteriochlorophyllide g + 2 oxidized ferredoxin [iron-sulfur] cluster + ADP + phosphate = 3,8-
divinyl chlorophyllide a + 2 reduced ferredoxin [iron-sulfur] cluster + ATP + H2O + 2 H+

Systematic name: bacteriochlorophyllide-g:ferredoxin C-81-oxidoreductase
Comments: The enzyme, found only in bacteriochlorophyll b-producing bacteria, catalyses the introduction of a

C-8 ethylidene group. The enzyme contains a [4Fe-4S] cluster, and structurally resembles the Fe pro-
tein/MoFe protein complex of nitrogenase. It is very similar to EC 1.3.7.15, chlorophyllide a reduc-
tase, and is composed of three subunits. Two of them form the catalytic component, while the third
one functions as an ATP-dependent reductase component that catalyses the electron transfer from
ferredoxin to the catalytic component.

References: [3943, 3942]

[EC 1.3.7.14 created 2016]

EC 1.3.7.15
Accepted name: chlorophyllide a reductase

Reaction: (1) 3-deacetyl-3-vinylbacteriochlorophyllide a + 2 oxidized ferredoxin [iron-sulfur] cluster + ADP +
phosphate = chlorophyllide a + 2 reduced ferredoxin [iron-sulfur] cluster + ATP + H2O + 2 H+

(2) bacteriochlorophyllide a + 2 oxidized ferredoxin [iron-sulfur] cluster + ADP + phosphate = 3-
acetyl-3-devinylchlorophyllide a + 2 reduced ferredoxin [iron-sulfur] cluster + ATP + H2O + 2 H+

(3) 3-deacetyl-3-(1-hydroxyethyl)bacteriochlorophyllide a + 2 oxidized ferredoxin [iron-sulfur] clus-
ter + ADP + phosphate = 3-devinyl-3-(1-hydroxyethyl)chlorophyllide a + 2 reduced ferredoxin [iron-
sulfur] cluster + ATP + H2O + 2 H+

Other name(s): bchX (gene name); bchY (gene name); bchZ (gene name); COR
Systematic name: bacteriochlorophyllide-a:ferredoxin 7,8-oxidoreductase

Comments: The enzyme, together with EC 1.1.1.396, bacteriochlorophyllide-a dehydrogenase, and EC 4.2.1.165,
chlorophyllide-a 31-hydratase, is involved in the conversion of chlorophyllide a to bacteriochloro-
phyllide a. These enzymes can act in multiple orders, resulting in the formation of different interme-
diates, but the final product of the cumulative action of the three enzymes is always bacteriochloro-
phyllide a. This enzyme catalyses a trans-reduction of the B-ring; the product has the (7R,8R)-
configuration. In addition, the enzyme has a latent activity of EC 1.3.7.13, 3,8-divinyl protochloro-
phyllide a 8-vinyl-reductase (ferredoxin) [1390]. The enzyme contains a [4Fe-4S] cluster, and struc-
turally resembles the Fe protein/MoFe protein complex of nitrogenase (EC 1.18.6.1), which catalyses
an ATP-driven reduction.

References: [2814, 3943, 2131, 1390]

[EC 1.3.7.15 created 1965 as EC 1.3.99.35, modified 2012, transferred 2016 to EC 1.3.7.15]

EC 1.3.8 With a flavin as acceptor

EC 1.3.8.1
Accepted name: short-chain acyl-CoA dehydrogenase

Reaction: a short-chain acyl-CoA + electron-transfer flavoprotein = a short-chain trans-2,3-dehydroacyl-CoA +
reduced electron-transfer flavoprotein

Other name(s): butyryl-CoA dehydrogenase; butanoyl-CoA dehydrogenase; butyryl dehydrogenase; unsaturated
acyl-CoA reductase; ethylene reductase; enoyl-coenzyme A reductase; unsaturated acyl coenzyme
A reductase; butyryl coenzyme A dehydrogenase; short-chain acyl CoA dehydrogenase; short-chain
acyl-coenzyme A dehydrogenase; 3-hydroxyacyl CoA reductase; butanoyl-CoA:(acceptor) 2,3-
oxidoreductase; ACADS (gene name).
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Systematic name: short-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids

β-oxidation. The enzyme catalyses the oxidation of saturated short-chain acyl-CoA thioesters to give
a trans 2,3-unsaturated product by removal of the two pro-R-hydrogen atoms. The enzyme from beef
liver accepts substrates with acyl chain lengths of 3 to 8 carbon atoms. The highest activity was re-
ported with either butanoyl-CoA [1271] or pentanoyl-CoA [3468]. The enzyme from rat has only
10% activity with hexanoyl-CoA (compared to butanoyl-CoA) and no activity with octanoyl-CoA
[1634]. cf. EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA de-
hydrogenase, and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase.

References: [2366, 1271, 249, 3468, 3879, 1634, 2490]

[EC 1.3.8.1 created 1961 as EC 1.3.2.1, transferred 1964 to EC 1.3.99.2, transferred 2011 to EC 1.3.8.1, modified 2012]

EC 1.3.8.2
Accepted name: 4,4′-diapophytoene desaturase (4,4′-diapolycopene-forming)

Reaction: 15-cis-4,4′-diapophytoene + 4 FAD = all-trans-4,4′-diapolycopene + 4 FADH2 (overall reaction)
(1a) 15-cis-4,4′-diapophytoene + FAD = all-trans-4,4′-diapophytofluene + FADH2
(1b) all-trans-4,4′-diapophytofluene + FAD = all-trans-4,4′-diapo-ζ-carotene + FADH2
(1c) all-trans-4,4′-diapo-ζ-carotene + FAD = all-trans-4,4′-diaponeurosporene + FADH2
(1d) all-trans-4,4′-diaponeurosporene + FAD = all-trans-4,4′-diapolycopene + FADH2

Other name(s): dehydrosqualene desaturase (ambiguous); CrtN (ambiguous); 4,4′-diapophytoene:FAD oxidoreduc-
tase (ambiguous); 15-cis-4,4′-diapophytoene:FAD oxidoreductase; 4,4′-diapophytoene desaturase
(ambiguous)

Systematic name: 15-cis-4,4′-diapophytoene:FAD oxidoreductase (4,4′-diapolycopene-forming)
Comments: The enzyme catalyses four successive dehydrogenations, resulting in production of 4,4′-

diapolycopene. While the enzyme from Staphylococcus aureus was only shown to produce 4,4′-
diaponeurosporene in vivo [3821], it is able to catalyse the last reaction in vitro [4375].

References: [4208, 3107, 3108, 3821, 4375]

[EC 1.3.8.2 created 2011, modified 2011]

EC 1.3.8.3
Accepted name: (R)-benzylsuccinyl-CoA dehydrogenase

Reaction: (R)-2-benzylsuccinyl-CoA + electron-transfer flavoprotein = (E)-2-benzylidenesuccinyl-CoA + re-
duced electron-transfer flavoprotein

Other name(s): BbsG; (R)-benzylsuccinyl-CoA:(acceptor) oxidoreductase
Systematic name: (R)-benzylsuccinyl-CoA:electron transfer flavoprotein oxidoreductase

Comments: Requires FAD as prosthetic group. Unlike other acyl-CoA dehydrogenases, this enzyme exhibits high
substrate- and enantiomer specificity; it is highly specific for (R)-benzylsuccinyl-CoA and is inhib-
ited by (S)-benzylsuccinyl-CoA. Forms the third step in the anaerobic toluene metabolic pathway in
Thauera aromatica. Ferricenium ion is an effective artificial electron acceptor.

References: [2208, 2209]

[EC 1.3.8.3 created 2003 as EC 1.3.99.21, transferred 2012 to EC 1.3.8.3]

EC 1.3.8.4
Accepted name: isovaleryl-CoA dehydrogenase

Reaction: isovaleryl-CoA + electron-transfer flavoprotein = 3-methylcrotonyl-CoA + reduced electron-transfer
flavoprotein

Other name(s): isovaleryl-coenzyme A dehydrogenase; isovaleroyl-coenzyme A dehydrogenase; 3-methylbutanoyl-
CoA:(acceptor) oxidoreductase

Systematic name: 3-methylbutanoyl-CoA:electron-transfer flavoprotein oxidoreductase
Comments: Contains FAD as prosthetic group. Pentanoate can act as donor.
References: [155, 1635, 3802]
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[EC 1.3.8.4 created 1978 as EC 1.3.99.10, modified 1986, transferred 2012 to EC 1.3.8.4]

EC 1.3.8.5
Accepted name: 2-methyl-branched-chain-enoyl-CoA reductase

Reaction: 2-methylbutanoyl-CoA + electron-transfer flavoprotein = (E)-2-methylbut-2-enoyl-CoA + reduced
electron-transfer flavoprotein + H+

Systematic name: 2-methyl-branched-chain-acyl-CoA:electron-transfer flavoprotein 2-oxidoreductase
Comments: A flavoprotein (FAD) from Ascaris suum. The enzyme functions in shuttling reducing power from the

electron-transport chain to 2-methyl branched-chain enoyl CoA
References: [2019, 2020]

[EC 1.3.8.5 created 1992 as EC 1.3.1.52, transferred 2012 to EC 1.3.8.5]

EC 1.3.8.6
Accepted name: glutaryl-CoA dehydrogenase (ETF)

Reaction: glutaryl-CoA + electron-transfer flavoprotein = crotonyl-CoA + CO2 + reduced electron-transfer
flavoprotein (overall reaction)
(1a) glutaryl-CoA + electron-transfer flavoprotein = (E)-glutaconyl-CoA + reduced electron-transfer
flavoprotein
(1b) (E)-glutaconyl-CoA = crotonyl-CoA + CO2

Other name(s): glutaryl coenzyme A dehydrogenase; glutaryl-CoA:(acceptor) 2,3-oxidoreductase (decarboxylating);
glutaryl-CoA dehydrogenase

Systematic name: glutaryl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase (decarboxylating)
Comments: Contains FAD. The enzyme catalyses the oxidation of glutaryl-CoA to glutaconyl-CoA (which re-

mains bound to the enzyme), and the decarboxylation of the latter to crotonyl-CoA (cf. EC 4.1.1.70,
glutaconyl-CoA decarboxylase). FAD is the electron acceptor in the oxidation of the substrate, and
its reoxidation by electron-transfer flavoprotein completes the catalytic cycle. The anaerobic, sulfate-
reducing bacterium Desulfococcus multivorans contains two glutaryl-CoA dehydrogenases: a decar-
boxylating enzyme (this entry), and a non-decarboxylating enzyme that only catalyses the oxidation
to glutaconyl-CoA (EC 1.3.99.32).

References: [286, 1401, 897, 3124]

[EC 1.3.8.6 created 1972 as EC 1.3.99.7, transferred 2012 to EC 1.3.8.6, modified 2013]

EC 1.3.8.7
Accepted name: medium-chain acyl-CoA dehydrogenase

Reaction: a medium-chain acyl-CoA + electron-transfer flavoprotein = a medium-chain trans-2,3-dehydroacyl-
CoA + reduced electron-transfer flavoprotein

Other name(s): fatty acyl coenzyme A dehydrogenase (ambiguous); acyl coenzyme A dehydrogenase (ambiguous);
acyl dehydrogenase (ambiguous); fatty-acyl-CoA dehydrogenase (ambiguous); acyl CoA dehydroge-
nase (ambiguous); general acyl CoA dehydrogenase (ambiguous); medium-chain acyl-coenzyme A
dehydrogenase; acyl-CoA:(acceptor) 2,3-oxidoreductase (ambiguous); ACADM (gene name).

Systematic name: medium-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-

oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 4 to 16 carbon
atoms, but is most active with C8 to C12 compounds [691]. The enzyme from rat does not accept C16
at all and is most active with C6-C8 compounds [1634]. cf. EC 1.3.8.1, short-chain acyl-CoA dehy-
drogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain acyl-
CoA dehydrogenase.

References: [690, 691, 249, 1634, 3879, 1911, 2990, 3912]

[EC 1.3.8.7 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.7]
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EC 1.3.8.8
Accepted name: long-chain acyl-CoA dehydrogenase

Reaction: a long-chain acyl-CoA + electron-transfer flavoprotein = a long-chain trans-2,3-dehydroacyl-CoA +
reduced electron-transfer flavoprotein

Other name(s): palmitoyl-CoA dehydrogenase; palmitoyl-coenzyme A dehydrogenase; long-chain acyl-coenzyme A
dehydrogenase; long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase; ACADL (gene name).

Systematic name: long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids

β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 6 to at least
16 carbon atoms. The highest activity was found with C12, and the rates with C8 and C16 were 80 and
70%, respectively [1424]. The enzyme from rat can accept substrates with C8-C22. It is most active
with C14 and C16, and has no activity with C4, C6 or C24 [1634]. cf. EC 1.3.8.1, short-chain acyl-CoA
dehydrogenase, EC 1.3.8.8, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.9, very-long-chain
acyl-CoA dehydrogenase.

References: [690, 1424, 1346, 1634, 840]

[EC 1.3.8.8 created 1989 as EC 1.3.99.13, part transferred 2012 to EC 1.3.8.8]

EC 1.3.8.9
Accepted name: very-long-chain acyl-CoA dehydrogenase

Reaction: a very-long-chain acyl-CoA + electron-transfer flavoprotein = a very-long-chain trans-2,3-
dehydroacyl-CoA + reduced electron-transfer flavoprotein

Other name(s): ACADVL (gene name).
Systematic name: very-long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase

Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids
β-oxidation. The enzyme is most active toward long-chain acyl-CoAs such as C14, C16 and C18, but
is also active with very-long-chain acyl-CoAs up to 24 carbons. It shows no activity for substrates
of less than 12 carbons. Its specific activity towards palmitoyl-CoA is more than 10-fold that of the
long-chain acyl-CoA dehydrogenase [1698]. cf. EC 1.3.8.1, short-chain acyl-CoA dehydrogenase, EC
1.3.8.7, medium-chain acyl-CoA dehydrogenase, and EC 1.3.8.8, long-chain acyl-CoA dehydroge-
nase.

References: [1698, 101, 2476]

[EC 1.3.8.9 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, part transferred 2012 to EC 1.3.8.9]

EC 1.3.8.10
Accepted name: cyclohex-1-ene-1-carbonyl-CoA dehydrogenase

Reaction: cyclohex-1-ene-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1,5-diene-1-carbonyl-
CoA + reduced electron-transfer flavoprotein

Systematic name: cyclohex-1-ene-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditroph-

icus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism
during fermentation of benzoate and crotonate to acetate.

References: [2080]

[EC 1.3.8.10 created 2013]

EC 1.3.8.11
Accepted name: cyclohexane-1-carbonyl-CoA dehydrogenase

Reaction: cyclohexane-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1-ene-1-carbonyl-CoA +
reduced electron-transfer flavoprotein

Systematic name: cyclohexane-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditroph-

icus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism
during fermentation of benzoate and crotonate to acetate.
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References: [2080]

[EC 1.3.8.11 created 2013]

EC 1.3.8.12
Accepted name: (2S)-methylsuccinyl-CoA dehydrogenase

Reaction: (2S)-methylsuccinyl-CoA + electron-transfer flavoprotein = 2-methylfumaryl-CoA + reduced
electron-transfer flavoprotein

Other name(s): Mcd
Systematic name: (2S)-methylsuccinyl-CoA:electron-transfer flavoprotein oxidoreductase

Comments: The enzyme, characterized from the bacterium Rhodobacter sphaeroides, is involved in the
ethylmalonyl-CoA pathway for acetyl-CoA assimilation. The enzyme contains FAD.

References: [963]

[EC 1.3.8.12 created 2015]

EC 1.3.8.13
Accepted name: crotonobetainyl-CoA reductase

Reaction: γ-butyrobetainyl-CoA + electron-transfer flavoprotein = crotonobetainyl-CoA + reduced electron-
transfer flavoprotein

Other name(s): caiA (gene name)
Systematic name: γ-butyrobetainyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase

Comments: The enzyme has been purified from the bacterium Escherichia coli O44 K74, in which it forms a com-
plex with EC 2.8.3.21, L-carnitine CoA-transferase. The electron donor is believed to be an electron-
transfer flavoprotein (ETF) encoded by the fixA and fixB genes.

References: [3238, 3059, 943, 4099]

[EC 1.3.8.13 created 2017]

EC 1.3.8.14
Accepted name: L-prolyl-[peptidyl-carrier protein] dehydrogenase

Reaction: L-prolyl-[peptidyl-carrier protein] + 2 electron-transfer flavoprotein = 1H-pyrrole-2-carbonyl-
[peptidyl-carrier protein] + 2 reduced electron-transfer flavoprotein

Other name(s): pigA (gene name); bmp3 (gene name); pltE (gene name); redW (gene name); (L-prolyl)-[peptidyl-
carrier protein]:electron-transfer flavoprotein oxidoreductase

Systematic name: L-prolyl-[peptidyl-carrier protein]:electron-transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme participates in the biosynthesis of several pyrrole-containing compounds,

such as undecylprodigiosin, prodigiosin, pyoluteorin, and coumermycin A1. It is believed to catalyse
the formation of a ∆2-pyrrolin-2-carbonyl-[peptidyl-carrier protein] intermediate, followed by a two-
electron oxidation to 1H-pyrrol-2-carbonyl-[peptidyl-carrier protein].

References: [3867, 1396]

[EC 1.3.8.14 created 2017]

EC 1.3.98 With other, known, physiological acceptors

EC 1.3.98.1
Accepted name: dihydroorotate dehydrogenase (fumarate)

Reaction: (S)-dihydroorotate + fumarate = orotate + succinate
Other name(s): DHOdehase (ambiguous); dihydroorotate dehydrogenase (ambiguous); dihydoorotic acid dehydroge-

nase (ambiguous); DHOD (ambiguous); DHODase (ambiguous); dihydroorotate oxidase, pyr4 (gene
name)
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Systematic name: (S)-dihydroorotate:fumarate oxidoreductase
Comments: Binds FMN. The reaction, which takes place in the cytosol, is the only redox reaction in the de novo

biosynthesis of pyrimidine nucleotides. Molecular oxygen can replace fumarate in vitro. Other class 1
dihydroorotate dehydrogenases use either NAD+ (EC 1.3.1.14) or NADP+ (EC 1.3.1.15) as electron
acceptor. The membrane bound class 2 dihydroorotate dehydrogenase (EC 1.3.5.2) uses quinone as
electron acceptor.

References: [306, 3241, 2816, 4424, 1647, 565]

[EC 1.3.98.1 created 1961 as EC 1.3.3.1, transferred 2011 to EC 1.3.98.1]

[1.3.98.2 Transferred entry. fumarate reductase (CoM/CoB). Now EC 1.3.4.1, fumarate reductase (CoM/CoB)]

[EC 1.3.98.2 created 2014, deleted 2014]

EC 1.3.98.3
Accepted name: coproporphyrinogen dehydrogenase

Reaction: coproporphyrinogen III + 2 S-adenosyl-L-methionine = protoporphyrinogen IX + 2 CO2 + 2 L-
methionine + 2 5′-deoxyadenosine

Other name(s): oxygen-independent coproporphyrinogen-III oxidase; HemN; coproporphyrinogen III oxidase
Systematic name: coproporphyrinogen-III:S-adenosyl-L-methionine oxidoreductase (decarboxylating)

Comments: This enzyme differs from EC 1.3.3.3, coproporphyrinogen oxidase, by using S-adenosyl-L-methionine
(AdoMet) instead of oxygen as oxidant. It occurs mainly in bacteria, whereas eukaryotes use the
oxygen-dependent oxidase. The reaction starts by using an electron from the reduced form of the en-
zyme’s [4Fe-4S] cluster to split AdoMet into methionine and the radical 5′-deoxyadenosin-5′-yl. This
radical initiates attack on the 2-carboxyethyl groups, leading to their conversion into vinyl groups.
This conversion, —·CH-CH2-COO−→—CH=CH2 + CO2 + e− replaces the electron initially used.

References: [2158, 2157]

[EC 1.3.98.3 created 2004 as EC 1.3.99.22, transferred 2016 to EC 1.3.98.3]

EC 1.3.98.4
Accepted name: 5a,11a-dehydrotetracycline reductase

Reaction: tetracycline + oxidized coenzyme F420 = 5a,11a-dehydrotetracycline + reduced coenzyme F420
Other name(s): oxyR (gene name); 12-dehydrotetracycline dehydrogenase; dehydrooxytetracycline dehydrogenase;

12-dehydrotetracycline reductase
Systematic name: tetracycline:coenzyme F420 dehydrogenase

Comments: The enzyme, characterized from the bacteria Streptomyces aureofaciens and Streptomyces rimosus,
catalyses the last step in the biosynthesis of the tetracycline antibiotics tetracycline and oxytetracy-
cline.

References: [2479, 2545, 2480, 4112]

[EC 1.3.98.4 created 2016]

EC 1.3.99 With unknown physiological acceptors

[1.3.99.1 Deleted entry. succinate dehydrogenase. The activity is included in EC 1.3.5.1, succinate dehydrogenase (quinone).]

[EC 1.3.99.1 created 1961, deleted 2014]

[1.3.99.2 Transferred entry. butyryl-CoA dehydrogenase. Now EC 1.3.8.1, butyryl-CoA dehydrogenase.]

[EC 1.3.99.2 created 1961 as EC 1.3.2.1, transferred 1964 to EC 1.3.99.2, deleted 2011]

[1.3.99.3 Transferred entry. acyl-CoA dehydrogenase, now EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8,
long-chain acyl-CoA dehydrogenase and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase]

[EC 1.3.99.3 created 1961 as EC 1.3.2.2, transferred 1964 to EC 1.3.99.3, deleted 2012]
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EC 1.3.99.4
Accepted name: 3-oxosteroid 1-dehydrogenase

Reaction: a 3-oxosteroid + acceptor = a 3-oxo-∆1-steroid + reduced acceptor
Other name(s): 3-oxosteroid ∆1-dehydrogenase; ∆1-dehydrogenase; 3-ketosteroid-1-en-dehydrogenase; 3-

ketosteroid-∆1-dehydrogenase; 1-ene-dehydrogenase; 3-oxosteroid:(2,6-dichlorphenolindophenol)
∆1-oxidoreductase; 4-en-3-oxosteroid:(acceptor)-1-en-oxido-reductase; ∆1-steroid reductase; 3-
oxosteroid:(acceptor) ∆1-oxidoreductase

Systematic name: 3-oxosteroid:acceptor ∆1-oxidoreductase
References: [2217]

[EC 1.3.99.4 created 1965]

EC 1.3.99.5
Accepted name: 3-oxo-5α-steroid 4-dehydrogenase (acceptor)

Reaction: a 3-oxo-5α-steroid + acceptor = a 3-oxo-∆4-steroid + reduced acceptor
Other name(s): steroid 5α-reductase; 3-oxosteroid ∆4-dehydrogenase; 3-oxo-5α-steroid ∆4-dehydrogenase; steroid

∆4-5α-reductase; ∆4-3-keto steroid 5α-reductase; ∆4-3-oxo steroid reductase; ∆4-3-ketosteroid5α-
oxidoreductase; ∆4-3-oxosteroid-5α-reductase; 3-keto-∆4-steroid-5α-reductase; 5α-reductase; testos-
terone 5α-reductase; 4-ene-3-ketosteroid-5α-oxidoreductase; ∆4-5α-dehydrogenase; 3-oxo-5α-
steroid:(acceptor) ∆4-oxidoreductase; tesI (gene name)

Systematic name: 3-oxo-5α-steroid:acceptor ∆4-oxidoreductase
Comments: A flavoprotein. This bacterial enzyme, characterized from Comamonas testosteroni, is involved in

androsterone degradation. cf. EC 1.3.1.22, 3-oxo-5α-steroid 4-dehydrogenase (NADP+).
References: [2217, 1026, 1568]

[EC 1.3.99.5 created 1965, modified 2012]

EC 1.3.99.6
Accepted name: 3-oxo-5β-steroid 4-dehydrogenase

Reaction: a 3-oxo-5β-steroid + acceptor = a 3-oxo-∆4-steroid + reduced acceptor
Other name(s): 3-oxo-5β-steroid:(acceptor) ∆4-oxidoreductase

Systematic name: 3-oxo-5β-steroid:acceptor ∆4-oxidoreductase
References: [753]

[EC 1.3.99.6 created 1972]

[1.3.99.7 Transferred entry. glutaryl-CoA dehydrogenase. Now EC 1.3.8.6, glutaryl-CoA dehydrogenase]

[EC 1.3.99.7 created 1972, deleted 2012]

EC 1.3.99.8
Accepted name: 2-furoyl-CoA dehydrogenase

Reaction: 2-furoyl-CoA + H2O + acceptor = S-(5-hydroxy-2-furoyl)-CoA + reduced acceptor
Other name(s): furoyl-CoA hydroxylase; 2-furoyl coenzyme A hydroxylase; 2-furoyl coenzyme A dehydrogenase;

2-furoyl-CoA:(acceptor) 5-oxidoreductase (hydroxylating)
Systematic name: 2-furoyl-CoA:acceptor 5-oxidoreductase (hydroxylating)

Comments: A copper protein. The oxygen atom of the -OH produced is derived from water, not O2; the actual
oxidative step is probably dehydrogenation of a hydrated form -CHOH-CH2- to -C(OH)=CH-, which
tautomerizes non-enzymically to -CO-CH2-, giving (5-oxo-4,5-dihydro-2-furoyl)-CoA. Methylene
blue, nitro blue, tetrazolium and a membrane fraction from Pseudomonas putida can act as acceptors.

References: [1948]

[EC 1.3.99.8 created 1976]

[1.3.99.9 Transferred entry. β-cyclopiazonate dehydrogenase. Now EC 1.21.99.1, β-cyclopiazonate dehydrogenase]
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[EC 1.3.99.9 created 1976, deleted 2002]

[1.3.99.10 Transferred entry. isovaleryl-CoA dehydrogenase. Now EC 1.3.8.4, isovaleryl-CoA dehydrogenase]

[EC 1.3.99.10 created 1978, modified 1986, deleted 2012]

[1.3.99.11 Transferred entry. dihydroorotate dehydrogenase. As the acceptor is now known, the enzyme has been transferred
to EC 1.3.5.2, dihydroorotate dehydrogenase]

[EC 1.3.99.11 created 1983, deleted 2009]

EC 1.3.99.12
Accepted name: 2-methylacyl-CoA dehydrogenase

Reaction: 2-methylbutanoyl-CoA + acceptor = 2-methylbut-2-enoyl-CoA + reduced acceptor
Other name(s): branched-chain acyl-CoA dehydrogenase; 2-methyl branched chain acyl-CoA dehydrogenase; 2-

methylbutanoyl-CoA:(acceptor) oxidoreductase
Systematic name: 2-methylbutanoyl-CoA:acceptor oxidoreductase

Comments: Also oxidizes 2-methylpropanoyl-CoA. Not identical with EC 1.3.8.1 (butyryl-CoA dehydrogenase),
EC 1.3.8.7 (medium-chain acyl-CoA dehydrogenase), EC 1.3.8.8 (long-chain acyl-CoA dehydroge-
nase), EC 1.3.8.9 (very-long-chain acyl-CoA dehydrogenase) or EC 1.3.99.10 (isovaleryl-CoA dehy-
drogenase).

References: [1633]

[EC 1.3.99.12 created 1986]

[1.3.99.13 Transferred entry. long-chain-acyl-CoA dehydrogenase. Now EC 1.3.8.8, long-chain-acyl-CoA dehydrogenase]

[EC 1.3.99.13 created 1989, deleted 2012]

EC 1.3.99.14
Accepted name: cyclohexanone dehydrogenase

Reaction: cyclohexanone + acceptor = cyclohex-2-enone + reduced acceptor
Other name(s): cyclohexanone:(acceptor) 2-oxidoreductase

Systematic name: cyclohexanone:acceptor 2-oxidoreductase
Comments: 2,6-Dichloroindophenol can act as acceptor. The corresponding ketones of cyclopentane and cyclo-

heptane cannot act as donors.
References: [741]

[EC 1.3.99.14 created 1992]

[1.3.99.15 Transferred entry. benzoyl-CoA reductase. Now EC 1.3.7.8.]

[EC 1.3.99.15 created 1999, deleted 2011]

EC 1.3.99.16
Accepted name: isoquinoline 1-oxidoreductase

Reaction: isoquinoline + acceptor + H2O = isoquinolin-1(2H)-one + reduced acceptor
Systematic name: isoquinoline:acceptor 1-oxidoreductase (hydroxylating)

Comments: The enzyme from Pseudomonas diminuta is specific towards N-containing N-heterocyclic substrates,
including isoquinoline, isoquinolin-5-ol, phthalazine and quinazoline. Electron acceptors include 1,2-
benzoquinone, cytochrome c, ferricyanide, iodonitrotetrazolium chloride, nitroblue tetrazolium, Mel-
dola blue and phenazine methosulfate.

References: [2187, 2186]

[EC 1.3.99.16 created 1999]
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EC 1.3.99.17
Accepted name: quinoline 2-oxidoreductase

Reaction: quinoline + acceptor + H2O = quinolin-2(1H)-one + reduced acceptor
Systematic name: quinoline:acceptor 2-oxidoreductase (hydroxylating)

Comments: Quinolin-2-ol, quinolin-7-ol, quinolin-8-ol, 3-, 4- and 8-methylquinolines and 8-chloroquinoline are
substrates. Iodonitrotetrazolium chloride can act as an electron acceptor.

References: [215, 3935, 2984, 3344]

[EC 1.3.99.17 created 1999]

EC 1.3.99.18
Accepted name: quinaldate 4-oxidoreductase

Reaction: quinaldate + acceptor + H2O = kynurenate + reduced acceptor
Other name(s): quinaldic acid 4-oxidoreductase

Systematic name: quinoline-2-carboxylate:acceptor 4-oxidoreductase (hydroxylating)
Comments: The enzyme from Pseudomonas sp. AK2 also acts on quinoline-8-carboxylate, whereas that from

Serratia marcescens 2CC-1 will oxidize nicotinate; quinaldate is a substrate for both of these en-
zymes. 2,4,6-Trinitrobenzene sulfonate, 1,4-benzoquinone, 1,2-naphthoquinone, nitroblue tetra-
zolium, thionine and menadione will serve as an electron acceptor for the former enzyme and fer-
ricyanide for the latter; Meldola blue, iodonitrotetrazolium chloride, phenazine methosulfate, 2,6-
dichlorophenolindophenol and cytochrome c will act as electron acceptors for both.

References: [3327, 1005]

[EC 1.3.99.18 created 1999]

EC 1.3.99.19
Accepted name: quinoline-4-carboxylate 2-oxidoreductase

Reaction: quinoline-4-carboxylate + acceptor + H2O = 2-oxo-1,2-dihydroquinoline-4-carboxylate + reduced
acceptor

Other name(s): quinaldic acid 4-oxidoreductase; quinoline-4-carboxylate:acceptor 2-oxidoreductase (hydroxylating)
Systematic name: quinoline-4-carboxylate:acceptor 2-oxidoreductase (hydroxylating)

Comments: A molybdenum—iron—sulfur flavoprotein with molybdopterin cytosine dinucleotide as the molyb-
denum cofactor. Quinoline, 4-methylquinoline and 4-chloroquinoline can also serve as substrates for
the enzyme from Agrobacterium sp. 1B. Iodonitrotetrazolium chloride, thionine, menadione and 2,6-
dichlorophenolindophenol can act as electron acceptors.

References: [216]

[EC 1.3.99.19 created 1999, modified 2006]

[1.3.99.20 Transferred entry. EC 1.3.99.20, 4-hydroxybenzoyl-CoA reductase. Now EC 1.3.7.9, 4-hydroxybenzoyl-CoA
reductase.]

[EC 1.3.99.20 created 2000, deleted 2011]

[1.3.99.21 Transferred entry. (R)-benzylsuccinyl-CoA dehydrogenase. Now EC 1.3.8.3, (R)-benzylsuccinyl-CoA dehydroge-
nase]

[EC 1.3.99.21 created 2003 as EC 1.3.99.21, deleted 2012]

[1.3.99.22 Transferred entry. coproporphyrinogen dehydrogenase. Now EC 1.3.98.3, coproporphyrinogen dehydrogenase]

[EC 1.3.99.22 created 2004, deleted 2016]

EC 1.3.99.23
Accepted name: all-trans-retinol 13,14-reductase

Reaction: all-trans-13,14-dihydroretinol + acceptor = all-trans-retinol + reduced acceptor
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Other name(s): retinol saturase; RetSat; (13,14)-all-trans-retinol saturase; all-trans-retinol:all-trans-13,14-
dihydroretinol saturase

Systematic name: all-trans-13,14-dihydroretinol:acceptor 13,14-oxidoreductase
Comments: The reaction is only known to occur in the opposite direction to that given above, with the enzyme

being specific for all-trans-retinol as substrate. Neither all-trans-retinoic acid nor 9-cis, 11-cis or 13-
cis-retinol isomers are substrates. May play a role in the metabolism of vitamin A.

References: [2593]

[EC 1.3.99.23 created 2005]

EC 1.3.99.24
Accepted name: 2-amino-4-deoxychorismate dehydrogenase

Reaction: (2S)-2-amino-4-deoxychorismate + FMN = 3-(1-carboxyvinyloxy)anthranilate + FMNH2
Other name(s): ADIC dehydrogenase; 2-amino-2-deoxyisochorismate dehydrogenase; SgcG

Systematic name: (2S)-2-amino-4-deoxychorismate:FMN oxidoreductase
Comments: The sequential action of EC 2.6.1.86, 2-amino-4-deoxychorismate synthase and this enzyme leads

to the formation of the benzoxazolinate moiety of the enediyne antitumour antibiotic C-1027 [2126,
4404].

References: [2126, 4404]

[EC 1.3.99.24 created 2008]

EC 1.3.99.25
Accepted name: carvone reductase

Reaction: (1) (+)-dihydrocarvone + acceptor = (–)-carvone + reduced acceptor
(2) (–)-isodihydrocarvone + acceptor = (+)-carvone + reduced acceptor

Systematic name: (+)-dihydrocarvone:acceptor 1,6-oxidoreductase
Comments: This enzyme participates in the carveol and dihydrocarveol degradation pathway of the Gram-positive

bacterium Rhodococcus erythropolis DCL14. The enzyme has not been purified, and requires an un-
known cofactor, which is different from NAD+, NADP+ or a flavin.

References: [3999]

[EC 1.3.99.25 created 2008]

EC 1.3.99.26
Accepted name: all-trans-ζ-carotene desaturase

Reaction: all-trans-ζ-carotene + 2 acceptor = all-trans-lycopene + 2 reduced acceptor (overall reaction)
(1a) all-trans-ζ-carotene + acceptor = all-trans-neurosporene + reduced acceptor
(1b) all-trans-neurosporene + acceptor = all-trans-lycopene + reduced acceptor

Other name(s): Crtlb; phytoene desaturase (ambiguous); 2-step phytoene desaturase (ambiguous); two-step phytoene
desaturase (ambiguous); CrtI (ambiguous)

Systematic name: all-trans-ζ-carotene:acceptor oxidoreductase
Comments: This enzyme is involved in carotenoid biosynthesis.
References: [1649]

[EC 1.3.99.26 created 2011]

EC 1.3.99.27
Accepted name: 1-hydroxycarotenoid 3,4-desaturase

Reaction: 1-hydroxy-1,2-dihydrolycopene + acceptor = 1-hydroxy-3,4-didehydro-1,2-dihydrolycopene + re-
duced acceptor

Other name(s): CrtD; hydroxyneurosporene desaturase; carotenoid 3,4-dehydrogenase; 1-hydroxy-carotenoid 3,4-
dehydrogenase
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Systematic name: 1-hydroxy-1,2-dihydrolycopene:acceptor oxidoreductase
Comments: The enzymes from Rubrivivax gelatinosus and Rhodobacter sphaeroides prefer the acyclic

carotenoids (e.g. 1-hydroxy-1,2-dihydroneurosporene, 1-hydroxy-1,2-dihydrolycopene) as substrates.
The conversion rate for the 3,4-desaturation of the monocyclic 1′-hydroxy-1′,2′-dihydro-γ-carotene is
lower [3632, 56]. The enzyme from the marine bacterium strain P99-3 shows high activity with the
monocyclic carotenoid 1′-hydroxy-1′,2′-dihydro-γ-carotene [3848]. The enzyme from Rhodobacter
sphaeroides utilizes molecular oxygen as the electron acceptor in vitro [56]. However, oxygen is un-
likely to be the natural electron acceptor under anaerobic conditions.

References: [3848, 3632, 56]

[EC 1.3.99.27 created 2011]

EC 1.3.99.28
Accepted name: phytoene desaturase (neurosporene-forming)

Reaction: 15-cis-phytoene + 3 acceptor = all-trans-neurosporene + 3 reduced acceptor (overall reaction)
(1a) 15-cis-phytoene + acceptor = all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor = all-trans-ζ-carotene + reduced acceptor
(1c) all-trans-ζ-carotene + acceptor = all-trans-neurosporene + reduced acceptor

Other name(s): 3-step phytoene desaturase; three-step phytoene desaturase; phytoene desaturase (ambiguous); CrtI
(ambiguous)

Systematic name: 15-cis-phytoene:acceptor oxidoreductase (neurosporene-forming)
Comments: This enzyme is involved in carotenoid biosynthesis and catalyses up to three desaturation steps (cf.

EC 1.3.99.29 [phytoene desaturase (ζ-carotene-forming)], EC 1.3.99.30 [phytoene desaturase (3,4-
didehydrolycopene-forming)], EC 1.3.99.31 [phytoene desaturase (lycopene-forming)]). The enzyme
is activated by FAD. NAD+, NADP+ or ATP show no activating effect [3106].

References: [3106, 4104]

[EC 1.3.99.28 created 2011]

EC 1.3.99.29
Accepted name: phytoene desaturase (ζ-carotene-forming)

Reaction: 15-cis-phytoene + 2 acceptor = all-trans-ζ-carotene + 2 reduced acceptor (overall reaction)
(1a) 15-cis-phytoene + acceptor = all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor = all-trans-ζ-carotene + reduced acceptor

Other name(s): CrtIa; 2-step phytoene desaturase (ambiguous); two-step phytoene desaturase (ambiguous)
Systematic name: 15-cis-phytoene:acceptor oxidoreductase (ζ-carotene-forming)

Comments: The enzyme is involved in carotenoid biosynthesis and catalyses up to two desaturation steps (cf. EC
1.3.99.28 [phytoene desaturase (neurosporene-forming)], EC 1.3.99.30 [phytoene desaturase (3,4-
didehydrolycopene-forming)] and EC 1.3.99.31 [phytoene desaturase (lycopene-forming)]).

References: [1649]

[EC 1.3.99.29 created 2011]

EC 1.3.99.30
Accepted name: phytoene desaturase (3,4-didehydrolycopene-forming)

Reaction: 15-cis-phytoene + 5 acceptor = all-trans-3,4-didehydrolycopene + 5 reduced acceptor (overall reac-
tion)
(1a) 15-cis-phytoene + acceptor = all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor = all-trans-ζ-carotene + reduced acceptor
(1c) all-trans-ζ-carotene + acceptor = all-trans-neurosporene + reduced acceptor
(1d) all-trans-neurosporene + acceptor = all-trans-lycopene + reduced acceptor
(1e) all-trans-lycopene + acceptor = all-trans-3,4-didehydrolycopene + reduced acceptor

Other name(s): 5-step phytoene desaturase; five-step phytoene desaturase; phytoene desaturase (ambiguous); Al-1
Systematic name: 15-cis-phytoene:acceptor oxidoreductase (3,4-didehydrolycopene-forming)
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Comments: This enzyme is involved in carotenoid biosynthesis and catalyses up to five desaturation steps (cf.
EC 1.3.99.28 [phytoene desaturase (neurosporene-forming)], EC 1.3.99.29 [phytoene desaturase (ζ-
carotene-forming)] and EC 1.3.99.31 [phytoene desaturase (lycopene-forming)]).

References: [1427, 967]

[EC 1.3.99.30 created 2011]

EC 1.3.99.31
Accepted name: phytoene desaturase (lycopene-forming)

Reaction: 15-cis-phytoene + 4 acceptor = all-trans-lycopene + 4 reduced acceptor (overall reaction)
(1a) 15-cis-phytoene + acceptor = all-trans-phytofluene + reduced acceptor
(1b) all-trans-phytofluene + acceptor = all-trans-ζ-carotene + reduced acceptor
(1c) all-trans-ζ-carotene + acceptor = all-trans-neurosporene + reduced acceptor
(1d) all-trans-neurosporene + acceptor = all-trans-lycopene + reduced acceptor

Other name(s): 4-step phytoene desaturase; four-step phytoene desaturase; phytoene desaturase (ambiguous); CrtI
(ambiguous)

Systematic name: 15-cis-phytoene:acceptor oxidoreductase (lycopene-forming)
Comments: Requires FAD. The enzyme is involved in carotenoid biosynthesis and catalyses up to four desatura-

tion steps (cf. EC 1.3.99.28 [phytoene desaturase (neurosporene-forming)], EC 1.3.99.29 [phytoene
desaturase (ζ-carotene-forming)] and EC 1.3.99.30 [phytoene desaturase (3,4-didehydrolycopene-
forming)]).

References: [1058]

[EC 1.3.99.31 created 2011]

EC 1.3.99.32
Accepted name: glutaryl-CoA dehydrogenase (acceptor)

Reaction: glutaryl-CoA + acceptor = (E)-glutaconyl-CoA + reduced acceptor
Other name(s): GDHDes; nondecarboxylating glutaryl-coenzyme A dehydrogenase; nondecarboxylating glutaconyl-

coenzyme A-forming GDH; glutaryl-CoA dehydrogenase (non-decarboxylating)
Systematic name: glutaryl-CoA:acceptor 2,3-oxidoreductase (non-decarboxylating)

Comments: The enzyme contains FAD. The anaerobic, sulfate-reducing bacterium Desulfococcus multivorans
contains two glutaryl-CoA dehydrogenases: a decarboxylating enzyme (EC 1.3.8.6), and a nonde-
carboxylating enzyme (this entry). The two enzymes cause different structural changes around the
glutaconyl carboxylate group, primarily due to the presence of either a tyrosine or a valine residue,
respectively, at the active site.

References: [4229, 4228]

[EC 1.3.99.32 created 2012, modified 2013]

EC 1.3.99.33
Accepted name: urocanate reductase

Reaction: dihydrourocanate + acceptor = urocanate + reduced acceptor
Other name(s): urdA (gene name)

Systematic name: dihydrourocanate:acceptor oxidoreductase
Comments: The enzyme from the bacterium Shewanella oneidensis MR-1 contains a noncovalently-bound FAD

and a covalently-bound FMN. It functions as part of an anaerobic electron transfer chain that uti-
lizes urocanate as the terminal electron acceptor. The activity has been demonstrated with the artificial
donor reduced methylviologen.

References: [332]

[EC 1.3.99.33 created 2013]

[1.3.99.34 Transferred entry. 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase (donor). Now classified as EC
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1.3.7.11, 2,3-bis-O-geranylgeranyl-sn-glycero-phospholipid reductase.]

[EC 1.3.99.34 created 2013, deleted 2015]

[1.3.99.35 Transferred entry. chlorophyllide a reductase. Now EC 1.3.7.15, chlorophyllide a reductase]

[EC 1.3.99.35 created 2014, deleted 2016]

EC 1.3.99.36
Accepted name: cypemycin cysteine dehydrogenase (decarboxylating)

Reaction: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys + acceptor = C3.19,S21-cyclocypemycin(1-18)-L-Ala-L-
Leu-N-thioethenyl-L-valinamide + CO2 + H2S + reduced acceptor

Other name(s): cypemycin decarboxylase; CypD
Systematic name: cypemycin(1-18)-L-Cys-L-Leu-L-Val-L-Cys:acceptor oxidoreductase (decarboxylating, cyclizing)

Comments: Cypemycin, isolated from the bacterium Streptomyces sp. OH-4156, is a peptide antibiotic, member
of the linaridins, a class of posttranslationally modified ribosomally synthesized peptides. The en-
zyme decarboxylates and reduces the C-terminal L-cysteine residue, producing a reactive ethenethiol
group that reacts with a dethiolated cysteine upstream to form an aminovinyl-methyl-cysteine loop
that is important for the antibiotic activity of the mature peptide.

References: [625]

[EC 1.3.99.36 created 2014]

EC 1.3.99.37
Accepted name: 1-hydroxy-2-isopentenylcarotenoid 3,4-desaturase

Reaction: (1) dihydroisopentenyldehydrorhodopin + acceptor = isopentenyldehydrorhodopin + reduced accep-
tor
(2) dihydrobisanhydrobacterioruberin + acceptor = bisanhydrobacterioruberin + reduced acceptor

Other name(s): crtD (gene name)
Systematic name: dihydroisopentenyldehydrorhodopin:acceptor 3,4-oxidoreductase

Comments: The enzyme, isolated from the archaeon Haloarcula japonica, is involved in the biosynthesis of the
C50 carotenoid bacterioruberin. In this pathway it catalyses the desaturation of the C-3,4 double bond
in dihydroisopentenyldehydrorhodopin and the desaturation of the C-3′,4′ double bond in dihydro-
bisanhydrobacterioruberin.

References: [4339]

[EC 1.3.99.37 created 2015]

EC 1.3.99.38
Accepted name: menaquinone-9 β-reductase

Reaction: menaquinone-9 + reduced acceptor = β-dihydromenaquinone-9 + acceptor
Other name(s): MenJ

Systematic name: menaquinone-9 oxidoreductase (β-dihydromenaquinone-9-forming)
Comments: The enzyme from the bacterium Mycobacterium tuberculosis reduces the β-isoprene unit of

menaquinone-9, forming the predominant form of menaquinone found in mycobacteria. Contains
FAD.

References: [3973]

[EC 1.3.99.38 created 2017]

EC 1.3.99.39
Accepted name: carotenoid φ-ring synthase

Reaction: carotenoid β-end group + 2 acceptor = carotenoid φ-end group + 2 reduced acceptor
Other name(s): crtU (gene name)
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Systematic name: carotenoid β-ring:acceptor oxidoreductase/methyltranferase (φ-ring forming)
Comments: The enzyme, found in green sulfur bacteria, some cyanobacteria and some actinobacteria, introduces

additional double bonds to the carotenoid β-end group, leading to aromatization of the ionone ring.
As a result, one of the methyl groups at C-1 is transferred to position C-2. It is involved in the biosyn-
thesis of carotenoids with φ-type aromatic end groups such as chlorobactene, β-isorenieratene, and
isorenieratene.

References: [2638, 2062, 1076]

[EC 1.3.99.39 created 2018]

EC 1.3.99.40
Accepted name: carotenoid χ-ring synthase

Reaction: carotenoid β-end group + 2 acceptor = carotenoid χ-end group + 2 reduced acceptor
Other name(s): crtU (gene name); cruE (gene name)

Systematic name: carotenoid β-ring:acceptor oxidoreductase/methyltranferase (χ-ring forming)
Comments: The enzyme, found in purple sulfur bacteria (Chromatiaceae) and some cyanobacteria, is involved in

the biosynthesis of carotenoids that contain χ-type end groups, such as okenone, renierapurpurin, and
synechoxanthin.

References: [1257, 4051]

[EC 1.3.99.40 created 2018]

EC 1.4 Acting on the CH-NH2 group of donors
This subclass contains the amino-acid dehydrogenases and the amine oxidases. In most cases, the imine formed is hydrolysed to
give an oxo-group and NH3. This is indicated as ”(deaminating)”. Sub-subclasses are based on the acceptor: NAD+ or NADP+

(EC 1.4.1), a cytochrome (EC 1.4.2), oxygen (EC 1.4.3), a disulfide (EC 1.4.4), an iron-sulfur protein (EC 1.4.7), or some other
acceptor (EC 1.4.99).

EC 1.4.1 With NAD+ or NADP+ as acceptor

EC 1.4.1.1
Accepted name: alanine dehydrogenase

Reaction: L-alanine + H2O + NAD+ = pyruvate + NH3 + NADH + H+

Other name(s): AlaDH; L-alanine dehydrogenase; NAD-linked alanine dehydrogenase; α-alanine dehydrogenase;
NAD-dependent alanine dehydrogenase; alanine oxidoreductase; NADH-dependent alanine dehydro-
genase

Systematic name: L-alanine:NAD+ oxidoreductase (deaminating)
References: [2840, 3004, 4374]

[EC 1.4.1.1 created 1961]

EC 1.4.1.2
Accepted name: glutamate dehydrogenase

Reaction: L-glutamate + H2O + NAD+ = 2-oxoglutarate + NH3 + NADH + H+

Other name(s): glutamic dehydrogenase; glutamate dehydrogenase (NAD); glutamate oxidoreductase; glutamic
acid dehydrogenase; L-glutamate dehydrogenase; NAD-dependent glutamate dehydrogenase; NAD-
dependent glutamic dehydrogenase; NAD-glutamate dehydrogenase; NAD-linked glutamate dehydro-
genase; NAD-linked glutamic dehydrogenase; NAD-specific glutamic dehydrogenase; NAD-specific
glutamate dehydrogenase; NAD:glutamate oxidoreductase; NADH-linked glutamate dehydrogenase

Systematic name: L-glutamate:NAD+ oxidoreductase (deaminating)
References: [1068, 2804, 2922, 3556]
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[EC 1.4.1.2 created 1961]

EC 1.4.1.3
Accepted name: glutamate dehydrogenase [NAD(P)+]

Reaction: L-glutamate + H2O + NAD(P)+ = 2-oxoglutarate + NH3 + NAD(P)H + H+

Other name(s): glutamic dehydrogenase; glutamate dehydrogenase [NAD(P)]
Systematic name: L-glutamate:NAD(P)+ oxidoreductase (deaminating)

References: [2880, 3556, 3672]

[EC 1.4.1.3 created 1961]

EC 1.4.1.4
Accepted name: glutamate dehydrogenase (NADP+)

Reaction: L-glutamate + H2O + NADP+ = 2-oxoglutarate + NH3 + NADPH + H+

Other name(s): glutamic dehydrogenase; dehydrogenase, glutamate (nicotinamide adenine dinucleotide (phosphate));
glutamic acid dehydrogenase; L-glutamate dehydrogenase; L-glutamic acid dehydrogenase; NAD(P)-
glutamate dehydrogenase; NAD(P)H-dependent glutamate dehydrogenase; glutamate dehydrogenase
(NADP)

Systematic name: L-glutamate:NADP+ oxidoreductase (deaminating)
References: [676, 1289, 3490, 3556]

[EC 1.4.1.4 created 1961]

EC 1.4.1.5
Accepted name: L-amino-acid dehydrogenase

Reaction: an L-amino acid + H2O + NAD+ = a 2-oxo carboxylate + NH3 + NADH + H+

Systematic name: L-amino-acid:NAD+ oxidoreductase (deaminating)
Comments: Acts on aliphatic amino acids.
References: [2805]

[EC 1.4.1.5 created 1961]

[1.4.1.6 Deleted entry. D-proline reductase. Now included with EC 1.21.4.1, D-proline reductase (dithiol)]

[EC 1.4.1.6 created 1961, deleted 1982]

EC 1.4.1.7
Accepted name: serine 2-dehydrogenase

Reaction: L-serine + H2O + NAD+ = 3-hydroxypyruvate + NH3 + NADH + H+

Other name(s): L-serine:NAD oxidoreductase (deaminating); serine dehydrogenase
Systematic name: L-serine:NAD+ 2-oxidoreductase (deaminating)

References: [2058]

[EC 1.4.1.7 created 1972, modified 2003]

EC 1.4.1.8
Accepted name: valine dehydrogenase (NADP+)

Reaction: L-valine + H2O + NADP+ = 3-methyl-2-oxobutanoate + NH3 + NADPH + H+

Other name(s): valine dehydrogenase (nicotinanide adenine dinucleotide phosphate); valine dehydrogenase (NADP)
Systematic name: L-valine:NADP+ oxidoreductase (deaminating)

References: [1796, 1797, 1798]

[EC 1.4.1.8 created 1972]
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EC 1.4.1.9
Accepted name: leucine dehydrogenase

Reaction: L-leucine + H2O + NAD+ = 4-methyl-2-oxopentanoate + NH3 + NADH + H+

Other name(s): L-leucine dehydrogenase; L-leucine:NAD+ oxidoreductase, deaminating; LeuDH
Systematic name: L-leucine:NAD+ oxidoreductase (deaminating)

Comments: Also acts on isoleucine, valine, norvaline and norleucine.
References: [3312, 4489]

[EC 1.4.1.9 created 1972]

EC 1.4.1.10
Accepted name: glycine dehydrogenase

Reaction: glycine + H2O + NAD+ = glyoxylate + NH3 + NADH + H+

Systematic name: glycine:NAD+ oxidoreductase (deaminating)
References: [1230]

[EC 1.4.1.10 created 1972]

EC 1.4.1.11
Accepted name: L-erythro-3,5-diaminohexanoate dehydrogenase

Reaction: L-erythro-3,5-diaminohexanoate + H2O + NAD+ = (S)-5-amino-3-oxohexanoate + NH3 + NADH +
H+

Other name(s): L-3,5-diaminohexanoate dehydrogenase
Systematic name: L-erythro-3,5-diaminohexanoate:NAD+ oxidoreductase (deaminating)

References: [176]

[EC 1.4.1.11 created 1976]

EC 1.4.1.12
Accepted name: 2,4-diaminopentanoate dehydrogenase

Reaction: (2R,4S)-2,4-diaminopentanoate + H2O + NAD(P)+ = (2R)-2-amino-4-oxopentanoate + NH3 +
NAD(P)H + H+

Other name(s): 2,4-diaminopentanoic acid C4 dehydrogenase
Systematic name: (2R,4S)-2,4-diaminopentanoate:NAD(P)+ oxidoreductase (deaminating)

Comments: Also acts, more slowly, on 2,5-diaminohexanoate forming 2-amino-5-oxohexanoate, which then cy-
clizes non-enzymically to 1-pyrroline-2-methyl-5-carboxylate. It has equal activity with NAD+ and
NADP+ [cf. EC 1.4.1.26, 2,4-diaminopentanoate dehydrogenase (NAD+)].

References: [3575, 3614, 3937]

[EC 1.4.1.12 created 1976, modified 2017]

EC 1.4.1.13
Accepted name: glutamate synthase (NADPH)

Reaction: 2 L-glutamate + NADP+ = L-glutamine + 2-oxoglutarate + NADPH + H+ (overall reaction)
(1a) L-glutamate + NH3 = L-glutamine + H2O
(1b) L-glutamate + NADP+ + H2O = NH3 + 2-oxoglutarate + NADPH + H+

Other name(s): glutamate (reduced nicotinamide adenine dinucleotide phosphate) synthase; L-glutamate synthase;
L-glutamate synthetase; glutamate synthetase (NADP); NADPH-dependent glutamate synthase;
glutamine-ketoglutaric aminotransferase; NADPH-glutamate synthase; NADPH-linked glutamate
synthase; glutamine amide-2-oxoglutarate aminotransferase (oxidoreductase, NADP); L-glutamine:2-
oxoglutarate aminotransferase, NADPH oxidizing; GOGAT

Systematic name: L-glutamate:NADP+ oxidoreductase (transaminating)
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Comments: Binds FMN, FAD, 2 [4Fe-4S] clusters and 1 [3Fe-4S] cluster. The reaction takes place in the direc-
tion of L-glutamate production. The protein is composed of two subunits, α and β. The α subunit is
composed of two domains, one hydrolysing L-glutamine to NH3 and L-glutamate (cf. EC 3.5.1.2, glu-
taminase), the other combining the produced NH3 with 2-oxoglutarate to produce a second molecule
of L-glutamate (cf. EC 1.4.1.4, glutamate dehydrogenase [NADP+]). The β subunit transfers electrons
to the cosubstrate. The NH3 is channeled through a 31 Å channel in the active protein. In the absence
of the β subunit, coupling between the two domains of the α subunit is compromised and some am-
monium can be produced. In the intact alphaβ complex, ammonia production only takes place as part
of the overall reaction.

References: [2546, 3844, 4022, 3133]

[EC 1.4.1.13 created 1972 as EC 2.6.1.53, transferred 1976 to EC 1.4.1.13, modified 2001, modified 2012]

EC 1.4.1.14
Accepted name: glutamate synthase (NADH)

Reaction: 2 L-glutamate + NAD+ = L-glutamine + 2-oxoglutarate + NADH + H+

Other name(s): glutamate (reduced nicotinamide adenine dinucleotide) synthase; NADH: GOGAT; L-glutamate syn-
thase (NADH); L-glutamate synthetase; NADH-glutamate synthase; NADH-dependent glutamate syn-
thase; glutamate synthase (NADH2)

Systematic name: L-glutamate:NAD+ oxidoreductase (transaminating)
Comments: A flavoprotein (FMN).
References: [337]

[EC 1.4.1.14 created 1978]

EC 1.4.1.15
Accepted name: lysine dehydrogenase

Reaction: L-lysine + NAD+ = 1,2-didehydropiperidine-2-carboxylate + NH3 + NADH + H+

Systematic name: L-lysine:NAD+ oxidoreductase (deaminating, cyclizing)
References: [446]

[EC 1.4.1.15 created 1978]

EC 1.4.1.16
Accepted name: diaminopimelate dehydrogenase

Reaction: meso-2,6-diaminoheptanedioate + H2O + NADP+ = L-2-amino-6-oxoheptanedioate + NH3 +
NADPH + H+

Other name(s): meso-α,ε-diaminopimelate dehydrogenase; meso-diaminopimelate dehydrogenase
Systematic name: meso-2,6-diaminoheptanedioate:NADP+ oxidoreductase (deaminating)

References: [2557, 2558]

[EC 1.4.1.16 created 1981]

EC 1.4.1.17
Accepted name: N-methylalanine dehydrogenase

Reaction: N-methyl-L-alanine + H2O + NADP+ = pyruvate + methylamine + NADPH + H+

Systematic name: N-methyl-L-alanine:NADP+ oxidoreductase (demethylating, deaminating)
References: [2256]

[EC 1.4.1.17 created 1984]

EC 1.4.1.18
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Accepted name: lysine 6-dehydrogenase
Reaction: L-lysine + NAD+ = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + NADH + H+ + NH3 (overall reac-

tion)
(1a) L-lysine + NAD+ + H2O = (S)-2-amino-6-oxohexanoate + NADH + H+ + NH3
(1b) (S)-2-amino-6-oxohexanoate = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + H2O (spontaneous)

Other name(s): L-lysine ε-dehydrogenase; L-lysine 6-dehydrogenase; LysDH
Systematic name: L-lysine:NAD+ 6-oxidoreductase (deaminating)

Comments: The enzyme is highly specific for L-lysine as substrate, although S-(2-aminoethyl)-L-cysteine can
act as a substrate, but more slowly. While the enzyme from Agrobacterium tumefaciens can use only
NAD+, that from the thermophilic bacterium Geobacillus stearothermophilus can also use NADP+,
but more slowly [2556, 1486].

References: [2556, 2559, 2555, 1486]

[EC 1.4.1.18 created 1989, modified 2006, modified 2011]

EC 1.4.1.19
Accepted name: tryptophan dehydrogenase

Reaction: L-tryptophan + NAD(P)+ + H2O = (indol-3-yl)pyruvate + NH3 + NAD(P)H + H+

Other name(s): NAD(P)+-L-tryptophan dehydrogenase; L-tryptophan dehydrogenase; L-Trp-dehydrogenase; TDH
Systematic name: L-tryptophan:NAD(P)+ oxidoreductase (deaminating)

Comments: Activated by Ca2+.
References: [3982]

[EC 1.4.1.19 created 1989]

EC 1.4.1.20
Accepted name: phenylalanine dehydrogenase

Reaction: L-phenylalanine + H2O + NAD+ = phenylpyruvate + NH3 + NADH + H+

Other name(s): L-phenylalanine dehydrogenase; PHD
Systematic name: L-phenylalanine:NAD+ oxidoreductase (deaminating)

Comments: The enzymes from Bacillus badius and Sporosarcina ureae are highly specific for L-phenylalanine;
that from Bacillus sphaericus also acts on L-tyrosine.

References: [126, 127]

[EC 1.4.1.20 created 1989]

EC 1.4.1.21
Accepted name: aspartate dehydrogenase

Reaction: L-aspartate + H2O + NAD(P)+ = oxaloacetate + NH3 + NAD(P)H + H+

Other name(s): NAD-dependent aspartate dehydrogenase; NADH2-dependent aspartate dehydrogenase; NADP+-
dependent aspartate dehydrogenase

Systematic name: L-aspartate:NAD(P)+ oxidoreductase (deaminating)
Comments: The enzyme is strictly specific for L-aspartate as substrate. Catalyses the first step in NAD biosynthe-

sis from aspartate. The enzyme has a higher affinity for NAD+ than NADP+ [4344].
References: [4344, 2864, 2059]

[EC 1.4.1.21 created 2005]

[1.4.1.22 Deleted entry. ornithine cyclodeaminase. It was pointed out during the public-review process that there is no
overall consumption of NAD+ during the reaction. As a result, transfer of the enzyme from EC 4.3.1.12 was not necessary and
EC 1.4.1.22 was withdrawn before being made official]

[EC 1.4.1.22 created 2006, deleted 2006]
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EC 1.4.1.23
Accepted name: valine dehydrogenase (NAD+)

Reaction: L-valine + H2O + NAD+ = 3-methyl-2-oxobutanoate + NH3 + NADH + H+

Systematic name: L-valine:NAD+ oxidoreductase (deaminating)
Comments: The enzyme from Streptomyces spp. has no activity with NADP+ [cf. EC 1.4.1.8, valine dehydroge-

nase (NADP+)].
References: [4015, 2746]

[EC 1.4.1.23 created 2012]

EC 1.4.1.24
Accepted name: 3-dehydroquinate synthase II

Reaction: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + H2O + NAD+ = 3-dehydroquinate + NH3 + NADH
+ H+

Other name(s): DHQ synthase II; MJ1249 (gene name); aroB′ (gene name)
Systematic name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate:NAD+ oxidoreductase (deaminating)

Comments: The enzyme, which was isolated from the archaeon Methanocaldococcus jannaschii, plays a key role
in an alternative pathway for the biosynthesis of 3-dehydroquinate (DHQ), an intermediate of the
canonical pathway for the biosynthesis of aromatic amino acids. The enzyme catalyses a two-step
reaction - an oxidative deamination, followed by cyclization.

References: [4191]

[EC 1.4.1.24 created 2012]

EC 1.4.1.25
Accepted name: L-arginine dehydrogenase

Reaction: L-arginine + H2O + NAD(P)+ = 5-guanidino-2-oxopentanoate + NH3 + NAD(P)H + H+

Other name(s): dauB (gene name); anabolic L-arginine dehydrogenase
Systematic name: L-arginine:NAD(P)+ oxidoreductase (deaminating)

Comments: The enzyme, which has been isolated from the bacterium Pseudomonas aeruginosa PAO1, forms with
EC 1.4.99.6, D-arginine dehydrogenase, a two-enzyme complex involved in the racemization of D-
and L-arginine.

References: [2221]

[EC 1.4.1.25 created 2017]

EC 1.4.1.26
Accepted name: 2,4-diaminopentanoate dehydrogenase (NAD+)

Reaction: (2R,4S)-2,4-diaminopentanoate + H2O + NAD+ = (2R)-2-amino-4-oxopentanoate + NH3 + NADH +
H+

Other name(s): DAPDH (ambiguous)
Systematic name: (2R,4S)-2,4-diaminopentanoate:NADP+ oxidoreductase (deaminating)

Comments: The enzyme, characterized from an unknown bacterium in an environmental sample, has some ac-
tivity with (2R,4R)-2,4-diaminopentanoate. It has very low activity with NADP+ (cf. EC 1.4.1.12,
2,4-diaminopentanoate dehydrogenase).

References: [1028]

[EC 1.4.1.26 created 2017]

EC 1.4.2 With a cytochrome as acceptor

EC 1.4.2.1

204

http://www.enzyme-database.org/query.php?ec=1.4.1.23
http://www.enzyme-database.org/query.php?ec=1.4.1.24
http://www.enzyme-database.org/query.php?ec=1.4.1.25
http://www.enzyme-database.org/query.php?ec=1.4.1.26
http://www.enzyme-database.org/query.php?ec=1.4.2.1


Accepted name: glycine dehydrogenase (cytochrome)
Reaction: glycine + H2O + 2 ferricytochrome c = glyoxylate + NH3 + 2 ferrocytochrome c + 2 H+

Other name(s): glycine—cytochrome c reductase
Systematic name: glycine:ferricytochrome-c oxidoreductase (deaminating)

References: [3306]

[EC 1.4.2.1 created 1976]

EC 1.4.3 With oxygen as acceptor

EC 1.4.3.1
Accepted name: D-aspartate oxidase

Reaction: D-aspartate + H2O + O2 = oxaloacetate + NH3 + H2O2
Other name(s): aspartic oxidase; D-aspartic oxidase

Systematic name: D-aspartate:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD).
References: [836, 3648, 3649]

[EC 1.4.3.1 created 1961]

EC 1.4.3.2
Accepted name: L-amino-acid oxidase

Reaction: an L-amino acid + H2O + O2 = a 2-oxo carboxylate + NH3 + H2O2
Other name(s): ophio-amino-acid oxidase

Systematic name: L-amino-acid:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD).
References: [2501, 4173]

[EC 1.4.3.2 created 1961]

EC 1.4.3.3
Accepted name: D-amino-acid oxidase

Reaction: a D-amino acid + H2O + O2 = a 2-oxo carboxylate + NH3 + H2O2
Other name(s): ophio-amino-acid oxidase; L-amino acid:O2 oxidoreductase; new yellow enzyme

Systematic name: D-amino-acid:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FAD). Wide specificity for D-amino acids. Also acts on glycine.
References: [837, 839, 838, 2434, 2501]

[EC 1.4.3.3 created 1961]

EC 1.4.3.4
Accepted name: monoamine oxidase

Reaction: RCH2NHR′ + H2O + O2 = RCHO + R′NH2 + H2O2
Other name(s): adrenalin oxidase; adrenaline oxidase; amine oxidase (ambiguous); amine oxidase (flavin-containing);

amine:oxygen oxidoreductase (deaminating) (flavin-containing); epinephrine oxidase; MAO; MAO
A; MAO B; MAO-A; MAO-B; monoamine oxidase A; monoamine oxidase B; monoamine:O2 oxi-
doreductase (deaminating); polyamine oxidase (ambiguous); serotonin deaminase; spermidine oxi-
dase (ambiguous); spermine oxidase (ambiguous); tyraminase; tyramine oxidase

Systematic name: amine:oxygen oxidoreductase (deaminating)
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Comments: A mitochondrial outer-membrane flavoprotein (FAD) that catalyses the oxidative deamination of
neurotransmitters and biogenic amines [921]. Acts on primary amines, and also on some secondary
and tertiary amines. It differs from EC 1.4.3.21, primary-amine oxidase as it can oxidize secondary
and tertiary amines but not methylamine. This enzyme is inhibited by acetylenic compounds such as
chlorgyline, 1-deprenyl and pargyline but, unlike EC 1.4.3.21 and EC 1.4.3.22 (diamine oxidase), it is
not inhibited by semicarbazide.

References: [319, 860, 921, 3489, 3895, 641, 4393, 4392]

[EC 1.4.3.4 created 1961, modified 1983 (EC 1.4.3.9 created 1972, incorporated 1984), modified 2008]

EC 1.4.3.5
Accepted name: pyridoxal 5′-phosphate synthase

Reaction: (1) pyridoxamine 5′-phosphate + H2O + O2 = pyridoxal 5′-phosphate + NH3 + H2O2
(2) pyridoxine 5′-phosphate + O2 = pyridoxal 5′-phosphate + H2O2

Other name(s): pyridoxamine 5′-phosphate oxidase; pyridoxamine phosphate oxidase; pyridoxine (pyridoxam-
ine)phosphate oxidase; pyridoxine (pyridoxamine) 5′-phosphate oxidase; pyridoxaminephosphate
oxidase (EC 1.4.3.5: deaminating); PMP oxidase; pyridoxol-5′-phosphate:oxygen oxidoreductase
(deaminating) (incorrect); pyridoxamine-phosphate oxidase; PdxH

Systematic name: pyridoxamine-5′-phosphate:oxygen oxidoreductase (deaminating)
Comments: A flavoprotein (FMN). In Escherichia coli, the coenzyme pyridoxal 5′-phosphate is synthesized de

novo by a pathway that involves EC 1.2.1.72 (erythrose-4-phosphate dehydrogenase), EC 1.1.1.290
(4-phosphoerythronate dehydrogenase), EC 2.6.1.52 (phosphoserine transaminase), EC 1.1.1.262 (4-
hydroxythreonine-4-phosphate dehydrogenase), EC 2.6.99.2 (pyridoxine 5′-phosphate synthase) and
EC 1.4.3.5 (with pyridoxine 5′-phosphate as substrate). N4′-Substituted pyridoxamine derivatives are
also oxidized in reaction (1) to form pyridoxal 5-phosphate and the corresponding primary amine.

References: [609, 4075, 2821, 2109, 2675, 3278, 4450]

[EC 1.4.3.5 created 1961, modified 2006]

[1.4.3.6 Deleted entry. amine oxidase (copper-containing). This was classified on the basis of cofactor content rather than
reaction catalysed and is now known to contain two distinct enzyme activities. It has been replaced by two enzymes, EC 1.4.3.21
(primary-amine oxidase) and EC 1.4.3.22 (diamine oxidase)]

[EC 1.4.3.6 created 1961, modified 1983, modified 1989, deleted 2008]

EC 1.4.3.7
Accepted name: D-glutamate oxidase

Reaction: D-glutamate + H2O + O2 = 2-oxoglutarate + NH3 + H2O2
Other name(s): D-glutamic oxidase; D-glutamic acid oxidase

Systematic name: D-glutamate:oxygen oxidoreductase (deaminating)
References: [3205, 3975]

[EC 1.4.3.7 created 1972]

EC 1.4.3.8
Accepted name: ethanolamine oxidase

Reaction: ethanolamine + H2O + O2 = glycolaldehyde + NH3 + H2O2
Systematic name: ethanolamine:oxygen oxidoreductase (deaminating)

Comments: A cobamide-protein.
References: [2735]

[EC 1.4.3.8 created 1972]

[1.4.3.9 Deleted entry. tyramine oxidase. Now included with EC 1.4.3.4 amine oxidase (flavin-containing)]
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[EC 1.4.3.9 created 1972, deleted 1984]

EC 1.4.3.10
Accepted name: putrescine oxidase

Reaction: putrescine + O2 + H2O = 4-aminobutanal + NH3 + H2O2
Systematic name: putrescine:oxygen oxidoreductase (deaminating)

Comments: A flavoprotein (FAD). 4-Aminobutanal condenses non-enzymically to 1-pyrroline.
References: [802, 4301]

[EC 1.4.3.10 created 1976]

EC 1.4.3.11
Accepted name: L-glutamate oxidase

Reaction: L-glutamate + O2 + H2O = 2-oxoglutarate + NH3 + H2O2
Other name(s): glutamate (acceptor) dehydrogenase; glutamate oxidase; glutamic acid oxidase; glutamic dehydroge-

nase (acceptor); L-glutamic acid oxidase
Systematic name: L-glutamate:oxygen oxidoreductase (deaminating)

Comments: A flavoprotein (FAD).The enzyme from Azotobacter previously listed under this number, which did
not produce H2O2, was a crude cell-free extract that probably contained catalase.

References: [2097]

[EC 1.4.3.11 created 1976, modified 1989]

EC 1.4.3.12
Accepted name: cyclohexylamine oxidase

Reaction: cyclohexylamine + O2 + H2O = cyclohexanone + NH3 + H2O2
Systematic name: cyclohexylamine:oxygen oxidoreductase (deaminating)

Comments: A flavoprotein (FAD). Some other cyclic amines can act instead of cyclohexylamine, but not simple
aliphatic and aromatic amides.

References: [3902]

[EC 1.4.3.12 created 1978]

EC 1.4.3.13
Accepted name: protein-lysine 6-oxidase

Reaction: [protein]-L-lysine + O2 + H2O = [protein]-(S)-2-amino-6-oxohexanoate + NH3 + H2O2
Other name(s): lysyl oxidase

Systematic name: protein-L-lysine:oxygen 6-oxidoreductase (deaminating)
Comments: Also acts on protein 5-hydroxylysine. This enzyme catalyses the final known enzymic step required

for collagen and elastin cross-linking in the biosynthesis of normal mature extracellular matrices
[2925]. These reactions play an important role for the development, elasticity and extensibility of
connective tissue. The enzyme is also active on free amines, such as cadaverine or benzylamine
[2925, 1795]. Some isoforms can also use [protein]-N(6)-acetyl-L-lysine as substrate deacetamidat-
ing the substrate [3212].

References: [1398, 3142, 3625, 2925, 1795, 3212, 1925, 4284, 2335]

[EC 1.4.3.13 created 1980, modified 1983]

EC 1.4.3.14
Accepted name: L-lysine oxidase

Reaction: L-lysine + O2 + H2O = 6-amino-2-oxohexanoate + NH3 + H2O2
Other name(s): L-lysine α-oxidase; L-lysyl-α-oxidase

Systematic name: L-lysine:oxygen 2-oxidoreductase (deaminating)
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Comments: Also acts, more slowly, on L-ornithine, L-phenylalanine, L-arginine and L-histidine.
References: [2095, 2314]

[EC 1.4.3.14 created 1981]

EC 1.4.3.15
Accepted name: D-glutamate(D-aspartate) oxidase

Reaction: (1) D-glutamate + H2O + O2 = 2-oxoglutarate + NH3 + H2O2
(2) D-aspartate + H2O + O2 = oxaloacetate + NH3 + H2O2

Other name(s): D-glutamic-aspartic oxidase; D-monoaminodicarboxylic acid oxidase
Systematic name: D-glutamate(D-aspartate):oxygen oxidoreductase (deaminating)

Comments: A flavoprotein (FAD). D-Glutamate and D-aspartate are oxidized at the same rate. Other D-
monoaminodicarboxylates, and other D- and L-amino acids, are not oxidized. cf. EC 1.4.3.7, D-
glutamate oxidase and EC 1.4.3.1, D-aspartate oxidase.

References: [2581]

[EC 1.4.3.15 created 1983, modified 2012]

EC 1.4.3.16
Accepted name: L-aspartate oxidase

Reaction: L-aspartate + O2 = iminosuccinate + H2O2
Other name(s): NadB; Laspo; AO

Systematic name: L-aspartate:oxygen oxidoreductase
Comments: A flavoprotein (FAD). L-Aspartate oxidase catalyses the first step in the de novo biosynthesis of

NAD+ in some bacteria. O2 can be replaced by fumarate as electron acceptor, yielding succinate
[363]. The ability of the enzyme to use both O2 and fumarate in cofactor reoxidation enables it to
function under both aerobic and anaerobic conditions [363]. Iminosuccinate can either be hydrolysed
to form oxaloacetate and NH3 or can be used by EC 2.5.1.72, quinolinate synthase, in the production
of quinolinate. The enzyme is a member of the succinate dehydrogenase/fumarate-reductase family of
enzymes [363].

References: [2742, 2635, 3841, 2466, 363, 1843]

[EC 1.4.3.16 created 1984, modified 2008]

[1.4.3.17 Transferred entry. tryptophan α,β-oxidase. Now EC 1.3.3.10, tryptophan α,β-oxidase. Enzyme was incorrectly
classified as acting on a CH-NH bond rather than a CH-CH bond]

[EC 1.4.3.17 created 2000, deleted 2003]

[1.4.3.18 Deleted entry. cytokinin oxidase. Not approved as the enzyme was shown to be a dehydrogenase and not an oxidase
(see EC 1.5.99.12, cytokinin dehydrogenase)]

[EC 1.4.3.18 proposed 2000]

EC 1.4.3.19
Accepted name: glycine oxidase

Reaction: glycine + H2O + O2 = glyoxylate + NH3 + H2O2 (overall reaction)
(1a) glycine + O2 = 2-iminoacetate + H2O2
(1b) 2-iminoacetate + H2O = glyoxylate + NH3

Systematic name: glycine:oxygen oxidoreductase (deaminating)
Comments: A flavoenzyme containing non-covalently bound FAD. The enzyme from Bacillus subtilis is active

with glycine, sarcosine, N-ethylglycine, D-alanine, D-α-aminobutyrate, D-proline, D-pipecolate and
N-methyl-D-alanine. It differs from EC 1.4.3.3, D-amino-acid oxidase, due to its activity on sarcosine
and D-pipecolate. The intermediate 2-iminoacetate is used directly by EC 2.8.1.10, thiazole synthase.

References: [1749, 2800]
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[EC 1.4.3.19 created 2002, modified 2012]

EC 1.4.3.20
Accepted name: L-lysine 6-oxidase

Reaction: L-lysine + O2 + H2O = (S)-2-amino-6-oxohexanoate + H2O2 + NH3
Other name(s): L-lysine-ε-oxidase; Lod; LodA; marinocine

Systematic name: L-lysine:oxygen 6-oxidoreductase (deaminating)
Comments: Differs from EC 1.4.3.13, protein-lysine 6-oxidase, by using free L-lysine rather than the protein-

bound form. N2-Acetyl-L-lysine is also a substrate, but N6-acetyl-L-lysine, which has an acetyl group
at position 6, is not a substrate. Also acts on L-ornithine, D-lysine and 4-hydroxy-L-lysine, but more
slowly. The amines cadaverine and putrescine are not substrates [1231].

References: [2311, 1231]

[EC 1.4.3.20 created 2006, modified 2011]

EC 1.4.3.21
Accepted name: primary-amine oxidase

Reaction: RCH2NH2 + H2O + O2 = RCHO + NH3 + H2O2
Other name(s): amine oxidase (ambiguous); amine oxidase (copper-containing); amine oxidase (pyridoxal contain-

ing) (incorrect); benzylamine oxidase (incorrect); CAO (ambiguous); copper amine oxidase (ambigu-
ous); Cu-amine oxidase (ambiguous); Cu-containing amine oxidase (ambiguous); diamine oxidase
(incorrect); diamino oxhydrase (incorrect); histamine deaminase (ambiguous); histamine oxidase (am-
biguous); monoamine oxidase (ambiguous); plasma monoamine oxidase (ambiguous); polyamine
oxidase (ambiguous); semicarbazide-sensitive amine oxidase (ambiguous); SSAO (ambiguous)

Systematic name: primary-amine:oxygen oxidoreductase (deaminating)
Comments: A group of enzymes that oxidize primary monoamines but have little or no activity towards diamines,

such as histamine, or towards secondary and tertiary amines. They are copper quinoproteins (2,4,5-
trihydroxyphenylalanine quinone) and, unlike EC 1.4.3.4, monoamine oxidase, are sensitive to inhibi-
tion by carbonyl-group reagents, such as semicarbazide. In some mammalian tissues the enzyme also
functions as a vascular-adhesion protein (VAP-1).

References: [1443, 3894, 2325, 4212, 2182, 1584, 90, 3338, 2906, 40]

[EC 1.4.3.21 created 2007 (EC 1.4.3.6 created 1961, part-incorporated 2008)]

EC 1.4.3.22
Accepted name: diamine oxidase

Reaction: histamine + H2O + O2 = (imidazol-4-yl)acetaldehyde + NH3 + H2O2
Other name(s): amine oxidase (ambiguous); amine oxidase (copper-containing) (ambiguous); CAO (ambiguous);

Cu-containing amine oxidase (ambiguous); copper amine oxidase (ambiguous); diamine oxidase
(ambiguous); diamino oxhydrase (ambiguous); histaminase; histamine deaminase (incorrect);
semicarbazide-sensitive amine oxidase (incorrect); SSAO (incorrect)

Systematic name: histamine:oxygen oxidoreductase (deaminating)
Comments: A group of enzymes that oxidize diamines, such as histamine, and also some primary monoamines

but have little or no activity towards secondary and tertiary amines. They are copper quinoproteins
(2,4,5-trihydroxyphenylalanine quinone) and, like EC 1.4.3.21 (primary-amine oxidase) but unlike
EC 1.4.3.4 (monoamine oxidase), they are sensitive to inhibition by carbonyl-group reagents, such as
semicarbazide.

References: [4433, 686, 553, 1584, 942]

[EC 1.4.3.22 created 2007 (EC 1.4.3.6 created 1961, part-incorporated 2008)]

EC 1.4.3.23
Accepted name: 7-chloro-L-tryptophan oxidase
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Reaction: 7-chloro-L-tryptophan + O2 = 2-imino-3-(7-chloroindol-3-yl)propanoate + H2O2
Other name(s): RebO

Systematic name: 7-chloro-L-tryptophan:oxygen oxidoreductase
Comments: Contains a noncovalently bound FAD [2801, 1585]. This enzyme catalyses a step in the biosynthesis

of rebeccamycin, an indolocarbazole alkaloid produced by the bacterium Lechevalieria aerocoloni-
genes. During catalysis, the bound FAD is reoxidized at the expense of molecular oxygen, produc-
ing one molecule of hydrogen peroxide. The enzyme shows significant preference for 7-chloro-L-
tryptophan over L-tryptophan [2801].

References: [2801, 1585]

[EC 1.4.3.23 created 2010]

EC 1.4.3.24
Accepted name: pseudooxynicotine oxidase

Reaction: 4-(methylamino)-1-(pyridin-3-yl)butan-1-one + H2O + O2 = 4-oxo-4-(pyridin-3-yl)butanal + methy-
lamine + H2O2

Systematic name: 4-(methylamino)-1-(pyridin-3-yl)butan-1-one:oxygen oxidoreductase (methylamine releasing)
Comments: Contains one non-covalently bound FAD molecule per dimer. This enzyme, characterized from the

soil bacterium Pseudomonas sp. HZN6, is involved the nicotine degradation.
References: [3080]

[EC 1.4.3.24 created 2012]

EC 1.4.3.25
Accepted name: L-arginine oxidase

Reaction: L-arginine + H2O + O2 = 5-guanidino-2-oxopentanoate + NH3 + H2O2
Systematic name: L-arginine:oxygen oxidoreductase (deaminating)

Comments: Contains FAD. The enzyme from cyanobacteria can also act on other basic amino acids with lower
activity. The enzyme from the bacterium Pseudomonas sp. TPU 7192 is highly specific.

References: [2542, 3017, 1166, 2444]

[EC 1.4.3.25 created 2017]

EC 1.4.4 With a disulfide as acceptor

[1.4.4.1 Transferred entry. D-proline reductase (dithiol). Now EC 1.21.4.1, D-proline reductase (dithiol)]

[EC 1.4.4.1 created 1972, modified 1982 (EC 1.4.1.6 created 1961, incorporated 1982), deleted 2003]

EC 1.4.4.2
Accepted name: glycine dehydrogenase (aminomethyl-transferring)

Reaction: glycine + [glycine-cleavage complex H protein]-N6-lipoyl-L-lysine = [glycine-cleavage complex H
protein]-S-aminomethyl-N6-dihydrolipoyl-L-lysine + CO2

Other name(s): P-protein; glycine decarboxylase; glycine-cleavage complex; glycine:lipoylprotein oxidoreductase
(decarboxylating and acceptor-aminomethylating); protein P1; glycine dehydrogenase (decarboxylat-
ing); glycine cleavage system P-protein; glycine-cleavage complex P-protein

Systematic name: glycine:H-protein-lipoyllysine oxidoreductase (decarboxylating, acceptor-amino-methylating)
Comments: A pyridoxal-phosphate protein. A component of the glycine cleavage system, which is composed of

four components that only loosely associate: the P protein (EC 1.4.4.2), the T protein (EC 2.1.2.10,
aminomethyltransferase), the L protein (EC 1.8.1.4, dihydrolipoyl dehydrogenase) and the lipoyl-
bearing H protein [2764]. Previously known as glycine synthase.

References: [1513, 2983, 2764]
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[EC 1.4.4.2 created 1984, modified 2003, modified 2006, modified 2013]

EC 1.4.5 With a quinone or other compound as acceptor

EC 1.4.5.1
Accepted name: D-amino acid dehydrogenase (quinone)

Reaction: a D-amino acid + H2O + a quinone = a 2-oxo carboxylate + NH3 + a quinol
Other name(s): DadA

Systematic name: D-amino acid:quinone oxidoreductase (deaminating)
Comments: An iron-sulfur flavoprotein (FAD). The enzyme from the bacterium Helicobacter pylori is highly spe-

cific for D-proline, while the enzyme from the bacterium Escherichia coli B is most active with D-
alanine, D-phenylalanine and D-methionine. This enzyme may be the same as EC 1.4.99.6.

References: [2879, 3813]

[EC 1.4.5.1 created 2010]

EC 1.4.7 With an iron-sulfur protein as acceptor

EC 1.4.7.1
Accepted name: glutamate synthase (ferredoxin)

Reaction: 2 L-glutamate + 2 oxidized ferredoxin = L-glutamine + 2-oxoglutarate + 2 reduced ferredoxin + 2 H+

(overall reaction)
(1a) L-glutamate + NH3 = L-glutamine + H2O
(1b) L-glutamate + 2 oxidized ferredoxin + H2O = NH3 + 2-oxoglutarate + 2 reduced ferredoxin + 2
H+

Other name(s): ferredoxin-dependent glutamate synthase; ferredoxin-glutamate synthase; glutamate synthase
(ferredoxin-dependent)

Systematic name: L-glutamate:ferredoxin oxidoreductase (transaminating)
Comments: Binds a [3Fe-4S] cluster as well as FAD and FMN. The protein is composed of two domains, one hy-

drolysing L-glutamine to NH3 and L-glutamate (cf. EC 3.5.1.2, glutaminase), the other combining the
produced NH3 with 2-oxoglutarate to produce a second molecule of L-glutamate. The NH3 is chan-
neled through a 24 Å channel in the active protein. No hydrolysis of glutamine takes place without
ferredoxin and 2-oxoglutarate being bound to the protein [3995, 3996].

References: [1147, 2159, 3134, 2747, 3995, 3996]

[EC 1.4.7.1 created 1976, modified 2012]

EC 1.4.9 With a copper protein as acceptor

EC 1.4.9.1
Accepted name: methylamine dehydrogenase (amicyanin)

Reaction: methylamine + H2O + 2 amicyanin = formaldehyde + NH3 + 2 reduced amicyanin
Other name(s): amine dehydrogenase; primary-amine dehydrogenase; amine: (acceptor) oxidoreductase (deaminat-

ing); primary-amine:(acceptor) oxidoreductase (deaminating)
Systematic name: methylamine:amicyanin oxidoreductase (deaminating)

Comments: Contains tryptophan tryptophylquinone (TTQ) cofactor. The enzyme oxidizes aliphatic monoamines
and diamines, histamine and ethanolamine, but not secondary and tertiary amines, quaternary ammo-
nium salts or aromatic amines.

References: [241, 902, 904, 523, 2508]

[EC 1.4.9.1 created 1978 as EC 1.4.99.3, modified 1986, transferred 2011 to EC 1.4.98.1, transferred 2011 to EC 1.4.9.1]
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EC 1.4.9.2
Accepted name: aralkylamine dehydrogenase (azurin)

Reaction: ArCH2NH2 + H2O + 2 azurin = ArCHO + NH3 + 2 reduced azurin
Other name(s): aromatic amine dehydrogenase; arylamine dehydrogenase; tyramine dehydrogenase; aralky-

lamine:(acceptor) oxidoreductase (deaminating)
Systematic name: aralkylamine:azurin oxidoreductase (deaminating)

Comments: Phenazine methosulfate can act as acceptor. Acts on aromatic amines and, more slowly, on some
long-chain aliphatic amines, but not on methylamine or ethylamine

References: [1695, 1619, 1620, 754, 3723]

[EC 1.4.9.2 created 1986 as EC 1.4.99.4, transferred 2011 to EC 1.4.9.2]

EC 1.4.98 With a copper protein as acceptor

[1.4.98.1 Transferred entry. amine dehydrogenase. Now EC 1.4.9.1, methylamine dehydrogenase (amicyanin) ]

[EC 1.4.98.1 created 1978 as EC 1.4.99.3, modified 1986, transferred 2011 to EC 1.4.98.1, deleted 2011]

EC 1.4.99 With unknown physiological acceptors

[1.4.99.1 Transferred entry. D-amino-acid dehydrogenase. Now listed as EC 1.4.99.6, D-arginine dehydrogenase]

[EC 1.4.99.1 created 1972, deleted 2015]

EC 1.4.99.2
Accepted name: taurine dehydrogenase

Reaction: taurine + H2O + acceptor = 2-sulfoacetaldehyde + NH3 + reduced acceptor
Other name(s): taurine:(acceptor) oxidoreductase (deaminating)

Systematic name: taurine:acceptor oxidoreductase (deaminating)
References: [2021]

[EC 1.4.99.2 created 1976]

[1.4.99.3 Transferred entry. amine dehydrogenase. Now EC 1.4.9.1, methylamine dehydrogenase (amicyanin)]

[EC 1.4.99.3 created 1978, modified 1986, deleted 2011]

[1.4.99.4 Transferred entry. aralkylamine dehydrogenase. Now EC 1.4.9.2, aralkylamine dehydrogenase (azurin)]

[EC 1.4.99.4 created 1986, deleted 2011]

EC 1.4.99.5
Accepted name: glycine dehydrogenase (cyanide-forming)

Reaction: glycine + 2 acceptor = hydrogen cyanide + CO2 + 2 reduced acceptor
Other name(s): hydrogen cyanide synthase; HCN synthase

Systematic name: glycine:acceptor oxidoreductase (hydrogen-cyanide-forming)
Comments: The enzyme from Pseudomonas sp. contains FAD. The enzyme is membrane-bound, and the 2-

electron acceptor is a component of the respiratory chain. The enzyme can act with various artificial
electron acceptors, including phenazine methosulfate.

References: [4230, 520, 2153, 326]

[EC 1.4.99.5 created 2002]

EC 1.4.99.6
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Accepted name: D-arginine dehydrogenase
Reaction: D-arginine + acceptor + H2O = 5-guanidino-2-oxopentanoate + NH3 + reduced acceptor (overall reac-

tion)
(1a) D-arginine + acceptor = iminoarginine + reduced acceptor
(1b) iminoarginine + H2O = 5-guanidino-2-oxopentanoate + NH3 (spontaneous)

Other name(s): D-amino-acid:(acceptor) oxidoreductase (deaminating); D-amino-acid dehydrogenase; D-amino-
acid:acceptor oxidoreductase (deaminating)

Systematic name: D-arginine:acceptor oxidoreductase (deaminating)
Comments: Contains a non-covalent FAD cofactor. The enzyme, which has been isolated from the bacterium

Pseudomonas aeruginosa PAO1, forms with EC 1.4.1.25, L-arginine dehydrogenase, a two-enzyme
complex involved in the racemization of D- and L-arginine. The enzyme has a broad substrate range
and can act on most D-amino acids with the exception of D-glutamate and D-aspartate. However, ac-
tivity is maximal with D-arginine and D-lysine. Not active on glycine.

References: [3940, 2221, 1086, 4408, 1087, 4409]

[EC 1.4.99.6 created 1972 as EC 1.4.99.1, transferred 2015 to EC 1.4.99.6, modified 2017]

EC 1.5 Acting on the CH-NH group of donors
This subclass contains enzymes that dehydrogenate secondary amines, introducing a C=N double bond as the primary reaction.
In some cases, this is later hydrolysed. Sub-subclasses are based on the acceptor: NAD+ or NADP+ (EC 1.5.1), oxygen (EC
1.5.3), a disulfide (EC 1.5.4), a quinone or similar compound (EC 1.5.5), an iron-sulfur protein (EC 1.5.7), a flavin (EC 1.5.8),
or some other acceptor (EC 1.5.99).

EC 1.5.1 With NAD+ or NADP+ as acceptor

EC 1.5.1.1
Accepted name: 1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase [NAD(P)H]

Reaction: (1) L-pipecolate + NAD(P)+ = 1-piperideine-2-carboxylate + NAD(P)H + H+

(2) L-proline + NAD(P)+ = 1-pyrroline-2-carboxylate + NAD(P)H + H+

Other name(s): ∆1-pyrroline-2-carboxylate reductase; DELTA1-pyrroline-2-carboxylate reductase; DELTA1-
piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase (ambiguous); AbLhpI; pyrroline-2-
carboxylate reductase; L-proline:NAD(P)+ 2-oxidoreductase

Systematic name: L-pipecolate/L-proline:NAD(P)+ 2-oxidoreductase
Comments: The enzymes, characterized from the bacterium Azospirillum brasilense, is involved in trans-3-

hydroxy-L-proline metabolism. In contrast to EC 1.5.1.21, 1-piperideine-2-carboxylate/1-pyrroline-
2-carboxylate reductase (NADPH), which is specific for NADPH, this enzyme shows similar activity
with NADPH and NADH.

References: [2500, 4148]

[EC 1.5.1.1 created 1961, modified 2015]

EC 1.5.1.2
Accepted name: pyrroline-5-carboxylate reductase

Reaction: L-proline + NAD(P)+ = 1-pyrroline-5-carboxylate + NAD(P)H + H+

Other name(s): proline oxidase; L-proline oxidase; 1-pyrroline-5-carboxylate reductase; NADPH-L-∆1-pyrroline car-
boxylic acid reductase; L-proline-NAD(P)+ 5-oxidoreductase

Systematic name: L-proline:NAD(P)+ 5-oxidoreductase
Comments: Also reduces 1-pyrroline-3-hydroxy-5-carboxylate to L-hydroxyproline.
References: [20, 2500, 3562, 4414]

[EC 1.5.1.2 created 1961]
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EC 1.5.1.3
Accepted name: dihydrofolate reductase

Reaction: 5,6,7,8-tetrahydrofolate + NADP+ = 7,8-dihydrofolate + NADPH + H+

Other name(s): tetrahydrofolate dehydrogenase; DHFR; pteridine reductase:dihydrofolate reductase; dihydrofolate
reductase:thymidylate synthase; thymidylate synthetase-dihydrofolate reductase; folic acid reduc-
tase; folic reductase; dihydrofolic acid reductase; dihydrofolic reductase; 7,8-dihydrofolate reductase;
NADPH-dihydrofolate reductase

Systematic name: 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase
Comments: The enzyme from animals and some micro-organisms also slowly reduces folate to 5,6,7,8-

tetrahydrofolate.
References: [315, 338, 1849, 4395]

[EC 1.5.1.3 created 1961, modified 1976 (EC 1.5.1.4 created 1961, incorporated 1976)]

[1.5.1.4 Deleted entry. dihydrofolate dehydrogenase. Now included with EC 1.5.1.3 dihydrofolate reductase]

[EC 1.5.1.4 created 1961, deleted 1976]

EC 1.5.1.5
Accepted name: methylenetetrahydrofolate dehydrogenase (NADP+)

Reaction: 5,10-methylenetetrahydrofolate + NADP+ = 5,10-methenyltetrahydrofolate + NADPH + H+

Other name(s): N5,N10-methylenetetrahydrofolate dehydrogenase; 5,10-methylenetetrahydrofolate:NADP oxidore-
ductase; 5,10-methylenetetrahydrofolate dehydrogenase; methylenetetrahydrofolate dehydrogenase;
methylenetetrahydrofolate dehydrogenase (NADP)

Systematic name: 5,10-methylenetetrahydrofolate:NADP+ oxidoreductase
Comments: In eukaryotes, occurs as a trifunctional enzyme also having methenyltetrahydrofolate cyclohydrolase

(EC 3.5.4.9) and formate—tetrahydrofolate ligase (EC 6.3.4.3) activity. In some prokaryotes occurs
as a bifunctional enzyme also having methenyltetrahydrofolate cyclohydrolase activity (EC 3.5.4.9).

References: [1419, 2899, 3120, 4358]

[EC 1.5.1.5 created 1961]

EC 1.5.1.6
Accepted name: formyltetrahydrofolate dehydrogenase

Reaction: 10-formyltetrahydrofolate + NADP+ + H2O = tetrahydrofolate + CO2 + NADPH + H+

Other name(s): 10-formyl tetrahydrofolate:NADP oxidoreductase; 10-formyl-H2PtGlu:NADP oxidoreduc-
tase ; 10-formyl-H4folate dehydrogenase; N10-formyltetrahydrofolate dehydrogenase ; 10-
formyltetrahydrofolate dehydrogenase

Systematic name: 10-formyltetrahydrofolate:NADP+ oxidoreductase
References: [2101]

[EC 1.5.1.6 created 1972]

EC 1.5.1.7
Accepted name: saccharopine dehydrogenase (NAD+, L-lysine-forming)

Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NAD+ + H2O = L-lysine + 2-oxoglutarate + NADH + H+

Other name(s): lysine-2-oxoglutarate reductase; dehydrogenase, saccharopine (nicotinamide adenine dinucleotide,
lysine forming); ε-N-(L-glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming); N6-(glutar-2-
yl)-L-lysine:NAD oxidoreductase (L-lysine-forming); 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NAD+

oxidoreductase (L-lysine-forming)
Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase (L-lysine-forming)

References: [1093, 3326]

[EC 1.5.1.7 created 1972]
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EC 1.5.1.8
Accepted name: saccharopine dehydrogenase (NADP+, L-lysine-forming)

Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NADP+ + H2O = L-lysine + 2-oxoglutarate + NADPH + H+

Other name(s): lysine-2-oxoglutarate reductase; lysine-ketoglutarate reductase; L-lysine-α-ketoglutarate reduc-
tase; lysine:α-ketoglutarate:TPNH oxidoreductase (ε-N-[gultaryl-2]-L-lysine forming); saccha-
ropine (nicotinamide adenine dinucleotide phosphate, lysine-forming) dehydrogenase; 6-N-(L-1,3-
dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)

Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
References: [1616, 2401]

[EC 1.5.1.8 created 1972]

EC 1.5.1.9
Accepted name: saccharopine dehydrogenase (NAD+, L-glutamate-forming)

Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NAD+ + H2O = L-glutamate + (S)-2-amino-6-oxohexanoate +
NADH + H+

Other name(s): dehydrogenase, saccharopine (nicotinamide adenine dinucleotide, glutamate-forming); saccharopin
dehydrogenase; NAD+ oxidoreductase (L-2-aminoadipic-δ-semialdehyde and glutamate forming);
aminoadipic semialdehyde synthase; 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase
(L-glutamate-forming)

Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase (L-glutamate-forming)
Comments: The activities of this enzyme along with EC 1.5.1.8, saccharopine dehydrogenase (NADP+, L-lysine-

forming), occur on a single protein.
References: [1616, 2401]

[EC 1.5.1.9 created 1972, modified 2011]

EC 1.5.1.10
Accepted name: saccharopine dehydrogenase (NADP+, L-glutamate-forming)

Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + NADP+ + H2O = L-glutamate + (S)-2-amino-6-oxohexanoate
+ NADPH + H+

Other name(s): saccharopine (nicotinamide adenine dinucleotide phosphate, glutamate-forming) dehydroge-
nase; aminoadipic semialdehyde-glutamic reductase; aminoadipate semialdehyde-glutamate re-
ductase; aminoadipic semialdehyde-glutamate reductase; ε-N-(L-glutaryl-2)-L-lysine:NAD+(P)
oxidoreductase (L-2-aminoadipate-semialdehyde forming); saccharopine reductase; 6-N-(L-1,3-
dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-glutamate-forming)

Systematic name: N6-(L-1,3-dicarboxypropyl)-L-lysine:NADP+ oxidoreductase (L-glutamate-forming)
References: [1769]

[EC 1.5.1.10 created 1972, modified 2011]

EC 1.5.1.11
Accepted name: D-octopine dehydrogenase

Reaction: N2-(D-1-carboxyethyl)-L-arginine + NAD+ + H2O = L-arginine + pyruvate + NADH + H+

Other name(s): D-octopine synthase; octopine dehydrogenase; octopine:NAD+ oxidoreductase; ODH; 2-N-(D-1-
carboxyethyl)-L-arginine:NAD+ oxidoreductase (L-arginine-forming)

Systematic name: N2-(D-1-carboxyethyl)-L-arginine:NAD+ oxidoreductase (L-arginine-forming)
Comments: In the reverse direction, acts also on L-ornithine, L-lysine and L-histidine.
References: [1879, 4012]

[EC 1.5.1.11 created 1972]

[1.5.1.12 Transferred entry. 1-pyrroline-5-carboxylate dehydrogenase. Now EC 1.2.1.88, L-glutamate γ-semialdehyde de-
hydrogenase. ]
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[EC 1.5.1.12 created 1972, modified 2008, deleted 2013]

[1.5.1.13 Transferred entry. nicotinate dehydrogenase. Now EC 1.17.1.5, nicotinate dehydrogenase. The enzyme was incor-
rectly classified as acting on a CH-NH group]

[EC 1.5.1.13 created 1972, deleted 2004]

[1.5.1.14 Deleted entry. 1,2-didehydropipecolate reductase. Now included with EC 1.5.1.21 ∆1-piperideine-2-carboxylate
reductase]

[EC 1.5.1.14 created 1976, deleted 1989]

EC 1.5.1.15
Accepted name: methylenetetrahydrofolate dehydrogenase (NAD+)

Reaction: 5,10-methylenetetrahydrofolate + NAD+ = 5,10-methenyltetrahydrofolate + NADH + H+

Other name(s): methylenetetrahydrofolate dehydrogenase (NAD+)
Systematic name: 5,10-methylenetetrahydrofolate:NAD+ oxidoreductase

References: [2608]

[EC 1.5.1.15 created 1978]

EC 1.5.1.16
Accepted name: D-lysopine dehydrogenase

Reaction: N2-(D-1-carboxyethyl)-L-lysine + NADP+ + H2O = L-lysine + pyruvate + NADPH + H+

Other name(s): D-lysopine synthase; lysopine dehydrogenase; D(+)-lysopine dehydrogenase; 2-N-(D-1-
carboxyethyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)

Systematic name: N2-(D-1-carboxyethyl)-L-lysine:NADP+ oxidoreductase (L-lysine-forming)
Comments: In the reverse reaction, a number of L-amino acids can act instead of L-lysine, and 2-oxobutanoate

and, to a lesser extent, glyoxylate can act instead of pyruvate.
References: [2911]

[EC 1.5.1.16 created 1978]

EC 1.5.1.17
Accepted name: alanopine dehydrogenase

Reaction: 2,2′-iminodipropanoate + NAD+ + H2O = L-alanine + pyruvate + NADH + H+

Other name(s): ALPDH ; alanopine[meso-N-(1-carboxyethyl)-alanine]dehydrogenase; meso-N-(1-carboxyethyl)-
alanine:NAD+ oxidoreductase; alanopine: NAD oxidoreductase; ADH; alanopine:NAD oxidoreduc-
tase

Systematic name: 2,2′-iminodipropanoate:NAD+ oxidoreductase (L-alanine-forming)
Comments: In the reverse reaction, L-alanine can be replaced by L-cysteine, L-serine or L-threonine; glycine acts

very slowly (cf. EC 1.5.1.22 strombine dehydrogenase).
References: [736, 1012, 1013]

[EC 1.5.1.17 created 1983, modified 1986]

EC 1.5.1.18
Accepted name: ephedrine dehydrogenase

Reaction: (-)-ephedrine + NAD+ = (R)-2-methylimino-1-phenylpropan-1-ol + NADH + H+

Systematic name: (-)-ephedrine:NAD+ 2-oxidoreductase
Comments: The product immediately hydrolyses to methylamine and 1-hydroxy-1-phenylpropan-2-one. Acts on a

number of related compounds including (-)-sympatol, (+)-pseudoephedrine and (+)-norephedrine.
References: [1958]
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[EC 1.5.1.18 created 1984]

EC 1.5.1.19
Accepted name: D-nopaline dehydrogenase

Reaction: N2-(D-1,3-dicarboxypropyl)-L-arginine + NADP+ + H2O = L-arginine + 2-oxoglutarate + NADPH +
H+

Other name(s): D-nopaline synthase; nopaline dehydrogenase; nopaline synthase; NOS; 2-N-(D-1,3-
dicarboxypropyl)-L-arginine:NADP+ oxidoreductase (L-arginine-forming)

Systematic name: N2-(D-1,3-dicarboxypropyl)-L-arginine:NADP+ oxidoreductase (L-arginine-forming)
Comments: In the reverse direction, forms D-nopaline from L-arginine and D-ornaline from L-ornithine.
References: [1880]

[EC 1.5.1.19 created 1984]

EC 1.5.1.20
Accepted name: methylenetetrahydrofolate reductase [NAD(P)H]

Reaction: 5-methyltetrahydrofolate + NAD(P)+ = 5,10-methylenetetrahydrofolate + NAD(P)H + H+

Other name(s): methylenetetrahydrofolate (reduced nicotinamide adenine dinucleotide phosphate) reductase;
5,10-methylenetetrahydrofolate reductase (NADPH); 5,10-methylenetetrahydrofolic acid re-
ductase; 5,10-CH2−H4 f olate reductase; methylenetetrahydrofolate reductase (NADPH2);
5-methyltetrahydrofolate:NAD+ oxidoreductase; 5-methyltetrahydrofolate:NAD+ oxi-
doreductase; methylenetetrahydrofolate (reduced riboflavin adenine dinucleotide) reduc-
tase; 5,10-methylenetetrahydrofolate reductase; methylenetetrahydrofolate reductase;
N5,10-methylenetetrahydrofolate reductase; 5,10-methylenetetrahydropteroylglutamate
reductase; N5,N10−methylenetetrahydrofolate reductase; methylenetetrahydrofolic
acid reductase; 5-methyltetrahydrofolate:(acceptor) oxidoreductase (incorrect); 5,10-
methylenetetrahydrofolate reductase (FADH2); MetF; methylenetetrahydrofolate reductase (NADPH);
5-methyltetrahydrofolate:NADP+ oxidoreductase

Systematic name: 5-methyltetrahydrofolate:NAD(P)+ oxidoreductase
Comments: A flavoprotein (FAD). Menadione can also serve as an electron acceptor.
References: [750, 2102, 3479, 1308]

[EC 1.5.1.20 created 1978 as EC 1.1.1.171, transferred 1984 to EC 1.5.1.20 (EC 1.7.99.5 incorporated 2005), modified 2005]

EC 1.5.1.21
Accepted name: 1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase (NADPH)

Reaction: (1) L-pipecolate + NADP+ = 1-piperideine-2-carboxylate + NADPH + H+

(2) L-proline + NADP+ = 1-pyrroline-2-carboxylate + NADPH + H+

Other name(s): Pyr2C reductase; 1,2-didehydropipecolate reductase; P2C reductase; 1,2-didehydropipecolic re-
ductase; DELTA1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase (ambiguous); L-
pipecolate:NADP+ 2-oxidoreductase; DELTA1-piperideine-2-carboxylate reductase; ∆1-piperideine-
2-carboxylate reductase

Systematic name: L-pipecolate/L-proline:NADP+ 2-oxidoreductase
Comments: The enzyme is involved in the catabolism of D-lysine and D-proline in bacteria that belong to the

Pseudomonas genus. In contrast to EC 1.5.1.1, 1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate
reductase [NAD(P)H], which shows similar activity with NADPH and NADH, this enzyme is specific
for NADPH.

References: [2968, 2667, 4148]

[EC 1.5.1.21 created 1984 (EC 1.5.1.14 created 1976, incorporated 1989), modified 2015]

EC 1.5.1.22
Accepted name: strombine dehydrogenase
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Reaction: N-(carboxymethyl)-D-alanine + NAD+ + H2O = glycine + pyruvate + NADH + H+

Other name(s): strombine[N-(carboxymethyl)-D-alanine]dehydrogenase; N-(carboxymethyl)-D-alanine: NAD+ oxi-
doreductase

Systematic name: N-(carboxymethyl)-D-alanine:NAD+ oxidoreductase (glycine-forming)
Comments: Also catalyses the reaction of EC 1.5.1.17 alanopine dehydrogenase, but more slowly. Does not act on

L-strombine.
References: [736]

[EC 1.5.1.22 created 1986]

EC 1.5.1.23
Accepted name: tauropine dehydrogenase

Reaction: tauropine + NAD+ + H2O = taurine + pyruvate + NADH + H+

Other name(s): 2-N-(D-1-carboxyethyl)taurine:NAD+ oxidoreductase (taurine-forming)
Systematic name: N2-(D-1-carboxyethyl)taurine:NAD+ oxidoreductase (taurine-forming)

Comments: In the reverse reaction, alanine can act instead of taurine, but more slowly, and 2-oxobutanoate and
2-oxopentanoate can act instead of pyruvate.

References: [1138]

[EC 1.5.1.23 created 1989]

EC 1.5.1.24
Accepted name: N5-(carboxyethyl)ornithine synthase

Reaction: N5-(L-1-carboxyethyl)-L-ornithine + NADP+ + H2O = L-ornithine + pyruvate + NADPH + H+

Other name(s): 5-N-(L-1-carboxyethyl)-L-ornithine:NADP+ oxidoreductase (L-ornithine-forming)
Systematic name: N5-(L-1-carboxyethyl)-L-ornithine:NADP+ oxidoreductase (L-ornithine-forming)

Comments: In the reverse direction, L-lysine can act instead of L-ornithine, but more slowly. Acts on the amino
group. cf. EC 1.5.1.16, D-lysopine dehydrogenase.

References: [3875]

[EC 1.5.1.24 created 1990]

EC 1.5.1.25
Accepted name: thiomorpholine-carboxylate dehydrogenase

Reaction: thiomorpholine 3-carboxylate + NAD(P)+ = 3,4-dehydro-thiomorpholine-3-carboxylate + NAD(P)H
+ H+

Other name(s): ketimine reductase; ketimine-reducing enzyme
Systematic name: thiomorpholine-3-carboxylate:NAD(P)+ 5,6-oxidoreductase

Comments: The product is the cyclic imine of the 2-oxoacid corresponding to S-(2-aminoethyl)cysteine. In the
reverse direction, a number of other cyclic unsaturated compounds can act as substrates, but more
slowly.

References: [2733]

[EC 1.5.1.25 created 1990]

EC 1.5.1.26
Accepted name: β-alanopine dehydrogenase

Reaction: β-alanopine + NAD+ + H2O = β-alanine + pyruvate + NADH + H+

Systematic name: N-(D-1-carboxyethyl)-β-alanine:NAD+ oxidoreductase (β-alanine-forming)
References: [3318]

[EC 1.5.1.26 created 1990]
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EC 1.5.1.27
Accepted name: 1,2-dehydroreticulinium reductase (NADPH)

Reaction: (R)-reticuline + NADP+ = 1,2-dehydroreticulinium + NADPH + H+

Other name(s): 1,2-dehydroreticulinium ion reductase
Systematic name: (R)-reticuline:NADP+ oxidoreductase

Comments: Reduces the 1,2-dehydroreticulinium ion to (R)-reticuline, which is a direct precursor of morphinan
alkaloids in the poppy plant. The enzyme does not catalyse the reverse reaction to any significant ex-
tent under physiological conditions.

References: [760]

[EC 1.5.1.27 created 1999, modified 2004]

EC 1.5.1.28
Accepted name: opine dehydrogenase

Reaction: (2S)-2-[1-(R)-carboxyethyl]aminopentanoate + NAD+ + H2O = L-2-aminopentanoic acid + pyruvate
+ NADH + H+

Other name(s): (2S)-2-[1-(R)-carboxyethyl]aminopentanoate dehydrogenase (NAD+, L-aminopentanoate-forming)
Systematic name: (2S)-2-[1-(R)-carboxyethyl]aminopentanoate:NAD+ oxidoreductase (L-aminopentanoate-forming)

Comments: In the forward direction, the enzyme from Arthrobacter sp. acts also on secondary amine dicarboxy-
lates such as N-(1-carboxyethyl)methionine and N-(1-carboxyethyl)phenylalanine. Dehydrogena-
tion forms an imine, which dissociates to the amino acid and pyruvate. In the reverse direction, the
enzyme acts also on neutral amino acids as an amino donor. They include L-amino acids such as 2-
aminopentanoic acid, 2-aminobutyric acid, 2-aminohexanoic acid, 3-chloroalanine, O-acetylserine,
methionine, isoleucine, valine, phenylalanine, leucine and alanine. The amino acceptors include 2-
oxoacids such as pyruvate, oxaloacetate, glyoxylate and 2-oxobutyrate.

References: [128, 730, 1842]

[EC 1.5.1.28 created 1999]

[1.5.1.29 Deleted entry. FMN reductase [NAD(P)H]. Now covered by EC 1.5.1.38 [FMN reductase (NADPH)], EC 1.5.1.39
[FMN reductase [NAD(P)H])] and EC 1.5.1.41 (riboflavin reductase [NAD(P)H])]

[EC 1.5.1.29 created 1981 as EC 1.6.8.1, transferred 2002 to EC 1.5.1.29, modified 2002, deleted 2011]

EC 1.5.1.30
Accepted name: flavin reductase (NADPH)

Reaction: reduced riboflavin + NADP+ = riboflavin + NADPH + H+

Other name(s): NADPH:flavin oxidoreductase; riboflavin mononucleotide (reduced nicotinamide adenine dinu-
cleotide phosphate) reductase; flavin mononucleotide reductase; flavine mononucleotide reductase;
FMN reductase (NADPH); NADPH-dependent FMN reductase; NADPH-flavin reductase; NADPH-
FMN reductase; NADPH-specific FMN reductase; riboflavin mononucleotide reductase; riboflavine
mononucleotide reductase; NADPH2 dehydrogenase (flavin); NADPH2:riboflavin oxidoreductase

Systematic name: reduced-riboflavin:NADP+ oxidoreductase
Comments: The enzyme reduces riboflavin, and, less efficiently, FMN and FAD. NADH is oxidized less effi-

ciently than NADPH.
References: [4410, 709]

[EC 1.5.1.30 created 1982 as EC 1.6.8.2, transferred 2002 to EC 1.5.1.30, modified 2011]

EC 1.5.1.31
Accepted name: berberine reductase

Reaction: (R)-canadine + 2 NADP+ = berberine + 2 NADPH + H+

Other name(s): (R)-canadine synthase
Systematic name: (R)-tetrahydroberberine:NADP+ oxidoreductase
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Comments: Involved in alkaloid biosynthesis in Corydalis cava to give (R)-canadine with the opposite configu-
ration to the precursor of berberine (see EC 1.3.3.8 tetrahydroberberine oxidase). Also acts on 7,8-
dihydroberberine.

References: [219]

[EC 1.5.1.31 created 2002]

EC 1.5.1.32
Accepted name: vomilenine reductase

Reaction: 1,2-dihydrovomilenine + NADP+ = vomilenine + NADPH + H+

Systematic name: 1,2-dihydrovomilenine:NADP+ oxidoreductase
Comments: Forms part of the ajmaline biosynthesis pathway.
References: [4061]

[EC 1.5.1.32 created 2002]

EC 1.5.1.33
Accepted name: pteridine reductase

Reaction: 5,6,7,8-tetrahydrobiopterin + 2 NADP+ = biopterin + 2 NADPH + 2 H+

Other name(s): PTR1; pteridine reductase 1
Systematic name: 5,6,7,8-tetrahydrobiopterin:NADP+ oxidoreductase

Comments: The enzyme from Leishmania (both amastigote and promastigote forms) catalyses the reduction by
NADPH of folate and a wide variety of unconjugated pterins, including biopterin, to their tetrahy-
dro forms. It also catalyses the reduction of 7,8-dihydropterins and 7,8-dihydrofolate to their tetrahy-
dro forms. In contrast to EC 1.5.1.3 (dihydrofolate reductase) and EC 1.5.1.34 (6,7-dihydropteridine
reductase), pteridine reductase will not catalyse the reduction of the quinonoid form of dihydro-
biopterin. The enzyme is specific for NADPH; no activity has been detected with NADH. It also dif-
fers from EC 1.5.1.3 (dihydrofolate reductase) in being specific for the Si-face of NADPH.

References: [2734, 1254, 1023]

[EC 1.5.1.33 created 1999 as EC 1.1.1.253, transferred 2003 to EC 1.5.1.33]

EC 1.5.1.34
Accepted name: 6,7-dihydropteridine reductase

Reaction: a 5,6,7,8-tetrahydropteridine + NAD(P)+ = a 6,7-dihydropteridine + NAD(P)H + H+

Other name(s): 6,7-dihydropteridine:NAD(P)H oxidoreductase; DHPR; NAD(P)H:6,7-dihydropteridine oxidoreduc-
tase; NADH-dihydropteridine reductase; NADPH-dihydropteridine reductase; NADPH-specific dihy-
dropteridine reductase; dihydropteridine (reduced nicotinamide adenine dinucleotide) reductase; dihy-
dropteridine reductase; dihydropteridine reductase (NADH); 5,6,7,8-tetrahydropteridine:NAD(P)H+

oxidoreductase
Systematic name: 5,6,7,8-tetrahydropteridine:NAD(P)+ oxidoreductase

Comments: The substrate is the quinonoid form of dihydropteridine. Not identical with EC 1.5.1.3 dihydrofolate
reductase.

References: [1391, 1407, 1852, 2259, 2711]

[EC 1.5.1.34 created 1972 as EC 1.6.99.7, modified 1981 (EC 1.6.99.10 created 1978, incorporated 1981), transferred 2003 to EC 1.5.1.34]

[1.5.1.35 Deleted entry. 1-pyrroline dehydrogenase. The enzyme is identical to EC 1.2.1.19, aminobutyraldehyde dehydro-
genase, as the substrates 1-pyrroline and 4-aminobutanal are interconvertible]

[EC 1.5.1.35 created 2006, deleted 2007]

EC 1.5.1.36
Accepted name: flavin reductase (NADH)
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Reaction: reduced flavin + NAD+ = flavin + NADH + H+

Other name(s): NADH-dependent flavin reductase; flavin:NADH oxidoreductase
Systematic name: flavin:NAD+ oxidoreductase

Comments: The enzyme from Escherichia coli W catalyses the reduction of free flavins by NADH. The enzyme
has similar affinity to FAD, FMN and riboflavin. Activity with NADPH is more than 2 orders of mag-
nitude lower than activity with NADH.

References: [1141]

[EC 1.5.1.36 created 2011]

EC 1.5.1.37
Accepted name: FAD reductase (NADH)

Reaction: FADH2 + NAD+ = FAD + NADH + H+

Other name(s): NADH-FAD reductase; NADH-dependent FAD reductase; NADH:FAD oxidoreductase; NADH:flavin
adenine dinucleotide oxidoreductase

Systematic name: FADH2:NAD+ oxidoreductase
Comments: The enzyme from Burkholderia phenoliruptrix can reduce either FAD or flavin mononucleotide

(FMN) but prefers FAD. Unlike EC 1.5.1.36, flavin reductase (NADH), the enzyme can not reduce
riboflavin. The enzyme does not use NADPH as acceptor.

References: [1209]

[EC 1.5.1.37 created 2011]

EC 1.5.1.38
Accepted name: FMN reductase (NADPH)

Reaction: FMNH2 + NADP+ = FMN + NADPH + H+

Other name(s): FRP; flavin reductase P; SsuE
Systematic name: FMNH2:NADP+ oxidoreductase

Comments: The enzymes from bioluminescent bacteria contain FMN [2191], while the enzyme from Escherichia
coli does not [930]. The enzyme often forms a two-component system with monooxygenases such
as luciferase. Unlike EC 1.5.1.39, this enzyme does not use NADH as acceptor [1185, 1702]. While
FMN is the preferred substrate, the enzyme can also use FAD and riboflavin with lower activity
[3,6,8].

References: [1185, 1702, 1703, 2191, 3819, 2281, 2192, 930]

[EC 1.5.1.38 created 2011]

EC 1.5.1.39
Accepted name: FMN reductase [NAD(P)H]

Reaction: FMNH2 + NAD(P)+ = FMN + NAD(P)H + H+

Other name(s): FRG
Systematic name: FMNH2:NAD(P)+ oxidoreductase

Comments: Contains FMN. The enzyme can utilize NADH and NADPH with similar reaction rates. Different
from EC 1.5.1.42, FMN reductase (NADH) and EC 1.5.1.38, FMN reductase (NADPH). The lumi-
nescent bacterium Vibrio harveyi possesses all three enzymes [4141]. Also reduces riboflavin and
FAD, but more slowly.

References: [4141]

[EC 1.5.1.39 created 2011]

EC 1.5.1.40
Accepted name: 8-hydroxy-5-deazaflavin:NADPH oxidoreductase

Reaction: reduced coenzyme F420 + NADP+ = oxidized coenzyme F420 + NADPH + H+
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Other name(s): 8-OH-5dFl:NADPH oxidoreductase
Systematic name: reduced coenzyme F420:NADP+ oxidoreductase

Comments: The enzyme has an absolute requirement for both the 5-deazaflavin structure and the presence of an
8-hydroxy group in the substrate [935].

References: [935]

[EC 1.5.1.40 created 2011]

EC 1.5.1.41
Accepted name: riboflavin reductase [NAD(P)H]

Reaction: reduced riboflavin + NAD(P)+ = riboflavin + NAD(P)H + H+

Other name(s): NAD(P)H-FMN reductase (ambiguous); NAD(P)H-dependent FMN reductase (ambiguous);
NAD(P)H:FMN oxidoreductase (ambiguous); NAD(P)H:flavin oxidoreductase (ambiguous);
NAD(P)H2 dehydrogenase (FMN) (ambiguous); NAD(P)H2:FMN oxidoreductase (ambiguous); ri-
boflavin mononucleotide reductase (ambiguous); flavine mononucleotide reductase (ambiguous); ri-
boflavin mononucleotide (reduced nicotinamide adenine dinucleotide (phosphate)) reductase; flavin
mononucleotide reductase (ambiguous); riboflavine mononucleotide reductase (ambiguous); Fre

Systematic name: riboflavin:NAD(P)+ oxidoreductase
Comments: Catalyses the reduction of soluble flavins by reduced pyridine nucleotides. Highest activity with ri-

boflavin. When NADH is used as acceptor, the enzyme can also utilize FMN and FAD as substrates,
with lower activity than riboflavin. When NADPH is used as acceptor, the enzyme has a very low ac-
tivity with FMN and no activity with FAD [1029].

References: [1029, 3609, 1648]

[EC 1.5.1.41 created 2011]

EC 1.5.1.42
Accepted name: FMN reductase (NADH)

Reaction: FMNH2 + NAD+ = FMN + NADH + H+

Other name(s): NADH-FMN reductase; NADH-dependent FMN reductase; NADH:FMN oxidoreductase;
NADH:flavin oxidoreductase

Systematic name: FMNH2:NAD+ oxidoreductase
Comments: The enzyme often forms a two-component system with monooxygenases. Unlike EC 1.5.1.38, FMN

reductase (NADPH), and EC 1.5.1.39, FMN reductase [NAD(P)H], this enzyme has a strong prefer-
ence for NADH over NADPH, although some activity with the latter is observed [879, 1185]. While
FMN is the preferred substrate, FAD can also be used with much lower activity [879, 3966].

References: [879, 1185, 3966, 1699]

[EC 1.5.1.42 created 2011]

EC 1.5.1.43
Accepted name: carboxynorspermidine synthase

Reaction: (1) carboxynorspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + propane-1,3-diamine +
NADPH + H+

(2) carboxyspermidine + H2O + NADP+ = L-aspartate 4-semialdehyde + putrescine + NADPH + H+

Other name(s): carboxynorspermidine dehydrogenase; carboxyspermidine dehydrogenase; CASDH; CANSDH;
VC1624 (gene name)

Systematic name: carboxynorspermidine:NADP+ oxidoreductase
Comments: The reaction takes place in the opposite direction. Part of a bacterial polyamine biosynthesis pathway.

L-aspartate 4-semialdehyde and propane-1,3-diamine/putrescine form a Schiff base that is reduced to
form carboxynorspermidine/carboxyspermidine, respectively [2718]. The enzyme from the bacterium
Vibrio cholerae is essential for biofilm formation [2169]. The enzyme from Campylobacter jejuni
only produces carboxyspermidine in vivo even though it also can produce carboxynorspermidine in
vitro [1367].
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References: [2718, 2169, 1367]

[EC 1.5.1.43 created 2012]

EC 1.5.1.44
Accepted name: festuclavine dehydrogenase

Reaction: festuclavine + NAD+ = 6,8-dimethyl-6,7-didehydroergoline + NADH + H+

Other name(s): FgaFS; festuclavine synthase
Systematic name: festuclavine:NAD+ oxidoreductase

Comments: The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some
fungi of the Trichocomaceae family. The reaction proceeds in vivo in the opposite direction to the one
shown here.

References: [4097]

[EC 1.5.1.44 created 2012]

EC 1.5.1.45
Accepted name: FAD reductase [NAD(P)H]

Reaction: FADH2 + NAD(P)+ = FAD + NAD(P)H + H+

Other name(s): GTNG 3158 (gene name)
Systematic name: FADH2:NAD(P)+ oxidoreductase

Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the path-
way of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional ri-
boflavin kinase/FMN adenylyltransferase and EC 1.14.14.8, anthranilate 3-monooxygenase (FAD).
It can reduce either FAD or flavin mononucleotide (FMN) but prefers FAD. The enzyme has a slight
preference for NADPH as acceptor. cf. EC 1.5.1.37, FAD reductase (NADH).

References: [2285]

[EC 1.5.1.45 created 2012]

EC 1.5.1.46
Accepted name: agroclavine dehydrogenase

Reaction: agroclavine + NADP+ = 6,8-dimethyl-6,7,8,9-tetradehydroergoline + NADPH + H+

Other name(s): easG (gene name)
Systematic name: agroclavine:NADP+ oxidoreductase

Comments: The enzyme participates in the biosynthesis of ergotamine, an ergot alkaloid produced by some fungi
of the Clavicipitaceae family. The reaction is catalysed in the opposite direction to that shown. The
substrate for the enzyme is an iminium intermediate that is formed spontaneously from chanoclavine-I
aldehyde in the presence of glutathione.

References: [2468]

[EC 1.5.1.46 created 2013]

EC 1.5.1.47
Accepted name: dihydromethanopterin reductase [NAD(P)+]

Reaction: 5,6,7,8-tetrahydromethanopterin + NAD(P)+ = 7,8-dihydromethanopterin + NAD(P)H + H+

Other name(s): DmrA; H2MPT reductase; 5,6,7,8-tetrahydromethanopterin 5,6-oxidoreductase; dihy-
dromethanopterin reductase

Systematic name: 5,6,7,8-tetrahydromethanopterin:NAD(P)+ 5,6-oxidoreductase
Comments: The enzyme, characterized from the bacterium Methylobacterium extorquens, is involved in biosyn-

thesis of dephospho-tetrahydromethanopterin. The specific activity with NADH is 15% of that with
NADPH at the same concentration [466]. It does not reduce 7,8-dihydrofolate (cf. EC 1.5.1.3, dihy-
drofolate reductase).

References: [466]
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[EC 1.5.1.47 created 2013, modified 2014]

EC 1.5.1.48
Accepted name: 2-methyl-1-pyrroline reductase

Reaction: (R)-2-methylpyrrolidine + NADP+ = 2-methyl-1-pyrroline + NADPH + H+

Other name(s): (R)-imine reductase (ambiguous)
Systematic name: (R)-2-methylpyrrolidine:NADP+ 2-oxidoreductase

Comments: The enzyme from the bacterium Streptomyces sp. GF3587 is highly specific for its substrate and
forms only the (R) isomer.

References: [2567]

[EC 1.5.1.48 created 2014]

EC 1.5.1.49
Accepted name: 1-pyrroline-2-carboxylate reductase [NAD(P)H]

Reaction: L-proline + NAD(P)+ = 1-pyrroline-2-carboxylate + NAD(P)H + H+

Systematic name: L-proline:NAD(P)+ 2-oxidoreductase
Comments: The enzyme from the bacterium Colwellia psychrerythraea is involved in trans-3-hydroxy-L-proline

metabolism. In contrast to EC 1.5.1.1, 1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reduc-
tase [NAD(P)H], which shows similar activity with 1-piperideine-2-carboxylate and 1-pyrroline-2-
carboxylate, this enzyme is specific for the latter. While the enzyme is active with both NADH and
NADPH, activity is higher with NADPH.

References: [4148]

[EC 1.5.1.49 created 2015]

EC 1.5.1.50
Accepted name: dihydromonapterin reductase

Reaction: 5,6,7,8-tetrahydromonapterin + NADP+ = 7,8-dihydromonapterin + NADPH + H+

Other name(s): FolM; H2-MPt reductase
Systematic name: 5,6,7,8-tetrahydromonapterin:NADP+ oxidoreductase

Comments: The enzyme, found in many Gram negative bacteria, also slowly reduces 7,8-dihydrofolate to 5,6,7,8-
tetrahydrofolate (cf. EC 1.5.1.3, dihydrofolate reductase). The enzyme has no activity with NADH.

References: [3061]

[EC 1.5.1.50 created 2015]

EC 1.5.1.51
Accepted name: N-[(2S)-2-amino-2-carboxyethyl]-L-glutamate dehydrogenase

Reaction: N-[(2S)-2-amino-2-carboxyethyl]-L-glutamate + NAD+ + H2O = 2-oxoglutarate + L-2,3-
diaminopropanoate + NADH + H+

Other name(s): SbnB
Systematic name: N-[(2S)-2-amino-2-carboxyethyl]-L-glutamate:NAD+ dehydrogenase (L-2,3-diaminopropanoate-

forming)
Comments: The enzyme, characterized from the bacterium Staphylococcus aureus, is involved in the biosynthesis

of the siderophore staphyloferrin B.
References: [230, 1984]

[EC 1.5.1.51 created 2017]

EC 1.5.1.52
Accepted name: staphylopine dehydrogenase
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Reaction: staphylopine + NADP+ + H2O = (2S)-2-amino-4-[(1R)-1-carboxy-2-(1H-imidazol-4-
yl)ethyl]aminobutanoate + pyruvate + NADPH + H+

Other name(s): cntM (gene name); staphylopine synthase
Systematic name: staphylopine:NADP+ oxidoreductase [(2S)-2-amino-4-[(1R)-1-carboxy-2-(1H-imidazol-4-

yl)ethyl]aminobutanoate]-forming
Comments: The enzyme, characterized from the bacterium Staphylococcus aureus, catalyses the last reaction in

the biosynthesis of the metallophore staphylopine, which is involved in the acquisition of nickel, cop-
per, and cobalt.

References: [1195, 2484]

[EC 1.5.1.52 created 2018]

EC 1.5.3 With oxygen as acceptor

EC 1.5.3.1
Accepted name: sarcosine oxidase

Reaction: sarcosine + H2O + O2 = glycine + formaldehyde + H2O2
Systematic name: sarcosine:oxygen oxidoreductase (demethylating)

Comments: A flavoprotein (FAD). The flavin is both covalently and non-covalently bound in a molar ratio of 1:1.
References: [1441, 2620, 3753]

[EC 1.5.3.1 created 1961]

EC 1.5.3.2
Accepted name: N-methyl-L-amino-acid oxidase

Reaction: an N-methyl-L-amino acid + H2O + O2 = an L-amino acid + formaldehyde + H2O2
Other name(s): N-methylamino acid oxidase; demethylase

Systematic name: N-methyl-L-amino-acid:oxygen oxidoreductase (demethylating)
Comments: A flavoprotein.
References: [2626, 2627, 2628]

[EC 1.5.3.2 created 1961]

[1.5.3.3 Deleted entry. spermine oxidase]

[EC 1.5.3.3 created 1961, deleted 1972]

EC 1.5.3.4
Accepted name: N6-methyl-lysine oxidase

Reaction: N6-methyl-L-lysine + H2O + O2 = L-lysine + formaldehyde + H2O2
Other name(s): ε-alkyl-L-lysine:oxygen oxidoreductase ; N6-methyllysine oxidase; ε-N-methyllysine demethylase;

ε-alkyllysinase; 6-N-methyl-L-lysine:oxygen oxidoreductase (demethylating)
Systematic name: N6-methyl-L-lysine:oxygen oxidoreductase (demethylating)

References: [1917]

[EC 1.5.3.4 created 1972]

EC 1.5.3.5
Accepted name: (S)-6-hydroxynicotine oxidase

Reaction: (S)-6-hydroxynicotine + H2O + O2 = 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one + H2O2
(overall reaction)
(1a) (S)-6-hydroxynicotine + O2 = 5-(N-methyl-4,5-dihydro-1H-pyrrol-2-yl)pyridin-2-ol + H2O2

225

http://www.enzyme-database.org/query.php?ec=1.5.3.1
http://www.enzyme-database.org/query.php?ec=1.5.3.2
http://www.enzyme-database.org/query.php?ec=1.5.3.4
http://www.enzyme-database.org/query.php?ec=1.5.3.5


(1b) 5-(N-methyl-4,5-dihydro-1H-pyrrol-2-yl)pyridin-2-ol + H2O = 1-(6-hydroxypyridin-3-yl)-4-
(methylamino)butan-1-one (spontaneous)

Other name(s): L-6-hydroxynicotine oxidase; 6-hydroxy-L-nicotine oxidase; 6-hydroxy-L-nicotine:oxygen oxidore-
ductase; nctB (gene name)

Systematic name: (S)-6-hydroxynicotine:oxygen oxidoreductase
Comments: A flavoprotein (FAD). The enzyme, which participates in nicotine degradation, is specific for the (S)

isomer of 6-hydroxynicotine. The bacterium Arthrobacter nicotinovorans, in which this enzyme was
originally discovered, has a different enzyme that catalyses a similar reaction with the less common
(R)-isomer (cf. EC 1.5.3.6, (R)-6-hydroxynicotine oxidase).

References: [774, 721, 3356, 3081]

[EC 1.5.3.5 created 1972, modified 2015]

EC 1.5.3.6
Accepted name: (R)-6-hydroxynicotine oxidase

Reaction: (R)-6-hydroxynicotine + H2O + O2 = 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one + H2O2
(overall reaction)
(1a) (R)-6-hydroxynicotine + O2 = 5-(N-methyl-4,5-dihydro-1H-pyrrol-2-yl)pyridin-2-ol + H2O2
(1b) 5-(N-methyl-4,5-dihydro-1H-pyrrol-2-yl)pyridin-2-ol + H2O = 1-(6-hydroxypyridin-3-yl)-4-
(methylamino)butan-1-one (spontaneous)

Other name(s): D-6-hydroxynicotine oxidase; 6-hydroxy-D-nicotine oxidase
Systematic name: (R)-6-hydroxynicotine:oxygen oxidoreductase

Comments: A flavoprotein (FAD). The enzyme, which participates in nicotine degradation, is specific for (R) iso-
mer of 6-hydroxynicotine, derived from the uncommon (R)-nicotine. The bacterium Arthrobacter
nicotinovorans, in which this enzyme was originally discovered, has a different enzyme that catalyses
a similar reaction with the (S)-isomer (cf. EC 1.5.3.5, (S)-6-hydroxynicotine oxidase).

References: [774, 426, 386, 3356, 1997]

[EC 1.5.3.6 created 1972, modified 2015]

EC 1.5.3.7
Accepted name: L-pipecolate oxidase

Reaction: L-pipecolate + O2 = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + H2O2
Other name(s): pipecolate oxidase; L-pipecolic acid oxidase

Systematic name: L-pipecolate:oxygen 1,6-oxidoreductase
Comments: The product reacts with water to form (S)-2-amino-6-oxohexanoate.
References: [161, 1936]

[EC 1.5.3.7 created 1986, modified 2011]

[1.5.3.8 Deleted entry. (S)-tetrahydroprotoberberine oxidase. Now included with EC 1.3.3.8, tetrahydroberberine oxidase]

[EC 1.5.3.8 created 1989, deleted 1992]

[1.5.3.9 Transferred entry. reticuline oxidase. Now EC 1.21.3.3, reticuline oxidase]

[EC 1.5.3.9 created 1989, modified 1999, deleted 2002]

EC 1.5.3.10
Accepted name: dimethylglycine oxidase

Reaction: N,N-dimethylglycine + H2O + O2 = sarcosine + formaldehyde + H2O2
Systematic name: N,N-dimethylglycine:oxygen oxidoreductase (demethylating)

Comments: A flavoprotein (FAD). Does not oxidize sarcosine.
References: [2619]
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[EC 1.5.3.10 created 1992]

[1.5.3.11 Deleted entry. polyamine oxidase. Now included with EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14
(polyamine oxidase (propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming)),
EC 1.5.3.16 (spermine oxidase) and EC 1.5.3.17 (non-specific polyamine oxidase)]

[EC 1.5.3.11 created 1992, deleted 2009]

EC 1.5.3.12
Accepted name: dihydrobenzophenanthridine oxidase

Reaction: (1) dihydrosanguinarine + O2 = sanguinarine + H2O2
(2) dihydrochelirubine + O2 = chelirubine + H2O2
(3) dihydromacarpine + O2 = macarpine + H2O2

Systematic name: dihydrobenzophenanthridine:oxygen oxidoreductase
Comments: A CuII enzyme found in higher plants that produces oxidized forms of the benzophenanthridine alka-

loids
References: [3402, 109]

[EC 1.5.3.12 created 1999]

EC 1.5.3.13
Accepted name: N1-acetylpolyamine oxidase

Reaction: (1) N1-acetylspermidine + O2 + H2O = putrescine + 3-acetamidopropanal + H2O2
(2) N1-acetylspermine + O2 + H2O = spermidine + 3-acetamidopropanal + H2O2

Other name(s): hPAO-1; PAO (ambiguous); mPAO; hPAO; polyamine oxidase (ambiguous)
Systematic name: N1-acetylpolyamine:oxygen oxidoreductase (3-acetamidopropanal-forming)

Comments: The enzyme also catalyses the reaction: N1,N12-diacetylspermine + O2 + H2O = N1-acetylspermidine
+ 3-acetamamidopropanal + H2O2 [4072]. No or very weak activity with spermine, or spermidine in
absence of aldehydes. In presence of aldehydes the enzyme catalyses the reactions: 1. spermine + O2
+ H2O = spermidine + 3-aminopropanal + H2O2, and with weak efficiency 2. spermidine + O2 + H2O
= putrescine + 3-aminopropanal + H2O2 [1725]. A flavoprotein (FAD). This enzyme, encoded by the
PAOX gene, is found in mammalian peroxisomes and oxidizes N1-acetylated polyamines at the exo
(three-carbon) side of the secondary amine, forming 3-acetamamidopropanal. Since the products of
the reactions are deacetylated polyamines, this process is known as polyamine back-conversion. Dif-
fers in specificity from EC 1.5.3.14 [polyamine oxidase (propane-1,3-diamine-forming)], EC 1.5.3.15
[N8-acetylspermidine oxidase (propane-1,3-diamine-forming)], EC 1.5.3.16 (spermine oxidase) and
EC 1.5.3.17 (non-specific polyamine oxidase).

References: [4072, 1725, 4125, 4262]

[EC 1.5.3.13 created 2009]

EC 1.5.3.14
Accepted name: polyamine oxidase (propane-1,3-diamine-forming)

Reaction: spermidine + O2 + H2O = propane-1,3-diamine + 4-aminobutanal + H2O2
Other name(s): MPAO; maize PAO

Systematic name: spermidine:oxygen oxidoreductase (propane-1,3-diamine-forming)
Comments: As the products of the reaction cannot be converted directly to other polyamines, this class of

polyamine oxidases is considered to be involved in the terminal catabolism of polyamines [3831].
This enzyme less efficiently catalyses the oxidation of N1-acetylspermine and spermine. A flavopro-
tein (FAD). Differs in specificity from EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.15 (N8-
acetylspermidine oxidase (propane-1,3-diamine-forming), EC 1.5.3.16 (spermine oxidase) and EC
1.5.3.17 (non-specific polyamine oxidase).

References: [3831, 993]
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[EC 1.5.3.14 created 2009]

EC 1.5.3.15
Accepted name: N8-acetylspermidine oxidase (propane-1,3-diamine-forming)

Reaction: N8-acetylspermidine + O2 + H2O = propane-1,3-diamine + 4-acetamidobutanal + H2O2
Systematic name: N8-acetylspermidine:oxygen oxidoreductase (propane-1,3-diamine-forming)

Comments: Also active with N1-acetylspermine, weak activity with N1,N12-diacetylspermine. No activity with
diaminopropane, putrescine, cadaverine, diaminohexane, norspermidine, spermine and spermidine.
Absence of monoamine oxidase (EC 1.4.3.4) activity. Differs in specificity from EC 1.5.3.13 (N1-
acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-diamine-forming)), EC
1.5.3.16 (spermine oxidase) and EC 1.5.3.17 (non-specific polyamine oxidase).

References: [3524]

[EC 1.5.3.15 created 2009]

EC 1.5.3.16
Accepted name: spermine oxidase

Reaction: spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
Other name(s): PAOh1/SMO; PAOh1 (ambiguous); AtPAO1; AtPAO4; SMO; mSMO; SMO(PAOh1); SMO/PAOh1;

SMO5; mSMOmu
Systematic name: spermidine:oxygen oxidoreductase (spermidine-forming)

Comments: The enzyme from Arabidopsis thaliana (AtPAO1) oxidizes norspermine to norspermidine with high
efficiency [3830]. The mammalian enzyme, encoded by the SMOX gene, is a cytosolic enzyme that
catalyses the oxidation of spermine at the exo (three-carbon) side of the tertiary amine. No activ-
ity with spermidine. Weak activity with N1-acetylspermine. A flavoprotein (FAD). Differs in speci-
ficity from EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase (propane-1,3-
diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-forming) and
EC 1.5.3.17 (non-specific polyamine oxidase).

References: [2672, 530, 3830, 4126]

[EC 1.5.3.16 created 2009]

EC 1.5.3.17
Accepted name: non-specific polyamine oxidase

Reaction: (1) spermine + O2 + H2O = spermidine + 3-aminopropanal + H2O2
(2) spermidine + O2 + H2O = putrescine + 3-aminopropanal + H2O2
(3) N1-acetylspermine + O2 + H2O = spermidine + 3-acetamidopropanal + H2O2
(4) N1-acetylspermidine + O2 + H2O = putrescine + 3-acetamidopropanal + H2O2

Other name(s): polyamine oxidase (ambiguous); Fms1; AtPAO3
Systematic name: polyamine:oxygen oxidoreductase (3-aminopropanal or 3-acetamidopropanal-forming)

Comments: A flavoprotein (FAD). The non-specific polyamine oxidases may differ from each other considerably.
The enzyme from Saccharomyces cerevisiae shows a rather broad specificity and also oxidizes N8-
acetylspermidine [2125]. The enzyme from Ascaris suum shows high activity with spermine and sper-
midine, but also oxidizes norspermine [2655]. The enzyme from Arabidopsis thaliana shows high
activity with spermidine, but also oxidizes other polyamines [2636]. The specific polyamine oxi-
dases are classified as EC 1.5.3.13 (N1-acetylpolyamine oxidase), EC 1.5.3.14 (polyamine oxidase
(propane-1,3-diamine-forming)), EC 1.5.3.15 (N8-acetylspermidine oxidase (propane-1,3-diamine-
forming)) and EC 1.5.3.16 (spermine oxidase).

References: [2636, 2655, 2125]

[EC 1.5.3.17 created 2009]

EC 1.5.3.18
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Accepted name: L-saccharopine oxidase
Reaction: N6-(L-1,3-dicarboxypropyl)-L-lysine + H2O + O2 = (S)-2-amino-6-oxohexanoate + L-glutamate +

H2O2
Other name(s): FAP2

Systematic name: L-saccharopine:oxygen oxidoreductase (L-glutamate forming)
Comments: The enzyme is involved in pipecolic acid biosynthesis. A flavoprotein (FAD).
References: [4379, 4204]

[EC 1.5.3.18 created 2011]

EC 1.5.3.19
Accepted name: 4-methylaminobutanoate oxidase (formaldehyde-forming)

Reaction: 4-methylaminobutanoate + O2 + H2O = 4-aminobutanoate + formaldehyde + H2O2
Other name(s): mabO (gene name)

Systematic name: 4-methylaminobutanoate:oxygen oxidoreductase (formaldehyde-forming)
Comments: A flavoprotein (FAD). In the enzyme from the soil bacterium Arthrobacter nicotinovorans the cofac-

tor is covalently bound. Participates in the nicotine degradation pathway of this organism.
References: [596]

[EC 1.5.3.19 created 2012]

EC 1.5.3.20
Accepted name: N-alkylglycine oxidase

Reaction: N-alkylglycine + H2O + O2 = alkylamine + glyoxalate + H2O2
Other name(s): N-carboxymethylalkylamine:oxygen oxidoreductase (decarboxymethylating)

Systematic name: N-alkylglycine:oxygen oxidoreductase (alkylamine forming)
Comments: Isolated from the mold Cladosporium sp. G-10. Acts on N6-(carboxymethyl)lysine, 6-

[(carboxymethy)amino]hexanoic acid, sarcosine and N-ethylglycine. It has negligible action on
glycine (cf. EC 1.4.3.19 glycine oxidase).

References: [1235]

[EC 1.5.3.20 created 2012]

EC 1.5.3.21
Accepted name: 4-methylaminobutanoate oxidase (methylamine-forming)

Reaction: 4-methylaminobutanoate + O2 + H2O = succinate semialdehyde + methylamine + H2O2
Other name(s): mao (gene name, ambiguous)

Systematic name: 4-methylaminobutanoate methylamidohydrolase
Comments: The enzyme participates in the nicotine degradation pathway of the soil bacterium Arthrobacter

nicotinovorans. Has a very weak monoamine oxidase (EC 1.4.3.4) activity with 4-aminobutanoate
[596].

References: [596, 595]

[EC 1.5.3.21 created 2012]

EC 1.5.3.22
Accepted name: coenzyme F420H2 oxidase

Reaction: 2 reduced coenzyme F420 + O2 = 2 oxidized coenzyme F420 + 2 H2O
Other name(s): FprA

Systematic name: reduced coenzyme F420:oxygen oxidoreductase
Comments: The enzyme contains FMN and a binuclear iron center. The enzyme from the archaeon Methanother-

mobacter marburgensis is Si-face specific with respect to C-5 of coenzyme F420 [3424].
References: [3422, 3424, 3423]
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[EC 1.5.3.22 created 2013]

EC 1.5.3.23
Accepted name: glyphosate oxidoreductase

Reaction: 2 glyphosate + O2 = 2 aminomethylphosphonate + 2 glyoxylate
Other name(s): gox (gene name)

Systematic name: glyphosate oxidoreductase (aminomethylphosphonate-forming)
Comments: The enzyme, characterized from the bacterium Ochrobactrum sp. G-1, contains an FAD cofactor. The

catalytic cycle starts with a reduction of the FAD cofactor by one molecule of glyphosate, yielding
reduced FAD and a Schiff base of aminomethylphosphonate with glyoxylate that is hydrolysed to the
single components. The reduced FAD is reoxidized by oxygen, generating water and an oxygenated
flavin intermediate, which catalyses the oxygenation of a second molecule of glyphosate, forming the
second pair of aminomethylphosphonate and glyoxylate.

References: [976, 3758]

[EC 1.5.3.23 created 2016]

EC 1.5.4 With a disulfide as acceptor

EC 1.5.4.1
Accepted name: pyrimidodiazepine synthase

Reaction: 2-amino-6-acetyl-3,7,8,9-tetrahydro-3H-pyrimido[4,5-b][1,4]diazepin-4-one + glutathione disulfide +
H2O = 6-pyruvoyltetrahydropterin + 2 glutathione

Other name(s): PDA synthase; pyrimidodiazepine:oxidized-glutathione oxidoreductase (ring-opening, cyclizing);
pyrimidodiazepine:glutathione-disulfide oxidoreductase (ring-opening, cyclizing)

Systematic name: 2-amino-6-acetyl-3,7,8,9-tetrahydro-3H-pyrimido[4,5-b][1,4]diazepin-4-one:glutathione-disulfide
oxidoreductase (ring-opening, cyclizing)

Comments: In the reverse direction, the reduction of 6-pyruvoyl-tetrahydropterin is accompanied by the opening
of the 6-membered pyrazine ring and the formation of the 7-membered diazepine ring. The pyrim-
idodiazepine formed is an acetyldihydro derivative. Involved in the formation of the eye pigment
drosopterin in Drosophila melanogaster.

References: [4207, 1910]

[EC 1.5.4.1 created 1990, modified 2014]

EC 1.5.5 With a quinone or similar compound as acceptor

EC 1.5.5.1
Accepted name: electron-transferring-flavoprotein dehydrogenase

Reaction: reduced electron-transferring flavoprotein + ubiquinone = electron-transferring flavoprotein +
ubiquinol

Other name(s): ETF-QO; ETF:ubiquinone oxidoreductase; electron transfer flavoprotein dehydrogenase; electron
transfer flavoprotein Q oxidoreductase; electron transfer flavoprotein-ubiquinone oxidoreductase;
electron transfer flavoprotein reductase

Systematic name: electron-transferring-flavoprotein:ubiquinone oxidoreductase
Comments: An iron-sulfur flavoprotein, forming part of the mitochondrial electron-transfer system.
References: [239, 3266]

[EC 1.5.5.1 created 1986]

EC 1.5.5.2
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Accepted name: proline dehydrogenase
Reaction: L-proline + a quinone = (S)-1-pyrroline-5-carboxylate + a quinol

Other name(s): L-proline dehydrogenase; L-proline:(acceptor) oxidoreductase
Systematic name: L-proline:quinone oxidoreductase

Comments: A flavoprotein (FAD). The electrons from L-proline are transferred to the FAD cofactor, and from
there to a quinone acceptor [2641]. In many organisms, ranging from bacteria to mammals, proline
is oxidized to glutamate in a two-step process involving this enzyme and EC 1.2.1.88, L-glutamate
γ-semialdehyde dehydrogenase. Both activities are carried out by the same enzyme in enterobacteria.

References: [3339, 416, 2641]

[EC 1.5.5.2 created 1980 as EC 1.5.99.8, transferred 2013 to EC 1.5.5.2]

EC 1.5.5.3
Accepted name: hydroxyproline dehydrogenase

Reaction: trans-4-hydroxy-L-proline + a quinone = (3R,5S)-3-hydroxy-1-pyrroline-5-carboxylate + a quinol
Other name(s): HYPDH; OH-POX; hydroxyproline oxidase; PRODH2 (gene name)

Systematic name: trans-4-hydroxy-L-proline:quinone oxidoreductase
Comments: A flavoprotein (FAD). The enzyme from human also has low activity with L-proline (cf. EC 1.5.5.2,

proline dehydrogenase).
References: [658, 3730]

[EC 1.5.5.3 created 2017]

EC 1.5.7 With an iron-sulfur protein as acceptor

EC 1.5.7.1
Accepted name: methylenetetrahydrofolate reductase (ferredoxin)

Reaction: 5-methyltetrahydrofolate + 2 oxidized ferredoxin = 5,10-methylenetetrahydrofolate + 2 reduced ferre-
doxin + 2 H+

Other name(s): 5,10-methylenetetrahydrofolate reductase
Systematic name: 5-methyltetrahydrofolate:ferredoxin oxidoreductase

Comments: An iron-sulfur flavoprotein that also contains zinc. The enzyme from Clostridium formicoaceticum
catalyses the reduction of methylene blue, menadione, benzyl viologen, rubredoxin or FAD
with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin or FADH2 with 5,10-
methylenetetrahydrofolate. However, unlike EC 1.5.1.20, methylenetetrahydrofolate reductase
[NAD(P)H], there is no activity with NAD(P)H.

References: [627]

[EC 1.5.7.1 created 2005]

EC 1.5.7.2
Accepted name: coenzyme F420 oxidoreductase (ferredoxin)

Reaction: reduced coenzyme F420 + 2 oxidized ferredoxin = oxidized coenzyme F420 + 2 reduced ferredoxin + 2
H+

Other name(s): Fd:F420 oxidoreductase; FpoF protein; ferredoxin:F420 oxidoreductase
Systematic name: coenzyme F420:ferredoxin oxidoreductase

Comments: The enzyme from the archaeon Methanosarcina mazei contains iron-sulfur centres and FAD.
References: [4174]

[EC 1.5.7.2 created 2013]
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EC 1.5.8 With a flavin or flavoprotein as acceptor

EC 1.5.8.1
Accepted name: dimethylamine dehydrogenase

Reaction: dimethylamine + H2O + electron-transfer flavoprotein = methylamine + formaldehyde + reduced
electron-transfer flavoprotein

Systematic name: dimethylamine:electron-transfer flavoprotein oxidoreductase
Comments: Contains FAD and a [4Fe-4S] cluster.
References: [4336]

[EC 1.5.8.1 created 1999 as EC 1.5.99.10, transferred 2002 to EC 1.5.8.1]

EC 1.5.8.2
Accepted name: trimethylamine dehydrogenase

Reaction: trimethylamine + H2O + electron-transfer flavoprotein = dimethylamine + formaldehyde + reduced
electron-transfer flavoprotein

Systematic name: trimethylamine:electron-transfer flavoprotein oxidoreductase (demethylating)
Comments: A number of alkyl-substituted derivatives of trimethylamine can also act as electron donors;

phenazine methosulfate and 2,6-dichloroindophenol can act as electron acceptors. Contains FAD and
a [4Fe-4S] cluster.

References: [639, 3629, 1596, 1773, 3420]

[EC 1.5.8.2 created 1976 as EC 1.5.99.7, transferred 2002 to EC 1.5.8.2]

EC 1.5.8.3
Accepted name: sarcosine dehydrogenase

Reaction: sarcosine + H2O + electron-transfer flavoprotein = glycine + formaldehyde + reduced electron-
transfer flavoprotein

Other name(s): sarcosine N-demethylase; monomethylglycine dehydrogenase; sarcosine:(acceptor) oxidoreductase
(demethylating)

Systematic name: sarcosine:electron-transfer flavoprotein oxidoreductase (demethylating)
Comments: A flavoprotein (FMN). Tetrahydrofolate is also a substrate, being converted to N5,N10-

methylenetetrahydrofolate.
References: [1580, 1078, 3628]

[EC 1.5.8.3 created 1972 as EC 1.5.99.1, transferred 2012 to EC 1.5.8.3]

EC 1.5.8.4
Accepted name: dimethylglycine dehydrogenase

Reaction: N,N-dimethylglycine + 5,6,7,8-tetrahydrofolate + electron-transfer flavoprotein = sarcosine + 5,10-
methylenetetrahydrofolate + reduced electron-transfer flavoprotein

Other name(s): N,N-dimethylglycine oxidase; N,N-dimethylglycine:(acceptor) oxidoreductase (demethylating);
Me2GlyDH; N,N-dimethylglycine:electron-transfer flavoprotein oxidoreductase (demethylating)

Systematic name: N,N-dimethylglycine,5,6,7,8-tetrahydrofolate:electron-transferflavoprotein oxidoreductase
(demethylating,5,10-methylenetetrahydrofolate-forming)

Comments: A flavoprotein, containing a histidyl(Nπ)-(8α)FAD linkage at position 91 in the human protein. An
imine intermediate is channeled from the FAD binding site to the 5,6,7,8-tetrahydrofolate binding site
through a 40 Å tunnel [5,8,9]. In the absence of 5,6,7,8-tetrahydrofolate the enzyme forms formalde-
hyde [3041, 140].

References: [1078, 1580, 4236, 4235, 3041, 406, 407, 2313, 140]

[EC 1.5.8.4 created 1972 as EC 1.5.99.2, transferred 2012 to EC 1.5.8.4, modified 2017]
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EC 1.5.98 With other, known, physiological acceptors

EC 1.5.98.1
Accepted name: methylenetetrahydromethanopterin dehydrogenase

Reaction: 5,10-methylenetetrahydromethanopterin + oxidized coenzyme F420 = 5,10-
methenyltetrahydromethanopterin + reduced coenzyme F420

Other name(s): N5,N10-methylenetetrahydromethanopterin dehydrogenase; 5,10-methylenetetrahydromethanopterin
dehydrogenase

Systematic name: 5,10-methylenetetrahydromethanopterin:coenzyme-F420 oxidoreductase
Comments: Coenzyme F420 is a 7,8-didemethyl-8-hydroxy-5-deazariboflavin derivative; methanopterin is a pterin

analogue. The enzyme is involved in the formation of methane from CO2 in the methanogen Methan-
othermobacter thermautotrophicus.

References: [1403, 3838]

[EC 1.5.98.1 created 1989 as EC 1.5.99.9, modified 2004, transferred to EC 1.5.98.1 2014]

EC 1.5.98.2
Accepted name: 5,10-methylenetetrahydromethanopterin reductase

Reaction: 5-methyltetrahydromethanopterin + oxidized coenzyme F420 = 5,10-
methylenetetrahydromethanopterin + reduced coenzyme F420

Other name(s): 5,10-methylenetetrahydromethanopterin cyclohydrolase; N5,N10-methylenetetrahydromethanopterin
reductase; methylene-H4MPT reductase; coenzyme F420-dependent N5,N10-
methenyltetrahydromethanopterin reductase; N5,N10-methylenetetrahydromethanopterin:coenzyme-
F420 oxidoreductase

Systematic name: 5-methyltetrahydromethanopterin:coenzyme-F420 oxidoreductase
Comments: Catalyses an intermediate step in methanogenesis from CO2 and H2 in methanogenic archaea.
References: [2331, 3838, 2332, 3840, 3839]

[EC 1.5.98.2 created 2000 as EC 1.5.99.11, modified 2004, transferred to EC 1.5.98.2 2014]

EC 1.5.98.3
Accepted name: coenzyme F420:methanophenazine dehydrogenase

Reaction: reduced coenzyme F420 + methanophenazine = oxidized coenzyme F420 + dihydromethanophenazine
Other name(s): F420H2 dehydrogenase; fpoBCDIF (gene names)

Systematic name: reduced coenzyme F420:methanophenazine oxidoreductase
Comments: The enzyme, found in some methanogenic archaea, is responsible for the reoxidation of coenzyme

F420, which is reduced during methanogenesis, and for the reduction of methanophenazine to dihy-
dromethanophenazine, which is required by EC 1.8.98.1, dihydromethanophenazine:CoB-CoM het-
erodisulfide reductase. The enzyme is membrane-bound, and is coupled to proton translocation across
the cytoplasmic membrane, generating a proton motive force that is used for ATP generation.

References: [409, 221, 799, 1700]

[EC 1.5.98.3 created 2017]

EC 1.5.99 With unknown physiological acceptors

[1.5.99.1 Transferred entry. sarcosine dehydrogenase. Now EC 1.5.8.3, sarcosine dehydrogenase]

[EC 1.5.99.1 created 1972, deleted 2012]

[1.5.99.2 Transferred entry. dimethylglycine dehydrogenase. Now EC 1.5.8.4, dimethylglycine dehydrogenase]

[EC 1.5.99.2 created 1972, deleted 2012]
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EC 1.5.99.3
Accepted name: L-pipecolate dehydrogenase

Reaction: L-pipecolate + acceptor = (S)-2,3,4,5-tetrahydropyridine-2-carboxylate + reduced acceptor
Other name(s): L-pipecolate:(acceptor) 1,6-oxidoreductase

Systematic name: L-pipecolate:acceptor 1,6-oxidoreductase
Comments: The product reacts with water to form (S)-2-amino-6-oxohexanoate.
References: [161]

[EC 1.5.99.3 created 1972, modified 1986, modified 2011]

EC 1.5.99.4
Accepted name: nicotine dehydrogenase

Reaction: (S)-nicotine + acceptor + H2O = (S)-6-hydroxynicotine + reduced acceptor
Other name(s): nicotine oxidase; D-nicotine oxidase; nicotine:(acceptor) 6-oxidoreductase (hydroxylating); L-nicotine

oxidase
Systematic name: nicotine:acceptor 6-oxidoreductase (hydroxylating)

Comments: A metalloprotein (FMN). The enzyme can act on both the naturally found (S)-enantiomer and the syn-
thetic (R)-enantiomer of nicotine, with retention of configuration in both cases [1529].

References: [245, 774, 1527, 1529]

[EC 1.5.99.4 created 1972]

EC 1.5.99.5
Accepted name: methylglutamate dehydrogenase

Reaction: N-methyl-L-glutamate + acceptor + H2O = L-glutamate + formaldehyde + reduced acceptor
Other name(s): N-methylglutamate dehydrogenase; N-methyl-L-glutamate:(acceptor) oxidoreductase (demethylating)

Systematic name: N-methyl-L-glutamate:acceptor oxidoreductase (demethylating)
Comments: A number of N-methyl-substituted amino acids can act as donor; 2,6-dichloroindophenol is the best

acceptor.
References: [1482]

[EC 1.5.99.5 created 1976]

EC 1.5.99.6
Accepted name: spermidine dehydrogenase

Reaction: spermidine + acceptor + H2O = propane-1,3-diamine + 4-aminobutanal + reduced acceptor
Other name(s): spermidine:(acceptor) oxidoreductase

Systematic name: spermidine:acceptor oxidoreductase
Comments: A flavohemoprotein (FAD). Ferricyanide, 2,6-dichloroindophenol and cytochrome c can act as accep-

tor. 4-Aminobutanal condenses non-enzymically to 1-pyrroline.
References: [3769, 3770]

[EC 1.5.99.6 created 1976]

[1.5.99.7 Transferred entry. trimethylamine dehydrogenase. Now EC 1.5.8.2, trimethylamine dehydrogenase]

[EC 1.5.99.7 created 1976, deleted 2002]

[1.5.99.8 Transferred entry. proline dehydrogenase. Now EC 1.5.5.2, proline dehydrogenase. ]

[EC 1.5.99.8 created 1980, deleted 2013]

[1.5.99.9 Transferred entry. methylenetetrahydromethanopterin dehydrogenase. As the acceptor is known the enzyme has
been transferred to EC 1.5.98.1, methylenetetrahydromethanopterin dehydrogenase]

[EC 1.5.99.9 created 1989, modified 2004, deleted 2014]
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[1.5.99.10 Transferred entry. dimethylamine dehydrogenase. Now EC 1.5.8.1, dimethylamine dehydrogenase]

[EC 1.5.99.10 created 1999, deleted 2002]

[1.5.99.11 Transferred entry. methylenetetrahydromethanopterin dehydrogenase. As the acceptor is known the enzyme has
been transferred to EC 1.5.98.2, 5,10-methylenetetrahydromethanopterin reductase]

[EC 1.5.99.11 created 2000, modified 2004, deleted 2014]

EC 1.5.99.12
Accepted name: cytokinin dehydrogenase

Reaction: N6-dimethylallyladenine + acceptor + H2O = adenine + 3-methylbut-2-enal + reduced acceptor
Other name(s): N6-dimethylallyladenine:(acceptor) oxidoreductase; 6-N-dimethylallyladenine:acceptor oxidoreduc-

tase; OsCKX2; CKX; cytokinin oxidase/dehydrogenase
Systematic name: N6-dimethylallyladenine:acceptor oxidoreductase

Comments: A flavoprotein(FAD). Catalyses the oxidation of cytokinins, a family of N6-substituted adenine
derivatives that are plant hormones, where the substituent is a dimethylallyl or other prenyl group.
Although this activity was previously thought to be catalysed by a hydrogen-peroxide-forming ox-
idase, this enzyme does not require oxygen for activity and does not form hydrogen peroxide. 2,6-
Dichloroindophenol, methylene blue, nitroblue tetrazolium, phenazine methosulfate and Cu(II) in the
presence of imidazole can act as acceptors. This enzyme plays a part in regulating rice-grain produc-
tion, with lower levels of the enzyme resulting in enhanced grain production [129].

References: [1146, 129]

[EC 1.5.99.12 created 2001]

EC 1.5.99.13
Accepted name: D-proline dehydrogenase

Reaction: D-proline + acceptor = 1-pyrroline-2-carboxylate + reduced acceptor
Other name(s): D-Pro DH; D-Pro dehydrogenase; dye-linked D-proline dehydrogenase

Systematic name: D-proline:acceptor oxidoreductase
Comments: A flavoprotein (FAD). The enzyme prefers D-proline and acts on other D-amino acids with lower effi-

ciency.
References: [3812, 3323]

[EC 1.5.99.13 created 2010, modified 2011]

EC 1.5.99.14
Accepted name: 6-hydroxypseudooxynicotine dehydrogenase

Reaction: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one + acceptor + H2O = 1-(2,6-dihydroxypyridin-
3-yl)-4-(methylamino)butan-1-one + reduced acceptor

Systematic name: 1-(6-hydroxypyridin-3-yl)-4-(methylamino)butan-1-one:acceptor 6-oxidoreductase (hydroxylating)
Comments: Contains a cytidylyl molybdenum cofactor [3274]. The enzyme, which participates in the nicotine

degradation pathway, has been characterized from the soil bacterium Arthrobacter nicotinovorans
[1062, 1281].

References: [1062, 1281, 3274]

[EC 1.5.99.14 created 2012]

EC 1.5.99.15
Accepted name: dihydromethanopterin reductase (acceptor)

Reaction: 5,6,7,8-tetrahydromethanopterin + oxidized acceptor = 7,8-dihydromethanopterin + reduced acceptor
Other name(s): DmrX

Systematic name: 5,6,7,8-tetrahydromethanopterin:acceptor 5,6-oxidoreductase
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Comments: This archaeal enzyme catalyses the last step in the biosynthesis of tetrahydromethanopterin, a
coenzyme used in methanogenesis. The enzyme, characterized from the archaea Methanosarcina
mazei and Methanocaldococcus jannaschii, is an iron-sulfur flavoprotein. cf. EC 1.5.1.47, dihy-
dromethanopterin reductase [NAD(P)+].

References: [4120]

[EC 1.5.99.15 created 2014]

EC 1.6 Acting on NADH or NADPH
In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which
NAD+ or NADP+ is formally regarded as acceptor. This subclass contains only those enzymes in which some other redox
carrier is the acceptor. This can be NAD+ or NADP+ (EC 1.6.1), a heme protein (EC 1.6.2), oxygen (EC 1.6.3), a quinone or
similar compound (EC 1.6.5), a nitrogenous group (EC 1.6.6), or some other acceptor (EC 1.6.99).

EC 1.6.1 With NAD+ or NADP+ as acceptor

EC 1.6.1.1
Accepted name: NAD(P)+ transhydrogenase (Si-specific)

Reaction: NADPH + NAD+ = NADP+ + NADH
Other name(s): pyridine nucleotide transhydrogenase; transhydrogenase; NAD(P)+ transhydrogenase; nicotinamide

adenine dinucleotide (phosphate) transhydrogenase; NAD+ transhydrogenase; NADH transhy-
drogenase; nicotinamide nucleotide transhydrogenase; NADPH-NAD+ transhydrogenase; pyri-
dine nucleotide transferase; NADPH-NAD+ oxidoreductase; NADH-NADP+-transhydrogenase;
NADPH:NAD+ transhydrogenase; H+-Thase; non-energy-linked transhydrogenase; NADPH:NAD+

oxidoreductase (B-specific); NAD(P)+ transhydrogenase (B-specific)
Systematic name: NADPH:NAD+ oxidoreductase (Si-specific)

Comments: The enzyme from Azotobacter vinelandii is a flavoprotein (FAD). It is Si-specific with respect to both
NAD+ and NADP+. Also acts on deamino coenzymes [cf. EC 1.6.1.2 NAD(P)+ transhydrogenase
(Re/Si-specific)].

References: [1610, 4388]

[EC 1.6.1.1 created 1961, modified 1986, modified 2013]

EC 1.6.1.2
Accepted name: NAD(P)+ transhydrogenase (Re/Si-specific)

Reaction: NADPH + NAD+ = NADP+ + NADH
Other name(s): pyridine nucleotide transhydrogenase; transhydrogenase; NAD(P)+ transhydrogenase; nicotinamide

adenine dinucleotide (phosphate) transhydrogenase; NAD+ transhydrogenase; NADH transhy-
drogenase; nicotinamide nucleotide transhydrogenase; NADPH-NAD+ transhydrogenase; pyri-
dine nucleotide transferase; NADPH-NAD+ oxidoreductase; NADH-NADP+-transhydrogenase;
NADPH:NAD+ transhydrogenase; H+-Thase; energy-linked transhydrogenase; NAD(P) transhy-
drogenase (AB-specific); NAD(P)+ transhydrogenase (AB-specific); NADPH:NAD+ oxidoreductase
(AB-specific)

Systematic name: NADPH:NAD+ oxidoreductase (Re/Si-specific)
Comments: The enzyme from heart mitochondria is Re-specific with respect to NAD+ and Si-specific with respect

to NADP+ [cf. EC 1.6.1.1 NAD(P)+ transhydrogenase (Si-specific)].
References: [1021, 4388]

[EC 1.6.1.2 created 1986, modified 2013]

EC 1.6.1.3

236

http://www.enzyme-database.org/query.php?ec=1.6.1.1
http://www.enzyme-database.org/query.php?ec=1.6.1.2
http://www.enzyme-database.org/query.php?ec=1.6.1.3


Accepted name: NAD(P)+ transhydrogenase
Reaction: NADPH + NAD+ = NADP+ + NADH

Other name(s): pyridine nucleotide transhydrogenase; transhydrogenase (ambiguous); nicotinamide adenine dinu-
cleotide (phosphate) transhydrogenase (ambiguous); NAD+ transhydrogenase (ambiguous); NADH
transhydrogenase (misleading); nicotinamide nucleotide transhydrogenase (ambiguous); NADPH-
NAD+ transhydrogenase (ambiguous); pyridine nucleotide transferase (ambiguous); NADPH-NAD+

oxidoreductase (ambiguous); NADH-NADP+-transhydrogenase (ambiguous); NADPH:NAD+ tran-
shydrogenase; H+-Thase (ambiguous); non-energy-linked transhydrogenase (ambiguous)

Systematic name: NADPH:NAD+ oxidoreductase
Comments: The enzyme catalyses the NADPH-driven reduction of NAD+. This entry stands for enzymes whose

stereo-specificity with respect to NADPH is not known. [cf. EC 1.6.1.1, NAD(P)+ transhydrogenase
(Si-specific) and EC 1.6.1.2 NAD(P)+ transhydrogenase (Re/Si-specific)].

References: [841]

[EC 1.6.1.3 created 2013]

EC 1.6.1.4
Accepted name: NAD(P)+ transhydrogenase (ferredoxin)

Reaction: NADH + H+ + 2 NADP+ + 2 reduced ferredoxin [iron-sulfur] cluster = NAD+ + 2 NADPH + 2 oxi-
dized ferredoxin [iron-sulfur] cluster

Other name(s): NADH-dependent reduced ferredoxin:NADP+ oxidoreductase; Nfn; nfnAB (gene names)
Systematic name: NADH:NADP+, ferredoxin oxidoreductase

Comments: The iron-sulfur flavoprotein complex, originally isolated from the bacterium Clostridium kluyveri,
couples the exergonic reduction of NADP+ with reduced ferredoxin and the endergonic reduction of
NADP+ with NADH.

References: [4119, 789, 2310]

[EC 1.6.1.4 created 2015]

[1.6.1.5 Transferred entry. proton-translocating NAD(P)+ transhydrogenase. Now EC 7.1.1.1, proton-translocating NAD(P)+

transhydrogenase]

[EC 1.6.1.5 created 2015, deleted 2018]

EC 1.6.2 With a heme protein as acceptor

[1.6.2.1 Transferred entry. NADH2 cytochrome c reductase. Now EC 1.6.99.3, NADH dehydrogenase]

[EC 1.6.2.1 created 1961, deleted 1965]

EC 1.6.2.2
Accepted name: cytochrome-b5 reductase

Reaction: NADH + 2 ferricytochrome b5 = NAD+ + H+ + 2 ferrocytochrome b5
Other name(s): cytochrome b5 reductase; dihydronicotinamide adenine dinucleotide-cytochrome b5 reductase; re-

duced nicotinamide adeninedinucleotide-cytochrome b5 reductase; NADH-ferricytochrome b5 oxi-
doreductase; NADH-cytochrome b5 reductase; NADH 5α-reductase ; NADH-cytochrome-b5 reduc-
tase

Systematic name: NADH:ferricytochrome-b5 oxidoreductase
Comments: A flavoprotein (FAD).
References: [2369, 3683, 3685]

[EC 1.6.2.2 created 1961]

[1.6.2.3 Deleted entry. cytochrome reductase (NADPH)]

[EC 1.6.2.3 created 1972, deleted 1965]
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EC 1.6.2.4
Accepted name: NADPH—hemoprotein reductase

Reaction: NADPH + H+ + n oxidized hemoprotein = NADP+ + n reduced hemoprotein
Other name(s): CPR; FAD-cytochrome c reductase; NADP-cytochrome c reductase; NADP-cytochrome reductase;

NADPH-dependent cytochrome c reductase; NADPH:P-450 reductase; NADPH:ferrihemoprotein ox-
idoreductase; NADPH—cytochrome P-450 oxidoreductase; NADPH-cytochrome c oxidoreductase;
NADPH-cytochrome c reductase; NADPH—cytochrome p-450 reductase; NADPH-ferricytochrome
c oxidoreductase; NADPH-ferrihemoprotein reductase; TPNH2 cytochrome c reductase; TPNH-
cytochrome c reductase; aldehyde reductase (NADPH-dependent); cytochrome P-450 reductase;
cytochrome c reductase (reduced nicotinamide adenine dinucleotide phosphate, NADPH, NADPH-
dependent); dihydroxynicotinamide adenine dinucleotide phosphate-cytochrome c reductase; ferri-
hemoprotein P-450 reductase; reduced nicotinamide adenine dinucleotide phosphate-cytochrome c
reductase; reductase, cytochrome c (reduced nicotinamide adenine dinucleotide phosphate)

Systematic name: NADPH:hemoprotein oxidoreductase
Comments: A flavoprotein containing both FMN and FAD. This enzyme catalyses the transfer of electrons

from NADPH, an obligatory two-electron donor, to microsomal P-450 monooxygenases (e.g. EC
1.14.14.1, unspecific monooxygenase) by stabilizing the one-electron reduced form of the flavin co-
factors FAD and FMN. It also reduces cytochrome b5 and cytochrome c. The number n in the equa-
tion is 1 if the hemoprotein undergoes a 2-electron reduction, and is 2 if it undergoes a 1-electron re-
duction.

References: [1330, 1566, 2305, 2438, 4216, 2437, 3453, 4111, 2663, 1324]

[EC 1.6.2.4 created 1972, modified 2003]

EC 1.6.2.5
Accepted name: NADPH—cytochrome-c2 reductase

Reaction: NADPH + 2 ferricytochrome c2 = NADP+ + H+ + 2 ferrocytochrome c2
Other name(s): cytochrome c2 reductase (reduced nicotinamide adenine dinucleotide phosphate); cytochrome c2 re-

ductase (reduced nicotinamide adinine dinucleotide phosphate, NADPH)
Systematic name: NADPH:ferricytochrome-c2 oxidoreductase

Comments: A flavoprotein (FAD).
References: [3273]

[EC 1.6.2.5 created 1972]

EC 1.6.2.6
Accepted name: leghemoglobin reductase

Reaction: NAD(P)H + H+ + 2 ferrileghemoglobin = NAD(P)+ + 2 ferroleghemoglobin
Other name(s): ferric leghemoglobin reductase

Systematic name: NAD(P)H:ferrileghemoglobin oxidoreductase
References: [3272]

[EC 1.6.2.6 created 1989]

EC 1.6.3 With oxygen as acceptor

EC 1.6.3.1
Accepted name: NAD(P)H oxidase (H2O2-forming)

Reaction: NAD(P)H + H+ + O2 = NAD(P)+ + H2O2
Other name(s): THOX2; ThOX; dual oxidase; p138tox; thyroid NADPH oxidase; thyroid oxidase; thyroid oxidase 2;

NADPH oxidase; NAD(P)H:oxygen oxidoreductase; NAD(P)H oxidase
Systematic name: NAD(P)H:oxygen oxidoreductase (H2O2-forming)
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Comments: Requires FAD, heme and calcium. When calcium is present, this transmembrane glycoprotein gen-
erates H2O2 by transfering electrons from intracellular NAD(P)H to extracellular molecular oxygen.
The electron bridge within the enzyme contains one molecule of FAD and probably two heme groups.
This flavoprotein is expressed at the apical membrane of thyrocytes, and provides H2O2 for the thy-
roid peroxidase-catalysed biosynthesis of thyroid hormones.

References: [2615, 779, 780, 891, 2203, 892]

[EC 1.6.3.1 created 2003, modified 2013]

EC 1.6.3.2
Accepted name: NAD(P)H oxidase (H2O-forming)

Reaction: 2 NAD(P)H + 2 H+ + O2 = 2 NAD(P)+ + 2 H2O
Systematic name: NAD(P)H:oxygen oxidoreductase (H2O-forming)

Comments: A flavoprotein (FAD). NADPH is a better substrate than NADH [415, 1740]. By removal of oxy-
gen the enzyme is involved in aerobic tolerance in the thermophilic anaerobic archaeon Thermo-
coccus profundus and in Giardia intestinalis, a microaerophilic single-celled parasite of the order
Diplomonadida.

References: [415, 2229, 1740, 1739]

[EC 1.6.3.2 created 2013]

EC 1.6.3.3
Accepted name: NADH oxidase (H2O2-forming)

Reaction: NADH + H+ + O2 = NAD+ + H2O2
Other name(s): NOX-1; H2O2-forming NADH oxidase

Systematic name: NADH:oxygen oxidoreductase (H2O2-forming)
Comments: A flavoprotein (FAD). The bacterium Streptococcus mutans contains two distinct NADH oxidases, a

H2O2-forming enzyme and a H2O-forming enzyme (cf. EC 1.6.3.4, NADH oxidase (H2O-forming))
[1498]. The enzymes from the anaerobic archaea Methanocaldococcus jannaschii [515] and Pyrococ-
cus furiosus [1881] also produce low amounts of H2O. Unlike EC 1.6.3.1 (NAD(P)H oxidase) it has
no activity towards NADPH.

References: [1498, 4130, 1881, 4338, 1514, 515]

[EC 1.6.3.3 created 2013]

EC 1.6.3.4
Accepted name: NADH oxidase (H2O-forming)

Reaction: 2 NADH + 2 H+ + O2 = 2 NAD+ + 2 H2O
Other name(s): H2O-forming NADH oxidase; Nox-2

Systematic name: NADH:oxygen oxidoreductase (H2O-forming)
Comments: A flavoprotein (FAD). The bacterium Streptococcus mutans contains two distinct NADH oxidases, a

H2O-forming enzyme and a H2O2-forming enzyme (cf. EC 1.6.3.3, NADH oxidase (H2O2-forming))
[3376].

References: [3376, 1498, 2446, 1862, 4449]

[EC 1.6.3.4 created 2013]

EC 1.6.3.5
Accepted name: renalase

Reaction: (1) 1,2-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2
(2) 1,6-dihydro-β-NAD(P) + H+ + O2 = β-NAD(P)+ + H2O2

Other name(s): αNAD(P)H oxidase/anomerase (incorrect); NAD(P)H:oxygen oxidoreductase (H2O2-forming,
epimerising) (incorrect)
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Systematic name: dihydro-NAD(P):oxygen oxidoreductase (H2O2-forming)
Comments: Requires FAD. Renalase, previously thought to be a hormone, is a flavoprotein secreted into the blood

by the kidney that oxidizes the 1,2-dihydro- and 1,6-dihydro- isomeric forms of β-NAD(P)H back
to β-NAD(P)+. These isomeric forms, generated by nonspecific reduction of β-NAD(P)+ or by tau-
tomerization of β-NAD(P)H, are potent inhibitors of primary metabolism dehydrogenases and pose a
threat to normal respiration.

References: [4283, 235]

[EC 1.6.3.5 created 2014, modified 2015]

EC 1.6.4 With a disulfide as acceptor (deleted sub-subclass)

[1.6.4.1 Transferred entry. cystine reductase (NADH). Now EC 1.8.1.6, cystine reductase]

[EC 1.6.4.1 created 1961, deleted 2002]

[1.6.4.2 Transferred entry. glutathione reductase (NADPH). Now EC 1.8.1.7, glutathione-disulfide reductase]

[EC 1.6.4.2 created 1961, modified 1989, deleted 2002]

[1.6.4.3 Transferred entry. dihydrolipoamide reductase (NAD+). Now EC 1.8.1.4, dihydrolipoyl dehydrogenase]

[EC 1.6.4.3 created 1961, modified 1976, deleted 1983]

[1.6.4.4 Transferred entry. protein-disulfide reductase [NAD(P)H]. Now EC 1.8.1.8, protein-disulfide reductase]

[EC 1.6.4.4 created 1965, deleted 2002]

[1.6.4.5 Transferred entry. thioredoxin reductase (NADPH). Now EC 1.8.1.9, thioredoxin-disulfide reductase]

[EC 1.6.4.5 created 1972, deleted 2002]

[1.6.4.6 Transferred entry. CoA-glutathione reductase (NADPH). Now EC 1.8.1.10, CoA-glutathione reductase]

[EC 1.6.4.6 created 1972, deleted 2002]

[1.6.4.7 Transferred entry. asparagusate reductase (NADH). Now EC 1.8.1.11, asparagusate reductase]

[EC 1.6.4.7 created 1978, deleted 2002]

[1.6.4.8 Transferred entry. trypanothione reductase. Now EC 1.8.1.12, trypanothione-disulfide reductase]

[EC 1.6.4.8 created 1989, deleted 2002]

[1.6.4.9 Transferred entry. bis-γ-glutamylcystine reductase (NADPH). Now EC 1.8.1.13, bis-γ-glutamylcystine reductase]

[EC 1.6.4.9 created 1992, deleted 2002]

[1.6.4.10 Transferred entry. CoA-disulfide reductase (NADH). Now EC 1.8.1.14, CoA-disulfide reductase]

[EC 1.6.4.10 created 1992, deleted 2002]

EC 1.6.5 With a quinone or similar compound as acceptor

[1.6.5.1 Deleted entry. quinone reductase]

[EC 1.6.5.1 created 1961, deleted 1965]
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EC 1.6.5.2
Accepted name: NAD(P)H dehydrogenase (quinone)

Reaction: NAD(P)H + H+ + a quinone = NAD(P)+ + a hydroquinone
Other name(s): menadione reductase; phylloquinone reductase; quinone reductase; dehydrogenase, reduced nicoti-

namide adenine dinucleotide (phosphate, quinone); DT-diaphorase; flavoprotein NAD(P)H-quinone
reductase; menadione oxidoreductase; NAD(P)H dehydrogenase; NAD(P)H menadione reduc-
tase; NAD(P)H-quinone dehydrogenase; NAD(P)H-quinone oxidoreductase; NAD(P)H: (quinone-
acceptor)oxidoreductase; NAD(P)H: menadione oxidoreductase; NADH-menadione reductase; naph-
thoquinone reductase; p-benzoquinone reductase; reduced NAD(P)H dehydrogenase; viologen ac-
cepting pyridine nucleotide oxidoreductase; vitamin K reductase; diaphorase; reduced nicotinamide-
adenine dinucleotide (phosphate) dehydrogenase; vitamin-K reductase; NAD(P)H2 dehydrogenase
(quinone); NQO1; QR1; NAD(P)H:(quinone-acceptor) oxidoreductase

Systematic name: NAD(P)H:quinone oxidoreductase
Comments: A flavoprotein. The enzyme catalyses a two-electron reduction and has a preference for short-chain

acceptor quinones, such as ubiquinone, benzoquinone, juglone and duroquinone [3590]. The animal,
but not the plant, form of the enzyme is inhibited by dicoumarol.

References: [812, 1211, 2399, 2554, 4255, 3590, 387, 1710, 2231]

[EC 1.6.5.2 created 1961, transferred 1965 to EC 1.6.99.2, transferred 2005 to EC 1.6.5.2]

[1.6.5.3 Transferred entry. NADH:ubiquinone reductase (H+-translocating). Now EC 7.1.1.2, NADH:ubiquinone reductase
(H+-translocating)]

[EC 1.6.5.3 created 1961, deleted 1965, reinstated 1983, modified 2011, modified 2013, deleted 2018]

EC 1.6.5.4
Accepted name: monodehydroascorbate reductase (NADH)

Reaction: NADH + H+ + 2 monodehydroascorbate = NAD+ + 2 ascorbate
Other name(s): NADH:semidehydroascorbic acid oxidoreductase; MDHA; semidehydroascorbate reductase;

AFR; AFR-reductase; ascorbic free radical reductase; ascorbate free radical reductase; SOR;
MDAsA reductase (NADPH) ; SDA reductase; NADH:ascorbate radical oxidoreductase; NADH-
semidehydroascorbate oxidoreductase; ascorbate free-radical reductase ; NADH:AFR oxidoreductase;
monodehydroascorbate reductase (NADH2)

Systematic name: NADH:monodehydroascorbate oxidoreductase
References: [3401]

[EC 1.6.5.4 created 1961]

EC 1.6.5.5
Accepted name: NADPH:quinone reductase

Reaction: NADPH + H+ + 2 quinone = NADP+ + 2 semiquinone
Other name(s): NADPH2:quinone reductase

Systematic name: NADPH:quinone oxidoreductase
Comments: A zinc enzyme, specific for NADPH. Catalyses the one-electron reduction of certain quinones, with

the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone being the best substrates
[3125]. Dicoumarol [cf. EC 1.6.5.2 NAD(P)H dehydrogenase (quinone)] and nitrofurantoin are com-
petitive inhibitors with respect to the quinone substrate. The semiquinone free-radical product may
be non-enzymically reduced to the hydroquinone or oxidized back to quinone in the presence of O2
[3125]. In some mammals, the enzyme is abundant in the lens of the eye, where it is identified with
the protein ζ-crystallin.

References: [3125, 884, 225, 3807]

[EC 1.6.5.5 created 1999]

EC 1.6.5.6
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Accepted name: p-benzoquinone reductase (NADPH)
Reaction: NADPH + H+ + p-benzoquinone = NADP+ + hydroquinone

Systematic name: NADPH:p-benzoquinone oxidoreductase
Comments: Involved in the 4-nitrophenol degradation pathway in bacteria.
References: [3589]

[EC 1.6.5.6 created 2000]

EC 1.6.5.7
Accepted name: 2-hydroxy-1,4-benzoquinone reductase

Reaction: 2-hydroxy-1,4-benzoquinone + NADH + H+ = hydroxyquinol + NAD+

Other name(s): hydroxybenzoquinone reductase; 1,2,4-trihydroxybenzene:NAD oxidoreductase
Systematic name: NADH:2-hydroxy-1,4-benzoquinone oxidoreductase

Comments: A flavoprotein (FMN) that differs in substrate specificity from other quinone reductases. The enzyme
in Burkholderia cepacia is inducible by 2,4,5-trichlorophenoxyacetate.

References: [4417]

[EC 1.6.5.7 created 2000, modified 2004]

[1.6.5.8 Transferred entry. NADH:ubiquinone reductase (Na+-transporting). Now EC 7.2.1.1, NADH:ubiquinone reductase
(Na+-transporting)]

[EC 1.6.5.8 created 2011, deleted 2018]

EC 1.6.5.9
Accepted name: NADH:ubiquinone reductase (non-electrogenic)

Reaction: NADH + H+ + ubiquinone = NAD+ + ubiquinol
Other name(s): ubiquinone reductase (ambiguous); coenzyme Q reductase (ambiguous); dihydronicotinamide ade-

nine dinucleotide-coenzyme Q reductase (ambiguous); DPNH-coenzyme Q reductase (ambiguous);
DPNH-ubiquinone reductase (ambiguous); NADH-coenzyme Q oxidoreductase (ambiguous); NADH-
coenzyme Q reductase (ambiguous); NADH-CoQ oxidoreductase (ambiguous); NADH-CoQ re-
ductase (ambiguous); NADH-ubiquinone reductase (ambiguous); NADH-ubiquinone oxidoreduc-
tase (ambiguous); reduced nicotinamide adenine dinucleotide-coenzyme Q reductase (ambiguous);
NADH-Q6 oxidoreductase (ambiguous); NADH2 dehydrogenase (ubiquinone) (ambiguous)

Systematic name: NADH:ubiquinone oxidoreductase
Comments: A flavoprotein (FAD). Occurs in mitochondria of yeast and plants, and in aerobic bacteria. Has low

activity with NADPH.
References: [2596, 770, 1884, 3128]

[EC 1.6.5.9 created 2011]

EC 1.6.5.10
Accepted name: NADPH dehydrogenase (quinone)

Reaction: NADPH + H+ + a quinone = NADP+ + a quinol
Other name(s): reduced nicotinamide adenine dinucleotide phosphate (quinone) dehydrogenase; NADPH oxidase;

NADPH2 dehydrogenase (quinone)
Systematic name: NADPH:(quinone-acceptor) oxidoreductase

Comments: A flavoprotein [1, 2]. The enzyme from Escherichia coli is specific for NADPH and is most active
with quinone derivatives and ferricyanide as electron acceptors [1440]. Menaquinone can act as ac-
ceptor. The enzyme from hog liver is inhibited by dicoumarol and folic acid derivatives but not by
2,4-dinitrophenol [2016].

References: [2016, 1439, 1440]

[EC 1.6.5.10 created 1972 as EC 1.6.99.6, transferred 2011 to EC 1.6.5.10]
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EC 1.6.5.11
Accepted name: NADH dehydrogenase (quinone)

Reaction: NADH + H+ + a quinone = NAD+ + a quinol
Other name(s): reduced nicotinamide adenine dinucleotide (quinone) dehydrogenase; NADH-quinone oxidoreduc-

tase; DPNH-menadione reductase; D-diaphorase; NADH2 dehydrogenase (quinone)
Systematic name: NADH:(quinone-acceptor) oxidoreductase

Comments: Menaquinone can act as acceptor. Inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or
folic acid derivatives.

References: [2016]

[EC 1.6.5.11 created 1972 as EC 1.6.99.5, transferred 2015 to EC 1.6.5.11]

EC 1.6.5.12
Accepted name: demethylphylloquinone reductase

Reaction: demethylphylloquinone + NADPH + H+ = demethylphylloquinol + NADP+

Other name(s): ndbB (gene name); NDC1 (gene name); demethylphylloquinone:NADPH oxidoreductase
Systematic name: NADPH:demethylphylloquinone oxidoreductase

Comments: The enzyme, found in plants and cyanobacteria, is involved in the biosynthesis of phylloquinone (vita-
min K1), an electron carrier associated with photosystem I. The enzyme is a type II NADPH dehydro-
genase and requires a flavine adenine dinucleotide cofactor.

References: [992]

[EC 1.6.5.12 created 2015]

EC 1.6.6 With a nitrogenous group as acceptor

[1.6.6.1 Transferred entry. nitrate reductase (NADH). Now EC 1.7.1.1, nitrate reductase (NADH)]

[EC 1.6.6.1 created 1961, deleted 2002]

[1.6.6.2 Transferred entry. nitrate reductase [NAD(P)H]. Now EC 1.7.1.2, nitrate reductase [NAD(P)H]]

[EC 1.6.6.2 created 1961, deleted 2002]

[1.6.6.3 Transferred entry. nitrate reductase (NADPH). Now EC 1.7.1.3, nitrate reductase (NADPH)]

[EC 1.6.6.3 created 1961, deleted 2002]

[1.6.6.4 Transferred entry. nitrite reductase [NAD(P)H]. Now EC 1.7.1.4, nitrite reductase [NAD(P)H]]

[EC 1.6.6.4 created 1961, deleted 2002]

[1.6.6.5 Transferred entry. now EC 1.7.2.1, nitrite reductase (NO-forming)]

[EC 1.6.6.5 created 1961, deleted 1964]

[1.6.6.6 Transferred entry. hyponitrite reductase. Now EC 1.7.1.5, hyponitrite reductase]

[EC 1.6.6.6 created 1961, deleted 2002]

[1.6.6.7 Transferred entry. azobenzene reductase. Now EC 1.7.1.6, azobenzene reductase]

[EC 1.6.6.7 created 1961, deleted 2002]

[1.6.6.8 Transferred entry. GMP reductase. Now EC 1.7.1.7, GMP reductase]

[EC 1.6.6.8 created 1965, deleted 2002]

[1.6.6.9 Deleted entry. The activity is now known to be catalysed by EC 1.7.2.3, trimethylamine-N-oxide reductase.]

[EC 1.6.6.9 created 1972, deleted 2018]
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[1.6.6.10 Transferred entry. nitroquinoline-N-oxide reductase. Now EC 1.7.1.9, nitroquinoline-N-oxide reductase]

[EC 1.6.6.10 created 1972, deleted 2002]

[1.6.6.11 Transferred entry. hydroxylamine reductase (NADH). Now EC 1.7.1.10, hydroxylamine reductase (NADH)]

[EC 1.6.6.11 created 1972, deleted 2002]

[1.6.6.12 Transferred entry. 4-(dimethylamino)phenylazoxybenzene reductase. Now EC 1.7.1.11, 4-(dimethylamino)phenylazoxybenzene
reductase]

[EC 1.6.6.12 created 1989, deleted 2002]

[1.6.6.13 Transferred entry. N-hydroxy-2-acetamidofluorene reductase. Now EC 1.7.1.12, N-hydroxy-2-acetamidofluorene
reductase]

[EC 1.6.6.13 created 1989, deleted 2002]

EC 1.6.7 With an iron-sulfur protein as acceptor (deleted sub-subclass)

[1.6.7.1 Transferred entry. ferredoxin—NADP+ reductase. Now EC 1.18.1.2, ferredoxin—NADP+ reductase]

[EC 1.6.7.1 created 1972, deleted 1978]

[1.6.7.2 Transferred entry. rubredoxin—NAD+ reductase. Now EC 1.18.1.1, rubredoxin—NAD+ reductase]

[EC 1.6.7.2 created 1972, deleted 1978]

[1.6.7.3 Transferred entry. now EC 1.18.1.3, ferredoxin—NAD+ reductase]

[EC 1.6.7.3 created 1978, deleted 1978]

EC 1.6.8 With a flavin as acceptor (deleted sub-subclass)

[1.6.8.1 Transferred entry. NAD(P)H dehydrogenase (FMN). Now EC 1.5.1.29, FMN reductase]

[EC 1.6.8.1 created 1981, deleted 2002]

[1.6.8.2 Transferred entry. NADPH dehydrogenase (flavin). Now EC 1.5.1.30, flavin reductase]

[EC 1.6.8.2 created 1982, deleted 2002]

EC 1.6.99 With unknown physiological acceptors

EC 1.6.99.1
Accepted name: NADPH dehydrogenase

Reaction: NADPH + H+ + acceptor = NADP+ + reduced acceptor
Other name(s): NADPH2 diaphorase; NADPH diaphorase; OYE; diaphorase; dihydronicotinamide adenine din-

ucleotide phosphate dehydrogenase; NADPH-dehydrogenase; NADPH-diaphorase; NADPH2-
dehydrogenase; old yellow enzyme; reduced nicotinamide adenine dinucleotide phosphate dehydro-
genase; TPNH dehydrogenase; TPNH-diaphorase; triphosphopyridine diaphorase; triphosphopyridine
nucleotide diaphorase; NADPH2 dehydrogenase; NADPH:(acceptor) oxidoreductase

Systematic name: NADPH:acceptor oxidoreductase
Comments: A flavoprotein (FMN in yeast, FAD in plants).
References: [46, 147, 1708, 3858, 3861]

[EC 1.6.99.1 created 1961, modified 1976]
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[1.6.99.2 Transferred entry. NAD(P)H dehydrogenase (quinone). Now EC 1.6.5.2, NAD(P)H dehydrogenase (quinone). The
enzyme was erroneously transferred from this sub-subclass in 1965]

[EC 1.6.99.2 created 1961 as EC 1.6.5.2, transferred 1965 to EC 1.6.99.2, deleted 2005]

EC 1.6.99.3
Accepted name: NADH dehydrogenase

Reaction: NADH + H+ + acceptor = NAD+ + reduced acceptor
Other name(s): cytochrome c reductase; type 1 dehydrogenase; β-NADH dehydrogenase dinucleotide; diaphorase;

dihydrocodehydrogenase I dehydrogenase; dihydronicotinamide adenine dinucleotide dehydroge-
nase; diphosphopyridine diaphorase; DPNH diaphorase; NADH diaphorase; NADH hydrogenase;
NADH oxidoreductase; NADH-menadione oxidoreductase; reduced diphosphopyridine nucleotide
diaphorase; NADH:cytochrome c oxidoreductase; NADH2 dehydrogenase; NADH:(acceptor) oxi-
doreductase

Systematic name: NADH:acceptor oxidoreductase
Comments: A flavoprotein containing iron-sulfur centres. After preparations have been subjected to certain treat-

ments, cytochrome c may act as an acceptor. Under normal conditions, two protons are extruded from
the cytoplasm or the intramitochondrial or stromal compartment. Present in a mitochondrial complex
as EC 7.1.1.2, NADH:ubiquinone reductase (H+-translocating).

References: [11, 1420, 1528, 1811]

[EC 1.6.99.3 created 1961 as EC 1.6.2.1, transferred 1965 to EC 1.6.99.3, modified 2018]

[1.6.99.4 Transferred entry. nitrite reductase. Now EC 1.18.1.2, ferredoxin—NADP+ reductase]

[EC 1.6.99.4 created 1965, deleted 1972]

[1.6.99.5 Transferred entry. NADH dehydrogenase (quinone). Transferred to EC 1.6.5.11, NADH dehydrogenase (quinone)]

[EC 1.6.99.5 created 1972, deleted 2014]

[1.6.99.6 Transferred entry. NADPH dehydrogenase (quinone). Now EC 1.6.5.10, NADPH dehydrogenase (quinone)]

[EC 1.6.99.6 created 1972, deleted 2011]

[1.6.99.7 Transferred entry. dihydropteridine reductase. Now EC 1.5.1.34, 6,7-dihydropteridine reductase]

[EC 1.6.99.7 created 1972, modified 1981 (EC 1.6.99.10 created 1978, incorporated 1981), deleted 2003]

[1.6.99.8 Transferred entry. aquacobalamin reductase. Now EC 1.16.1.3, aquacobalamin reductase]

[EC 1.6.99.8 created 1972, deleted 2002]

[1.6.99.9 Transferred entry. cob(II)alamin reductase. Now EC 1.16.1.4, cob(II)alamin reductase]

[EC 1.6.99.9 created 1972, deleted 2002]

[1.6.99.10 Deleted entry. dihydropteridine reductase (NADH). Now included with EC 1.5.1.34, 6,7-dihydropteridine reduc-
tase]

[EC 1.6.99.10 created 1978, deleted 1981]

[1.6.99.11 Transferred entry. aquacobalamin reductase (NADPH). Now EC 1.16.1.5, aquacobalamin reductase (NADPH)]

[EC 1.6.99.11 created 1989, deleted 2002]

[1.6.99.12 Transferred entry. cyanocobalamin reductase (NADPH, cyanide-eliminating). Now EC 1.16.1.6, cyanocobalamin
reductase (cyanide-eliminating)]

[EC 1.6.99.12 created 1989, deleted 2002]

[1.6.99.13 Transferred entry. ferric-chelate reductase. Now EC 1.16.1.7, ferric-chelate reductase]

[EC 1.6.99.13 created 1992, deleted 2002]
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EC 1.7 Acting on other nitrogenous compounds as donors
This subclass contains a small group of enzymes that oxidize diverse nitrogenous substrates. Sub-subclasses are based on the
acceptor: NAD+ or NADP+ (EC 1.7.1), a cytochrome (EC 1.7.2), oxygen (EC 1.7.3), an iron-sulfur protein (EC 1.7.7), or some
other acceptor (EC 1.7.99).

EC 1.7.1 With NAD+ or NADP+ as acceptor

EC 1.7.1.1
Accepted name: nitrate reductase (NADH)

Reaction: nitrite + NAD+ + H2O = nitrate + NADH + H+

Other name(s): assimilatory nitrate reductase; NADH-nitrate reductase; NADH-dependent nitrate reductase; assimila-
tory NADH: nitrate reductase; nitrate reductase (NADH2); NADH2:nitrate oxidoreductase

Systematic name: nitrite:NAD+ oxidoreductase
Comments: An iron-sulfur molybdenum flavoprotein.
References: [1008, 2740, 2781, 3595, 269]

[EC 1.7.1.1 created 1961 as EC 1.6.6.1, transferred 2002 to EC 1.7.1.1]

EC 1.7.1.2
Accepted name: nitrate reductase [NAD(P)H]

Reaction: nitrite + NAD(P)+ + H2O = nitrate + NAD(P)H + H+

Other name(s): assimilatory nitrate reductase; assimilatory NAD(P)H-nitrate reductase; NAD(P)H bispecific nitrate
reductase; nitrate reductase (reduced nicotinamide adenine dinucleotide (phosphate)); nitrate reduc-
tase NAD(P)H; NAD(P)H-nitrate reductase; nitrate reductase [NAD(P)H2]; NAD(P)H2:nitrate oxi-
doreductase

Systematic name: nitrite:NAD(P)+ oxidoreductase
Comments: An iron-sulfur molybdenum flavoprotein.
References: [2740, 2931, 490, 269]

[EC 1.7.1.2 created 1961 as EC 1.6.6.2, transferred 2002 to EC 1.7.1.2]

EC 1.7.1.3
Accepted name: nitrate reductase (NADPH)

Reaction: nitrite + NADP+ + H2O = nitrate + NADPH + H+

Other name(s): assimilatory nitrate reductase; assimilatory reduced nicotinamide adenine dinucleotide phosphate-
nitrate reductase; NADPH-nitrate reductase; assimilatory NADPH-nitrate reductase; triphospho-
pyridine nucleotide-nitrate reductase; NADPH:nitrate reductase; nitrate reductase (NADPH2);
NADPH2:nitrate oxidoreductase

Systematic name: nitrite:NADP+ oxidoreductase
Comments: An iron-sulfur molybdenum flavoprotein.
References: [2740, 2741, 2780, 3815, 269]

[EC 1.7.1.3 created 1961 as EC 1.6.6.3, transferred 2002 to EC 1.7.1.3]

EC 1.7.1.4
Accepted name: nitrite reductase [NAD(P)H]

Reaction: NH3 + 3 NAD(P)+ + 2 H2O = nitrite + 3 NAD(P)H + 5 H+

Other name(s): nitrite reductase (reduced nicotinamide adenine dinucleotide (phosphate)); assimilatory nitrite reduc-
tase (ambiguous); nitrite reductase [NAD(P)H2]; NAD(P)H2:nitrite oxidoreductase; nit-6 (gene name)

Systematic name: ammonia:NAD(P)+ oxidoreductase
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Comments: An iron-sulfur flavoprotein (FAD) containing siroheme. The enzymes from the fungi Neurospora
crassa [2779], Emericella nidulans [2960] and Candida nitratophila [3196] and the bacterium Ali-
ivibrio fischeri [3053] can use either NADPH or NADH as electron donor. cf. EC 1.7.1.15, nitrite re-
ductase (NADH).

References: [2779, 2960, 3053, 3196, 2113, 4024, 1273, 3067, 974, 638]

[EC 1.7.1.4 created 1961 as EC 1.6.6.4, transferred 2002 to EC 1.7.1.4, modified 2013]

EC 1.7.1.5
Accepted name: hyponitrite reductase

Reaction: 2 hydroxylamine + 2 NAD+ = hyponitrous acid + 2 NADH + 2 H+

Other name(s): NADH2:hyponitrite oxidoreductase
Systematic name: hydroxylamine:NAD+ oxidoreductase

Comments: A metalloprotein.
References: [2494]

[EC 1.7.1.5 created 1961 as EC 1.6.6.6, transferred 2002 to EC 1.7.1.5]

EC 1.7.1.6
Accepted name: azobenzene reductase

Reaction: N,N-dimethyl-1,4-phenylenediamine + aniline + 2 NADP+ = 4-(dimethylamino)azobenzene + 2
NADPH + 2 H+

Other name(s): new coccine (NC)-reductase; NC-reductase; azo-dye reductase; orange II azoreductase; NAD(P)H:1-
(4′-sulfophenylazo)-2-naphthol oxidoreductase; orange I azoreductase; azo reductase; azoreduc-
tase; nicotinamide adenine dinucleotide (phosphate) azoreductase; NADPH2-dependent azore-
ductase; dimethylaminobenzene reductase; p-dimethylaminoazobenzene azoreductase; dibromo-
propylaminophenylazobenzoic azoreductase; N,N-dimethyl-4-phenylazoaniline azoreductase; p-
aminoazobenzene reductase; methyl red azoreductase; NADPH2:4-(dimethylamino)azobenzene ox-
idoreductase

Systematic name: N,N-dimethyl-1,4-phenylenediamine, aniline:NADP+ oxidoreductase
Comments: The reaction occurs in the reverse direction to that shown above. Other azo dyes, such as Methyl Red,

Rocceline, Solar Orange and Sumifix Black B can also be reduced [3757].
References: [2644, 3757]

[EC 1.7.1.6 created 1961 as EC 1.6.6.7, transferred 2002 to EC 1.7.1.6]

EC 1.7.1.7
Accepted name: GMP reductase

Reaction: IMP + NH3 + NADP+ = GMP + NADPH + H+

Other name(s): guanosine 5′-monophosphate reductase; NADPH:GMP oxidoreductase (deaminating); guanosine
monophosphate reductase; guanylate reductase; NADPH2:guanosine-5′-phosphate oxidoreductase
(deaminating); guanosine 5′-phosphate reductase

Systematic name: inosine-5′-phosphate:NADP+ oxidoreductase (aminating)
References: [2347, 2361]

[EC 1.7.1.7 created 1965 as EC 1.6.6.8, transferred 2002 to EC 1.7.1.7]

[1.7.1.8 Deleted entry. withdrawn in the light of further information on the acceptor]

[EC 1.7.1.8 created 2002, deleted 2002]

EC 1.7.1.9
Accepted name: nitroquinoline-N-oxide reductase
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Reaction: 4-(hydroxyamino)quinoline N-oxide + 2 NAD(P)+ + H2O = 4-nitroquinoline N-oxide + 2 NAD(P)H
+ 2 H+

Other name(s): 4-nitroquinoline 1-oxide reductase; 4NQO reductase; NAD(P)H2:4-nitroquinoline-N-oxide oxidore-
ductase

Systematic name: 4-(hydroxyamino)quinoline N-oxide:NADP+ oxidoreductase
References: [3914, 3620]

[EC 1.7.1.9 created 1972 as EC 1.6.6.10, transferred 2002 to EC 1.7.1.9]

EC 1.7.1.10
Accepted name: hydroxylamine reductase (NADH)

Reaction: NH3 + NAD+ + H2O = hydroxylamine + NADH + H+

Other name(s): hydroxylamine reductase; ammonium dehydrogenase; NADH-hydroxylamine reductase; N-hydroxy
amine reductase; hydroxylamine reductase (NADH2); NADH2:hydroxylamine oxidoreductase

Systematic name: ammonium:NAD+ oxidoreductase
Comments: Also acts on some hydroxamates.
References: [274, 275, 4117]

[EC 1.7.1.10 created 1972 as EC 1.6.6.11, transferred 2002 to EC 1.7.1.10]

EC 1.7.1.11
Accepted name: 4-(dimethylamino)phenylazoxybenzene reductase

Reaction: 4-(dimethylamino)phenylazobenzene + NADP+ + H2O = 4-(dimethylamino)phenylazoxybenzene +
NADPH + H+

Other name(s): N,N-dimethyl-p-aminoazobenzene oxide reductase; dimethylaminoazobenzene N-oxide reductase;
NADPH-dependent DMAB N-oxide reductase; NADPH:4-(dimethylamino)phenylazoxybenzene oxi-
doreductase

Systematic name: 4-(dimethylamino)phenylazobenzene:NADP+ oxidoreductase
References: [1762]

[EC 1.7.1.11 created 1989 as EC 1.6.6.12, transferred 2002 to EC 1.7.1.11]

EC 1.7.1.12
Accepted name: N-hydroxy-2-acetamidofluorene reductase

Reaction: 2-acetamidofluorene + NAD(P)+ + H2O = N-hydroxy-2-acetamidofluorene + NAD(P)H + H+

Other name(s): N-hydroxy-2-acetylaminofluorene reductase; NAD(P)H2:N-hydroxy-2-acetamidofluorene N-
oxidoreductase

Systematic name: 2-acetamidofluorene:NAD(P)+ oxidoreductase
Comments: Also acts, more slowly, on N-hydroxy-4-acetamidobiphenyl.
References: [1326, 1944]

[EC 1.7.1.12 created 1989 as EC 1.6.6.13, transferred 2002 to EC 1.7.1.12]

EC 1.7.1.13
Accepted name: preQ1 synthase

Reaction: 7-aminomethyl-7-carbaguanine + 2 NADP+ = 7-cyano-7-carbaguanine + 2 NADPH + 2 H+

Other name(s): YkvM; QueF; preQ0 reductase; preQ0 oxidoreductase; 7-cyano-7-deazaguanine reductase; queuine
synthase (incorrect as queuine is not the product); queuine:NADP+ oxidoreductase (incorrect as
queuine is not the product)

Systematic name: 7-aminomethyl-7-carbaguanine:NADP+ oxidoreductase
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Comments: The reaction occurs in the reverse direction. This enzyme catalyses one of the early steps in the syn-
thesis of queuosine (Q-tRNA), and is followed by the action of EC 2.4.2.29, tRNA-guanosine34 trans-
glycosylase. Queuosine is found in the wobble position of tRNAGUN in Eukarya and Bacteria [4366]
and is thought to be involved in translational modulation. The enzyme is not a GTP cyclohydrolase, as
was thought previously based on sequence-homology studies.

References: [2127, 4366, 2067, 2859, 2811, 3759]

[EC 1.7.1.13 created 2006]

EC 1.7.1.14
Accepted name: nitric oxide reductase [NAD(P)+, nitrous oxide-forming]

Reaction: N2O + NAD(P)+ + H2O = 2 NO + NAD(P)H + H+

Other name(s): fungal nitric oxide reductase; cytochrome P450nor; NOR (ambiguous)
Systematic name: nitrous oxide:NAD(P) oxidoreductase

Comments: A heme-thiolate protein (P-450). The enzyme from Fusarium oxysporum utilizes only NADH, but the
isozyme from Trichosporon cutaneum utilizes both NADH and NADPH. The electron transfer from
NAD(P)H to heme occurs directly, not requiring flavin or other redox cofactors.

References: [3520, 3517, 4441, 2900]

[EC 1.7.1.14 created 2011]

EC 1.7.1.15
Accepted name: nitrite reductase (NADH)

Reaction: NH3 + 3 NAD+ + 2 H2O = nitrite + 3 NADH + 5 H+

Other name(s): nitrite reductase (reduced nicotinamide adenine dinucleotide); NADH-nitrite oxidoreductase; assimi-
latory nitrite reductase (ambiguous); nirB (gene name); nirD (gene name)

Systematic name: ammonia:NAD+ oxidoreductase
Comments: An iron-sulfur flavoprotein (FAD) containing siroheme. This prokaryotic enzyme is specific for

NADH. In addition to catalysing the 6-electron reduction of nitrite to ammonia, the enzyme from
Escherichia coli can also catalyse the 2-electron reduction of hydroxylamine to ammonia. cf. EC
1.7.1.4, nitrite reductase [NAD(P)H].

References: [4025, 1705, 487, 1393]

[EC 1.7.1.15 created 2013]

EC 1.7.1.16
Accepted name: nitrobenzene nitroreductase

Reaction: N-phenylhydroxylamine + 2 NADP+ + H2O = nitrobenzene + 2 NADPH + 2 H+ (overall reaction)
(1a) N-phenylhydroxylamine + NADP+ = nitrosobenzene + NADPH + H+

(1b) nitrosobenzene + NADP+ + H2O = nitrobenzene + NADPH + H+

Other name(s): cnbA (gene name)
Systematic name: N-phenylhydroxylamine:NADP+ oxidoreductase

Comments: Contains FMN. The enzyme, characterized from Pseudomonas species, catalyses two succes-
sive reductions of nitrobenzene, via a nitrosobenzene intermediate. It is also active on 1-chloro-4-
nitrobenzene.

References: [3577, 4258]

[EC 1.7.1.16 created 2017]

EC 1.7.1.17
Accepted name: FMN-dependent NADH-azoreductase

Reaction: anthranilate + N,N-dimethyl-1,4-phenylenediamine + 2 NAD+ = 2-(4-
dimethylaminophenyl)diazenylbenzoate + 2 NADH + 2 H+
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Other name(s): azoR (gene name); NADH-azoreductase
Systematic name: N,N-dimethyl-1,4-phenylenediamine, anthranilate:NAD+ oxidoreductase

Comments: Requires FMN. The enzyme catalyses the reductive cleavage of an azo bond in aromatic azo com-
pounds to form the corresponding amines. Does not accept NADPH. cf. EC 1.7.1.6, azobenzene re-
ductase.

References: [2710, 1683, 1684, 2507]

[EC 1.7.1.17 created 2018]

EC 1.7.2 With a cytochrome as acceptor

EC 1.7.2.1
Accepted name: nitrite reductase (NO-forming)

Reaction: nitric oxide + H2O + ferricytochrome c = nitrite + ferrocytochrome c + 2 H+

Other name(s): cd-cytochrome nitrite reductase; [nitrite reductase (cytochrome)] [misleading, see comments.]; cy-
tochrome c-551:O2, NO2+ oxidoreductase; cytochrome cd; cytochrome cd1; hydroxylamine (accep-
tor) reductase; methyl viologen-nitrite reductase; nitrite reductase (cytochrome; NO-forming)

Systematic name: nitric-oxide:ferricytochrome-c oxidoreductase
Comments: The reaction is catalysed by two types of enzymes, found in the perimplasm of denitrifying bacte-

ria. One type comprises proteins containing multiple copper centres, the other a heme protein, cy-
tochrome cd1. Acceptors include c-type cytochromes such as cytochrome c-550 or cytochrome c-551
from Paracoccus denitrificans or Pseudomonas aeruginosa, and small blue copper proteins such as
azurin and pseudoazurin. Cytochrome cd1 also has oxidase and hydroxylamine reductase activities.
May also catalyse the reaction of hydroxylamine reductase (EC 1.7.99.1) since this is a well-known
activity of cytochrome cd1.

References: [2572, 622, 4090, 3537, 2525, 1228, 4221, 1542, 4496, 998, 4044]

[EC 1.7.2.1 created 1961, modified 1976, modified 2001, modified 2002 (EC 1.7.99.3 created 1961 as EC 1.6.6.5, transferred 1964 to EC
1.7.99.3, modified 1976, incorporated 2002, EC 1.9.3.2 created 1965, incorporated 2002)]

EC 1.7.2.2
Accepted name: nitrite reductase (cytochrome; ammonia-forming)

Reaction: NH3 + 2 H2O + 6 ferricytochrome c = nitrite + 6 ferrocytochrome c + 7 H+

Other name(s): cytochrome c nitrite reductase; multiheme nitrite reductase
Systematic name: ammonia:ferricytochrome-c oxidoreductase

Comments: Found as a multiheme cytochrome in many bacteria. The enzyme from Escherichia coli contains five
hemes c and requires Ca2+. It also reduces nitric oxide and hydroxylamine to ammonia, and sulfite to
sulfide.

References: [932]

[EC 1.7.2.2 created 2001]

EC 1.7.2.3
Accepted name: trimethylamine-N-oxide reductase

Reaction: trimethylamine + 2 (ferricytochrome c)-subunit + H2O = trimethylamine N-oxide + 2 (ferrocy-
tochrome c)-subunit + 2 H+

Other name(s): TMAO reductase; TOR; torA (gene name); torZ (gene name); bisZ (gene name); trimethylamine-N-
oxide reductase (cytochrome c)

Systematic name: trimethylamine:cytochrome c oxidoreductase
Comments: Contains bis(molybdopterin guanine dinucleotide)molybdenum cofactor. The reductant is a

membrane-bound multiheme cytochrome c. Also reduces dimethyl sulfoxide to dimethyl sulfide.
References: [113, 1969, 715, 1236, 4442, 4362]
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[EC 1.7.2.3 created 2002, modified 2018]

EC 1.7.2.4
Accepted name: nitrous-oxide reductase

Reaction: nitrogen + H2O + 2 ferricytochrome c = nitrous oxide + 2 ferrocytochrome c + 2 H+

Other name(s): nitrous oxide reductase; N2O reductase; nitrogen:(acceptor) oxidoreductase (N2O-forming)
Systematic name: nitrogen:cytochrome c oxidoreductase (N2O-forming)

Comments: The reaction is observed only in the direction of nitrous oxide reduction. Contains the mixed-valent
dinuclear CuA species at the electron entry site of the enzyme, and the tetranuclear Cu-Z centre in the
active site. In Paracoccus pantotrophus, the electron donor is cytochrome c552.

References: [681, 4497, 788]

[EC 1.7.2.4 created 1989 as EC 1.7.99.6, modified 1999, transferred 2011 to EC 1.7.2.4]

EC 1.7.2.5
Accepted name: nitric oxide reductase (cytochrome c)

Reaction: nitrous oxide + 2 ferricytochrome c + H2O = 2 nitric oxide + 2 ferrocytochrome c + 2 H+

Systematic name: nitrous oxide:ferricytochrome-c oxidoreductase
Comments: The enzyme from Pseudomonas aeruginosa contains a dinuclear centre comprising a non-heme iron

centre and heme b3, plus heme c, heme b and calcium; the acceptor is cytochrome c551
References: [1477, 1476, 1465, 563, 2075, 1511]

[EC 1.7.2.5 created 1992 as EC 1.7.99.7, transferred 2011 to EC 1.7.2.5]

EC 1.7.2.6
Accepted name: hydroxylamine dehydrogenase

Reaction: (1) hydroxylamine + H2O + 4 ferricytochrome c = nitrite + 4 ferrocytochrome c + 5 H+

(2) hydroxylamine + 3 ferricytochrome c = nitric oxide + 3 ferrocytochrome c + 3 H+

Other name(s): HAO (ambiguous); hydroxylamine oxidoreductase (ambiguous); hydroxylamine oxidase (misleading)
Systematic name: hydroxylamine:ferricytochrome-c oxidoreductase

Comments: The enzymes from the nitrifying bacterium Nitrosomonas europaea [3152, 2269] and the methy-
lotrophic bacterium Methylococcus capsulatus [3039] are hemoproteins with seven c-type hemes and
one specialized P-460-type heme per subunit. The enzyme converts hydroxylamine to nitrite via an
enzyme-bound nitroxyl intermediate [1556]. While nitrite is the main product, the enzyme from Ni-
trosomonas europaea can produce nitric oxide as well [1557].

References: [3152, 1557, 1556, 2269, 3039]

[EC 1.7.2.6 created 1972 as EC 1.7.3.4, part transferred 2012 to EC 1.7.2.6]

EC 1.7.2.7
Accepted name: hydrazine synthase

Reaction: hydrazine + H2O + 3 ferricytochrome c = nitric oxide + ammonium + 3 ferrocytochrome c
Other name(s): HZS

Systematic name: hydrazine:ferricytochrome-c oxidoreductase
Comments: The enzyme, characterized from anaerobic ammonia oxidizers (anammox bacteria), is one of only

two enzymes that are known to form an N-N bond (the other being EC 1.7.1.14, nitric oxide reductase
[NAD(P)+, nitrous oxide-forming]). The enzyme from the bacterium Candidatus Kuenenia stuttgar-
tiensis is heterotrimeric and contains multiple c-type cytochromes.

References: [1821]

[EC 1.7.2.7 created 2016]

EC 1.7.2.8
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Accepted name: hydrazine dehydrogenase
Reaction: hydrazine + 4 ferricytochrome c = N2 + 4 ferrocytochrome c

Other name(s): HDH
Systematic name: hydrazine:ferricytochrome c oxidoreductase

Comments: The enzyme, which is involved in the pathway of anaerobic ammonium oxidation in anammox bacte-
ria, has been purified from the bacterium Candidatus Kuenenia stuttgartiensis. The electrons derived
from hydrazine are eventually transferred to the quinone pool.

References: [3349, 1737, 1821, 1820]

[EC 1.7.2.8 created 2003 as EC 1.7.99.8, modified 2010, transferred 2016 to EC 1.7.2.8]

EC 1.7.3 With oxygen as acceptor

EC 1.7.3.1
Accepted name: nitroalkane oxidase

Reaction: a nitroalkane + H2O + O2 = an aldehyde or ketone + nitrite + H2O2
Other name(s): nitroethane oxidase; NAO; nitroethane:oxygen oxidoreductase

Systematic name: nitroalkane:oxygen oxidoreductase
Comments: Has an absolute requirement for FAD [1024]. While nitroethane may be the physiological substrate

[1902], the enzyme also acts on several other nitroalkanes, including 1-nitropropane, 2-nitropropane,
1-nitrobutane, 1-nitropentane, 1-nitrohexane, nitrocyclohexane and some nitroalkanols [1024]. Differs
from EC 1.13.11.16, nitronate monooxygenase, in that the preferred substrates are neutral nitroalka-
nes rather than anionic nitronates [1024].

References: [2273, 1902, 749, 1024, 3988]

[EC 1.7.3.1 created 1961, modified 2006, modified 2009]

EC 1.7.3.2
Accepted name: acetylindoxyl oxidase

Reaction: N-acetylindoxyl + O2 = N-acetylisatin + (?)
Systematic name: N-acetylindoxyl:oxygen oxidoreductase

References: [243]

[EC 1.7.3.2 created 1961]

EC 1.7.3.3
Accepted name: factor-independent urate hydroxylase

Reaction: urate + O2 + H2O = 5-hydroxyisourate + H2O2
Other name(s): uric acid oxidase; uricase; uricase II; urate oxidase

Systematic name: urate:oxygen oxidoreductase
Comments: This enzyme was previously thought to be a copper protein, but it is now known that the enzymes

from soy bean (Glycine max), the mould Aspergillus flavus and Bacillus subtilis contains no cop-
per nor any other transition-metal ion. The 5-hydroxyisourate formed decomposes spontaneously to
form allantoin and CO2, although there is an enzyme-catalysed pathway in which EC 3.5.2.17, hy-
droxyisourate hydrolase, catalyses the first step. The enzyme is different from EC 1.14.13.113 (FAD-
dependent urate hydroxylase).

References: [2295, 2367, 3202, 1800, 643, 1645]

[EC 1.7.3.3 created 1961, modified 2002, modified 2005, modified 2010]

[1.7.3.4 Transferred entry. hydroxylamine oxidase. Now covered by EC 1.7.2.6, hydroxylamine dehydrogenase, and EC
1.7.3.6, hydroxylamine oxidase (cytochrome)]

[EC 1.7.3.4 created 1972, deleted 2013]
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EC 1.7.3.5
Accepted name: 3-aci-nitropropanoate oxidase

Reaction: 3-aci-nitropropanoate + O2 + H2O = 3-oxopropanoate + nitrite + H2O2
Other name(s): propionate-3-nitronate oxidase

Systematic name: 3-aci-nitropropanoate:oxygen oxidoreductase
Comments: A flavoprotein (FMN). The primary products of the enzymic reaction are probably the nitro-

propanoate free radical and superoxide. Also acts, more slowly, on 4-aci-nitrobutanoate.
References: [3042]

[EC 1.7.3.5 created 1990]

EC 1.7.3.6
Accepted name: hydroxylamine oxidase (cytochrome)

Reaction: hydroxylamine + O2 = nitrite + H2O + H+ (overall reaction)
(1a) hydroxylamine + 2 ferricytochrome c = nitroxyl + 2 ferrocytochrome c + 2 H+

(1b) nitroxyl + 2 ferrocytochrome c + O2 + H+ = nitrite + 2 ferricytochrome c + H2O (spontaneous)
Other name(s): HAO (ambiguous); hydroxylamine oxidoreductase (ambiguous); hydroxylamine oxidase (misleading)

Systematic name: hydroxylamine:oxygen oxidoreductase
Comments: The enzyme from the heterotrophic nitrifying bacterium Paracoccus denitrificans contains three

to five non-heme, non-iron-sulfur iron atoms and interacts with cytochrome c556 and pseudoazurin
[4161, 2592]. Under anaerobic conditions in vitro only nitrous oxide is formed [2592]. Presumably
nitroxyl is released and combines with a second nitroxyl to give nitrous oxide and water. When oxy-
gen is present, nitrite is formed.

References: [2091, 4161, 2592, 4160]

[EC 1.7.3.6 created 1972 as EC 1.7.3.4, part transferred 2013 to EC 1.7.3.6, modified 2015]

EC 1.7.5 With a quinone or similar compound as acceptor

EC 1.7.5.1
Accepted name: nitrate reductase (quinone)

Reaction: nitrate + a quinol = nitrite + a quinone + H2O
Other name(s): nitrate reductase A; nitrate reductase Z; quinol/nitrate oxidoreductase; quinol-nitrate oxidoreductase;

quinol:nitrate oxidoreductase; NarA; NarZ; NarGHI; dissimilatory nitrate reductase
Systematic name: nitrite:quinone oxidoreductase

Comments: A membrane-bound enzyme which supports anaerobic respiration on nitrate under anaerobic con-
ditions and in the presence of nitrate. Contains the bicyclic form of the molybdo-bis(molybdopterin
guanine dinucleotide) cofactor, iron-sulfur clusters and heme b. Escherichia coli expresses two forms
NarA and NarZ, both being comprised of three subunits.

References: [953, 280, 2123, 279, 345, 1310, 1660]

[EC 1.7.5.1 created 2010]

EC 1.7.5.2
Accepted name: nitric oxide reductase (menaquinol)

Reaction: 2 nitric oxide + menaquinol = nitrous oxide + menaquinone + H2O
Comments: Contains copper.
References: [687, 3722, 3721]

[EC 1.7.5.2 created 2011]
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EC 1.7.6 With a nitrogenous group as acceptor

EC 1.7.6.1
Accepted name: nitrite dismutase

Reaction: 3 nitrite + 2 H+ = 2 nitric oxide + nitrate + H2O
Other name(s): Prolixin S; Nitrophorin 7

Systematic name: nitrite:nitrite oxidoreductase
Comments: Contains ferriheme b. The enzyme is one of the nitrophorins from the salivary gland of the blood-

feeding insect Rhodnius prolixus. Nitric oxide produced induces vasodilation after injection. Ni-
trophorins 2 and 4 can also catalyse this reaction.

References: [1444, 1445]

[EC 1.7.6.1 created 2011]

EC 1.7.7 With an iron-sulfur protein as acceptor

EC 1.7.7.1
Accepted name: ferredoxin—nitrite reductase

Reaction: NH3 + 2 H2O + 6 oxidized ferredoxin = nitrite + 6 reduced ferredoxin + 7 H+

Systematic name: ammonia:ferredoxin oxidoreductase
Comments: An iron protein. Contains siroheme and [4Fe-4S] clusters.
References: [1780, 3121, 4499]

[EC 1.7.7.1 created 1972, modified 1999]

EC 1.7.7.2
Accepted name: ferredoxin—nitrate reductase

Reaction: nitrite + H2O + 2 oxidized ferredoxin = nitrate + 2 reduced ferredoxin + 2 H+

Other name(s): assimilatory nitrate reductase; nitrate (ferredoxin) reductase; assimilatory ferredoxin-nitrate reductase
Systematic name: nitrite:ferredoxin oxidoreductase

Comments: A molybdenum-iron-sulfur protein.
References: [2537]

[EC 1.7.7.2 created 1986]

EC 1.7.99 With unknown physiological acceptors

EC 1.7.99.1
Accepted name: hydroxylamine reductase

Reaction: NH3 + H2O + acceptor = hydroxylamine + reduced acceptor
Other name(s): hydroxylamine (acceptor) reductase; ammonia:(acceptor) oxidoreductase

Systematic name: ammonia:acceptor oxidoreductase
Comments: A flavoprotein. Reduced pyocyanine, methylene blue and flavins act as donors for the reduction of

hydroxylamine. May be identical to EC 1.7.2.1, nitrite reductase (NO-forming).
References: [3815, 4089, 3183]

[EC 1.7.99.1 created 1961, modified 1999, modified 2002]

[1.7.99.2 Deleted entry. nitric-oxide reductase. Reaction may have been due to the combined action of EC 1.7.99.6 nitrous-
oxide reductase and EC 1.7.99.7 nitric-oxide reductase]

[EC 1.7.99.2 created 1961, modified 1976, deleted 1992]
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[1.7.99.3 Transferred entry. nitrite reductase. Now included with EC 1.7.2.1, nitrite reductase (NO-forming)]

[EC 1.7.99.3 created 1961 as EC 1.6.6.5, transferred 1964 to EC 1.7.99.3, modified 1976, deleted 2002]

[1.7.99.4 Transferred entry. nitrate reductase, Now EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase
[NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase
(ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)]

[EC 1.7.99.4 created 1972, modified 1976, deleted 2017]

[1.7.99.5 Deleted entry. 5,10-methylenetetrahydrofolate reductase (FADH2). Now included with EC 1.5.1.20, methylenete-
trahydrofolate reductase [NAD(P)H]. Based on the reference, it had been thought that this was a separate enzyme from EC
1.5.1.20 but the reference upon which the entry was based has since been disproved]

[EC 1.7.99.5 created 1965 as EC 1.1.1.68, transferred 1978 to EC 1.1.99.15, transferred 1980 to EC 1.7.99.5, deleted 2005]

[1.7.99.6 Transferred entry. EC 1.7.99.6, nitrous-oxide reductase. Now EC 1.7.2.4.]

[EC 1.7.99.6 created 1989, modified 1999, deleted 2011]

[1.7.99.7 Transferred entry. nitric-oxide reductase. Now EC 1.7.2.5 nitric oxide reductase (cytochrome c)]

[EC 1.7.99.7 created 1992, modified 1999, deleted 2011]

[1.7.99.8 Transferred entry. hydrazine oxidoreductase. Now classified as EC 1.7.2.8, hydrazine dehydrogenase.]

[EC 1.7.99.8 created 2003, modified 2010, deleted 2016]

EC 1.8 Acting on a sulfur group of donors
This small subclass contains enzymes that act either on inorganic substrates or organic thiols. Sub-subclasses are based on the
acceptor: NAD+ or NADP+ (EC 1.8.1), a cytochrome (EC 1.8.2), oxygen (EC 1.8.3), a disulfide (EC 1.8.4); a quinone or similar
compound (EC 1.8.5), an iron-sulfur protein (EC 1.8.7), other, known, acceptors (EC 1.8.98), or some other acceptor (EC 1.8.99).

EC 1.8.1 With NAD+ or NADP+ as acceptor

[1.8.1.1 Deleted entry. cysteamine dehydrogenase]

[EC 1.8.1.1 created 1961, deleted 1972]

EC 1.8.1.2
Accepted name: assimilatory sulfite reductase (NADPH)

Reaction: hydrogen sulfide + 3 NADP+ + 3 H2O = sulfite + 3 NADPH + 3 H+

Other name(s): sulfite reductase (NADPH); sulfite (reduced nicotinamide adenine dinucleotide phosphate) reductase;
NADPH-sulfite reductase; NADPH-dependent sulfite reductase; H2S-NADP oxidoreductase; sulfite
reductase (NADPH2); MET5 (gene name); MET10 (gene name); cysI (gene name); cysJ (gene name)

Systematic name: hydrogen-sulfide:NADP+ oxidoreductase
Comments: Contains siroheme, [4Fe-4S] cluster, FAD and FMN. The enzyme, which catalyses the six-electron

reduction of sulfite to sulfide, is involved in sulfate assimilation in bacteria and yeast. Different from
EC 1.8.99.5, dissimilatory sulfite reductase, which is involved in prokaryotic sulfur-based energy
metabolism. cf. EC 1.8.7.1, assimilatory sulfite reductase (ferredoxin).

References: [1508, 4386, 3529, 1981, 3530, 679, 689]

[EC 1.8.1.2 created 1961, modified 2015]

EC 1.8.1.3
Accepted name: hypotaurine dehydrogenase
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Reaction: hypotaurine + H2O + NAD+ = taurine + NADH + H+

Systematic name: hypotaurine:NAD+ oxidoreductase
Comments: A molybdohemoprotein.
References: [3726]

[EC 1.8.1.3 created 1972]

EC 1.8.1.4
Accepted name: dihydrolipoyl dehydrogenase

Reaction: protein N6-(dihydrolipoyl)lysine + NAD+ = protein N6-(lipoyl)lysine + NADH + H+

Other name(s): LDP-Glc; LDP-Val; dehydrolipoate dehydrogenase; diaphorase; dihydrolipoamide dehydrogenase;
dihydrolipoamide:NAD+ oxidoreductase; dihydrolipoic dehydrogenase; dihydrothioctic dehydroge-
nase; lipoamide dehydrogenase (NADH); lipoamide oxidoreductase (NADH); lipoamide reductase;
lipoamide reductase (NADH); lipoate dehydrogenase; lipoic acid dehydrogenase; lipoyl dehydroge-
nase; protein-6-N-(dihydrolipoyl)lysine:NAD+ oxidoreductase

Systematic name: protein-N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase
Comments: A flavoprotein (FAD). A component of the multienzyme 2-oxo-acid dehydrogenase complexes.

In the pyruvate dehydrogenase complex, it binds to the core of EC 2.3.1.12, dihydrolipoyllysine-
residue acetyltransferase, and catalyses oxidation of its dihydrolipoyl groups. It plays a similar role
in the oxoglutarate and 3-methyl-2-oxobutanoate dehydrogenase complexes. Another substrate is
the dihydrolipoyl group in the H-protein of the glycine-cleavage system (click here for diagram), in
which it acts, together with EC 1.4.4.2, glycine dehydrogenase (decarboxylating), and EC 2.1.2.10,
aminomethyltransferase, to break down glycine. It can also use free dihydrolipoate, dihydrolipoamide
or dihydrolipoyllysine as substrate. This enzyme was first shown to catalyse the oxidation of NADH
by methylene blue; this activity was called diaphorase. The glycine cleavage system is composed of
four components that only loosely associate: the P protein (EC 1.4.4.2), the T protein (EC 2.1.2.10),
the L protein (EC 1.8.1.4) and the lipoyl-bearing H protein [2764].

References: [2432, 2433, 3328, 3670, 2983, 2764]

[EC 1.8.1.4 created 1961 as EC 1.6.4.3, modified 1976, transferred 1983 to EC 1.8.1.4, modified 2003, modified 2006]

EC 1.8.1.5
Accepted name: 2-oxopropyl-CoM reductase (carboxylating)

Reaction: 2-mercaptoethanesulfonate + acetoacetate + NADP+ = 2-(2-oxopropylthio)ethanesulfonate + CO2 +
NADPH

Other name(s): NADPH:2-(2-ketopropylthio)ethanesulfonate oxidoreductase/carboxylase; NADPH:2-ketopropyl-
coenzyme M oxidoreductase/carboxylase

Systematic name: 2-mercaptoethanesulfonate,acetoacetate:NADP+ oxidoreductase (decarboxylating)
Comments: Also acts on thioethers longer in chain length on the oxo side, e.g. 2-oxobutyl-CoM, but this portion

must be attached to CoM (2-mercaptoethanesulfonate); no CoM analogs will substitute. This enzyme
forms component II of a four-component enzyme system comprising EC 4.4.1.23 (2-hydroxypropyl-
CoM lyase; component I), EC 1.8.1.5 [2-oxopropyl-CoM reductase (carboxylating); component II],
EC 1.1.1.268 [2-(R)-hydroxypropyl-CoM dehydrogenase; component III] and EC 1.1.1.269 [2-(S)-
hydroxypropyl-CoM dehydrogenase; component IV] that is involved in epoxyalkane carboxylation in
Xanthobacter sp. strain Py2.

References: [62, 626]

[EC 1.8.1.5 created 2001]

EC 1.8.1.6
Accepted name: cystine reductase

Reaction: 2 L-cysteine + NAD+ = L-cystine + NADH + H+

Other name(s): cystine reductase (NADH); NADH-dependent cystine reductase; cystine reductase (NADH2);
NADH2:L-cystine oxidoreductase
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Systematic name: L-cysteine:NAD+ oxidoreductase
References: [3224, 512, 2397]

[EC 1.8.1.6 created 1961 as EC 1.6.4.1, transferred 2002 to EC 1.8.1.6]

EC 1.8.1.7
Accepted name: glutathione-disulfide reductase

Reaction: 2 glutathione + NADP+ = glutathione disulfide + NADPH + H+

Other name(s): glutathione reductase; glutathione reductase (NADPH); NADPH-glutathione reductase; GSH re-
ductase; GSSG reductase; NADPH-GSSG reductase; glutathione S-reductase; NADPH:oxidized-
glutathione oxidoreductase

Systematic name: glutathione:NADP+ oxidoreductase
Comments: A dimeric flavoprotein (FAD); activity is dependent on a redox-active disulfide in each of the active

centres.
References: [2923, 3010, 3098, 4005, 4254, 335, 2244]

[EC 1.8.1.7 created 1961 as EC 1.6.4.2, modified 1989, transferred 2002 to EC 1.8.1.7]

EC 1.8.1.8
Accepted name: protein-disulfide reductase

Reaction: protein-dithiol + NAD(P)+ = protein-disulfide + NAD(P)H + H+

Other name(s): protein disulphide reductase; insulin-glutathione transhydrogenase; disulfide reductase;
NAD(P)H2:protein-disulfide oxidoreductase

Systematic name: protein-dithiol:NAD(P)+ oxidoreductase
References: [1417]

[EC 1.8.1.8 created 1965 as EC 1.6.4.4, transferred 2002 to EC 1.8.1.8]

EC 1.8.1.9
Accepted name: thioredoxin-disulfide reductase

Reaction: thioredoxin + NADP+ = thioredoxin disulfide + NADPH + H+

Other name(s): NADP-thioredoxin reductase; NADPH-thioredoxin reductase; thioredoxin reductase (NADPH);
NADPH2:oxidized thioredoxin oxidoreductase

Systematic name: thioredoxin:NADP+ oxidoreductase
Comments: A flavoprotein (FAD).
References: [2606, 3596, 121]

[EC 1.8.1.9 created 1972 as EC 1.6.4.5, transferred 2002 to EC 1.8.1.9]

EC 1.8.1.10
Accepted name: CoA-glutathione reductase

Reaction: CoA + glutathione + NADP+ = CoA-glutathione + NADPH + H+

Other name(s): coenzyme A glutathione disulfide reductase; NADPH-dependent coenzyme A-SS-glutathione reduc-
tase; coenzyme A disulfide-glutathione reductase; NADPH2:CoA-glutathione oxidoreductase

Systematic name: glutathione:NADP+ oxidoreductase (CoA-acylating)
Comments: A flavoprotein. The substrate is a mixed disulfide. May be identical to EC 1.8.1.9, thioredoxin-

disulfide reductase.
References: [2886, 2887, 505]

[EC 1.8.1.10 created 1972 as EC 1.6.4.6, transferred 2002 to EC 1.8.1.10]

EC 1.8.1.11
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Accepted name: asparagusate reductase
Reaction: 3-mercapto-2-mercaptomethylpropanoate + NAD+ = asparagusate + NADH + H+

Other name(s): asparagusate dehydrogenase; asparagusic dehydrogenase; asparagusate reductase (NADH2);
NADH2:asparagusate oxidoreductase

Systematic name: 3-mercapto-2-mercaptomethylpropanoate:NAD+ oxidoreductase
Comments: Also acts on lipoate.
References: [4333, 4334]

[EC 1.8.1.11 created 1978 as EC 1.6.4.7, transferred 2002 to EC 1.8.1.11]

EC 1.8.1.12
Accepted name: trypanothione-disulfide reductase

Reaction: trypanothione + NADP+ = trypanothione disulfide + NADPH + H+

Other name(s): trypanothione reductase; NADPH2:trypanothione oxidoreductase
Systematic name: trypanothione:NADP+ oxidoreductase

Comments: Trypanothione disulfide is the oxidized form of N1,N8-bis(glutathionyl)-spermidine from the insect-
parasitic trypanosomatid Crithidia fasciculata. The enzyme from Crithidia fasciculata is a flavopro-
tein (FAD), whose activity is dependent on a redox-active cystine at the active centre. (cf. EC 1.8.1.7,
glutathione-disulfide reductase)

References: [3458, 2407, 708]

[EC 1.8.1.12 created 1989 as EC 1.6.4.8, transferred 2002 to EC 1.8.1.12]

EC 1.8.1.13
Accepted name: bis-γ-glutamylcystine reductase

Reaction: 2 γ-glutamylcysteine + NADP+ = bis-γ-glutamylcystine + NADPH + H+

Other name(s): NADPH2:bis-γ-glutamylcysteine oxidoreductase; GSR
Systematic name: γ-glutamylcysteine:NADP+ oxidoreductase

Comments: Contains FAD. The enzyme, which is found only in halobacteria, maintains the concentration of γ-
glutamylcysteine, the major low molecular weight thiol in halobacteria. Not identical with EC 1.8.1.7
(glutathione-disulfide reductase) or EC 1.8.1.14 (CoA-disulfide reductase).

References: [3741, 3742, 1907]

[EC 1.8.1.13 created 1992 as EC 1.6.4.9, transferred 2002 to EC 1.8.1.13, modified 2013]

EC 1.8.1.14
Accepted name: CoA-disulfide reductase

Reaction: 2 CoA + NADP+ = CoA-disulfide + NADPH + H+

Other name(s): CoA-disulfide reductase (NADH2); NADH2:CoA-disulfide oxidoreductase; CoA:NAD+ oxidoreduc-
tase (misleading); CoADR; coenzyme A disulfide reductase

Systematic name: CoA:NADP+ oxidoreductase
Comments: A flavoprotein. Not identical with EC 1.8.1.6 (cystine reductase), EC 1.8.1.7 (glutathione-disulfide

reductase) or EC 1.8.1.13 (bis-γ-glutamylcystine reductase). The enzyme from the bacterium Staphy-
lococcus aureus has a strong preference for NADPH [2309], while the bacterium Bacillus megaterium
contains both NADH and NADPH-dependent enzymes [3445].

References: [3445, 787, 2309]

[EC 1.8.1.14 created 1992 as EC 1.6.4.10, transferred 2002 to EC 1.8.1.14, modified 2005, modified 2013]

EC 1.8.1.15
Accepted name: mycothione reductase

Reaction: 2 mycothiol + NAD(P)+ = mycothione + NAD(P)H + H+

Other name(s): mycothiol-disulfide reductase
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Systematic name: mycothiol:NAD(P)+ oxidoreductase
Comments: Contains FAD. No activity with glutathione, trypanothione or coenzyme A as substrate.
References: [2955, 2956]

[EC 1.8.1.15 created 2002]

EC 1.8.1.16
Accepted name: glutathione amide reductase

Reaction: 2 glutathione amide + NAD+ = glutathione amide disulfide + NADH + H+

Other name(s): GAR
Systematic name: glutathione amide:NAD+ oxidoreductase

Comments: A dimeric flavoprotein (FAD). The enzyme restores glutathione amide disulfide, which is produced
during the reduction of peroxide by EC 1.11.1.17 (glutathione amide-dependent peroxidase), back to
glutathione amide (it catalyses the reaction in the opposite direction to that shown). The enzyme be-
longs to the family of flavoprotein disulfide oxidoreductases, but unlike other members of the family,
which are specific for NADPH, it prefers NADH [4032].

References: [4032, 4033]

[EC 1.8.1.16 created 2010]

EC 1.8.1.17
Accepted name: dimethylsulfone reductase

Reaction: dimethyl sulfoxide + H2O + NAD+ = dimethyl sulfone + NADH + H+

Comments: A molybdoprotein.
References: [355, 356]

[EC 1.8.1.17 created 2011]

EC 1.8.1.18
Accepted name: NAD(P)H sulfur oxidoreductase (CoA-dependent)

Reaction: hydrogen sulfide + NAD(P)+ = sulfur + NAD(P)H + H+

Other name(s): NADPH NSR; S0 reductase; coenzyme A-dependent NADPH sulfur oxidoreductase
Systematic name: hydrogen sulfide:NAD(P)+ oxidoreductase (CoA-dependent)

Comments: This FAD-dependent enzyme, characterized from the archaeon Pyrococcus furiosus, is responsible for
NAD(P)H-linked sulfur reduction. The activity with NADH is about half of that with NADPH. The
reaction is dependent on CoA, although the nature of this dependency is not well understood.

References: [3408, 399, 1397]

[EC 1.8.1.18 created 2013]

EC 1.8.1.19
Accepted name: sulfide dehydrogenase

Reaction: hydrogen sulfide + (sulfide)n + NADP+ = (sulfide)n+1 + NADPH + H+

Other name(s): SuDH
Systematic name: hydrogen sulfide,polysulfide:NADP+ oxidoreductase

Comments: A iron-sulfur flavoprotein. In the archaeon Pyrococcus furiosus the enzyme is involved in the oxida-
tion of NADPH which is produced in peptide degradation. The enzyme also catalyses the reduction of
sulfur with lower activity.

References: [2328, 1339]

[EC 1.8.1.19 created 2013]
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EC 1.8.1.20
Accepted name: 4,4′-dithiodibutanoate disulfide reductase

Reaction: 2 4-sulfanylbutanoate + NAD+ = 4,4′-disulfanediyldibutanoate + NADH + H+

Systematic name: 4-sulfanylbutanoate:NAD+ oxidoreductase
Comments: The enzyme, characterized from the bacterium Rhodococcus erythropolis MI2, contains an FMN

cofator.
References: [1892, 1893]

[EC 1.8.1.20 created 2017]

EC 1.8.2 With a cytochrome as acceptor

EC 1.8.2.1
Accepted name: sulfite dehydrogenase (cytochrome)

Reaction: sulfite + 2 ferricytochrome c + H2O = sulfate + 2 ferrocytochrome c + 2 H+

Other name(s): sulfite cytochrome c reductase; sulfite-cytochrome c oxidoreductase; sulfite oxidase (ambiguous);
sulfite dehydrogenase (ambiguous); sorAB (gene names)

Systematic name: sulfite:ferricytochrome-c oxidoreductase
Comments: Associated with cytochrome c-551. The enzyme from the bacterium Starkeya novella contains a

molybdopyranopterin cofactor and a smaller monoheme cytochrome c subunit. cf. EC 1.8.5.6, sulfite
dehydrogenase (quinone).

References: [548, 2327, 4323, 2307, 1812]

[EC 1.8.2.1 created 1972, modified 2016]

EC 1.8.2.2
Accepted name: thiosulfate dehydrogenase

Reaction: 2 thiosulfate + 2 ferricytochrome c = tetrathionate + 2 ferrocytochrome c
Other name(s): tsdA (gene name); tetrathionate synthase; thiosulfate oxidase; thiosulfate-oxidizing enzyme;

thiosulfate-acceptor oxidoreductase
Systematic name: thiosulfate:ferricytochrome-c oxidoreductase

Comments: The enzyme catalyses the reversible formation of a sulfur-sulfur bond between the sulfane atoms
of two thiosulfate molecules, yielding tetrathionate and releasing two electrons. In many bacterial
species the enzyme is a diheme c-type cytochrome. In a number of organisms, including Thiomonas
intermedia and Sideroxydans lithotrophicus, a second diheme cytochrome (TsdB) acts as the electron
acceptor. However, some organisms, such as Allochromatium vinosum, lack TsdB. The electron ac-
ceptor in these organisms may be the high-potential iron-sulfur protein (HiPIP).

References: [2308, 1109, 2286, 404, 2093]

[EC 1.8.2.2 created 1990]

EC 1.8.2.3
Accepted name: sulfide-cytochrome-c reductase (flavocytochrome c)

Reaction: hydrogen sulfide + 2 ferricytochrome c = sulfur + 2 ferrocytochrome c + 2 H+

Systematic name: hydrogen-sulfide:flavocytochrome c oxidoreductase
Comments: The enzyme from Allochromatium vinosum contains covalently bound FAD and covalently-bound

c-type hemes.
References: [2094, 1110, 1265, 579, 3588, 2039]

[EC 1.8.2.3 created 2011]

EC 1.8.2.4

260

http://www.enzyme-database.org/query.php?ec=1.8.1.20
http://www.enzyme-database.org/query.php?ec=1.8.2.1
http://www.enzyme-database.org/query.php?ec=1.8.2.2
http://www.enzyme-database.org/query.php?ec=1.8.2.3
http://www.enzyme-database.org/query.php?ec=1.8.2.4


Accepted name: dimethyl sulfide:cytochrome c2 reductase
Reaction: dimethyl sulfide + 2 ferricytochrome c2 + H2O = dimethyl sulfoxide + 2 ferrocytochrome c2 + 2 H+

Other name(s): Ddh (gene name)
Systematic name: dimethyl sulfide:cytochrome-c2 oxidoreductase

Comments: The enzyme from the bacterium Rhodovulum sulfidophilum binds molybdopterin guanine dinu-
cleotide, heme b and [4Fe-4S] clusters.

References: [1369, 2482]

[EC 1.8.2.4 created 2011]

EC 1.8.2.5
Accepted name: thiosulfate reductase (cytochrome)

Reaction: sulfite + hydrogen sulfide + 2 ferricytochrome c3 = thiosulfate + 2 ferrocytochrome c3
Systematic name: sulfite,hydrogen sulfide:ferricytochrome-c3 oxidoreductase (thiosulfate-forming)

Comments: The enzyme is found in sulfate-reducing bacteria. The source of the electrons is molecular hydrogen,
via EC 1.12.2.1, cytochrome-c3 hydrogenase. The organisms utilize the sulfite that is produced for
energy generation by EC 1.8.99.5, dissimilatory sulfite reductase.

References: [1671, 1670, 2720, 1406, 1418, 47]

[EC 1.8.2.5 created 2017]

EC 1.8.2.6
Accepted name: S-disulfanyl-L-cysteine oxidoreductase

Reaction: [SoxY protein]-S-disulfanyl-L-cysteine + 6 ferricytochrome c + 3 H2O = [SoxY protein]-S-
sulfosulfanyl-L-cysteine + 6 ferrocytochrome c + 6 H+

Other name(s): SoxCD; sulfur dehydrogenase
Systematic name: [SoxY protein]-S-disulfanyl-L-cysteine:cytochrome-c oxidoreductase

Comments: The enzyme is part of the Sox enzyme system, which participates in a bacterial thiosulfate oxidation
pathway that produces sulfate. The enzyme from the bacterium Paracoccus pantotrophus contains a
molybdoprotein component and a diheme c-type cytochrome component. The enzyme successively
oxidizes the outer sulfur atom in [SoxY protein]-S-disulfanyl-L-cysteine, using three water molecules
and forming [SoxY protein]-S-sulfosulfanyl-L-cysteine. During the process, six electrons are trans-
ferred to the electron chain via cytochrome c.

References: [1075, 200, 1255]

[EC 1.8.2.6 created 2018]

EC 1.8.3 With oxygen as acceptor

EC 1.8.3.1
Accepted name: sulfite oxidase

Reaction: sulfite + O2 + H2O = sulfate + H2O2
Systematic name: sulfite:oxygen oxidoreductase

Comments: A molybdohemoprotein.
References: [1890, 2349, 3774]

[EC 1.8.3.1 created 1961]

EC 1.8.3.2
Accepted name: thiol oxidase

Reaction: 2 R′C(R)SH + O2 = R′C(R)S-S(R)CR′ + H2O2
Other name(s): sulfhydryl oxidase
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Systematic name: thiol:oxygen oxidoreductase
Comments: R may be =S or =O, or a variety of other groups. The enzyme is not specific for R′.
References: [141, 2765, 2905, 1555, 1711, 3450, 716, 990, 1296, 765, 3186]

[EC 1.8.3.2 created 1961, modified 2010, modified 2011]

EC 1.8.3.3
Accepted name: glutathione oxidase

Reaction: 2 glutathione + O2 = glutathione disulfide + H2O2
Systematic name: glutathione:oxygen oxidoreductase

Comments: A flavoprotein (FAD). Also acts, more slowly, on L-cysteine and several other thiols.
References: [2096]

[EC 1.8.3.3 created 1989]

EC 1.8.3.4
Accepted name: methanethiol oxidase

Reaction: methanethiol + O2 + H2O = formaldehyde + hydrogen sulfide + H2O2
Other name(s): methylmercaptan oxidase; methyl mercaptan oxidase; (MM)-oxidase; MT-oxidase

Systematic name: methanethiol:oxygen oxidoreductase
References: [3747]

[EC 1.8.3.4 created 1990]

EC 1.8.3.5
Accepted name: prenylcysteine oxidase

Reaction: an S-prenyl-L-cysteine + O2 + H2O = a prenal + L-cysteine + H2O2
Other name(s): prenylcysteine lyase

Systematic name: S-prenyl-L-cysteine:oxygen oxidoreductase
Comments: A flavoprotein (FAD). Cleaves the thioether bond of S-prenyl-L-cysteines, such as S-farnesylcysteine

and S-geranylgeranylcysteine. N-Acetyl-prenylcysteine and prenylcysteinyl peptides are not sub-
strates. May represent the final step in the degradation of prenylated proteins in mammalian tissues.
Originally thought to be a simple lyase so it had been classified as EC 4.4.1.18.

References: [4443, 3934]

[EC 1.8.3.5 created 2000 as EC 4.4.1.18, transferred 2002 to EC 1.8.3.5]

EC 1.8.3.6
Accepted name: farnesylcysteine lyase

Reaction: S-(2E,6E)-farnesyl-L-cysteine + O2 + H2O = (2E,6E)-farnesal + L-cysteine + H2O2
Other name(s): FC lyase; FCLY

Systematic name: S-(2E,6E)-farnesyl-L-cysteine oxidase
Comments: A flavoprotein (FAD). In contrast to mammalian EC 1.8.3.5 (prenylcysteine oxidase) the farnesyl-

cysteine lyase from Arabidopsis is specific for S-farnesyl-L-cysteine and shows no activity with S-
geranylgeranyl-L-cysteine.

References: [1607, 698]

[EC 1.8.3.6 created 2011]

EC 1.8.3.7
Accepted name: formylglycine-generating enzyme

Reaction: a [sulfatase]-L-cysteine + O2 + 2 a thiol = a [sulfatase]-3-oxo-L-alanine + hydrogen sulfide + a disul-
fide + H2O
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Other name(s): sulfatase-modifying factor 1; Cα-formylglycine-generating enzyme 1; SUMF1 (gene name)
Systematic name: [sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)

Comments: Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukary-
otes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, gener-
ating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the
thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in
vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.

References: [822, 821, 3060, 3218, 507, 1540, 1978, 1977, 2516]

[EC 1.8.3.7 created 2014]

EC 1.8.4 With a disulfide as acceptor

EC 1.8.4.1
Accepted name: glutathione—homocystine transhydrogenase

Reaction: 2 glutathione + homocystine = glutathione disulfide + 2 homocysteine
Systematic name: glutathione:homocystine oxidoreductase

Comments: The reactions catalysed by this enzyme and by others in this subclass may be similar to those catal-
ysed by EC 2.5.1.18 glutathione transferase.

References: [3097]

[EC 1.8.4.1 created 1961]

EC 1.8.4.2
Accepted name: protein-disulfide reductase (glutathione)

Reaction: 2 glutathione + protein-disulfide = glutathione-disulfide + protein-dithiol
Other name(s): glutathione-insulin transhydrogenase; insulin reductase; reductase, protein disulfide (glutathione);

protein disulfide transhydrogenase; glutathione-protein disulfide oxidoreductase; protein disulfide re-
ductase (glutathione); GSH-insulin transhydrogenase; protein-disulfide interchange enzyme; protein-
disulfide isomerase/oxidoreductase; thiol:protein-disulfide oxidoreductase; thiol-protein disulphide
oxidoreductase

Systematic name: glutathione:protein-disulfide oxidoreductase
Comments: Reduces insulin and some other proteins.
References: [1847, 2009]

[EC 1.8.4.2 created 1965]

EC 1.8.4.3
Accepted name: glutathione—CoA-glutathione transhydrogenase

Reaction: CoA + glutathione disulfide = CoA-glutathione + glutathione
Other name(s): glutathione-coenzyme A glutathione disulfide transhydrogenase; glutathione-coenzyme A glu-

tathione disulfide transhydrogenase; glutathione coenzyme A-glutathione transhydrogenase; glu-
tathione:coenzyme A-glutathione transhydrogenase; coenzyme A:oxidized-glutathione oxidoreduc-
tase; coenzyme A:glutathione-disulfide oxidoreductase

Systematic name: CoA:glutathione-disulfide oxidoreductase
References: [541]

[EC 1.8.4.3 created 1972]

EC 1.8.4.4
Accepted name: glutathione—cystine transhydrogenase

Reaction: 2 glutathione + cystine = glutathione disulfide + 2 cysteine
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Other name(s): GSH-cystine transhydrogenase; NADPH-dependent GSH-cystine transhydrogenase
Systematic name: glutathione:cystine oxidoreductase

References: [2681]

[EC 1.8.4.4 created 1972]

[1.8.4.5 Transferred entry. methionine-S-oxide reductase. Now EC 1.8.4.13, L-methionine (S)-S-oxide reductase and EC
1.8.4.14, L-methionine (R)-S-oxide reductase]

[EC 1.8.4.5 created 1984, deleted 2006]

[1.8.4.6 Transferred entry. protein-methionine-S-oxide reductase. Proved to be due to EC 1.8.4.11, peptide-methionine
(S)-S-oxide reductase]

[EC 1.8.4.6 created 1984, deleted 2006]

EC 1.8.4.7
Accepted name: enzyme-thiol transhydrogenase (glutathione-disulfide)

Reaction: [xanthine dehydrogenase] + glutathione disulfide = [xanthine oxidase] + 2 glutathione
Other name(s): [xanthine-dehydrogenase]:oxidized-glutathione S-oxidoreductase; enzyme-thiol transhydrogenase

(oxidized-glutathione); glutathione-dependent thiol:disulfide oxidoreductase; thiol:disulphide oxidore-
ductase

Systematic name: [xanthine-dehydrogenase]:glutathione-disulfide S-oxidoreductase
Comments: Converts EC 1.17.1.4 xanthine dehydrogenase into EC 1.17.3.2 xanthine oxidase in the presence of

glutathione disulfide; also reduces the disulfide bond of ricin. Not inhibited by Cu2+ or thiol reagents.
References: [213]

[EC 1.8.4.7 created 1989, modified 2002]

EC 1.8.4.8
Accepted name: phosphoadenylyl-sulfate reductase (thioredoxin)

Reaction: adenosine 3′,5′-bisphosphate + sulfite + thioredoxin disulfide = 3′-phosphoadenylyl sulfate + thiore-
doxin

Other name(s): PAPS reductase, thioredoxin-dependent; PAPS reductase; thioredoxin:adenosine 3′-phosphate
5′-phosphosulfate reductase; 3′-phosphoadenylylsulfate reductase; thioredoxin:3′-phospho-
adenylylsulfate reductase; phosphoadenosine-phosphosulfate reductase; adenosine 3′,5′-
bisphosphate,sulfite:oxidized-thioredoxin oxidoreductase (3′-phosphoadenosine-5′-phosphosulfate-
forming)

Systematic name: adenosine 3′,5′-bisphosphate,sulfite:thioredoxin-disulfide oxidoreductase (3′-phosphoadenosine-5′-
phosphosulfate-forming)

Comments: Specific for PAPS. The enzyme from Escherichia coli will use thioredoxins from other species.
References: [262]

[EC 1.8.4.8 created 1999 as EC 1.8.99.4, transferred 2000 to EC 1.8.4.8]

EC 1.8.4.9
Accepted name: adenylyl-sulfate reductase (glutathione)

Reaction: AMP + sulfite + glutathione disulfide = adenylyl sulfate + 2 glutathione
Other name(s): 5′-adenylylsulfate reductase (also used for EC 1.8.99.2); AMP,sulfite:oxidized-glutathione oxidore-

ductase (adenosine-5′-phosphosulfate-forming); plant-type 5′-adenylylsulfate reductase
Systematic name: AMP,sulfite:glutathione-disulfide oxidoreductase (adenosine-5′-phosphosulfate-forming)
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Comments: This enzyme differs from EC 1.8.99.2, adenylyl-sulfate reductase, in using glutathione as the reduc-
tant. Glutathione can be replaced by γ-glutamylcysteine or dithiothreitol, but not by thioredoxin,
glutaredoxin or mercaptoethanol. The enzyme from the mouseear cress, Arabidopsis thaliana, con-
tains a glutaredoxin-like domain. The enzyme is also found in other photosynthetic eukaryotes, e.g.,
the Madagascar periwinkle, Catharanthus roseus and the hollow green seaweed, Enteromorpha in-
testinalis.

References: [1325, 3446, 295]

[EC 1.8.4.9 created 2000, modified 2002]

EC 1.8.4.10
Accepted name: adenylyl-sulfate reductase (thioredoxin)

Reaction: AMP + sulfite + thioredoxin disulfide = 5′-adenylyl sulfate + thioredoxin
Other name(s): thioredoxin-dependent 5′-adenylylsulfate reductase

Systematic name: AMP,sulfite:thioredoxin-disulfide oxidoreductase (adenosine-5′-phosphosulfate-forming)
Comments: Uses adenylyl sulfate, not phosphoadenylyl sulfate, distinguishing this enzyme from EC 1.8.4.8,

phosphoadenylyl-sulfate reductase (thioredoxin). Uses thioredoxin as electron donor, not glutathione
or other donors, distinguishing it from EC 1.8.4.9 [adenylyl-sulfate reductase (glutathione)] and EC
1.8.99.2 (adenylyl-sulfate reductase).

References: [296, 5, 4222, 2772]

[EC 1.8.4.10 created 2003]

EC 1.8.4.11
Accepted name: peptide-methionine (S)-S-oxide reductase

Reaction: (1) peptide-L-methionine + thioredoxin disulfide + H2O = peptide-L-methionine (S)-S-oxide + thiore-
doxin
(2) L-methionine + thioredoxin disulfide + H2O = L-methionine (S)-S-oxide + thioredoxin

Other name(s): MsrA; methionine sulfoxide reductase (ambiguous); methionine sulphoxide reductase A; methionine
S-oxide reductase (ambiguous); methionine S-oxide reductase (S-form oxidizing); methionine sulfox-
ide reductase A; peptide methionine sulfoxide reductase

Systematic name: peptide-L-methionine:thioredoxin-disulfide S-oxidoreductase [L-methionine (S)-S-oxide-forming]
Comments: The reaction occurs in the reverse direction to that shown above. The enzyme exhibits high specificity

for the reduction of the S-form of L-methionine S-oxide, acting faster on the residue in a peptide than
on the free amino acid [2878]. On the free amino acid, it can also reduce D-methionine (S)-S-oxide
but more slowly [2878]. The enzyme plays a role in preventing oxidative-stress damage caused by re-
active oxygen species by reducing the oxidized form of methionine back to methionine and thereby
reactivating peptides that had been damaged. In some species, e.g. Neisseria meningitidis, both this
enzyme and EC 1.8.4.12, peptide-methionine (R)-S-oxide reductase, are found within the same pro-
tein whereas, in other species, they are separate proteins [2639, 360]. The reaction proceeds via a
sulfenic-acid intermediate [975, 412].

References: [2639, 3832, 3538, 360, 975, 4167, 1848, 4067, 2878, 412]

[EC 1.8.4.11 created 2006]

EC 1.8.4.12
Accepted name: peptide-methionine (R)-S-oxide reductase

Reaction: peptide-L-methionine + thioredoxin disulfide + H2O = peptide-L-methionine (R)-S-oxide + thiore-
doxin

Other name(s): MsrB; methionine sulfoxide reductase (ambiguous); pMSR; methionine S-oxide reductase (ambigu-
ous); selenoprotein R; methionine S-oxide reductase (R-form oxidizing); methionine sulfoxide reduc-
tase B; SelR; SelX; PilB; pRMsr

Systematic name: peptide-methionine:thioredoxin-disulfide S-oxidoreductase [methionine (R)-S-oxide-forming]
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Comments: The reaction occurs in the reverse direction to that shown above. The enzyme exhibits high speci-
ficity for reduction of the R-form of methionine S-oxide, with higher activity being observed with
L-methionine S-oxide than with D-methionine S-oxide [2878]. While both free and protein-bound
methionine (R)-S-oxide act as substrates, the activity with the peptide-bound form is far greater
[3280]. The enzyme plays a role in preventing oxidative-stress damage caused by reactive oxygen
species by reducing the oxidized form of methionine back to methionine and thereby reactivating
peptides that had been damaged. In some species, e.g. Neisseria meningitidis, both this enzyme and
EC 1.8.4.11, peptide-methionine (S)-S-oxide reductase, are found within the same protein whereas in
other species, they are separate proteins [3538, 975]. The reaction proceeds via a sulfenic-acid inter-
mediate [975, 3280]. For MsrB2 and MsrB3, thioredoxin is a poor reducing agent but thionein works
well []. The enzyme from some species contains selenocysteine and Zn2+.

References: [2639, 3832, 3538, 360, 975, 4167, 1848, 4067, 2878, 3280]

[EC 1.8.4.12 created 2006]

EC 1.8.4.13
Accepted name: L-methionine (S)-S-oxide reductase

Reaction: L-methionine + thioredoxin disulfide + H2O = L-methionine (S)-S-oxide + thioredoxin
Other name(s): fSMsr; methyl sulfoxide reductase I and II; acetylmethionine sulfoxide reductase; methionine sulfox-

ide reductase; L-methionine:oxidized-thioredoxin S-oxidoreductase; methionine-S-oxide reductase;
free-methionine (S)-S-oxide reductase

Systematic name: L-methionine:thioredoxin-disulfide S-oxidoreductase
Comments: Requires NADPH [933]. The reaction occurs in the opposite direction to that given above. Dithiothre-

itol can replace reduced thioredoxin. L-Methionine (R)-S-oxide is not a substrate [see EC 1.8.4.14,
L-methionine (R)-S-oxide reductase].

References: [308, 933, 934, 4167]

[EC 1.8.4.13 created 1984 as EC 1.8.4.5, part transferred 2006 to EC 1.8.4.13]

EC 1.8.4.14
Accepted name: L-methionine (R)-S-oxide reductase

Reaction: L-methionine + thioredoxin disulfide + H2O = L-methionine (R)-S-oxide + thioredoxin
Other name(s): fRMsr; FRMsr; free met-R-(o) reductase; free-methionine (R)-S-oxide reductase

Systematic name: L-methionine:thioredoxin-disulfide S-oxidoreductase [L-methionine (R)-S-oxide-forming]
Comments: Requires NADPH. Unlike EC 1.8.4.12, peptide-methionine (R)-S-oxide reductase, this enzyme can-

not use peptide-bound methionine (R)-S-oxide as a substrate [969]. Differs from EC 1.8.4.13, L-
methionine (S)-S-oxide in that L-methionine (S)-S-oxide is not a substrate.

References: [969]

[EC 1.8.4.14 created 1984 as EC 1.8.4.5, part transferred 2006 to EC 1.8.4.14]

EC 1.8.5 With a quinone or similar compound as acceptor

EC 1.8.5.1
Accepted name: glutathione dehydrogenase (ascorbate)

Reaction: 2 glutathione + dehydroascorbate = glutathione disulfide + ascorbate
Other name(s): dehydroascorbic reductase; dehydroascorbic acid reductase; glutathione dehydroascorbate reductase;

DHA reductase ; dehydroascorbate reductase; GDOR; glutathione:dehydroascorbic acid oxidoreduc-
tase

Systematic name: glutathione:dehydroascorbate oxidoreductase
References: [694]

[EC 1.8.5.1 created 1961]
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EC 1.8.5.2
Accepted name: thiosulfate dehydrogenase (quinone)

Reaction: 2 thiosulfate + 6-decylubiquinone = tetrathionate + 6-decylubiquinol
Other name(s): thiosulfate:quinone oxidoreductase; thiosulphate:quinone oxidoreductase; thiosulfate oxidoreductase,

tetrathionate-forming; TQO
Systematic name: thiosulfate:6-decylubiquinone oxidoreductase

Comments: The reaction can also proceed with ferricyanide as the electron acceptor, but more slowly. Unlike EC
1.8.2.2, thiosulfate dehydrogenase, this enzyme cannot utilize cytochrome c as an acceptor.

References: [2651]

[EC 1.8.5.2 created 2004]

EC 1.8.5.3
Accepted name: dimethylsulfoxide reductase

Reaction: dimethylsulfide + menaquinone + H2O = dimethylsulfoxide + menaquinol
Other name(s): DMSO reductase

Systematic name: dimethyl sulfide:menaquinone oxidoreductase
Comments: Contains molybdopterin and [4Fe-4S] clusters. Also reduces pyridine N-oxide and trimethylamine

N-oxide, with lower activity, to the corresponding amines.
References: [3531, 746, 2532, 3239]

[EC 1.8.5.3 created 2011]

EC 1.8.5.4
Accepted name: bacterial sulfide:quinone reductase

Reaction: n HS− + n quinone = polysulfide + n quinol
Other name(s): sqr (gene name); sulfide:quinone reductase (ambiguous)

Systematic name: sulfide:quinone oxidoreductase
Comments: Contains FAD. Ubiquinone, plastoquinone or menaquinone can act as acceptor in different species.

This enzyme catalyses the formation of sulfur globules. It repeats the catalytic cycle without releasing
the product, producing a polysulfide of up to 10 sulfur atoms. The reaction stops when the maximum
length of the polysulfide that can be accommodated in the sulfide oxidation pocket is achieved. The
enzyme also plays an important role in anoxygenic bacterial photosynthesis. cf. EC 1.8.5.8, eukary-
otic sulfide quinone oxidoreductase.

References: [120, 3160, 2826, 405, 586, 2393]

[EC 1.8.5.4 created 2011, modified 2017]

EC 1.8.5.5
Accepted name: thiosulfate reductase (quinone)

Reaction: sulfite + hydrogen sulfide + a quinone = thiosulfate + a quinol
Other name(s): phsABC (gene names)

Systematic name: sulfite,hydrogen sulfide:quinone oxidoreductase
Comments: The enzyme, characterized from the bacterium Salmonella enterica, is similar to EC 1.17.5.3, formate

dehydrogenase-N. It contains a molybdopterin-guanine dinucleotide, five [4Fe-4S] clusters and two
heme b groups. The reaction occurs in vivo in the direction of thiosulfate disproportionation, which
is highly endergonic. It is driven by the proton motive force that occurs across the cytoplasmic mem-
brane.

References: [2106, 628, 50, 1464, 3658]

[EC 1.8.5.5 created 2016, modified 2017]

EC 1.8.5.6
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Accepted name: sulfite dehydrogenase (quinone)
Reaction: sulfite + a quinone + H2O = sulfate + a quinol

Other name(s): soeABC (gene name)
Systematic name: sulfite:quinone oxidoreductase

Comments: This membrane-bound bacterial enzyme catalyses the direct oxidation of sulfite to sulfate in the cy-
toplasm. The enzyme, characterized from the bacteria Ruegeria pomeroyi and Allochromatium vi-
nosum, is a complex that consists of a membrane anchor (SoeC) and two cytoplasmic subunits: an
iron-sulfur protein (SoeB) and a molybdoprotein that contains a [4Fe-4S] iron-sulfur cluster (SoeA).
cf. EC 1.8.2.1, sulfite dehydrogenase (cytochrome).

References: [718]

[EC 1.8.5.6 created 2016]

EC 1.8.5.7
Accepted name: glutathionyl-hydroquinone reductase

Reaction: glutathione + 2-(glutathione-S-yl)-hydroquinone = glutathione disulfide + hydroquinone
Other name(s): pcpF (gene name); yqjG (gene name)

Systematic name: 2-(glutathione-S-yl)-hydroquinone:glutathione oxidoreductase
Comments: This type of enzymes, which are found in bacteria, halobacteria, fungi, and plants, catalyse the

glutathione-dependent reduction of glutathionyl-hydroquinones. The enzyme from the bacterium Sph-
ingobium chlorophenolicum can act on halogenated substrates such as 2,6-dichloro-3-(glutathione-
S-yl)-hydroquinone and 2,3,5-trichloro-6-(glutathione-S-yl)-hydroquinone. Substrates for these en-
zymes are often formed spontaneously by interaction of benzoquinones with glutathione.

References: [1597, 4290, 2116, 1270]

[EC 1.8.5.7 created 2017]

EC 1.8.5.8
Accepted name: eukaryotic sulfide quinone oxidoreductase

Reaction: hydrogen sulfide + glutathione + a quinone = S-sulfanylglutathione + a quinol
Other name(s): SQR; SQOR; SQRDL (gene name)

Systematic name: sulfide:glutathione,quinone oxidoreductase
Comments: Contains FAD. This eukaryotic enzyme, located at the inner mitochondrial membrane, catalyses the

first step in the metabolism of sulfide. While both sulfite and glutathione have been shown to act as
sulfane sulfur acceptors in vitro, it is thought that the latter acts as the main acceptor in vivo. The
electrons are transferred via FAD and quinones to the electron transfer chain. Unlike the bacterial
homolog (EC 1.8.5.4, bacterial sulfide:quinone reductase), which repeats the catalytic cycle without
releasing the product, producing a polysulfide, the eukaryotic enzyme transfers the persulfide to an
acceptor at the end of each catalytic cycle.

References: [4158, 1500, 1704, 2243]

[EC 1.8.5.8 created 2017]

EC 1.8.6 With a nitrogenous group as acceptor (deleted sub-subclass)

[1.8.6.1 Deleted entry. Nitrate-ester reductase. Now included with EC 2.5.1.18 glutathione transferase]

[EC 1.8.6.1 created 1961, deleted 1976]

EC 1.8.7 With an iron-sulfur protein as acceptor

EC 1.8.7.1
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Accepted name: assimilatory sulfite reductase (ferredoxin)
Reaction: hydrogen sulfide + 6 oxidized ferredoxin [iron-sulfur] cluster + 3 H2O = sulfite + 6 reduced ferre-

doxin [iron-sulfur] cluster + 6 H+

Other name(s): ferredoxin-sulfite reductase; SIR (gene name); sulfite reductase (ferredoxin)
Systematic name: hydrogen-sulfide:ferredoxin oxidoreductase

Comments: An iron protein. The enzyme participates in sulfate assimilation. While it is usually found in
cyanobacteria, plants and algae, it has also been reported in bacteria [2772]. Different from EC
1.8.99.5, dissimilatory sulfite reductase, which is involved in prokaryotic sulfur-based energy
metabolism. cf. EC 1.8.1.2, assimilatory sulfite reductase (NADPH).

References: [3372, 1210, 354, 2772]

[EC 1.8.7.1 created 1972, modified 2015]

EC 1.8.7.2
Accepted name: ferredoxin:thioredoxin reductase

Reaction: 2 reduced ferredoxin + thioredoxin disulfide = 2 oxidized ferredoxin + thioredoxin + 2 H+

Systematic name: ferredoxin:thioredoxin disulfide oxidoreductase
Comments: The enzyme contains a [4Fe-4S] cluster and internal disulfide. It forms a mixed disulfide with thiore-

doxin on one side, and docks ferredoxin on the other side, enabling two one-electron transfers.
The reduced thioredoxins generated by the enzyme activate the Calvin cycle enzymes EC 3.1.3.11
(fructose-bisphosphatase), EC 3.1.3.37 (sedoheptulose-bisphosphatase) and EC 2.7.1.19 (phospho-
ribulokinase) as well as other chloroplast enzymes by disulfide reduction.

References: [437, 615, 3621]

[EC 1.8.7.2 created 2010]

EC 1.8.7.3
Accepted name: ferredoxin:CoB-CoM heterodisulfide reductase

Reaction: 2 oxidized ferredoxin [iron-sulfur] cluster + CoB + CoM = 2 reduced ferredoxin [iron-sulfur] cluster
+ CoM-S-S-CoB + 2 H+

Other name(s): hdrABC (gene names); hdrA1B1C1 (gene names); hdrA2B2C2 (gene names)
Systematic name: CoB,CoM:ferredoxin oxidoreductase

Comments: HdrABC is an enzyme complex that is found in most methanogens and catalyses the reduction of the
CoB-CoM heterodisulfide back to CoB and CoM. HdrA contains a FAD cofactor that acts as the en-
try point for electrons, which are transferred via HdrC to the HdrB catalytic subunit. One form of the
enzyme from Methanosarcina acetivorans (HdrA2B2C2) can also catalyse EC 1.8.98.4, coenzyme
F420:CoB-CoM heterodisulfide,ferredoxin reductase. cf. EC 1.8.98.5, H2:CoB-CoM heterodisul-
fide,ferredoxin reductase, EC 1.8.98.6, formate:CoB-CoM heterodisulfide,ferredoxin reductase, and
EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase.

References: [434, 4332]

[EC 1.8.7.3 created 2017]

EC 1.8.98 With other, known, physiological acceptors

EC 1.8.98.1
Accepted name: dihydromethanophenazine:CoB-CoM heterodisulfide reductase

Reaction: CoB + CoM + methanophenazine = CoM-S-S-CoB + dihydromethanophenazine
Other name(s): hdrDE (gene names); CoB—CoM heterodisulfide reductase (ambiguous); heterodisulfide reductase

(ambiguous); coenzyme B:coenzyme M:methanophenazine oxidoreductase
Systematic name: CoB:CoM:methanophenazine oxidoreductase
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Comments: This enzyme, found in methanogenic archaea that belong to the Methanosarcinales order, regenerates
CoM and CoB after the action of EC 2.8.4.1, coenzyme-B sulfoethylthiotransferase. It is a membrane-
bound enzyme that contains (per heterodimeric unit) two distinct b-type hemes and two [4Fe-4S]
clusters. cf. EC 1.8.7.3, ferredoxin:CoB-CoM heterodisulfide reductase, EC 1.8.98.5, H2:CoB-CoM
heterodisulfide,ferredoxin reductase, EC 1.8.98.6, formate:CoB-CoM heterodisulfide,ferredoxin re-
ductase and EC 1.8.98.4, coenzyme F420:CoB-CoM heterodisulfide,ferredoxin reductase.

References: [1451, 4, 3532, 2664]

[EC 1.8.98.1 created 2003, modified 2017]

EC 1.8.98.2
Accepted name: sulfiredoxin

Reaction: peroxiredoxin-(S-hydroxy-S-oxocysteine) + ATP + 2 R-SH = peroxiredoxin-(S-hydroxycysteine) +
ADP + phosphate + R-S-S-R

Other name(s): Srx1; sulphiredoxin; peroxiredoxin-(S-hydroxy-S-oxocysteine) reductase
Systematic name: peroxiredoxin-(S-hydroxy-S-oxocysteine):thiol oxidoreductase [ATP-hydrolysing; peroxiredoxin-(S-

hydroxycysteine)-forming]
Comments: In the course of the reaction of EC 1.11.1.15, peroxiredoxin, its cysteine residue is alternately ox-

idized to the sulfenic acid, S-hydroxycysteine, and reduced back to cysteine. Occasionally the S-
hydroxycysteine residue is further oxidized to the sulfinic acid S-hydroxy-S-oxocysteine, thereby
inactivating the enzyme. The reductase provides a mechanism for regenerating the active form of per-
oxiredoxin, i.e. the peroxiredoxin-(S-hydroxycysteine) form. Apparently the reductase first catalyses
the phosphorylation of the -S(O)-OH group by ATP to give -S(O)-O-P, which is attached to the perox-
iredoxin by a cysteine residue, forming an -S(O)-S- link between the two enzymes. Attack by a thiol
splits this bond, leaving the peroxiredoxin as the sulfenic acid and the reductase as the thiol.

References: [302, 543, 4247]

[EC 1.8.98.2 created 2005]

EC 1.8.98.3
Accepted name: sulfite reductase (coenzyme F420)

Reaction: hydrogen sulfide + 3 oxidized coenzyme F420 + 3 H2O = sulfite + 3 reduced coenzyme F420
Other name(s): coenzyme F420-dependent sulfite reductase; Fsr

Systematic name: hydrogen sulfide:coenzyme F420 oxidoreductase
Comments: The enzyme, isolated from the archaeon Methanocaldococcus jannaschii, is involved in sulfite detoxi-

fication and assimilation.
References: [1754, 1755]

[EC 1.8.98.3 created 2014]

EC 1.8.98.4
Accepted name: coenzyme F420:CoB-CoM heterodisulfide,ferredoxin reductase

Reaction: 2 oxidized coenzyme F420 + 2 reduced ferredoxin [iron-sulfur] cluster + CoB + CoM + 2 H+ = 2 re-
duced coenzyme F420 + 2 oxidized ferredoxin [iron-sulfur] cluster + CoM-S-S-CoB

Other name(s): hdrA2B2C2 (gene names)
Systematic name: CoB,CoM,ferredoxin:coenzyme F420 oxidoreductase
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Comments: The enzyme, characterized from the archaeon Methanosarcina acetivorans, catalyses the reduction of
CoB-CoM heterodisulfide back to CoB and CoM. The enzyme consists of three components, HdrA,
HdrB and HdrC, all of which contain [4Fe-4S] clusters. Electrons enter at HdrA, which also contains
FAD, and are transferred via HdrC to the catalytic component, HdrB. During methanogenesis from
acetate the enzyme catalyses the activity of EC 1.8.7.3, ferredoxin:CoB-CoM heterodisulfide reduc-
tase. However, it can also use electron bifurcation to direct electron pairs from reduced coenzyme
F420 towards the reduction of both ferredoxin and CoB-CoM heterodisulfide. This activity is proposed
to take place during Fe(III)-dependent anaerobic methane oxidation. cf. EC 1.8.98.5, H2:CoB-CoM
heterodisulfide,ferredoxin reductase, EC 1.8.98.6, formate:CoB-CoM heterodisulfide,ferredoxin re-
ductase, and EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase.

References: [4332]

[EC 1.8.98.4 created 2017]

EC 1.8.98.5
Accepted name: H2:CoB-CoM heterodisulfide,ferredoxin reductase

Reaction: 2 reduced ferredoxin [iron-sulfur] cluster + CoB + CoM + 2 H+ = 2 H2 + 2 oxidized ferredoxin [iron-
sulfur] cluster + CoM-S-S-CoB

Systematic name: CoB,CoM,ferredoxin:H2 oxidoreductase
Comments: This enzyme complex is found in H2-oxidizing CO2-reducing methanogenic archaea such as Methan-

othermobacter thermautotrophicus. It consists of a cytoplasmic complex of HdrABC reductase and
MvhAGD hydrogenase. Electron pairs donated by the hydrogenase are transfered via its δ subunit to
the HdrA subunit of the reductase, where they are bifurcated, reducing both ferredoxin and CoB-CoM
heterodisulfide. The reductase can also form a similar complex with formate dehydrogenase, see EC
1.8.98.6, formate:CoB-CoM heterodisulfide,ferredoxin reductase. cf. EC 1.8.7.3, ferredoxin:CoB-
CoM heterodisulfide reductase, EC 1.8.98.4, coenzyme F420:CoB-CoM heterodisulfide,ferredoxin
reductase, and EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase.

References: [3154, 1452, 3448, 3660, 1826, 670]

[EC 1.8.98.5 created 2017]

EC 1.8.98.6
Accepted name: formate:CoB-CoM heterodisulfide,ferredoxin reductase

Reaction: 2 CO2 + 2 reduced ferredoxin [iron-sulfur] cluster + CoB + CoM + 2 H+ = 2 formate + 2 oxidized
ferredoxin [iron-sulfur] cluster + CoM-S-S-CoB

Systematic name: coenzyme B,coenzyme M,ferredoxin:formate oxidoreductase
Comments: The enzyme is found in formate-oxidizing CO2-reducing methanogenic archaea such as Methanococ-

cus maripaludis. It consists of a cytoplasmic complex of HdrABC reductase and formate dehydro-
genase. Electron pairs donated by formate dehydrogenase are transferred to the HdrA subunit of the
reductase, where they are bifurcated, reducing both ferredoxin and CoB-CoM heterodisulfide. cf. EC
1.8.7.3, ferredoxin:CoB-CoM heterodisulfide reductase, EC 1.8.98.4, coenzyme F420:CoB-CoM het-
erodisulfide,ferredoxin reductase, EC 1.8.98.5, H2:CoB-CoM heterodisulfide,ferredoxin reductase,
and EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase.

References: [671, 670]

[EC 1.8.98.6 created 2017]

EC 1.8.99 With unknown physiological acceptors

[1.8.99.1 Deleted entry. sulfite reductase. Now covered by EC 1.8.1.2, assimilatory sulfite reductase (NADPH) and EC
1.8.7.1, assimilatory sulfite reductase (ferredoxin). ]

[EC 1.8.99.1 created 1972, deleted 2015]
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EC 1.8.99.2
Accepted name: adenylyl-sulfate reductase

Reaction: AMP + sulfite + acceptor = adenylyl sulfate + reduced acceptor
Other name(s): adenosine phosphosulfate reductase; adenosine 5′-phosphosulfate reductase; APS-reductase; APS

reductase; AMP, sulfite:(acceptor) oxidoreductase (adenosine-5′-phosphosulfate-forming)
Systematic name: AMP,sulfite:acceptor oxidoreductase (adenosine-5′-phosphosulfate-forming)

Comments: An iron flavoprotein (FAD). Methylviologen can act as acceptor.
References: [2520]

[EC 1.8.99.2 created 1972]

[1.8.99.3 Deleted entry. hydrogensulfite reductase, now known to be an in vitro artifact of EC 1.8.99.5, dissimilatory sulfite
reductase]

[EC 1.8.99.3 created 1986, deleted 2016]

[1.8.99.4 Transferred entry. phosphoadenosine-phosphosulfate reductase. Now EC 1.8.4.8, phosphoadenylyl-sulfate reduc-
tase (thioredoxin)]

[EC 1.8.99.4 created 1999, deleted 2000]

EC 1.8.99.5
Accepted name: dissimilatory sulfite reductase

Reaction: (1) hydrogen sulfide + a [DsrC protein]-disulfide + 2 acceptor + 3 H2O = sulfite + a [DsrC protein]-
dithiol + 2 reduced acceptor + 2 H+ (overall reaction)
(1a) hydrogen sulfide + a [DsrC protein]-disulfide = a [DsrC protein]-S-sulfanyl-L-cysteine
(1b) a [DsrC protein]-S-sulfanyl-L-cysteine + 2 acceptor + 3 H2O = sulfite + a [DsrC protein]-dithiol +
2 reduced acceptor + 2 H+

(2) a [DsrC protein]-S-sulfanyl-L-cysteine + 3 acceptor + 3 H2O = sulfite + a [DsrC protein]-disulfide
+ 3 reduced acceptor + 2 H+ (overall reaction)
(2a) a [DsrC protein]-S-sulfanyl-L-cysteine + 3 acceptor + 3 H2O = a [DsrC]-S-sulfo-L-cysteine + 3
reduced acceptor + H+

(2b) a [DsrC]-S-sulfo-L-cysteine = sulfite + a [DsrC protein]-disulfide
Other name(s): siroheme sulfite reductase; hydrogen-sulfide:(acceptor) oxidoreductase (ambiguous); DsrAB

Systematic name: hydrogen-sulfide:[DsrC sulfur-carrier protein],acceptor oxidoreductase
Comments: Contain siroheme. The enzyme is essential in prokaryotic sulfur-based energy metabolism, including

sulfate/sulfite reducing organisms, sulfur-oxidizing bacteria, and organosulfonate reducers. In sulfur
reducers it catalyses the reduction of sulfite to sulfide (reaction 1 in the right to left direction), while in
sulfur oxidizers it catalyses the opposite reaction (reaction 2 in the left to right direction) [3354]. The
reaction involves the small protein DsrC, which is present in all the organisms that contain dissimi-
latory sulfite reductase. During the process an intramolecular disulfide bond is formed between two
L-cysteine residues of DsrC. This disulfide can be reduced by a number of proteins including DsrK
and TcmB [4029]. This enzyme is different from EC 1.8.1.2, assimilatory sulfite reductase (NADPH),
and EC 1.8.7.1, assimilatory sulfite reductase (ferredoxin), which are involved in sulfate assimilation.

References: [3354, 3435, 3043, 2873, 4029]

[EC 1.8.99.5 created 2015]

EC 1.9 Acting on a heme group of donors
This subclass contains the cytochrome oxidases and nitrate reductases. Sub-subclasses are based on the acceptor: oxygen (EC
1.9.3), a nitrogenous group (EC 1.9.6), or some other acceptor (EC 1.9.99).
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EC 1.9.3 With oxygen as acceptor

EC 1.9.3.1
Accepted name: cytochrome-c oxidase

Reaction: 4 ferrocytochrome c + O2 + 4 H+ = 4 ferricytochrome c + 2 H2O
Other name(s): cytochrome oxidase; cytochrome a3; cytochrome aa3; Warburg’s respiratory enzyme; indophenol

oxidase; indophenolase; complex IV (mitochondrial electron transport); ferrocytochrome c oxidase;
NADH cytochrome c oxidase

Systematic name: ferrocytochrome-c:oxygen oxidoreductase
Comments: A cytochrome of the a type containing copper. The reduction of O2 to water is accompanied by the

extrusion of four protons from the intramitochondrial compartment. Several bacteria appear to contain
analogous oxidases.

References: [1870, 1871, 4080, 4367, 4368]

[EC 1.9.3.1 created 1961, modified 2000]

[1.9.3.2 Transferred entry. Pseudomonas cytochrome oxidase. Now included with EC 1.7.2.1, nitrite reductase (NO-
forming)]

[EC 1.9.3.2 created 1965, deleted 2002]

EC 1.9.6 With a nitrogenous group as acceptor

EC 1.9.6.1
Accepted name: nitrate reductase (cytochrome)

Reaction: 2 ferrocytochrome + 2 H+ + nitrate = 2 ferricytochrome + nitrite
Other name(s): respiratory nitrate reductase; benzyl viologen-nitrate reductase

Systematic name: ferrocytochrome:nitrate oxidoreductase
References: [3275]

[EC 1.9.6.1 created 1961]

EC 1.9.98 With other, known, physiological acceptors

EC 1.9.98.1
Accepted name: iron—cytochrome-c reductase

Reaction: ferrocytochrome c + Fe3+ = ferricytochrome c + Fe2+

Other name(s): iron-cytochrome c reductase
Systematic name: ferrocytochrome-c:Fe3+ oxidoreductase

Comments: An iron protein.
References: [4353]

[EC 1.9.98.1 created 1972 as EC 1.9.99.1, transferred 2014 to EC 1.9.98.1]

EC 1.9.99 With unknown physiological acceptors

[1.9.99.1 Transferred entry. iron—cytochrome-c reductase. Now EC 1.9.98.1, iron—cytochrome-c reductase]

[EC 1.9.99.1 created 1972, deleted 2014]
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EC 1.10 Acting on diphenols and related substances as donors
This subclass contains enzymes that catalyse the oxidation of diphenols or ascorbate. Sub-subclasses are based on the acceptor:
NAD+ or NADP+ (EC 1.10.1), a cytochrome (EC 1.10.2), oxygen (EC 1.10.3), or some other acceptor (EC 1.10.99). Some
enzymes that catalyse the oxidation of phenols are oxygenases (EC 1.14.18).

EC 1.10.1 With NAD+ or NADP+ as acceptor

EC 1.10.1.1
Accepted name: trans-acenaphthene-1,2-diol dehydrogenase

Reaction: (±)-trans-acenaphthene-1,2-diol + 2 NADP+ = acenaphthenequinone + 2 NADPH + 2 H+

Other name(s): trans-1,2-acenaphthenediol dehydrogenase
Systematic name: (±)-trans-acenaphthene-1,2-diol:NADP+ oxidoreductase

Comments: Some preparations also utilize NAD+.
References: [1559]

[EC 1.10.1.1 created 1976]

EC 1.10.2 With a cytochrome as acceptor

EC 1.10.2.1
Accepted name: L-ascorbate—cytochrome-b5 reductase

Reaction: L-ascorbate + ferricytochrome b5 = monodehydroascorbate + ferrocytochrome b5 + H+

Other name(s): ascorbate-cytochrome b5 reductase
Systematic name: L-ascorbate:ferricytochrome-b5 oxidoreductase

References: [971]

[EC 1.10.2.1 created 1972, modified 2000]

[1.10.2.2 Transferred entry. quinol—cytochrome-c reductase. Now EC 7.1.1.8, quinol—cytochrome-c reductase]

[EC 1.10.2.2 created 1978, modified 2013, deleted 2018]

EC 1.10.3 With oxygen as acceptor

EC 1.10.3.1
Accepted name: catechol oxidase

Reaction: 2 catechol + O2 = 2 1,2-benzoquinone + 2 H2O
Other name(s): diphenol oxidase; o-diphenolase; polyphenol oxidase; pyrocatechol oxidase; dopa oxidase; cate-

cholase; o-diphenol:oxygen oxidoreductase; o-diphenol oxidoreductase
Systematic name: 1,2-benzenediol:oxygen oxidoreductase

Comments: A type 3 copper protein that catalyses exclusively the oxidation of catechol (i.e., o-diphenol) to the
corresponding o-quinone. The enzyme also acts on a variety of substituted catechols. It is different
from tyrosinase, EC 1.14.18.1, which can catalyse both the monooxygenation of monophenols and the
oxidation of catechols.

References: [417, 757, 1279, 2429, 2472, 2961, 3035, 3200, 1183]

[EC 1.10.3.1 created 1961, deleted 1972, reinstated 1978]

EC 1.10.3.2
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Accepted name: laccase
Reaction: 4 benzenediol + O2 = 4 benzosemiquinone + 2 H2O

Other name(s): urishiol oxidase; urushiol oxidase; p-diphenol oxidase
Systematic name: benzenediol:oxygen oxidoreductase

Comments: A group of multi-copper proteins of low specificity acting on both o- and p-quinols, and often acting
also on aminophenols and phenylenediamine. The semiquinone may react further either enzymically
or non-enzymically.

References: [757, 1874, 2382, 2472, 2704, 2705, 2975, 3163]

[EC 1.10.3.2 created 1961, deleted 1972, reinstated 1978]

EC 1.10.3.3
Accepted name: L-ascorbate oxidase

Reaction: 4 L-ascorbate + O2 = 4 monodehydroascorbate + 2 H2O
Other name(s): ascorbase; ascorbic acid oxidase; ascorbate oxidase; ascorbic oxidase; ascorbate dehydrogenase; L-

ascorbic acid oxidase; AAO; L-ascorbate:O2 oxidoreductase; AA oxidase
Systematic name: L-ascorbate:oxygen oxidoreductase

Comments: A multicopper protein.
References: [4327, 3623, 2511]

[EC 1.10.3.3 created 1961, modified 2011]

EC 1.10.3.4
Accepted name: o-aminophenol oxidase

Reaction: 4 2-aminophenol + 3 O2 = 2 2-aminophenoxazin-3-one + 6 H2O
Other name(s): isophenoxazine synthase; o-aminophenol:O2 oxidoreductase; 2-aminophenol:O2 oxidoreductase

Systematic name: 2-aminophenol:oxygen oxidoreductase
Comments: A flavoprotein which catalyses a 6-electron oxidation. The enzyme from the plant Tecoma stans re-

quires Mn2+ and FAD [2695] whereas the fungus Pycnoporus coccineus requires Mn2+ and riboflavin
5′-phosphate [2697], the bacteria Streptomyces antibioticus requires Cu2+ [206] and the plant Bauhe-
nia monandra does not require any co-factors [3126].

References: [2695, 2697, 3126, 206]

[EC 1.10.3.4 created 1972, modified 2006]

EC 1.10.3.5
Accepted name: 3-hydroxyanthranilate oxidase

Reaction: 3-hydroxyanthranilate + O2 = 6-imino-5-oxocyclohexa-1,3-dienecarboxylate + H2O2
Other name(s): 3-hydroxyanthranilic acid oxidase

Systematic name: 3-hydroxyanthranilate:oxygen oxidoreductase
References: [2616]

[EC 1.10.3.5 created 1972]

EC 1.10.3.6
Accepted name: rifamycin-B oxidase

Reaction: rifamycin B + O2 = rifamycin O + H2O2
Other name(s): rifamycin B oxidase

Systematic name: rifamycin-B:oxygen oxidoreductase
Comments: Acts also on benzene-1,4-diol and, more slowly, on some other p-quinols. Not identical with EC

1.10.3.1 (catechol oxidase), EC 1.10.3.2 (laccase), EC 1.10.3.4 (o-aminophenol oxidase) or EC
1.10.3.5 (3-hydroxyanthranilate oxidase).

References: [1364]
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[EC 1.10.3.6 created 1986]

[1.10.3.7 Transferred entry. sulochrin oxidase [(+)-bisdechlorogeodin-forming]. Now EC 1.21.3.4, sulochrin oxidase [(+)-
bisdechlorogeodin-forming]]

[EC 1.10.3.7 created 1986, deleted 2002]

[1.10.3.8 Transferred entry. sulochrin oxidase [(+)-bisdechlorogeodin-forming]. Now EC 1.21.3.5, sulochrin oxidase [(-)-
bisdechlorogeodin-forming]]

[EC 1.10.3.8 created 1986, deleted 2002]

EC 1.10.3.9
Accepted name: photosystem II

Reaction: 2 H2O + 2 plastoquinone + 4 hν = O2 + 2 plastoquinol
Systematic name: H2O:plastoquinone reductase (light-dependent)

Comments: Contains chlorophyll a, β-carotene, pheophytin, plastoquinone, a Mn4Ca cluster, heme and non-heme
iron. Four successive photoreactions, resulting in a storage of four positive charges, are required to
oxidize two water molecules to one oxygen molecule.

References: [1971, 1322]

[EC 1.10.3.9 created 2011]

[1.10.3.10 Transferred entry. ubiquinol oxidase (H+-transporting). Now EC 7.1.1.3, ubiquinol oxidase (H+-transporting)]

[EC 1.10.3.10 created 2011, modified 2014, deleted 2018]

EC 1.10.3.11
Accepted name: ubiquinol oxidase (non-electrogenic)

Reaction: 2 ubiquinol + O2 = 2 ubiquinone + 2 H2O
Other name(s): plant alternative oxidase; cyanide-insensitive oxidase; AOX (gene name); ubiquinol oxidase;

ubiquinol:O2 oxidoreductase (non-electrogenic)
Systematic name: ubiquinol:oxygen oxidoreductase (non-electrogenic)

Comments: The enzyme, described from the mitochondria of plants and some fungi and protists, is an alterna-
tive terminal oxidase that is not sensitive to cyanide inhibition and does not generate a proton mo-
tive force. Unlike the electrogenic terminal oxidases that contain hemes (cf. EC 1.10.3.10 and EC
1.10.3.14), this enzyme contains a dinuclear non-heme iron complex. The function of this oxidase is
believed to be dissipating excess reducing power, minimizing oxidative stress, and optimizing photo-
synthesis in response to changing conditions.

References: [258, 3528, 281, 4215, 1151]

[EC 1.10.3.11 created 2011, modified 2014]

[1.10.3.12 Transferred entry. menaquinol oxidase (H+-transporting). Now EC 7.1.1.5, menaquinol oxidase (H+-transporting)]

[EC 1.10.3.12 created 2011, deleted 2018]

[1.10.3.13 Transferred entry. caldariellaquinol oxidase (H+-transporting). Now EC 7.1.1.4, caldariellaquinol oxidase (H+-
transporting)]

[EC 1.10.3.13 created 2013, deleted 2018]

[1.10.3.14 Transferred entry. ubiquinol oxidase (electrogenic, non H+-transporting). Now EC 7.1.1.7, ubiquinol oxidase
(electrogenic, proton-motive force generating)]

[EC 1.10.3.14 created 2014, modified 2017, deleted 2018]

EC 1.10.3.15
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Accepted name: grixazone synthase
Reaction: 2 3-amino-4-hydroxybenzoate + N-acetyl-L-cysteine + 2 O2 = grixazone B + 4 H2O + CO2

Other name(s): GriF
Systematic name: 3-amino-4-hydroxybenzoate:N-acetyl-L-cysteine:oxygen oxidoreductase

Comments: A type 3 multi copper protein. The enzyme, isolated from the bacterium Streptomyces griseus, cataly-
ses an 8 electron oxidation. Activation of the enzyme requires a copper chaperone (GriE). It also acts
on 3-amino-4-hydroxybenzaldehyde, giving grixazone A. The second aldehyde group is presumably
lost as formate. The enzyme also catalyses the reaction of EC 1.10.3.4 o-aminophenol oxidase.

References: [3748, 3217]

[EC 1.10.3.15 created 2014]

EC 1.10.3.16
Accepted name: dihydrophenazinedicarboxylate synthase

Reaction: (1) (1R,6R)-1,4,5,5a,6,9-hexahydrophenazine-1,6-dicarboxylate + O2 = (1R,10aS)-1,4,10,10a-
tetrahydrophenazine-1,6-dicarboxylate + H2O2
(2) (1R,10aS)-1,4,10,10a-tetrahydrophenazine-1,6-dicarboxylate + O2 = (5aS)-5,5a-dihydrophenazine-
1,6-dicarboxylate + H2O2
(3) (1R,10aS)-1,4,10,10a-tetrahydrophenazine-1-carboxylate + O2 = (10aS)-10,10a-dihydrophenazine-
1-carboxylate + H2O2
(4) (1R)-1,4,5,10-tetrahydrophenazine-1-carboxylate + O2 = (10aS)-5,10-dihydrophenazine-1-
carboxylate + H2O2

Other name(s): phzG (gene name)
Systematic name: 1,4,5a,6,9,10a-hexahydrophenazine-1,6-dicarboxylate:oxygen oxidoreductase

Comments: Requires FMN. The enzyme, isolated from the bacteria Pseudomonas fluorescens 2-79 and
Burkholderia lata 383, is involved in biosynthesis of the reduced forms of phenazine, phenazine-1-
carboxylate, and phenazine-1,6-dicarboxylate, where it catalyses multiple reactions.

References: [4285]

[EC 1.10.3.16 created 2016]

EC 1.10.5 With a quinone or related compound as acceptor

EC 1.10.5.1
Accepted name: ribosyldihydronicotinamide dehydrogenase (quinone)

Reaction: 1-(β-D-ribofuranosyl)-1,4-dihydronicotinamide + a quinone = 1-(β-D-ribofuranosyl)nicotinamide + a
quinol

Other name(s): NRH:quinone oxidoreductase 2; NQO2; NAD(P)H:quinone oxidoreductase-2 (misleading); QR2;
quinone reductase 2; N-ribosyldihydronicotinamide dehydrogenase (quinone); NAD(P)H:quinone
oxidoreductase2 (misleading)

Systematic name: 1-(β-D-ribofuranosyl)-1,4-dihydronicotinamide:quinone oxidoreductase
Comments: A flavoprotein. Unlike EC 1.6.5.2, NAD(P)H dehydrogenase (quinone), this quinone reductase cannot

use NADH or NADPH; instead it uses N-ribosyl- and N-alkyldihydronicotinamides. Polycyclic aro-
matic hydrocarbons, such as benz[a]anthracene, and the estrogens 17β-estradiol and diethylstilbestrol
are potent inhibitors, but dicoumarol is only a very weak inhibitor [4461]. This enzyme can catalyse
both 2-electron and 4-electron reductions, but one-electron acceptors, such as potassium ferricyanide,
cannot be reduced [4260].

References: [2242, 4461, 4260, 1709]

[EC 1.10.5.1 created 2005 as EC 1.10.99.2, transfered 2015 to EC 1.10.5.1]
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EC 1.10.9 With a copper protein as acceptor

[1.10.9.1 Transferred entry. plastoquinol—plastocyanin reductase. Now EC 7.1.1.6, plastoquinol—plastocyanin reductase]

[EC 1.10.9.1 created 1984 as EC 1.10.99.1, transferred 2011 to EC 1.10.9.1, deleted 2018]

EC 1.10.99 With unknown physiological acceptors

[1.10.99.1 Transferred entry. Now EC 1.10.9.1 plastoquinol—plastocyanin reductase]

[EC 1.10.99.1 created 1984, deleted 2011]

[1.10.99.2 Transferred entry. ribosyldihydronicotinamide dehydrogenase (quinone). Now classified as EC 1.10.5.1, ribo-
syldihydronicotinamide dehydrogenase (quinone).]

[EC 1.10.99.2 created 2005, deleted 2014]

[1.10.99.3 Transferred entry. violaxanthin de-epoxidase. Now classified as EC 1.23.5.1, violaxanthin de-epoxidase.]

[EC 1.10.99.3 created 2005, deleted 2014]

EC 1.11 Acting on a peroxide as acceptor
This subclass contains two sub-subclasses: the peroxidases (EC 1.11.1) and the peroxygenases (EC 1.11.2).

EC 1.11.1 Peroxidases
Acting on a peroxide as acceptor (peroxidases)

EC 1.11.1.1
Accepted name: NADH peroxidase

Reaction: NADH + H+ + H2O2 = NAD+ + 2 H2O
Other name(s): DPNH peroxidase; NAD peroxidase; diphosphopyridine nucleotide peroxidase; NADH-peroxidase;

nicotinamide adenine dinucleotide peroxidase; NADH2 peroxidase
Systematic name: NADH:hydrogen-peroxide oxidoreductase

Comments: A flavoprotein (FAD). Ferricyanide, quinones, etc., can replace H2O2.
References: [850, 2582, 4087]

[EC 1.11.1.1 created 1961]

EC 1.11.1.2
Accepted name: NADPH peroxidase

Reaction: NADPH + H+ + H2O2 = NADP+ + 2 H2O
Other name(s): TPNH peroxidase; NADP peroxidase; nicotinamide adenine dinucleotide phosphate peroxidase; TPN

peroxidase; triphosphopyridine nucleotide peroxidase; NADPH2 peroxidase
Systematic name: NADPH:hydrogen-peroxide oxidoreductase

References: [648]

[EC 1.11.1.2 created 1961]

EC 1.11.1.3
Accepted name: fatty-acid peroxidase

Reaction: palmitate + 2 H2O2 = pentadecanal + CO2 + 3 H2O

278

http://www.enzyme-database.org/query.php?ec=1.11.1.1
http://www.enzyme-database.org/query.php?ec=1.11.1.2
http://www.enzyme-database.org/query.php?ec=1.11.1.3


Other name(s): long chain fatty acid peroxidase
Systematic name: hexadecanoate:hydrogen-peroxide oxidoreductase

Comments: Acts on long-chain fatty acids from dodecanoic to octadecanoic acid.
References: [2415]

[EC 1.11.1.3 created 1961]

[1.11.1.4 Transferred entry. now EC 1.13.11.11 tryptophan 2,3-dioxygenase]

[EC 1.11.1.4 created 1961, deleted 1964, reinstated 1965 as EC 1.13.1.12, deleted 1972]

EC 1.11.1.5
Accepted name: cytochrome-c peroxidase

Reaction: 2 ferrocytochrome c + H2O2 = 2 ferricytochrome c + 2 H2O
Other name(s): cytochrome peroxidase; cytochrome c-551 peroxidase; apocytochrome c peroxidase; mesocytochrome

c peroxidase azide; mesocytochrome c peroxidase cyanide; mesocytochrome c peroxidase cyanate;
cytochrome c-H2O oxidoreductase; cytochrome c peroxidase

Systematic name: ferrocytochrome-c:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein.
References: [67, 4322, 4369]

[EC 1.11.1.5 created 1961]

EC 1.11.1.6
Accepted name: catalase

Reaction: 2 H2O2 = O2 + 2 H2O
Other name(s): equilase; caperase; optidase; catalase-peroxidase; CAT

Systematic name: hydrogen-peroxide:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. A manganese protein containing MnIII in the resting state, which also belongs here, is

often called pseudocatalase. The enzymes from some organisms, such as Penicillium simplicissimum,
can also act as a peroxidase (EC 1.11.1.7) for which several organic substances, especially ethanol,
can act as a hydrogen donor. Enzymes that exhibit both catalase and peroxidase activity belong under
EC 1.11.1.21, catalase-peroxidase.

References: [1479, 1480, 1869, 2025, 2782, ?]

[EC 1.11.1.6 created 1961, modified 1986, modified 1999, modified 2013]

EC 1.11.1.7
Accepted name: peroxidase

Reaction: 2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O
Other name(s): lactoperoxidase; guaiacol peroxidase; plant peroxidase; Japanese radish peroxidase; horseradish per-

oxidase (HRP); soybean peroxidase (SBP); extensin peroxidase; heme peroxidase; oxyperoxidase;
protoheme peroxidase; pyrocatechol peroxidase; scopoletin peroxidase; Coprinus cinereus peroxi-
dase; Arthromyces ramosus peroxidase

Systematic name: phenolic donor:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also

peroxidize non-phenolic substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB) and 2,2′-azinobis(3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize
bromide, iodide and thiocyanate.

References: [1882, 2632, 2964, 3773, 3859, 986, 41, 888, 3915]

[EC 1.11.1.7 created 1961, modified 2011]

EC 1.11.1.8
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Accepted name: iodide peroxidase
Reaction: (1) 2 iodide + H2O2 + 2 H+ = diiodine + 2 H2O

(2) [thyroglobulin]-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3-iodo-L-tyrosine + 2 H2O
(3) [thyroglobulin]-3-iodo-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3,5-diiodo-L-tyrosine + 2 H2O
(4) 2 [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 = [thyroglobulin]-L-thyroxine + [thyroglobulin]-
aminoacrylate + 2 H2O
(5) [thyroglobulin]-3-iodo-L-tyrosine + [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 =
[thyroglobulin]-3,5,3′-triiodo-L-thyronine + [thyroglobulin]-aminoacrylate + 2 H2O

Other name(s): thyroid peroxidase; iodotyrosine deiodase; iodinase; iodoperoxidase (heme type); iodide peroxidase-
tyrosine iodinase; iodotyrosine deiodinase; monoiodotyrosine deiodinase; thyroperoxidase; tyrosine
iodinase; TPO

Systematic name: iodide:hydrogen-peroxide oxidoreductase
Comments: Thyroid peroxidase catalyses the biosynthesis of the thyroid hormones L-thyroxine and triiodo-L-

thyronine. It catalyses both the iodination of tyrosine residues in thyroglobulin (forming mono- and
di-iodinated forms) and their coupling to form either L-thyroxine or triiodo-L-thyronine.

References: [706, 1582, 678, 1171, 2855, 2364, 4047, 3138, 3733, 3828, 3257]

[EC 1.11.1.8 created 1961, modified 2012]

EC 1.11.1.9
Accepted name: glutathione peroxidase

Reaction: 2 glutathione + H2O2 = glutathione disulfide + 2 H2O
Other name(s): GSH peroxidase; selenium-glutathione peroxidase; reduced glutathione peroxidase

Systematic name: glutathione:hydrogen-peroxide oxidoreductase
Comments: A protein containing a selenocysteine residue. Steroid and lipid hydroperoxides, but not the product

of reaction of EC 1.13.11.12 lipoxygenase on phospholipids, can act as acceptor, but more slowly than
H2O2 (cf. EC 1.11.1.12 phospholipid-hydroperoxide glutathione peroxidase).

References: [558, 1303, 2708]

[EC 1.11.1.9 created 1965, modified 1989]

EC 1.11.1.10
Accepted name: chloride peroxidase

Reaction: RH + chloride + H2O2 = RCl + 2 H2O
Other name(s): chloroperoxidase; CPO; vanadium haloperoxidase

Systematic name: chloride:hydrogen-peroxide oxidoreductase
Comments: Brings about the chlorination of a range of organic molecules, forming stable C-Cl bonds. Also oxi-

dizes bromide and iodide. Enzymes of this type are either heme-thiolate proteins, or contain vanadate.
A secreted enzyme produced by the ascomycetous fungus Caldariomyces fumago (Leptoxyphium fu-
mago) is an example of the heme-thiolate type. It catalyses the production of hypochlorous acid by
transferring one oxygen atom from H2O2 to chloride. At a separate site it catalyses the chlorination
of activated aliphatic and aromatic substrates, via HClO and derived chlorine species. In the absence
of halides, it shows peroxidase (e.g. phenol oxidation) and peroxygenase activities. The latter inserts
oxygen from H2O2 into, for example, styrene (side chain epoxidation) and toluene (benzylic hydrox-
ylation), however, these activities are less pronounced than its activity with halides. Has little activity
with non-activated substrates such as aromatic rings, ethers or saturated alkanes. The chlorinating per-
oxidase produced by ascomycetous fungi (e.g. Curvularia inaequalis) is an example of a vanadium
chloroperoxidase, and is related to bromide peroxidase (EC 1.11.1.18). It contains vanadate and oxi-
dizes chloride, bromide and iodide into hypohalous acids. In the absence of halides, it peroxygenates
organic sulfides and oxidizes ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] but no phe-
nols.

References: [2631, 1340, 3855, 3737, 3846, 3845, 2385, 2071, 2386]

[EC 1.11.1.10 created 1972, modified 2011]
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EC 1.11.1.11
Accepted name: L-ascorbate peroxidase

Reaction: 2 L-ascorbate + H2O2 + 2 H+ = L-ascorbate + L-dehydroascorbate + 2 H2O (overall reaction)
(1a) 2 L-ascorbate + H2O2 + 2 H+ = 2 monodehydroascorbate + 2 H2O
(1b) 2 monodehydroascorbate = L-ascorbate + L-dehydroascorbate (spontaneous)

Other name(s): L-ascorbic acid peroxidase; L-ascorbic acid-specific peroxidase; ascorbate peroxidase; ascorbic acid
peroxidase

Systematic name: L-ascorbate:hydrogen-peroxide oxidoreductase
Comments: A heme protein. Oxidizes ascorbate and low molecular weight aromatic substrates. The monodehy-

droascorbate radical produced is either directly reduced back to ascorbate by EC 1.6.5.4 [monode-
hydroascorbate reductase (NADH)] or undergoes non-enzymic disproportionation to ascorbate and
dehydroascorbate.

References: [3488, 3487, 2716, 2963, 3465, 2341]

[EC 1.11.1.11 created 1983, modified 2010, modified 2011]

EC 1.11.1.12
Accepted name: phospholipid-hydroperoxide glutathione peroxidase

Reaction: 2 glutathione + a hydroperoxy-fatty-acyl-[lipid] = glutathione disulfide + a hydroxy-fatty-acyl-[lipid]
+ H2O

Other name(s): peroxidation-inhibiting protein; PHGPX; peroxidation-inhibiting protein:peroxidase,glutathione
(phospholipid hydroperoxide-reducing); phospholipid hydroperoxide glutathione peroxidase; hy-
droperoxide glutathione peroxidase

Systematic name: glutathione:lipid-hydroperoxide oxidoreductase
Comments: A protein containing a selenocysteine residue. The products of action of EC 1.13.11.12 lipoxygenase

on phospholipids can act as acceptors; H2O2 can also act, but much more slowly (cf. EC 1.11.1.9 glu-
tathione peroxidase).

References: [3977, 3385]

[EC 1.11.1.12 created 1989, modified 2015]

EC 1.11.1.13
Accepted name: manganese peroxidase

Reaction: 2 Mn(II) + 2 H+ + H2O2 = 2 Mn(III) + 2 H2O
Other name(s): peroxidase-M2; Mn-dependent (NADH-oxidizing) peroxidase

Systematic name: Mn(II):hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. The enzyme from white rot basidiomycetes is involved in the oxidative degradation

of lignin. The enzyme oxidizes a bound Mn2+ ion to Mn3+ in the presence of hydrogen peroxide.
The product, Mn3+, is released from the active site in the presence of a chelator (mostly oxalate and
malate) that stabilizes it against disproportionation to Mn2+ and insoluble Mn4+ [2064]. The com-
plexed Mn3+ ion can diffuse into the lignified cell wall, where it oxidizes phenolic components of
lignin and other organic substrates [1222]. It is inactive with veratryl alcohol or nonphenolic sub-
strates.

References: [1222, 2953, 4131, 2064]

[EC 1.11.1.13 created 1992]

EC 1.11.1.14
Accepted name: lignin peroxidase

Reaction: (1) 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 3,4-
dimethoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 (3,4-dimethoxyphenyl)methanol + H2O2 = 2 (3,4-dimethoxyphenyl)methanol radical + 2 H2O
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Other name(s): diarylpropane oxygenase; ligninase I; diarylpropane peroxidase; LiP;
diarylpropane:oxygen,hydrogen-peroxide oxidoreductase (C-C-bond-cleaving); 1,2-bis(3,4-
dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase (incorrect); (3,4-
dimethoxyphenyl)methanol:hydrogen-peroxide oxidoreductase

Systematic name: 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein, involved in the oxidative breakdown of lignin by white-rot basidiomycete fungi. The

reaction involves an initial oxidation of the heme iron by hydrogen peroxide, forming compound I
(FeIV=O radical cation) at the active site. A single one-electron reduction of compound I by an elec-
tron derived from a substrate molecule yields compound II (FeIV=O non-radical cation), followed by
a second one-electron transfer that returns the enzyme to the ferric oxidation state. The electron trans-
fer events convert the substrate molecule into a transient cation radical intermediate that fragments
spontaneously. The enzyme can act on a wide range of aromatic compounds, including methoxyben-
zenes and nonphenolic β-O-4 linked arylglycerol β-aryl ethers, but cannot act directly on the lignin
molecule, which is too large to fit into the active site. However larger lignin molecules can be de-
graded in the presence of veratryl alcohol. It has been suggested that the free radical that is formed
when the enzyme acts on veratryl alcohol can diffuse into the lignified cell wall, where it oxidizes
lignin and other organic substrates. In the presence of high concentration of hydrogen peroxide and
lack of substrate, the enzyme forms a catalytically inactive form (compound III). This form can be
rescued by interaction with two molecules of the free radical products. In the case of veratryl alcohol,
such an interaction yields two molecules of veratryl aldehyde.

References: [1887, 2953, 1404, 4132, 475, 1899, 1900, 1898, 866, 3031]

[EC 1.11.1.14 created 1992, modified 2006, modified 2011, modified 2016]

EC 1.11.1.15
Accepted name: peroxiredoxin

Reaction: 2 R′-SH + ROOH = R′-S-S-R′ + H2O + ROH
Other name(s): thioredoxin peroxidase; tryparedoxin peroxidase; alkyl hydroperoxide reductase C22; AhpC; TrxPx;

TXNPx; Prx; PRDX
Systematic name: thiol-containing-reductant:hydroperoxide oxidoreductase

Comments: Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins. They can be divided into
three classes: typical 2-Cys, atypical 2-Cys and 1-Cys peroxiredoxins [4251]. The peroxidase reac-
tion comprises two steps centred around a redox-active cysteine called the peroxidatic cysteine. All
three peroxiredoxin classes have the first step in common, in which the peroxidatic cysteine attacks
the peroxide substrate and is oxidized to S-hydroxycysteine (a sulfenic acid) (see mechanism). The
second step of the peroxidase reaction, the regeneration of cysteine from S-hydroxycysteine, distin-
guishes the three peroxiredoxin classes. For typical 2-Cys Prxs, in the second step, the peroxidatic
S-hydroxycysteine from one subunit is attacked by the ‘resolving’ cysteine located in the C-terminus
of the second subunit, to form an intersubunit disulfide bond, which is then reduced by one of sev-
eral cell-specific thiol-containing reductants (R′-SH) (e.g. thioredoxin, AhpF, tryparedoxin or AhpD),
completing the catalytic cycle. In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its resolv-
ing cysteine are in the same polypeptide, so their reaction forms an intrachain disulfide bond [4251].
To recycle the disulfide, known atypical 2-Cys Prxs appear to use thioredoxin as an electron donor
[3444]. The 1-Cys Prxs conserve only the peroxidatic cysteine, so that its oxidized form is directly
reduced to cysteine by the reductant molecule [608].

References: [4251, 1533, 3444, 608]

[EC 1.11.1.15 created 2004]

EC 1.11.1.16
Accepted name: versatile peroxidase

Reaction: (1) 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 4-hydroxy-3-
methoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 manganese(II) + 2 H+ + H2O2 = 2 manganese(III) + 2 H2O

Other name(s): VP; hybrid peroxidase; polyvalent peroxidase; reactive-black-5:hydrogen-peroxide oxidoreductase
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Systematic name: 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidore-
ductase

Comments: A hemoprotein. This ligninolytic peroxidase combines the substrate-specificity characteristics of the
two other ligninolytic peroxidases, EC 1.11.1.13, manganese peroxidase and EC 1.11.1.14, lignin
peroxidase. Unlike these two enzymes, it is also able to oxidize phenols, hydroquinones and both low-
and high-redox-potential dyes, due to a hybrid molecular architecture that involves multiple binding
sites for substrates [1463, 483].

References: [2418, 1463, 2739, 483, 2738, 482, 2737, 190, 2982, 500]

[EC 1.11.1.16 created 2006, modified 2016]

EC 1.11.1.17
Accepted name: glutathione amide-dependent peroxidase

Reaction: 2 glutathione amide + H2O2 = glutathione amide disulfide + 2 H2O
Systematic name: glutathione amide:hydrogen-peroxide oxidoreductase

Comments: This enzyme, which has been characterized from the proteobacterium Marichromatium gracile, is a
chimeric protein, containing a peroxiredoxin-like N-terminus and a glutaredoxin-like C terminus. The
enzyme has peroxidase activity towards hydrogen peroxide and several small alkyl hydroperoxides,
and is thought to represent an early adaptation for fighting oxidative stress [4032]. The glutathione
amide disulfide produced by this enzyme can be restored to glutathione amide by EC 1.8.1.16 (glu-
tathione amide reductase).

References: [4032]

[EC 1.11.1.17 created 2010]

EC 1.11.1.18
Accepted name: bromide peroxidase

Reaction: RH + HBr + H2O2 = RBr + 2 H2O
Other name(s): bromoperoxidase; haloperoxidase (ambiguous); eosinophil peroxidase

Systematic name: bromide:hydrogen-peroxide oxidoreductase
Comments: Bromoperoxidases of red and brown marine algae (Rhodophyta and Phaeophyta) contain vanadate.

They catalyse the bromination of a range of organic molecules such as sesquiterpenes, forming stable
C-Br bonds. Bromoperoxidases also oxidize iodides.

References: [330, 3931, 1677, 513, 2853]

[EC 1.11.1.18 created 2010]

EC 1.11.1.19
Accepted name: dye decolorizing peroxidase

Reaction: Reactive Blue 5 + 2 H2O2 = phthalate + 2,2′-disulfonyl azobenzene + 3-[(4-amino-6-chloro-1,3,5-
triazin-2-yl)amino]benzenesulfonate + 2 H2O

Other name(s): DyP; DyP-type peroxidase
Systematic name: Reactive-Blue-5:hydrogen-peroxide oxidoreductase

Comments: Heme proteins with proximal histidine secreted by basidiomycetous fungi and eubacteria. They are
similar to EC 1.11.1.16 versatile peroxidase (oxidation of Reactive Black 5, phenols, veratryl al-
cohol), but differ from the latter in their ability to efficiently oxidize a number of recalcitrant an-
thraquinone dyes, and inability to oxidize Mn(II). The model substrate Reactive Blue 5 is converted
with high efficiency via a so far unique mechanism that combines oxidative and hydrolytic steps and
leads to the formation of phthalic acid. Bacterial TfuDyP catalyses sulfoxidation.

References: [1919, 3708, 4493, 3709, 3707, 2844, 3994, 2250, 1534]

[EC 1.11.1.19 created 2011, modified 2015]
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EC 1.11.1.20
Accepted name: prostamide/prostaglandin F2α synthase

Reaction: thioredoxin + (5Z,9α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate = thioredoxin
disulfide + (5Z,9α,11α,13E,15S)-9,11,15-trihydroxyprosta-5,13-dienoate

Other name(s): prostamide/PGF synthase; prostamide F synthase; prostamide/prostaglandin F synthase; tPGF syn-
thase

Systematic name: thioredoxin:(5Z,9α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate oxidoreductase
Comments: The enzyme contains a thioredoxin-type disulfide as a catalytic group. Prostamide H2 and

prostaglandin H2 are the best substrates; the latter is converted to prostaglandin F2α. The enzyme
also reduces tert-butyl hydroperoxide, cumene hydroperoxide and H2O2, but not prostaglandin D2
or prostaglandin E2.

References: [2629, 4384]

[EC 1.11.1.20 created 2011]

EC 1.11.1.21
Accepted name: catalase-peroxidase

Reaction: (1) donor + H2O2 = oxidized donor + 2 H2O
(2) 2 H2O2 = O2 + 2 H2O

Other name(s): katG (gene name)
Systematic name: donor:hydrogen-peroxide oxidoreductase

Comments: Differs from EC 1.11.1.7, peroxidase in having a relatively high catalase (EC 1.11.1.6) activity with
H2O2 as donor, releasing O2; both activities use the same heme active site. In Mycobacterium tuber-
culosis it is responsible for activation of the commonly used antitubercular drug, isoniazid.

References: [2291, 1526, 1046, 284, 4049]

[EC 1.11.1.21 created 2011]

EC 1.11.1.22
Accepted name: hydroperoxy fatty acid reductase

Reaction: a hydroperoxy fatty acid + NADPH + H+ = a hydroxy fatty acid + NADP+ + H2O
Other name(s): slr1171 (gene name); slr1992 (gene name); hydroperoxy fatty acid:NADPH oxidoreductase

Systematic name: NADPH:hydroperoxy fatty acid oxidoreductase
Comments: The enzyme, characterized from the cyanobacterium Synechocystis PCC 6803, can reduce unsaturated

fatty acid hydroperoxides and alkyl hydroperoxides. The enzyme, which utilizes NADPH generated
by the photosynthetic electron transfer system, protects the cells from lipid peroxidation.

References: [1129, 1130]

[EC 1.11.1.22 created 2013]

EC 1.11.1.23
Accepted name: (S)-2-hydroxypropylphosphonic acid epoxidase

Reaction: (S)-2-hydroxypropylphosphonate + H2O2 = (1R,2S)-1,2-epoxypropylphosphonate + 2 H2O
Other name(s): HPP epoxidase; HppE; 2-hydroxypropylphosphonic acid epoxidase; Fom4; (S)-2-

hydroxypropylphosphonate epoxidase
Systematic name: (S)-2-hydroxypropylphosphonate:hydrogen-peroxide epoxidase

Comments: This is the last enzyme in the biosynthetic pathway of fosfomycin, a broad-spectrum antibiotic pro-
duced by certain Streptomyces species. Contains non heme iron that forms a iron(IV)-oxo (ferryl)
complex with hydrogen peroxide, which functions as a proton abstractor from the substrate [4103].

References: [2661, 4330, 1491, 2282, 1495, 484, 4103]

[EC 1.11.1.23 created 2011 as EC 1.14.19.7, transferred 2014 to EC 1.11.1.23]
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EC 1.11.2 Peroxygenases
With a peroxide as acceptor, one oxygen atom of which is incorporated into the product

EC 1.11.2.1
Accepted name: unspecific peroxygenase

Reaction: RH + H2O2 = ROH + H2O
Other name(s): aromatic peroxygenase; mushroom peroxygenase; haloperoxidase-peroxygenase; Agrocybe aegerita

peroxidase
Systematic name: substrate:hydrogen-peroxide oxidoreductase (RH-hydroxylating or -epoxidising)

Comments: A heme-thiolate protein (P-450). Enzymes of this type include glycoproteins secreted by agaric
basidiomycetes. They catalyse the insertion of an oxygen atom from H2O2 into a wide variety of
substrates, including aromatic rings such as naphthalene, toluene, phenanthrene, pyrene and p-
nitrophenol, recalcitrant heterocycles such as pyridine, dibenzofuran, various ethers (resulting in O-
dealkylation) and alkanes such as propane, hexane and cyclohexane. Reactions catalysed include
hydroxylation, epoxidation, N-oxidation, sulfooxidation, O- and N-dealkylation, bromination and
one-electron oxidations. They have little or no activity toward chloride. Mechanistically, the catalytic
cycle of unspecific (mono)-peroxygenases combines elements of the ”shunt” pathway of cytochrome
P-450s (a side activity that utilizes a peroxide in place of dioxygen and NAD[P]H) and the classic
heme peroxidase cycle.

References: [3971, 3970, 93, 3969, 111, 1934, 1968, 1935, 2972]

[EC 1.11.2.1 created 2011]

EC 1.11.2.2
Accepted name: myeloperoxidase

Reaction: Cl− + H2O2 + H+ = HClO + H2O
Other name(s): MPO; verdoperoxidase

Systematic name: chloride:hydrogen-peroxide oxidoreductase (hypochlorite-forming)
Comments: Contains calcium and covalently bound heme (proximal ligand histidine). It is present in phagosomes

of neutrophils and monocytes, where the hypochlorite produced is strongly bactericidal. It differs
from EC 1.11.1.10 chloride peroxidase in its preference for formation of hypochlorite over the chlo-
rination of organic substrates under physiological conditions (pH 5-8). Hypochlorite in turn forms a
number of antimicrobial products (Cl2, chloramines, hydroxyl radical, singlet oxygen). MPO also oxi-
dizes bromide, iodide and thiocyanate. In the absence of halides, it oxidizes phenols and has a moder-
ate peroxygenase activity toward styrene.

References: [33, 1400, 1120, 3952, 1959, 1010, 1168]

[EC 1.11.2.2 created 2011]

EC 1.11.2.3
Accepted name: plant seed peroxygenase

Reaction: R1H + R2OOH = R1OH + R2OH
Other name(s): plant peroxygenase, soybean peroxygenase

Systematic name: substrate:hydroperoxide oxidoreductase (RH-hydroxylating or epoxidising)
Comments: A heme protein with calcium binding motif (caleosin-type). Enzymes of this type include membrane-

bound proteins found in seeds of different plants. They catalyse the direct transfer of one oxygen
atom from an organic hydroperoxide, which is reduced into its corresponding alcohol to a substrate
which will be oxidized. Reactions catalysed include hydroxylation, epoxidation and sulfoxidation.
Preferred substrate and co-substrate are unsaturated fatty acids and fatty acid hydroperoxides, respec-
tively. Plant seed peroxygenase is involved in the synthesis of cutin.

References: [1669, 320, 1352, 2201, 1366]

[EC 1.11.2.3 created 2011]
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EC 1.11.2.4
Accepted name: fatty-acid peroxygenase

Reaction: fatty acid + H2O2 = 3- or 2-hydroxy fatty acid + H2O
Other name(s): fatty acid hydroxylase (ambiguous); P450 peroxygenase; CYP152A1; P450BS; P450SPα

Systematic name: fatty acid:hydroperoxide oxidoreductase (RH-hydroxylating)
Comments: A cytosolic heme-thiolate protein with sequence homology to P-450 monooxygenases. Unlike the lat-

ter, it needs neither NAD(P)H, dioxygen nor specific reductases for function. Enzymes of this type are
produced by bacteria (e.g. Sphingomonas paucimobilis, Bacillus subtilis). Catalytic turnover rates are
high compared with those of monooxygenation reactions as well as peroxide shunt reactions catalysed
by the common P-450s. A model substrate is myristate, but other saturated and unsaturated fatty acids
are also hydroxylated. Oxidizes the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) and
peroxygenates aromatic substrates in a fatty-acid-dependent reaction.

References: [2452, 2451, 2449, 1643, 2450, 2167, 2448, 3518]

[EC 1.11.2.4 created 2011]

EC 1.11.2.5
Accepted name: 3-methyl-L-tyrosine peroxygenase

Reaction: 3-methyl-L-tyrosine + H2O2 = 3-hydroxy-5-methyl-L-tyrosine + H2O
Other name(s): SfmD; SacD; 3-methyltyrosine peroxidase; 3-methyl-L-tyrosine peroxidase

Systematic name: 3-methyl-L-tyrosine:hydrogen-peroxide oxidoreductase (3-hydroxy-5-methyl-L-tyrosine-forming)
Comments: The heme-containing peroxygenase from the bacterium Streptomyces lavendulae is involved in

biosynthesis of saframycin A, a potent antitumor antibiotic that belongs to the tetrahydroisoquinoline
family.

References: [3810]

[EC 1.11.2.5 created 2014]

EC 1.12 Acting on hydrogen as donor
This subclass contains hydrogenases other than those that use iron-sulfur compounds as donor (EC 1.18) for the reduction of
H+ to H2. Sub-subclasses are based on the acceptor: NAD+ or NADP+ (EC 1.12.1), a cytochrome (EC 1.12.2), a quinone or
similar compound (EC 1.12.5), an iron-sulfur protein (EC 1.12.7), other, known, acceptors (EC 1.12.9), or some other acceptor
(EC 1.12.99).

EC 1.12.1 With NAD+ or NADP+ as acceptor

[1.12.1.1 Transferred entry. peroxidase. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.12.1.1 created 1965, deleted 1972]

EC 1.12.1.2
Accepted name: hydrogen dehydrogenase

Reaction: H2 + NAD+ = H+ + NADH
Other name(s): H2:NAD+ oxidoreductase; NAD-linked hydrogenase; bidirectional hydrogenase; hydrogenase

Systematic name: hydrogen:NAD+ oxidoreductase
Comments: An iron-sulfur flavoprotein (FMN or FAD). Some forms of this enzyme contain nickel.
References: [343, 3382]

[EC 1.12.1.2 created 1972, modified 2002]

EC 1.12.1.3
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Accepted name: hydrogen dehydrogenase (NADP+)
Reaction: H2 + NADP+ = H+ + NADPH

Other name(s): NADP+-linked hydrogenase; NADP+-reducing hydrogenase; hydrogenase (ambiguous); hydrogenase
I (ambiguous)

Systematic name: hydrogen:NADP+ oxidoreductase
Comments: The protein from the bacterium Desulfovibrio fructosovorans is an iron-sulfur protein that exclusively

functions as a hydrogen dehydrogenase [767], while the enzyme from the archaeon Pyrococcus fu-
riosus is a nickel, iron, iron-sulfur protein, that is part of a heterotetrameric complex where the α

and δ subunits function as a hydrogenase while the β and γ subunits function as sulfur reductase (EC
1.12.98.4, sulfhydrogenase). Different from EC 1.12.1.5, hydrogen dehydrogenase [NAD(P)+].

References: [767, 432, 2330, 2334, 4002]

[EC 1.12.1.3 created 2002, modified 2013]

EC 1.12.1.4
Accepted name: hydrogenase (NAD+, ferredoxin)

Reaction: 2 H2 + NAD+ + 2 oxidized ferredoxin = 5 H+ + NADH + 2 reduced ferredoxin
Other name(s): bifurcating [FeFe] hydrogenase

Systematic name: hydrogen:NAD+, ferredoxin oxidoreductase
Comments: The enzyme from Thermotoga maritima contains a [FeFe] cluster (H-cluster) and iron-sulfur clusters.

It works in the direction evolving hydrogen as a means of eliminating excess reducing equivalents.
References: [4034, 3407]

[EC 1.12.1.4 created 2011]

EC 1.12.1.5
Accepted name: hydrogen dehydrogenase [NAD(P)+]

Reaction: H2 + NAD(P)+ = H+ + NAD(P)H
Other name(s): hydrogenase II (ambiguous)

Systematic name: hydrogen:NAD(P)+ oxidoreductase
Comments: A nickel, iron, iron-sulfur protein. The enzyme from the archaeon Pyrococcus furiosus is part of a

heterotetrameric complex where the α and δ subunits function as a hydrogenase while the β and γ

subunits function as sulfur reductase (EC 1.12.98.4, sulfhydrogenase). Different from EC 1.12.1.3,
hydrogen dehydrogenase (NADP+).

References: [2333]

[EC 1.12.1.5 created 2013]

EC 1.12.2 With a cytochrome as acceptor

EC 1.12.2.1
Accepted name: cytochrome-c3 hydrogenase

Reaction: H2 + 2 ferricytochrome c3 = 2 H+ + 2 ferrocytochrome c3
Other name(s): H2:ferricytochrome c3 oxidoreductase; cytochrome c3 reductase; cytochrome hydrogenase; hydroge-

nase [ambiguous]
Systematic name: hydrogen:ferricytochrome-c3 oxidoreductase

Comments: An iron-sulfur protein. Some forms of the enzyme contain nickel ([NiFe]-hydrogenases) and, of
these, some contain selenocysteine ([NiFeSe]-hydrogenases). Methylene blue and other acceptors
can also be reduced.

References: [801, 1499, 3190, 3276, 4053, 1154]

[EC 1.12.2.1 created 1972, modified 2002]
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EC 1.12.5 With a quinone or similar compound as acceptor

EC 1.12.5.1
Accepted name: hydrogen:quinone oxidoreductase

Reaction: H2 + menaquinone = menaquinol
Other name(s): hydrogen-ubiquinone oxidoreductase; hydrogen:menaquinone oxidoreductase; membrane-bound hy-

drogenase; quinone-reactive Ni/Fe-hydrogenase
Systematic name: hydrogen:quinone oxidoreductase

Comments: Contains nickel, iron-sulfur clusters and cytochrome b. Also catalyses the reduction of water-soluble
quinones (e.g. 2,3-dimethylnaphthoquinone) or viologen dyes (benzylviologen or methylviologen).

References: [873, 874, 1301, 272, 997, 1668]

[EC 1.12.5.1 created 1999 as EC 1.12.99.3, transferred 2002 to EC 1.12.5.1]

EC 1.12.7 With an iron-sulfur protein as acceptor

[1.12.7.1 Transferred entry. ferredoxin hydrogenase. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.12.7.1 created 1972, deleted 1978]

EC 1.12.7.2
Accepted name: ferredoxin hydrogenase

Reaction: H2 + 2 oxidized ferredoxin = 2 reduced ferredoxin + 2 H+

Other name(s): H2 oxidizing hydrogenase; H2 producing hydrogenase [ambiguous]; bidirectional hydrogenase;
hydrogen-lyase [ambiguous]; hydrogenase (ferredoxin); hydrogenase I; hydrogenase II; hydro-
genlyase [ambiguous]; uptake hydrogenase [ambiguous]

Systematic name: hydrogen:ferredoxin oxidoreductase
Comments: Contains iron-sulfur clusters. The enzymes from some sources contains nickel. Can use molecular

hydrogen for the reduction of a variety of substances.
References: [3523, 3772, 3987, 4498, 23, 2986]

[EC 1.12.7.2 created 1961 as EC 1.98.1.1, transferred 1965 to EC 1.12.1.1, transferred 1972 to EC 1.12.7.1, transferred 1978 to EC 1.18.3.1,
transferred 1984 to EC 1.18.99.1, transferred 2002 to EC 1.12.7.2]

EC 1.12.98 With other, known, physiological acceptors

EC 1.12.98.1
Accepted name: coenzyme F420 hydrogenase

Reaction: H2 + oxidized coenzyme F420 = reduced coenzyme F420
Other name(s): 8-hydroxy-5-deazaflavin-reducing hydrogenase; F420-reducing hydrogenase; coenzyme F420-

dependent hydrogenase
Systematic name: hydrogen:coenzyme F420 oxidoreductase

Comments: An iron-sulfur flavoprotein (FAD) containing nickel. The enzyme from some sources contains seleno-
cysteine. The enzyme also reduces the riboflavin analogue of F420, flavins and methylviologen, but to
a lesser extent. The hydrogen acceptor coenzyme F420 is a deazaflavin derivative.

References: [24, 4328, 1045, 2677, 202]

[EC 1.12.98.1 created 1989 as EC 1.12.99.1, transferred 2002 to EC 1.12.98.1]

EC 1.12.98.2
Accepted name: 5,10-methenyltetrahydromethanopterin hydrogenase
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Reaction: H2 + 5,10-methenyltetrahydromethanopterin = H+ + 5,10-methylenetetrahydromethanopterin
Other name(s): H2-forming N5,N10-methylenetetrahydromethanopterin dehydrogenase; nonmetal hy-

drogenase; N5,N10-methenyltetrahydromethanopterin hydrogenase; hydrogen:N5,N10-
methenyltetrahydromethanopterin oxidoreductase

Systematic name: hydrogen:5,10-methenyltetrahydromethanopterin oxidoreductase
Comments: Does not catalyse the reduction of artificial dyes. Does not by itself catalyse a H2/H+ exchange reac-

tion. Does not contain nickel or iron-sulfur clusters.
References: [4490, 1963]

[EC 1.12.98.2 created 1999 as EC 1.12.99.4, transferred 2002 to EC 1.12.98.2, modified 2004]

EC 1.12.98.3
Accepted name: Methanosarcina-phenazine hydrogenase

Reaction: H2 + 2-(2,3-dihydropentaprenyloxy)phenazine = 2-dihydropentaprenyloxyphenazine
Other name(s): methanophenazine hydrogenase; methylviologen-reducing hydrogenase

Systematic name: hydrogen:2-(2,3-dihydropentaprenyloxy)phenazine oxidoreductase
Comments: Contains nickel, iron-sulfur clusters and cytochrome b. The enzyme from some sources contains se-

lenocysteine.
References: [4, 800, 246]

[EC 1.12.98.3 created 2002]

EC 1.12.98.4
Accepted name: sulfhydrogenase

Reaction: H2 + (sulfide)n = hydrogen sulfide + (sulfide)n−1
Other name(s): sulfur reductase

Systematic name: H2:polysulfide oxidoreductase
Comments: An iron-sulfur protein. The enzyme from the hyperthermophilic archaeon Pyrococcus furiosus is part

of two heterotetrameric complexes where the β and γ subunits function as sulfur reductase and the α

and δ subunits function as hydrogenases (EC 1.12.1.3, hydrogen dehydrogenase [NADP+] and EC
1.12.1.4, hydrogen dehydrogenase [NAD(P)+], respectively). Sulfur can also be used as substrate,
but since it is insoluble in aqueous solution and polysulfide is generated abiotically by the reaction of
hydrogen sulfide and sulfur, polysulfide is believed to be the true substrate [2330].

References: [4492, 2330, 2334, 2333]

[EC 1.12.98.4 created 1992 as EC 1.97.1.3, transferred 2013 to EC 1.12.98.4]

EC 1.12.99 With unknown physiological acceptors

[1.12.99.1 Transferred entry. coenzyme F420 hydrogenase. Now EC 1.12.98.1, coenzyme F420 hydrogenase]

[EC 1.12.99.1 created 1989, deleted 2002]

[1.12.99.2 Deleted entry. coenzyme-M-7-mercaptoheptanoylthreonine-phosphate-heterodisulfide hydrogenase. Now shown
to be two enzymes, EC 1.12.98.3, Methanosarcina-phenazine hydrogenase and EC 1.8.98.1, CoB—CoM heterodisulfide reduc-
tase]

[EC 1.12.99.2 created 1992, deleted 2002]

[1.12.99.3 Transferred entry. hydrogen:quinone oxidoreductase. Now EC 1.12.5.1, hydrogen:quinone oxidoreductase]

[EC 1.12.99.3 created 1999, deleted 2002]

[1.12.99.4 Transferred entry. N5,N10-methenyltetrahydromethanopterin hydrogenase. Now EC 1.12.98.2, 5,10-methenyltetrahydromethanopterin
hydrogenase]
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[EC 1.12.99.4 created 1999, deleted 2002]

[1.12.99.5 Deleted entry. 3,4-dihydroxyquinoline 2,4-dioxygenase. Identical to EC 1.13.11.47, 3-hydroxy-4-oxoquinoline
2,4-dioxygenase]

[EC 1.12.99.5 created 1999, deleted 2001]

EC 1.12.99.6
Accepted name: hydrogenase (acceptor)

Reaction: H2 + acceptor = reduced acceptor
Other name(s): H2 producing hydrogenase (ambiguous); hydrogen-lyase (ambiguous); hydrogenlyase (ambiguous);

uptake hydrogenase (ambiguous); hydrogen:(acceptor) oxidoreductase
Systematic name: hydrogen:acceptor oxidoreductase

Comments: Uses molecular hydrogen for the reduction of a variety of substances. Contains iron-sulfur clusters.
The enzyme from some sources contains nickel.

References: [3523, 24, 4043]

[EC 1.12.99.6 created 2002, modified 2003]

EC 1.13 Acting on single donors with incorporation of molecular oxygen (oxyge-
nases)
This subclass contains oxygenases that incorporate oxygen into the substrate. They differ from those in EC 1.14 in that a second
hydrogen donor is not required. Sub-subclasses are based on the number of atoms of oxygen that are incorporated: two atoms
of oxygen (EC 1.13.11), one atom of oxygen (EC 1.13.12), or other cases (EC 1.13.99). This classification replaces an earlier
version. Common names in this subclass are usually of the form ‘monooxygenase’ and ‘dioxygenase’.

EC 1.13.1 Acting on single donors with incorporation of molecular oxygen (oxygenases)

[1.13.1.1 Transferred entry. Now EC 1.13.11.1, catechol 1,2-dioxygenase]

[EC 1.13.1.1 created 1961 as EC 1.99.2.2, transferred 1965 to EC 1.13.1.1, deleted 1972]

[1.13.1.2 Transferred entry. Now EC 1.13.11.2, catechol 2,3-dioxygenase]

[EC 1.13.1.2 created 1965, deleted 1972]

[1.13.1.3 Transferred entry. Now EC 1.13.11.3, protocatechuate 3,4-dioxygenase]

[EC 1.13.1.3 created 1961 as EC 1.99.2.3, transferred 1965 to EC 1.13.1.3, deleted 1972]

[1.13.1.4 Transferred entry. Now EC 1.13.11.4, gentisate 1,2-dioxygenase]

[EC 1.13.1.4 created 1961 as EC 1.99.2.4, transferred 1965 to EC 1.13.1.4, deleted 1972]

[1.13.1.5 Transferred entry. Now EC 1.13.11.5, homogentisate 1,2-dioxygenase]

[EC 1.13.1.5 created 1961 as EC 1.99.2.5, transferred 1965 to EC 1.13.1.5, deleted 1972]

[1.13.1.6 Transferred entry. Now EC 1.13.11.6, 3-hydroxyanthranilate 3,4-dioxygenase]

[EC 1.13.1.6 created 1965, deleted 1972]

[1.13.1.7 Deleted entry. 3,4-dihydroxyphenylacetate 3,4-dioxygenase]

[EC 1.13.1.7 created 1965, transferred 1972 to EC 1.13.11.7, deleted 1980]

[1.13.1.8 Transferred entry. Now EC 1.13.11.8, protocatechuate 4,5-dioxygenase]
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[EC 1.13.1.8 created 1965, deleted 1972]

[1.13.1.9 Transferred entry. Now EC 1.13.11.9, 2,5-dihydroxypyridine 5,6-dioxygenase]

[EC 1.13.1.9 created 1965, deleted 1972]

[1.13.1.10 Transferred entry. Now EC 1.13.11.10, 7,8-dihydroxykynurenate 8,8a-dioxygenase]

[EC 1.13.1.10 created 1965, deleted 1972]

[1.13.1.11 Transferred entry. Now EC 1.13.99.1, inositol oxygenase]

[EC 1.13.1.11 created 1961 as EC 1.99.2.6, transferred 1965 to EC 1.13.1.11, deleted 1972]

[1.13.1.12 Transferred entry. Now EC 1.13.11.11, tryptophan 2,3-dioxygenase]

[EC 1.13.1.12 created 1961 as EC 1.11.1.4, deleted 1964, reinstated 1965 as EC 1.13.1.12, deleted 1972]

[1.13.1.13 Transferred entry. Now EC 1.13.11.12, lipoxygenase]

[EC 1.13.1.13 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, deleted 1972]

EC 1.13.11 With incorporation of two atoms of oxygen

EC 1.13.11.1
Accepted name: catechol 1,2-dioxygenase

Reaction: catechol + O2 = cis,cis-muconate
Other name(s): catechol-oxygen 1,2-oxidoreductase; 1,2-pyrocatechase; catechase; catechol 1,2-oxygenase; catechol

dioxygenase; pyrocatechase; pyrocatechol 1,2-dioxygenase; CD I; CD II
Systematic name: catechol:oxygen 1,2-oxidoreductase

Comments: Requires Fe3+. Involved in the metabolism of nitro-aromatic compounds by a strain of Pseudomonas
putida.

References: [1430, 1431, 3543, 4436]

[EC 1.13.11.1 created 1961 as EC 1.99.2.2, transferred 1965 to EC 1.13.1.1, transferred 1972 to EC 1.13.11.1]

EC 1.13.11.2
Accepted name: catechol 2,3-dioxygenase

Reaction: catechol + O2 = 2-hydroxymuconate-6-semialdehyde
Other name(s): 2,3-pyrocatechase; catechol 2,3-oxygenase; catechol oxygenase; metapyrocatechase; pyrocatechol

2,3-dioxygenase; xylE (gene name); catechol:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: catechol:oxygen 2,3-oxidoreductase (ring-opening)

Comments: Requires FeII. The enzyme initiates the meta-cleavage pathway of catechol degradation.
References: [1430, 2012, 2825, 2700, 1786, 1788]

[EC 1.13.11.2 created 1965 as EC 1.13.1.2, transferred 1972 to EC 1.13.11.2, modified 1999, modified 2013]

EC 1.13.11.3
Accepted name: protocatechuate 3,4-dioxygenase

Reaction: 3,4-dihydroxybenzoate + O2 = 3-carboxy-cis,cis-muconate
Other name(s): protocatechuate oxygenase; protocatechuic acid oxidase; protocatechuic 3,4-dioxygenase; protocate-

chuic 3,4-oxygenase; protocatechuate:oxygen 3,4-oxidoreductase (decyclizing)
Systematic name: protocatechuate:oxygen 3,4-oxidoreductase (ring-opening)

Comments: Requires Fe3+. The enzyme, which participates in the degradation of aromatic compounds, catalyses
the intradiol addition of both oxygen atoms from molecular oxygen, resulting in ortho-cleavage of the
aromatic ring. The type of cleavage leads to mineralization via the intermediate 3-oxoadipate.

References: [1095, 1302, 3619]
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[EC 1.13.11.3 created 1961 as EC 1.99.2.3, transferred 1965 to EC 1.13.1.3, transferred 1972 to EC 1.13.11.3]

EC 1.13.11.4
Accepted name: gentisate 1,2-dioxygenase

Reaction: 2,5-dihydroxybenzoate + O2 = maleylpyruvate
Other name(s): gentisate oxygenase; 2,5-dihydroxybenzoate dioxygenase; gentisate dioxygenase; gentisic acid oxi-

dase; gentisate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: gentisate:oxygen 1,2-oxidoreductase (ring-opening)

Comments: Requires Fe2+.
References: [1430, 3717, 3716]

[EC 1.13.11.4 created 1961 as EC 1.99.2.4, transferred 1965 to EC 1.13.1.4, transferred 1972 to EC 1.13.11.4]

EC 1.13.11.5
Accepted name: homogentisate 1,2-dioxygenase

Reaction: homogentisate + O2 = 4-maleylacetoacetate
Other name(s): homogentisicase; homogentisate oxygenase; homogentisate dioxygenase; homogentisate oxidase;

homogentisic acid oxidase; homogentisic acid oxygenase; homogentisic oxygenase; homogenti-
sate:oxygen 1,2-oxidoreductase (decyclizing)

Systematic name: homogentisate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: Requires Fe2+.
References: [10, 688, 1430, 1941, 1980, 3135]

[EC 1.13.11.5 created 1961 as EC 1.99.2.5, transferred 1965 to EC 1.13.1.5, transferred 1972 to EC 1.13.11.5]

EC 1.13.11.6
Accepted name: 3-hydroxyanthranilate 3,4-dioxygenase

Reaction: 3-hydroxyanthranilate + O2 = 2-amino-3-carboxymuconate semialdehyde
Other name(s): 3-hydroxyanthranilate oxygenase; 3-hydroxyanthranilic acid oxygenase; 3-hydroxyanthranilic oxy-

genase; 3-hydroxyanthranilic acid oxidase; 3HAO; 3-hydroxyanthranilate:oxygen 3,4-oxidoreductase
(decyclizing)

Systematic name: 3-hydroxyanthranilate:oxygen 3,4-oxidoreductase (ring-opening)
Comments: Requires Fe2+.
References: [775, 1430]

[EC 1.13.11.6 created 1965 as EC 1.13.1.6, transferred 1972 to EC 1.13.11.6]

[1.13.11.7 Deleted entry. 3,4-dihydroxyphenylacetate 3,4-dioxygenase]

[EC 1.13.11.7 created 1965 as EC 1.13.1.7, transferred 1972 to EC 1.13.11.7, deleted 1980]

EC 1.13.11.8
Accepted name: protocatechuate 4,5-dioxygenase

Reaction: 3,4-dihydroxybenzoate + O2 = 4-carboxy-2-hydroxymuconate semialdehyde
Other name(s): protocatechuate 4,5-oxygenase; protocatechuic 4,5-dioxygenase; protocatechuic 4,5-oxygenase; pro-

tocatechuate:oxygen 4,5-oxidoreductase (decyclizing); protocatechuate:oxygen 4,5-oxidoreductase
(ring-opening)

Systematic name: 3,4-dihydroxybenzoate:oxygen 4,5-oxidoreductase (ring-opening)
Comments: Requires Fe2+.
References: [3930]

[EC 1.13.11.8 created 1965 as EC 1.13.1.8, transferred 1972 to EC 1.13.11.8]
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EC 1.13.11.9
Accepted name: 2,5-dihydroxypyridine 5,6-dioxygenase

Reaction: 2,5-dihydroxypyridine + O2 = N-formylmaleamic acid
Other name(s): 2,5-dihydroxypyridine oxygenase; pyridine-2,5-diol dioxygenase; NicX

Systematic name: 2,5-dihydroxypyridine:oxygen 5,6-oxidoreductase
Comments: Requires Fe2+.
References: [245, 1169, 1170, 1743]

[EC 1.13.11.9 created 1965 as EC 1.13.1.9, transferred 1972 to EC 1.13.11.9, modified 2010]

EC 1.13.11.10
Accepted name: 7,8-dihydroxykynurenate 8,8a-dioxygenase

Reaction: 7,8-dihydroxykynurenate + O2 = 5-(3-carboxy-3-oxopropenyl)-4,6-dihydroxypyridine-2-carboxylate
Other name(s): 7,8-dihydroxykynurenate oxygenase; 7,8-dihydroxykynurenate 8,8α-dioxygenase; 7,8-

dihydroxykynurenate:oxygen 8,8a-oxidoreductase (decyclizing)
Systematic name: 7,8-dihydroxykynurenate:oxygen 8,8a-oxidoreductase (ring-opening)

Comments: Requires Fe2+.
References: [2081]

[EC 1.13.11.10 created 1965 as EC 1.13.1.10, transferred 1972 to EC 1.13.11.10]

EC 1.13.11.11
Accepted name: tryptophan 2,3-dioxygenase

Reaction: L-tryptophan + O2 = N-formyl-L-kynurenine
Other name(s): tryptophan pyrrolase (ambiguous); tryptophanase; tryptophan oxygenase; tryptamine 2,3-

dioxygenase; tryptophan peroxidase; indoleamine 2,3-dioxygenase (ambiguous); indolamine
2,3-dioxygenase (ambiguous); L-tryptophan pyrrolase; TDO; L-tryptophan 2,3-dioxygenase; L-
tryptophan:oxygen 2,3-oxidoreductase (decyclizing)

Systematic name: L-tryptophan:oxygen 2,3-oxidoreductase (ring-opening)
Comments: A protohemoprotein. In mammals, the enzyme appears to be located only in the liver. This enzyme,

together with EC 1.13.11.52, indoleamine 2,3-dioxygenase, catalyses the first and rate-limiting step in
the kynurenine pathway, the major pathway of tryptophan metabolism [2274]. The enzyme is specific
for tryptophan as substrate, but is far more active with L-tryptophan than with D-tryptophan [3166].

References: [3956, 3166, 2184, 740, 2274]

[EC 1.13.11.11 created 1961 as EC 1.11.1.4, deleted 1964, reinstated 1965 as EC 1.13.1.12, transferred 1972 to EC 1.13.11.11, modified
1989, modified 2006]

EC 1.13.11.12
Accepted name: linoleate 13S-lipoxygenase

Reaction: (1) linoleate + O2 = (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoate
(2) α-linolenate + O2 = (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoate

Other name(s): 13-lipoxidase; carotene oxidase; 13-lipoperoxidase; fat oxidase; 13-lipoxydase; lionoleate:O2 13-
oxidoreductase

Systematic name: linoleate:oxygen 13-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the

two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C-13
position with (S)-configuration. This enzyme produces precursors for several important compounds,
including the plant hormone jasmonic acid. EC 1.13.11.58, linoleate 9S-lipoxygenase, catalyses a
similar reaction at the second available position of these fatty acids.

References: [618, 3862, 4488, 3245, 156]

[EC 1.13.11.12 created 1961 as EC 1.99.2.1, transferred 1965 to EC 1.13.1.13, transferred 1972 to EC 1.13.11.12, modified 2011, modified
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2012]

[1.13.11.13 Deleted entry. ascorbate 2,3-dioxygenase. The activity is the sum of several enzymatic and spontaneous reac-
tions]

[EC 1.13.11.13 created 1972, deleted 2012]

EC 1.13.11.14
Accepted name: 2,3-dihydroxybenzoate 3,4-dioxygenase

Reaction: 2,3-dihydroxybenzoate + O2 = 3-carboxy-2-hydroxymuconate semialdehyde
Other name(s): o-pyrocatechuate oxygenase; 2,3-dihydroxybenzoate 1,2-dioxygenase; 2,3-dihydroxybenzoic oxyge-

nase; 2,3-dihydroxybenzoate oxygenase; 2,3-dihydroxybenzoate:oxygen 3,4-oxidoreductase (decy-
clizing)

Systematic name: 2,3-dihydroxybenzoate:oxygen 3,4-oxidoreductase (ring-opening)
References: [3178]

[EC 1.13.11.14 created 1972, modified 1976]

EC 1.13.11.15
Accepted name: 3,4-dihydroxyphenylacetate 2,3-dioxygenase

Reaction: 3,4-dihydroxyphenylacetate + O2 = 2-hydroxy-5-carboxymethylmuconate semialdehyde
Other name(s): 3,4-dihydroxyphenylacetic acid 2,3-dioxygenase; HPC dioxygenase; homoprotocatechuate 2,3-

dioxygenase; 3,4-dihydroxyphenylacetate:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: 3,4-dihydroxyphenylacetate:oxygen 2,3-oxidoreductase (ring-opening)

Comments: An iron protein.
References: [12, 199, 2100]

[EC 1.13.11.15 created 1972]

EC 1.13.11.16
Accepted name: 3-carboxyethylcatechol 2,3-dioxygenase

Reaction: (1) 3-(2,3-dihydroxyphenyl)propanoate + O2 = (2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate
(2) (2E)-3-(2,3-dihydroxyphenyl)prop-2-enoate + O2 = (2Z,4E,7E)-2-hydroxy-6-oxonona-2,4,7-triene-
1,9-dioate

Other name(s): 2,3-dihydroxy-β-phenylpropionic dioxygenase; 2,3-dihydroxy-β-phenylpropionate oxygenase; 3-(2,3-
dihydroxyphenyl)propanoate:oxygen 1,2-oxidoreductase; 3-(2,3-dihydroxyphenyl)propanoate:oxygen
1,2-oxidoreductase (decyclizing)

Systematic name: 3-(2,3-dihydroxyphenyl)propanoate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: An iron protein. This enzyme catalyses a step in the pathway of phenylpropanoid compounds degra-

dation.
References: [717, 2118, 813]

[EC 1.13.11.16 created 1972, modified 2011, modified 2012]

EC 1.13.11.17
Accepted name: indole 2,3-dioxygenase

Reaction: indole + O2 = 2-formylaminobenzaldehyde
Other name(s): indole oxidase; indoleamine 2,3-dioxygenase (ambiguous); indole:O2 oxidoreductase; indole-oxygen

2,3-oxidoreductase (decyclizing); IDO (ambiguous); indole:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: indole:oxygen 2,3-oxidoreductase (ring-opening)

Comments: Enzymes from the plants Tecoma stans, Jasminum grandiflorum and Zea mays are flavoproteins
containing copper. They are part of enzyme systems that form either anthranil (2,1-benzoisoxazole)
(Tecoma stans), anthranilate (Jasminum grandiflorum) or both (Zea mays) as the final product. A sec-
ond enzyme from Tecoma stans is not a flavoprotein, does not require copper, and is part of a system
that forms anthranilate as the final product.
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References: [2693, 559, 835, 2077]

[EC 1.13.11.17 created 1972, modified 1986]

EC 1.13.11.18
Accepted name: persulfide dioxygenase

Reaction: S-sulfanylglutathione + O2 + H2O = glutathione + sulfite + 2 H+ (overall reaction)
(1a) S-sulfanylglutathione + O2 = S-sulfinatoglutathione + H+

(1b) S-sulfinatoglutathione + H2O = glutathione + sulfite + H+ (spontaneous)
Other name(s): sulfur oxygenase (incorrect); sulfur:oxygen oxidoreductase (incorrect); sulfur dioxygenase (incorrect)

Systematic name: S-sulfanylglutathione:oxygen oxidoreductase
Comments: An iron protein. Perthiols, formed spontaneously by interactions between thiols and elemental sulfur

or sulfide, are the only acceptable substrate to the enzyme. The sulfite that is formed by the enzyme
can be further converted into sulfate, thiosulfate or S-sulfoglutathione (GSSO3

−) non-enzymically
[3221].

References: [3749, 3221, 2278, 1541, 2995]

[EC 1.13.11.18 created 1972, modified 2015]

EC 1.13.11.19
Accepted name: cysteamine dioxygenase

Reaction: 2-aminoethanethiol + O2 = hypotaurine
Other name(s): persulfurase; cysteamine oxygenase; cysteamine:oxygen oxidoreductase

Systematic name: 2-aminoethanethiol:oxygen oxidoreductase
Comments: A non-heme iron protein that is involved in the biosynthesis of taurine. Requires catalytic amounts

of a cofactor-like compound, such as sulfur, sufide, selenium or methylene blue for maximal activity.
3-Aminopropanethiol (homocysteamine) and 2-mercaptoethanol can also act as substrates, but glu-
tathione, cysteine, and cysteine ethyl- and methyl esters are not good substrates [524, 525].

References: [524, 4248, 525, 3180]

[EC 1.13.11.19 created 1972, modified 2006]

EC 1.13.11.20
Accepted name: cysteine dioxygenase

Reaction: L-cysteine + O2 = 3-sulfinoalanine
Other name(s): cysteine oxidase

Systematic name: L-cysteine:oxygen oxidoreductase
Comments: Requires Fe2+ and NAD(P)H.
References: [2294]

[EC 1.13.11.20 created 1972, modified 1976]

[1.13.11.21 Transferred entry. β-carotene 15,15′-dioxygenase. Now EC 1.14.99.36, β-carotene 15,15′-monooxygenase]

[EC 1.13.11.21 created 1972, deleted 2001]

EC 1.13.11.22
Accepted name: caffeate 3,4-dioxygenase

Reaction: 3,4-dihydroxy-trans-cinnamate + O2 = 3-(2-carboxyethenyl)-cis,cis-muconate
Other name(s): 3,4-dihydroxy-trans-cinnamate:oxygen 3,4-oxidoreductase (decyclizing)

Systematic name: 3,4-dihydroxy-trans-cinnamate:oxygen 3,4-oxidoreductase (ring-opening)
References: [3431]
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[EC 1.13.11.22 created 1972]

EC 1.13.11.23
Accepted name: 2,3-dihydroxyindole 2,3-dioxygenase

Reaction: 2,3-dihydroxyindole + O2 = anthranilate + CO2
Other name(s): 2,3-dihydroxyindole:oxygen 2,3-oxidoreductase (decyclizing)

Systematic name: 2,3-dihydroxyindole:oxygen 2,3-oxidoreductase (ring-opening)
References: [1094]

[EC 1.13.11.23 created 1972]

EC 1.13.11.24
Accepted name: quercetin 2,3-dioxygenase

Reaction: quercetin + O2 = 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoate + CO + H+

Other name(s): quercetinase; flavonol 2,4-oxygenase; quercetin:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: quercetin:oxygen 2,3-oxidoreductase (ring-opening)

Comments: The enzyme from Aspergillus sp. is a copper protein whereas that from Bacillus subtilis contains iron.
Quercetin is a flavonol (5,7,3′,4′-tetrahydroxyflavonol).

References: [2857, 3635, 370]

[EC 1.13.11.24 created 1972]

EC 1.13.11.25
Accepted name: 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-dioxygenase

Reaction: 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 = 3-hydroxy-5,9,17-trioxo-
4,5:9,10-disecoandrosta-1(10),2-dien-4-oate

Other name(s): steroid 4,5-dioxygenase; 3-alkylcatechol 2,3-dioxygenase; 3,4-dihydroxy-9,10-secoandrosta-
1,3,5(10)-triene-9,17-dione:oxygen 4,5-oxidoreductase (decyclizing)

Systematic name: 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione:oxygen 4,5-oxidoreductase (ring-
opening)

Comments: Requires Fe2+. Also acts on 3-isopropylcatechol and 3-tert-butyl-5-methylcatechol.
References: [1201]

[EC 1.13.11.25 created 1972]

EC 1.13.11.26
Accepted name: peptide-tryptophan 2,3-dioxygenase

Reaction: [protein]-L-tryptophan + O2 = [protein]-N-formyl-L-kynurenine
Other name(s): pyrrolooxygenase; peptidyltryptophan 2,3-dioxygenase; tryptophan pyrrolooxygenase; [protein]-L-

tryptophan:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: [protein]-L-tryptophan:oxygen 2,3-oxidoreductase (ring-opening)

Comments: Also acts on tryptophan.
References: [1085, 488]

[EC 1.13.11.26 created 1972, modified 2011]

EC 1.13.11.27
Accepted name: 4-hydroxyphenylpyruvate dioxygenase

Reaction: 4-hydroxyphenylpyruvate + O2 = homogentisate + CO2
Other name(s): p-hydroxyphenylpyruvic hydroxylase; p-hydroxyphenylpyruvate hydroxylase; p-

hydroxyphenylpyruvate oxidase; p-hydroxyphenylpyruvic oxidase; p-hydroxyphenylpyruvate dioxy-
genase; p-hydroxyphenylpyruvic acid hydroxylase; 4-hydroxyphenylpyruvic acid dioxygenase
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Systematic name: 4-hydroxyphenylpyruvate:oxygen oxidoreductase (hydroxylating, decarboxylating)
Comments: The Pseudomonas enzyme contains one Fe3+ per mole of enzyme; the enzymes from other sources

may contain essential iron or copper.
References: [2266, 3207]

[EC 1.13.11.27 created 1961 as EC 1.99.1.14, transferred 1965 to EC 1.14.2.2, transferred 1972 to EC 1.13.11.27]

EC 1.13.11.28
Accepted name: 2,3-dihydroxybenzoate 2,3-dioxygenase

Reaction: 2,3-dihydroxybenzoate + O2 = 2-carboxy-cis,cis-muconate
Other name(s): 2,3-dihydroxybenzoate 2,3-oxygenase; 2,3-dihydroxybenzoate:oxygen 2,3-oxidoreductase (decycliz-

ing)
Systematic name: 2,3-dihydroxybenzoate:oxygen 2,3-oxidoreductase (ring-opening)

Comments: Also acts, more slowly, with 2,3-dihydroxy-4-methylbenzoate and 2,3-dihydroxy-4-
isopropylbenzoate.

References: [876, 3462]

[EC 1.13.11.28 created 1978]

EC 1.13.11.29
Accepted name: stizolobate synthase

Reaction: L-dopa + O2 = 4-(L-alanin-3-yl)-2-hydroxy-cis,cis-muconate 6-semialdehyde
Systematic name: 3,4-dihydroxy-L-phenylalanine:oxygen 4,5-oxidoreductase (recyclizing)

Comments: The intermediate product undergoes ring closure and oxidation, with NAD(P)+ as acceptor, to stizolo-
bic acid. The enzyme requires Zn2+.

References: [3283, 3284]

[EC 1.13.11.29 created 1978]

EC 1.13.11.30
Accepted name: stizolobinate synthase

Reaction: L-dopa + O2 = 5-(L-alanin-3-yl)-2-hydroxy-cis,cis-muconate 6-semialdehyde
Systematic name: 3,4-dihydroxy-L-phenylalanine:oxygen 2,3-oxidoreductase (recyclizing)

Comments: The intermediate product undergoes ring closure and oxidation, with NAD(P)+ as acceptor, to sti-
zolobinic acid. The enzyme requires Zn2+.

References: [3283, 3284]

[EC 1.13.11.30 created 1978]

EC 1.13.11.31
Accepted name: arachidonate 12-lipoxygenase

Reaction: arachidonate + O2 = (5Z,8Z,10E,14Z)-(12S)-12-hydroperoxyicosa-5,8,10,14-tetraenoate
Other name(s): ∆12-lipoxygenase; 12-lipoxygenase; 12∆-lipoxygenase; C-12 lipoxygenase; 12S-lipoxygenase;

leukotriene A4 synthase; LTA4 synthase
Systematic name: arachidonate:oxygen 12-oxidoreductase

Comments: The product is rapidly reduced to the corresponding 12S-hydroxy compound.
References: [1353, 2829, 4093]

[EC 1.13.11.31 created 1983]

[1.13.11.32 Transferred entry. 2-nitropropane dioxygenase. Now EC 1.13.12.16, nitronate monooxygenase]

[EC 1.13.11.32 created 1984, modified 2006, deleted 2009]
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EC 1.13.11.33
Accepted name: arachidonate 15-lipoxygenase

Reaction: arachidonate + O2 = (5Z,8Z,11Z,13E)-(15S)-15-hydroperoxyicosa-5,8,11,13-tetraenoate
Other name(s): 15-lipoxygenase; linoleic acid ω6-lipoxygenase; ω6 lipoxygenase

Systematic name: arachidonate:oxygen 15-oxidoreductase
Comments: The product is rapidly reduced to the corresponding 15S-hydroxy compound.
References: [433, 2736, 2874, 3484]

[EC 1.13.11.33 created 1984]

EC 1.13.11.34
Accepted name: arachidonate 5-lipoxygenase

Reaction: arachidonate + O2 = leukotriene A4 + H2O (overall reaction)
(1a) arachidonate + O2 = (6E,8Z,11Z,14Z)-(5S)-5-hydroperoxyicosa-6,8,11,14-tetraenoate
(1b) (6E,8Z,11Z,14Z)-(5S)-5-hydroperoxyicosa-6,8,11,14-tetraenoate = leukotriene A4 + H2O

Other name(s): leukotriene-A4 synthase; ∆5-lipoxygenase; 5∆-lipoxygenase; arachidonic 5-lipoxygenase; arachidonic
acid 5-lipoxygenase; C-5-lipoxygenase; LTA synthase; leukotriene A4 synthase

Systematic name: arachidonate:oxygen 5-oxidoreductase
References: [2447, 2847, 3501, 3502]

[EC 1.13.11.34 created 1984, modified 1990]

EC 1.13.11.35
Accepted name: pyrogallol 1,2-oxygenase

Reaction: 1,2,3-trihydroxybenzene + O2 = (2Z,4E)-2-hydroxyhexa-2,4-dienedioate
Other name(s): pyrogallol 1,2-dioxygenase; 1,2,3-trihydroxybenzene:oxygen 1,2-oxidoreductase (decyclizing)

Systematic name: 1,2,3-trihydroxybenzene:oxygen 1,2-oxidoreductase (ring-opening)
References: [1295]

[EC 1.13.11.35 created 1984, modified 2012]

EC 1.13.11.36
Accepted name: chloridazon-catechol dioxygenase

Reaction: 5-amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-pyridazinone + O2 = 5-amino-4-chloro-2-(2-
hydroxymuconoyl)-3(2H)-pyridazinone

Other name(s): 5-amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-pyridazinone 1,2-oxidoreductase (decyclizing)
Systematic name: 5-amino-4-chloro-2-(2,3-dihydroxyphenyl)-3(2H)-pyridazinone 1,2-oxidoreductase (ring-opening)

Comments: An iron protein, requiring additional Fe2+. Not identical with EC 1.13.11.1 (catechol 1,2-
dioxygenase), EC 1.13.11.2 (catechol 2,3-dioxygenase) or EC 1.13.11.5 (homogentisate 1,2-
dioxygenase). Involved in the breakdown of the herbicide chloridazon.

References: [2653, 2654]

[EC 1.13.11.36 created 1984]

EC 1.13.11.37
Accepted name: hydroxyquinol 1,2-dioxygenase

Reaction: hydroxyquinol + O2 = maleylacetate
Other name(s): hydroxyquinol dioxygenase; benzene-1,2,4-triol:oxygen 1,2-oxidoreductase (decyclizing); benzene-

1,2,4-triol:oxygen 1,2-oxidoreductase (ring-opening)
Systematic name: hydroxyquinol:oxygen 1,2-oxidoreductase (ring-opening)

Comments: An iron protein. Highly specific; catechol and pyrogallol are acted on at less than 1% of the rate at
which hydroxyquinol is oxidized.

References: [3767, 1002, 1423]
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[EC 1.13.11.37 created 1989, modified 2013]

EC 1.13.11.38
Accepted name: 1-hydroxy-2-naphthoate 1,2-dioxygenase

Reaction: 1-hydroxy-2-naphthoate + O2 = (3Z)-4-(2-carboxyphenyl)-2-oxobut-3-enoate
Other name(s): 1-hydroxy-2-naphthoate dioxygenase; 1-hydroxy-2-naphthoate-degrading enzyme; 1-hydroxy-2-

naphthoic acid dioxygenase; 1-hydroxy-2-naphthoate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 1-hydroxy-2-naphthoate:oxygen 1,2-oxidoreductase (ring-opening)

Comments: Requires Fe2+. Involved, with EC 4.1.2.34 4-(2-carboxyphenyl)-2-oxobut-3-enoate aldolase, in the
metabolism of phenanthrene in bacteria.

References: [201]

[EC 1.13.11.38 created 1989]

EC 1.13.11.39
Accepted name: biphenyl-2,3-diol 1,2-dioxygenase

Reaction: biphenyl-2,3-diol + O2 = 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate
Other name(s): 2,3-dihydroxybiphenyl dioxygenase; biphenyl-2,3-diol dioxygenase; bphC (gene name); biphenyl-

2,3-diol:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: biphenyl-2,3-diol:oxygen 1,2-oxidoreductase (ring-opening)

Comments: Contains Fe2+ or Mn2+ [1422]. This enzyme participates in the degradation pathway of biphenyl
and PCB (poly chlorinated biphenyls), and catalyses the first ring cleavage step by incorporating
two oxygen atoms into the catechol ring formed by EC 1.3.1.56, cis-2,3-dihydrobiphenyl-2,3-diol
dehydrogenase.The enzyme from the bacterium Burkholderia xenovorans LB400 can also process
catechol, 3-methylcatechol, and 4-methylcatechol, but less efficiently [944]. The enzyme from the
carbazole-degrader Pseudomonas resinovorans strain CA10 also accepts 2′-aminobiphenyl-2,3-diol
[1696]. The enzyme from Ralstonia sp. SBUG 290 can also accept 1,2-dihydroxydibenzofuran and
1,2-dihydroxynaphthalene [4180]. The enzyme is strongly inhibited by the substrate [944].Not identi-
cal with EC 1.13.11.2 catechol 2,3-dioxygenase.

References: [944, 3974, 1422, 4180, 1696]

[EC 1.13.11.39 created 1989]

EC 1.13.11.40
Accepted name: arachidonate 8-lipoxygenase

Reaction: arachidonate + O2 = (5Z,9E,11Z,14Z)-(8R)-8-hydroperoxyicosa-5,9,11,14-tetraenoate
Other name(s): 8-lipoxygenase; 8(R)-lipoxygenase

Systematic name: arachidonate:oxygen 8-oxidoreductase
Comments: From the coral Pseudoplexaura porosa.
References: [444]

[EC 1.13.11.40 created 1989]

EC 1.13.11.41
Accepted name: 2,4′-dihydroxyacetophenone dioxygenase

Reaction: 2,4′-dihydroxyacetophenone + O2 = 4-hydroxybenzoate + formate
Other name(s): (4-hydroxybenzoyl)methanol oxygenase

Systematic name: 2,4′-dihydroxyacetophenone oxidoreductase (C-C-bond-cleaving)
References: [1561]

[EC 1.13.11.41 created 1989]

[1.13.11.42 Deleted entry. indoleamine-pyrrole 2,3-dioxygenase. The enzyme was identical to EC 1.13.11.11, tryptophan
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2,3-dioxygenase]

[EC 1.13.11.42 created 1992, deleted 2006]

EC 1.13.11.43
Accepted name: lignostilbene αβ-dioxygenase

Reaction: 1,2-bis(4-hydroxy-3-methoxyphenyl)ethylene + O2 = 2 vanillin
Systematic name: 1,2-bis(4-hydroxy-3-methoxyphenyl)ethylene:oxygen oxidoreductase (αβ-bond-cleaving)

Comments: An iron protein. The enzyme catalyses oxidative cleavage of the interphenyl double bond in the syn-
thetic substrate and lignin-derived stilbenes. It is responsible for the degradation of a diarylpropane-
type structure in lignin.

References: [1807]

[EC 1.13.11.43 created 1992]

[1.13.11.44 Deleted entry. linoleate diol synthase. Activity is covered by EC 1.13.11.60, linoleate 8R-lipoxygenase and EC
5.4.4.6, 9,12-octadecadienoate 8-hydroperoxide 8S-isomerase.]

[EC 1.13.11.44 created 2000, deleted 2011]

EC 1.13.11.45
Accepted name: linoleate 11-lipoxygenase

Reaction: linoleate + O2 = (9Z,12Z)-(11S)-11-hydroperoxyoctadeca-9,12-dienoate
Other name(s): linoleate dioxygenase, manganese lipoxygenase

Systematic name: linoleate:oxygen 11S-oxidoreductase
Comments: The product (9Z,12Z)-(11S)-11-hydroperoxyoctadeca-9,12-dienoate, is converted, more slowly, into

(9Z,11E)-(13R)-13-hydroperoxyoctadeca-9,11-dienoate. The enzyme from the fungus Gaeumanno-
myces graminis requires Mn2+. It also acts on α-linolenate, whereas γ-linolenate is a poor substrate.
Oleate and arachidonate are not substrates.

References: [1354, 2875, 3699]

[EC 1.13.11.45 created 2000]

EC 1.13.11.46
Accepted name: 4-hydroxymandelate synthase

Reaction: 4-hydroxyphenylpyruvate + O2 = (S)-4-hydroxymandelate + CO2
Other name(s): 4-hydroxyphenylpyruvate dioxygenase II

Systematic name: (S)-4-hydroxyphenylpyruvate:oxygen oxidoreductase (decarboxylating)
Comments: Requires Fe2+. Involved in the biosynthesis of the vancomycin group of glycopeptide antibiotics.
References: [1599, 614]

[EC 1.13.11.46 created 2001]

EC 1.13.11.47
Accepted name: 3-hydroxy-4-oxoquinoline 2,4-dioxygenase

Reaction: 3-hydroxy-1H-quinolin-4-one + O2 = N-formylanthranilate + CO
Other name(s): (1H)-3-hydroxy-4-oxoquinoline 2,4-dioxygenase; 3-hydroxy-4-oxo-1,4-dihydroquinoline 2,4-

dioxygenase; 3-hydroxy-4(1H)-one, 2,4-dioxygenase; quinoline-3,4-diol 2,4-dioxygenase
Systematic name: 3-hydroxy-1H-quinolin-4-one 2,4-dioxygenase (CO-forming)

Comments: Does not contain a metal centre or organic cofactor. Fission of two C-C bonds: 2,4-dioxygenolytic
cleavage with concomitant release of carbon monoxide. The enzyme from Pseudomonas putida is
highly specific for this substrate.

References: [217, 218, 1020]
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[EC 1.13.11.47 created 1999 as EC 1.13.99.5, transferred 2001 to EC 1.13.11.47 (EC 1.12.99.5 created 1999 deleted 2001 as identical)]

EC 1.13.11.48
Accepted name: 3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase

Reaction: 3-hydroxy-2-methyl-1H-quinolin-4-one + O2 = N-acetylanthranilate + CO
Other name(s): (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase

Systematic name: 3-hydroxy-2-methyl-1H-quinolin-4-one 2,4-dioxygenase (CO-forming)
Comments: Does not contain a metal centre or organic cofactor. Fission of two C-C bonds: 2,4-dioxygenolytic

cleavage with concomitant release of carbon monoxide. The enzyme from Arthrobacter sp. can
also act on 3-hydroxy-4-oxoquinoline, forming N-formylanthranilate and CO (cf. EC 1.13.11.47, 3-
hydroxy-4-oxoquinoline 2,4-dioxygenase), but more slowly.

References: [217, 218, 1020]

[EC 1.13.11.48 created 2001]

EC 1.13.11.49
Accepted name: chlorite O2-lyase

Reaction: chloride + O2 = chlorite
Systematic name: chloride:oxygen oxidoreductase

Comments: Reaction occurs in the reverse direction in chlorate- and perchlorate-reducing bacteria. There is no
activity when chlorite is replaced by hydrogen peroxide, perchlorate, chlorate or nitrite. The term
‘chlorite dismutase’ is misleading as the reaction does not involve dismutation/disproportionation.
Contains iron and protoheme IX.

References: [4001, 3638]

[EC 1.13.11.49 created 2001]

EC 1.13.11.50
Accepted name: acetylacetone-cleaving enzyme

Reaction: pentane-2,4-dione + O2 = acetate + 2-oxopropanal
Other name(s): Dke1; acetylacetone dioxygenase; diketone cleaving dioxygenase; diketone cleaving enzyme

Systematic name: acetylacetone:oxygen oxidoreductase
Comments: An Fe(II)-dependent enzyme. Forms the first step in the acetylacetone degradation pathway of Acine-

tobacter johnsonii. While acetylacetone is by far the best substrate, heptane-3,5-dione, octane-2,4-
dione, 2-acetylcyclohexanone and ethyl acetoacetate can also act as substrates.

References: [3668]

[EC 1.13.11.50 created 2003]

EC 1.13.11.51
Accepted name: 9-cis-epoxycarotenoid dioxygenase

Reaction: (1) a 9-cis-epoxycarotenoid + O2 = 2-cis,4-trans-xanthoxin + a 12′-apo-carotenal
(2) 9-cis-violaxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6S)-5,6-epoxy-3-hydroxy-5,6-dihydro-
12′-apo-β-caroten-12′-al
(3) 9′-cis-neoxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6R)-5,6-dihydroxy-6,7-didehydro-5,6-
dihydro-12′-apo-β-caroten-12′-al

Other name(s): nine-cis-epoxycarotenoid dioxygenase; NCED; AtNCED3; PvNCED1; VP14
Systematic name: 9-cis-epoxycarotenoid 11,12-dioxygenase

Comments: Requires iron(II). Acts on 9-cis-violaxanthin and 9′-cis-neoxanthin but not on the all-trans isomers
[3800, 3079]. In vitro, it will cleave 9-cis-zeaxanthin. Catalyses the first step of abscisic-acid biosyn-
thesis from carotenoids in chloroplasts, in response to water stress. The other enzymes involved in
the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14
(abscisic-aldehyde oxidase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase].

References: [3413, 3800, 3079, 3872, 1686, 1687]
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[EC 1.13.11.51 created 2005]

EC 1.13.11.52
Accepted name: indoleamine 2,3-dioxygenase

Reaction: (1) D-tryptophan + O2 = N-formyl-D-kynurenine
(2) L-tryptophan + O2 = N-formyl-L-kynurenine

Other name(s): IDO (ambiguous); tryptophan pyrrolase (ambiguous); D-tryptophan:oxygen 2,3-oxidoreductase (decy-
clizing)

Systematic name: D-tryptophan:oxygen 2,3-oxidoreductase (ring-opening)
Comments: A protohemoprotein. Requires ascorbic acid and methylene blue for activity. This enzyme has

broader substrate specificity than EC 1.13.11.11, tryptophan 2,3-dioxygenase [4318]. It is induced
in response to pathological conditions and host-defense mechanisms and its distribution in mam-
mals is not confined to the liver [4350]. While the enzyme is more active with D-tryptophan than L-
tryptophan, its only known function to date is in the metabolism of L-tryptophan [4350, 2274]. Super-
oxide radicals can replace O2 as oxygen donor [1516, 3870].

References: [4318, 4350, 3794, 1516, 740, 2274, 3870, 3582]

[EC 1.13.11.52 created 2006]

EC 1.13.11.53
Accepted name: acireductone dioxygenase (Ni2+-requiring)

Reaction: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 3-(methylsulfanyl)propanoate + formate +
CO

Other name(s): ARD; 2-hydroxy-3-keto-5-thiomethylpent-1-ene dioxygenase (ambiguous); acireductone dioxygenase
(ambiguous); E-2; 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one:oxygen oxidoreductase (formate-
and CO-forming)

Systematic name: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one:oxygen oxidoreductase (formate- and CO-forming)
Comments: Requires Ni2+. If iron(II) is bound instead of Ni2+, the reaction catalysed by EC 1.13.11.54, acire-

ductone dioxygenase [iron(II)-requiring], occurs instead [4256]. The enzyme from the bacterium
Klebsiella oxytoca (formerly Klebsiella pneumoniae) ATCC strain 8724 is involved in the methion-
ine salvage pathway.

References: [4256, 4257, 1118, 723, 2584, 722, 48, 3024]

[EC 1.13.11.53 created 2006]

EC 1.13.11.54
Accepted name: acireductone dioxygenase [iron(II)-requiring]

Reaction: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 4-(methylsulfanyl)-2-oxobutanoate + for-
mate

Other name(s): ARD′; 2-hydroxy-3-keto-5-thiomethylpent-1-ene dioxygenase (ambiguous); acireductone dioxyge-
nase (ambiguous); E-2′; E-3 dioxygenase; 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one:oxygen oxi-
doreductase (formate-forming)

Systematic name: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one:oxygen oxidoreductase (formate-forming)
Comments: Requires iron(II). If Ni2+ is bound instead of iron(II), the reaction catalysed by EC 1.13.11.53, acire-

ductone dioxygenase (Ni2+-requiring), occurs instead. The enzyme from the bacterium Klebsiella
oxytoca (formerly Klebsiella pneumoniae) ATCC strain 8724 is involved in the methionine salvage
pathway.

References: [4256, 4257, 1118, 723, 2584, 722, 48, 3024]

[EC 1.13.11.54 created 2006]

EC 1.13.11.55
Accepted name: sulfur oxygenase/reductase

302

http://www.enzyme-database.org/query.php?ec=1.13.11.52
http://www.enzyme-database.org/query.php?ec=1.13.11.53
http://www.enzyme-database.org/query.php?ec=1.13.11.54
http://www.enzyme-database.org/query.php?ec=1.13.11.55


Reaction: 4 sulfur + 4 H2O + O2 = 2 hydrogen sulfide + 2 sulfite
Other name(s): SOR; sulfur oxygenase; sulfur oxygenase reductase

Systematic name: sulfur:oxygen oxidoreductase (hydrogen-sulfide- and sulfite-forming)
Comments: This enzyme, which is found in thermophilic microorganisms, contains one mononuclear none-heme

iron centre per subunit. Elemental sulfur is both the electron donor and one of the two known ac-
ceptors, the other being oxygen. Thiosulfate is also observed as a product, but is likely formed non-
enzymically by a reaction between sulfite and sulfur [1965]. This enzyme differs from EC 1.13.11.18,
sulfur dioxygenase and EC 1.12.98.4, sulfhydrogenase, in that both activities occur simultaneously.

References: [1965, 1966, 3731, 3976]

[EC 1.13.11.55 created 2006]

EC 1.13.11.56
Accepted name: 1,2-dihydroxynaphthalene dioxygenase

Reaction: naphthalene-1,2-diol + O2 = 2-hydroxy-2H-chromene-2-carboxylate
Other name(s): 1,2-DHN dioxygenase; DHNDO; 1,2-dihydroxynaphthalene oxygenase; 1,2-

dihydroxynaphthalene:oxygen oxidoreductase
Systematic name: naphthalene-1,2-diol:oxygen oxidoreductase

Comments: This enzyme is involved in naphthalene degradation. Requires Fe2+.
References: [2069, 1866, 2958]

[EC 1.13.11.56 created 2010, modified 2010]

EC 1.13.11.57
Accepted name: gallate dioxygenase

Reaction: 3,4,5-trihydroxybenzoate + O2 = (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate
Other name(s): GalA; gallate:oxygen oxidoreductase

Systematic name: 3,4,5-trihydroxybenzoate:oxygen oxidoreductase
Comments: Contains non-heme Fe2+. The enzyme is a ring-cleavage dioxygenase that acts specifically on 3,4,5-

trihydroxybenzoate to produce the keto-tautomer of 4-oxalomesaconate [2808, 2807].
References: [2808, 2807]

[EC 1.13.11.57 created 2011]

EC 1.13.11.58
Accepted name: linoleate 9S-lipoxygenase

Reaction: linoleate + O2 = (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoate
Other name(s): 9-lipoxygenase; 9S-lipoxygenase; linoleate 9-lipoxygenase; LOX1 (gene name); 9S-LOX

Systematic name: linoleate:oxygen 9S-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the

two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C9 posi-
tion with (S)-configuration. The enzyme plays a physiological role during the early stages of seedling
growth. The enzyme from Arabidopsis thaliana shows comparable activity towards linoleate and
linolenate [194]. EC 1.13.11.12 (linoleate 13S-lipoxygenase) catalyses a similar reaction at another
position of these fatty acids.

References: [4027, 329, 88, 194]

[EC 1.13.11.58 created 2011]

EC 1.13.11.59
Accepted name: torulene dioxygenase

Reaction: torulene + O2 = 4′-apo-β,ψ-caroten-4′-al + 3-methylbut-2-enal
Other name(s): CAO-2; CarT
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Systematic name: torulene:oxygen oxidoreductase
Comments: It is assumed that 3-methylbut-2-enal is formed. The enzyme cannot cleave the saturated 3′,4′-bond of

γ-carotene which implies that a 3′,4′-double bond is neccessary for this reaction.
References: [3051, 3277, 967]

[EC 1.13.11.59 created 2011]

EC 1.13.11.60
Accepted name: linoleate 8R-lipoxygenase

Reaction: linoleate + O2 = (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate
Other name(s): linoleic acid 8R-dioxygenase; 5,8-LDS (bifunctional enzyme); 7,8-LDS (bifunctional enzyme); 5,8-

linoleate diol synthase (bifunctional enzyme); 7,8-linoleate diol synthase (bifunctional enzyme);
PpoA

Systematic name: linoleate:oxygen (8R)-oxidoreductase
Comments: The enzyme contains heme [410, 3698]. The bifunctional enzyme from Aspergillus nidulans uses

different heme domains to catalyse two separate reactions. Linoleic acid is oxidized within the N-
terminal heme peroxidase domain to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate, which
is subsequently isomerized by the C-terminal P-450 heme thiolate domain to (5S,8R,9Z,12Z)-5,8-
dihydroxyoctadeca-9,12-dienoate (cf. EC 5.4.4.5, 9,12-octadecadienoate 8-hydroperoxide 8R-
isomerase) [410]. The bifunctional enzyme from Gaeumannomyces graminis also catalyses the ox-
idation of linoleic acid to (8R,9Z,12Z)-8-hydroperoxyoctadeca-9,12-dienoate, but its second do-
main isomerizes it to (7S,8S,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate (cf. EC 5.4.4.6, 9,12-
octadecadienoate 8-hydroperoxide 8S-isomerase) [3698].

References: [410, 1355, 1160, 3698]

[EC 1.13.11.60 created 2011]

EC 1.13.11.61
Accepted name: linolenate 9R-lipoxygenase

Reaction: α-linolenate + O2 = (9R,10E,12Z,15Z)-9-hydroperoxyoctadeca-10,12,15-trienoate
Other name(s): NspLOX; (9R)-LOX; linoleate 9R-dioxygenase

Systematic name: α-linolenate:oxygen (9R)-oxidoreductase
Comments: In cyanobacteria the enzyme is involved in oxylipin biosynthesis. The enzyme also converts linoleate

to (9R,10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoate.
References: [1736, 89, 2128]

[EC 1.13.11.61 created 2011]

EC 1.13.11.62
Accepted name: linoleate 10R-lipoxygenase

Reaction: linoleate + O2 = (8E,10R,12Z)-10-hydroperoxy-8,12-octadecadienoate
Other name(s): 10R-DOX; (10R)-dioxygenase; 10R-dioxygenase

Systematic name: linoleate:oxygen (10R)-oxidoreductase
Comments: The enzyme is involved in biosynthesis of oxylipins, which affect sporulation, development, and

pathogenicity of Aspergillus spp.
References: [1161, 1735]

[EC 1.13.11.62 created 2011]

EC 1.13.11.63
Accepted name: β-carotene 15,15′-dioxygenase

Reaction: β-carotene + O2 = 2 all-trans-retinal
Other name(s): blh (gene name); BCO1 (gene name); BCDO (gene name); carotene dioxygenase; carotene 15,15′-

dioxygenase; BCMO1 (misleading); β-carotene 15,15′-monooxygenase (incorrect)
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Systematic name: β-carotene:oxygen 15,15′-dioxygenase (bond-cleaving)
Comments: Requires Fe2+. The enzyme cleaves β-carotene symmetrically, producing two molecules of all-trans-

retinal. Both atoms of the oxygen molecule are incorporated into the products [785]. The enzyme can
also process β-cryptoxanthin, 8′-apo-β-carotenal, 4′-apo-β-carotenal, α-carotene and γ-carotene in de-
creasing order. The presence of at least one unsubstituted β-ionone ring in a substrate greater than C30
is mandatory [1928]. A prokaryotic enzyme has been reported from the uncultured marine bacterium
66A03, where it is involved in the proteorhodopsin system, which uses retinal as its chromophore
[1927, 1929].

References: [1243, 1242, 4331, 2206, 1928, 1927, 1929, 785]

[EC 1.13.11.63 created 2012 (EC 1.14.99.36 created 1972 as EC 1.13.11.21, transferred 2001 to EC 1.14.99.36, incorporated 2015), modified
2016]

EC 1.13.11.64
Accepted name: 5-nitrosalicylate dioxygenase

Reaction: 5-nitrosalicylate + O2 = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (overall reaction)
(1a) 5-nitrosalicylate + O2 = 4-nitro-6-oxohepta-2,4-dienedioate
(1b) 4-nitro-6-oxohepta-2,4-dienedioate = 2-oxo-3-(5-oxofuran-2-ylidene)propanoate + nitrite (spon-
taneous)

Other name(s): naaB (gene name); 5-nitrosalicylate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: 5-nitrosalicylate:oxygen 1,2-oxidoreductase (ring-opening)

Comments: The enzyme, characterized from the soil bacterium Bradyrhizobium sp. JS329, is involved in the path-
way of 5-nitroanthranilate degradation. It is unusual in being able to catalyse the ring fission without
the requirement for prior removal of the nitro group. The product undergoes spontaneous lactoniza-
tion, with concurrent elimination of the nitro group.

References: [3086, 3087]

[EC 1.13.11.64 created 2012]

EC 1.13.11.65
Accepted name: carotenoid isomerooxygenase

Reaction: zeaxanthin + O2 = (3R)-11-cis-3-hydroxyretinal + (3R)-all-trans-3-hydroxyretinal
Other name(s): ninaB (gene name)

Systematic name: zeaxanthin:oxygen 15,15′-oxidoreductase (bond-cleaving, cis-isomerizing)
Comments: The enzyme, characterized from the moth Galleria mellonella and the fruit fly Drosophila

melanogaster, is involved in the synthesis of retinal from dietary caroteoids in insects. The enzyme
accepts different all-trans carotenoids, including β-carotene, α-carotene and lutein, and catalyses the
symmetrical cleavage of the carotenoid and the simultaneous isomerization of only one of the prod-
ucts to a cis configuration. When the substrate is hydroxylated only in one side (as in cryptoxanthin),
the enzyme preferentially isomerizes the hydroxylated part of the molecule.

References: [2834]

[EC 1.13.11.65 created 2012 as EC 1.14.13.164, transferred 2012 to EC 1.13.11.65]

EC 1.13.11.66
Accepted name: hydroquinone 1,2-dioxygenase

Reaction: benzene-1,4-diol + O2 = (2Z,4E)-4-hydroxy-6-oxohexa-2,4-dienoate
Other name(s): hydroquinone dioxygenase; benzene-1,4-diol:oxygen 1,2-oxidoreductase (decyclizing)

Systematic name: benzene-1,4-diol:oxygen 1,2-oxidoreductase (ring-opening)
Comments: The enzyme is an extradiol-type dioxygenase, and is a member of the nonheme-iron(II)-dependent

dioxygenase family. It catalyses the ring cleavage of a wide range of hydroquinone substrates to pro-
duce the corresponding 4-hydroxymuconic semialdehydes.

References: [2574, 2603, 3475]
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[EC 1.13.11.66 created 2012]

EC 1.13.11.67
Accepted name: 8′-apo-β-carotenoid 14′,13′-cleaving dioxygenase

Reaction: 8′-apo-β-carotenol + O2 = 14′-apo-β-carotenal + an uncharacterized product
Other name(s): 8′-apo-β-carotenol:O2 oxidoreductase (14′,13′-cleaving)

Systematic name: 8′-apo-β-carotenol:oxygen oxidoreductase (14′,13′-cleaving)
Comments: A thiol-dependent enzyme isolated from rat and rabbit. Unlike EC 1.13.11.63, β-carotene-15,15′-

dioxygenase, it is not active towards β-carotene. The secondary product has not been characterized,
but may be (3E,5E)-7-hydroxy-6-methylhepta-3,5-dien-2-one.

References: [842]

[EC 1.13.11.67 created 2000 as EC 1.13.12.12, transferred 2012 to EC 1.13.11.67]

EC 1.13.11.68
Accepted name: 9-cis-β-carotene 9′,10′-cleaving dioxygenase

Reaction: 9-cis-β-carotene + O2 = 9-cis-10′-apo-β-carotenal + β-ionone
Other name(s): CCD7 (gene name); MAX3 (gene name); NCED7 (gene name)

Systematic name: 9-cis-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)
Comments: Requires Fe2+. The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant

hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza.
References: [349, 57]

[EC 1.13.11.68 created 2012]

EC 1.13.11.69
Accepted name: carlactone synthase

Reaction: 9-cis-10′-apo-β-carotenal + 2 O2 = carlactone + (2E,4E,6E)-7-hydroxy-4-methylhepta-2,4,6-trienal
Other name(s): CCD8 (gene name); MAX4 (gene name); NCED8 (gene name)

Systematic name: 9-cis-10′-apo-β-carotenal:oxygen oxidoreductase (14,15-cleaving, carlactone-forming)
Comments: Requires Fe2+. The enzyme participates in a pathway leading to biosynthesis of strigolactones, plant

hormones involved in promotion of symbiotic associations known as arbuscular mycorrhiza. Also
catalyses EC 1.13.11.70, all-trans-10′-apo-β-carotenal 13,14-cleaving dioxygenase, but 10-fold
slower.

References: [3587, 3412, 57]

[EC 1.13.11.69 created 2012]

EC 1.13.11.70
Accepted name: all-trans-10′-apo-β-carotenal 13,14-cleaving dioxygenase

Reaction: all-trans-10′-apo-β-carotenal + O2 = 13-apo-β-carotenone + (2E,4E,6E)-4-methylocta-2,4,6-trienedial
Other name(s): CCD8 (gene name); MAX4 (gene name); NCED8 (gene name); all-trans-10′-apo-β-carotenal:O2 oxi-

doreductase (13,14-cleaving)
Systematic name: all-trans-10′-apo-β-carotenal:oxygen oxidoreductase (13,14-cleaving)

Comments: Requires Fe2+. The enzyme from the plant Arabidopsis thaliana also catalyses EC 1.13.11.69, carlac-
tone synthase, 10-fold faster.

References: [3412]

[EC 1.13.11.70 created 2012]

EC 1.13.11.71
Accepted name: carotenoid-9′,10′-cleaving dioxygenase
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Reaction: all-trans-β-carotene + O2 = all-trans-10′-apo-β-carotenal + β-ionone
Other name(s): BCO2 (gene name); β-carotene 9′,10′-monooxygenase (misleading); all-trans-β-carotene:O2 oxidore-

ductase (9′,10′-cleaving)
Systematic name: all-trans-β-carotene:oxygen oxidoreductase (9′,10′-cleaving)

Comments: Requires Fe2+. The enzyme catalyses the asymmetric oxidative cleavage of carotenoids. The mam-
malian enzyme can also cleave all-trans-lycopene.

References: [1903, 2264]

[EC 1.13.11.71 created 2012]

EC 1.13.11.72
Accepted name: 2-hydroxyethylphosphonate dioxygenase

Reaction: 2-hydroxyethylphosphonate + O2 = hydroxymethylphosphonate + formate
Other name(s): HEPD; phpD (gene name); 2-hydroxyethylphosphonate:O2 1,2-oxidoreductase (hydroxymethylphos-

phonate forming)
Systematic name: 2-hydroxyethylphosphonate:oxygen 1,2-oxidoreductase (hydroxymethylphosphonate forming)

Comments: Requires non-heme-Fe(II). Isolated from some bacteria including Streptomyces hygroscopicus and
Streptomyces viridochromogenes. The pro-R hydrogen at C-2 of the ethyl group is retained by the
formate ion. Any stereochemistry at C-1 of the ethyl group is lost. One atom from dioxygen is present
in each product. Involved in phosphinothricin biosynthesis.

References: [624, 4199, 2971]

[EC 1.13.11.72 created 2012]

EC 1.13.11.73
Accepted name: methylphosphonate synthase

Reaction: 2-hydroxyethylphosphonate + O2 = methylphosphonate + HCO3
−

Other name(s): mpnS (gene name); 2-hydroxyethylphosphonate:O2 1,2-oxidoreductase (methylphosphonate forming)
Systematic name: 2-hydroxyethylphosphonate:oxygen 1,2-oxidoreductase (methylphosphonate forming)

Comments: Isolated from the marine archaeon Nitrosopumilus maritimus.
References: [2513]

[EC 1.13.11.73 created 2012]

EC 1.13.11.74
Accepted name: 2-aminophenol 1,6-dioxygenase

Reaction: 2-aminophenol + O2 = 2-aminomuconate 6-semialdehyde
Other name(s): amnA (gene name); amnB (gene name); 2-aminophenol:oxygen 1,6-oxidoreductase (decyclizing)

Systematic name: 2-aminophenol:oxygen 1,6-oxidoreductase (ring-opening)
Comments: The enzyme, a member of the nonheme-iron(II)-dependent dioxygenase family, is an extradiol-type

dioxygenase that utilizes a non-heme ferrous iron to cleave the aromatic ring at the meta position (rel-
ative to the hydroxyl substituent). The enzyme also has some activity with 2-amino-5-methylphenol
and 2-amino-4-methylphenol [3792]. The enzyme from the bacterium Comamonas testosteroni CNB-
1 also has the activity of EC 1.13.11.76, 2-amino-5-chlorophenol 1,6-dioxygenase [4259].

References: [3792, 4259, 2222]

[EC 1.13.11.74 created 2013]

EC 1.13.11.75
Accepted name: all-trans-8′-apo-β-carotenal 15,15′-oxygenase

Reaction: all-trans-8′-apo-β-carotenal + O2 = all-trans-retinal + (2E,4E,6E)-2,6-dimethylocta-2,4,6-trienedial
Other name(s): Diox1; ACO; 8′-apo-β-carotenal 15,15′-oxygenase

Systematic name: all-trans-8′-apo-β-carotenal:oxygen 15,15′-oxidoreductase (bond-cleaving)
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Comments: Contains an Fe2+-4His arrangement. The enzyme is involved in retinal biosynthesis in bacteria
[1967].

References: [3249, 1967]

[EC 1.13.11.75 created 2010 as EC 1.14.99.41, transferred 2013 to EC 1.13.11.75]

EC 1.13.11.76
Accepted name: 2-amino-5-chlorophenol 1,6-dioxygenase

Reaction: 2-amino-5-chlorophenol + O2 = 2-amino-5-chloromuconate 6-semialdehyde
Other name(s): cnbC (gene name); 2-amino-5-chlorophenol:oxygen 1,6-oxidoreductase (decyclizing)

Systematic name: 2-amino-5-chlorophenol:oxygen 1,6-oxidoreductase (ring-opening)
Comments: The enzyme, a member of the nonheme-iron(II)-dependent dioxygenase family, is an extradiol-type

dioxygenase that utilizes a non-heme ferrous iron to cleave the aromatic ring at the meta position (rel-
ative to the hydroxyl substituent). The enzyme from the bacterium Comamonas testosteroni CNB-1
also has the activity of EC 1.13.11.74, 2-aminophenol 1,6-dioxygenase.

References: [4259]

[EC 1.13.11.76 created 2013]

EC 1.13.11.77
Accepted name: oleate 10S-lipoxygenase

Reaction: (1) oleate + O2 = (8E,10S)-10-hydroperoxyoctadeca-8-enoate
(2) linoleate + O2 = (8E,10S,12Z)-10-hydroperoxyoctadeca-8,12-dienoate
(3) α-linolenate + O2 = (8E,10S,12Z,15Z)-10-hydroperoxyoctadeca-8,12,15-trienoate

Other name(s): 10S-DOX; (10S)-dioxygenase; 10S-dioxygenase
Systematic name: oleate:oxygen (10S)-oxidoreductase

Comments: Binds Fe2+. The enzyme isolated from the bacterium Pseudomonas sp. 42A2 has similar activity with
all the three ∆9 fatty acids. cf. EC 1.13.11.62, linoleate 10R-lipoxygenase.

References: [461]

[EC 1.13.11.77 created 2013]

EC 1.13.11.78
Accepted name: 2-amino-1-hydroxyethylphosphonate dioxygenase (glycine-forming)

Reaction: (2-amino-1-hydroxyethyl)phosphonate + O2 = glycine + phosphate
Other name(s): phnZ (gene name)

Systematic name: 2-amino-1-hydroxyethylphosphonate:oxygen 1-oxidoreductase (glycine-forming)
Comments: Requires Fe2+. The enzyme, characterized from a marine bacterium, is involved in a 2-

aminoethylphosphonate degradation pathway.
References: [2493, 4253]

[EC 1.13.11.78 created 2014]

EC 1.13.11.79
Accepted name: 5,6-dimethylbenzimidazole synthase

Reaction: FMNH2 + O2 = 5,6-dimethylbenzimidazole + D-erythrose 4-phosphate + other product(s)
Other name(s): BluB

Systematic name: FMNH2 oxidoreductase (5,6-dimethylbenzimidazole-forming)
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Comments: The enzyme catalyses a complex oxygen-dependent conversion of reduced flavin mononucleotide to
form 5,6-dimethylbenzimidazole, the lower ligand of vitamin B12. This conversion involves many
sequential steps in two distinct stages, and an alloxan intermediate that acts as a proton donor, a pro-
ton acceptor, and a hydride acceptor [4124]. The C-2 of 5,6-dimethylbenzimidazole is derived from
C-1′ of the ribityl group of FMNH2 and 2-H from the ribityl 1′-pro-S hydrogen. While D-erythrose 4-
phosphate has been shown to be one of the byproducts, the nature of the other product(s) has not been
verified yet.

References: [1267, 907, 3771, 4124, 642]

[EC 1.13.11.79 created 2010 as EC 1.14.99.40, transferred 2014 to EC 1.13.11.79]

EC 1.13.11.80
Accepted name: (3,5-dihydroxyphenyl)acetyl-CoA 1,2-dioxygenase

Reaction: (3,5-dihydroxyphenyl)acetyl-CoA + O2 = 2-(3,5-dihydroxyphenyl)-2-oxoacetate + CoA
Other name(s): DpgC

Systematic name: (3,5-dihydroxyphenyl)acetyl-CoA:oxygen oxidoreductase
Comments: The enzyme, characterized from bacteria Streptomyces toyocaensis and Amycolatopsis orientalis, is

involved in the biosynthesis of (3,5-dihydroxyphenyl)glycine, a component of the glycopeptide antibi-
otic vancomycin.

References: [569, 4205, 1011]

[EC 1.13.11.80 created 2015]

EC 1.13.11.81
Accepted name: 7,8-dihydroneopterin oxygenase

Reaction: 7,8-dihydroneopterin + O2 = 7,8-dihydroxanthopterin + formate + glycolaldehyde
Systematic name: 7,8-dihydroneopterin:oxygen oxidoreductase

Comments: The enzyme from the bacterium Mycobacterium tuberculosis is multifunctional and also catalyses the
epimerisation of the 2′-hydroxy group of 7,8-dihydroneopterin (EC 5.1.99.8, 7,8-dihydroneopterin
epimerase) and the reaction of EC 4.1.2.25 (dihydroneopterin aldolase).

References: [714]

[EC 1.13.11.81 created 2015]

EC 1.13.11.82
Accepted name: 8′-apo-carotenoid 13,14-cleaving dioxygenase

Reaction: 8′-apo-β-carotenal + O2 = 13-apo-β-carotenone + 2,6-dimethyldeca-2,4,6,8-tetraenedial
Other name(s): NACOX1 (gene name)

Systematic name: 8′-apo-β-carotenal:oxygen 13,14-dioxygenase (bond-cleaving)
Comments: Isolated from the bacterium Novosphingobium aromaticivorans. It is less active with 4′-apo-β-

carotenal and γ-carotene.
References: [1930]

[EC 1.13.11.82 created 2015]

EC 1.13.11.83
Accepted name: 4-hydroxy-3-prenylphenylpyruvate oxygenase

Reaction: 3-dimethylallyl-4-hydroxyphenylpyruvate + O2 = 3-dimethylallyl-4-hydroxymandelate + CO2
Other name(s): CloR

Systematic name: 3-dimethylallyl-4-hydroxyphenylpyruvate:oxygen 1,2-oxidoreductase (3-dimethylallyl-4-
hydroxymandelate forming)

Comments: Requires non-heme-Fe(II). Isolated from the bacterium Streptomyces roseochromogenes DS 12976.
A bifunctional enzyme involved in clorobiocin biosynthesis that also catalyses the activity of EC
1.13.12.23, 3-dimethylallyl-4-hydroxybenzoate synthase.
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References: [3028]

[EC 1.13.11.83 created 2017]

EC 1.13.11.84
Accepted name: crocetin dialdehyde synthase

Reaction: zeaxanthin + 2 O2 = crocetin dialdehyde + 2 3β-hydroxy-β-cyclocitral (overall reaction)
(1a) zeaxanthin + O2 = 3β-hydroxy-8′-apo-β-carotenal + 3β-hydroxy-β-cyclocitral
(1b) 3β-hydroxy-8′-apo-β-carotenal + O2 = crocetin dialdehyde + 3β-hydroxy-β-cyclocitral

Other name(s): CCD2; zeaxanthin 7,8-dioxygenase
Systematic name: zeaxanthin:oxygen 7′,8′-oxidoreductase (bond-cleaving)

Comments: The enzyme, characterized from the plant Crocus sativus (saffron), acts twice, cleaving 3β-hydroxy-
β-cyclocitral off each 3-hydroxy end group. It is part of the zeaxanthin degradation pathway in that
plant, leading to the different compounds that impart the color, flavor and aroma of the saffron spice.
The enzyme can similarly cleave the 7-8 double bond of other carotenoids with a 3-hydroxy-β-
carotenoid end group.

References: [1084, 38, 37]

[EC 1.13.11.84 created 2011 as EC 1.14.99.42, modified 2014, transferred 2017 to EC 1.13.11.84]

EC 1.13.11.85
Accepted name: exo-cleaving rubber dioxygenase

Reaction: cis-1,4-polyisoprene + n O2 = n (4Z,8Z)-4,8-dimethyl-12-oxotrideca-4,8-dienal
Other name(s): roxA (gene name); heme-dependent rubber oxygenase (ambiguous)

Systematic name: cis-1,4-polyisoprene:oxygen dioxygenase [(4Z,8Z)-4,8-dimethyl-12-oxotrideca-4,8-dienal-forming]
Comments: The enzyme, studied mainly from the bacterium Xanthomonas sp. 35Y, catalyses the cleavage of the

double bonds in natural and synthetic rubber (cis-1,4-polyisoprene polymers), generating ends that
contain ketone and aldehyde groups. The enzyme from Xanthomonas sp. 35Y contains two c-type
cytochromes. It attacks the substrate from its end, producing a single product of 15 carbons.

References: [3936, 1730, 377, 376, 3430, 300]

[EC 1.13.11.85 created 2018]

EC 1.13.11.86
Accepted name: 5-aminosalicylate 1,2-dioxygenase

Reaction: 5-aminosalicylate + O2 = (2Z,4E)-4-amino-6-oxohepta-2,4-dienedioate
Other name(s): mabB (gene name)

Systematic name: 5-aminosalicylate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: Requires Fe(II). The enzyme, characterized from different bacteria, is a nonheme iron dioxygenase in

the bicupin family.
References: [3662, 4401]

[EC 1.13.11.86 created 2018]

EC 1.13.11.87
Accepted name: endo-cleaving rubber dioxygenase

Reaction: Cleavage of cis-1,4-polyisoprene polymers into a mixture of compounds, including a C20 compound
((4Z,8Z,12Z,16Z,20Z,24Z)-4,8,12,16,20,24-hexamethyl-28-oxononacosa-4,8,12,16,20,24-hexaenal),
a C25 compound ((4Z,8Z,12Z,16Z,20Z)-4,8,12,16,20-pentamethyl-24-oxopentacosa-4,8,12,16,20-
pentaenal), a C30 compound ((4Z,8Z,12Z,16Z)-4,8,12,16-tetramethyl-20-oxohenicosa-4,8,12,16-
tetraenal), and larger isoprenologes such as C35, C40, C45, and higher analogues.

Other name(s): latex clearing protein; lcp (gene name); roxB (gene name)
Systematic name: cis-1,4-polyisoprene:oxygen dioxygenase (endo-cleaving)
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Comments: The enzyme catalyses the cleavage of the double bonds in natural and synthetic rubber, producing a
mixture of C20, C25, C30, and higher oligo-isoprenoids with ketone and aldehyde groups at their ends.
Two unrelated bacterial enzymes are known to possess this activity - the enzyme from Streptomyces
sp. K30 (Lcp) contains a b-type cytochrome, while the enzyme from Xanthomonas sp. 35Y, (RoxB)
contains two c-type cytochromes. Both enzymes attack the substrate at random locations, and are not
able to cleave the C35 or smaller products into shorter fragments.

References: [3936, 1730, 377, 376, 3430, 300, 301]

[EC 1.13.11.87 created 2018]

EC 1.13.12 With incorporation of one atom of oxygen (internal monooxygenases or internal mixed-
function oxidases)

EC 1.13.12.1
Accepted name: arginine 2-monooxygenase

Reaction: L-arginine + O2 = 4-guanidinobutanamide + CO2 + H2O
Other name(s): arginine monooxygenase; arginine decarboxylase; arginine oxygenase (decarboxylating); arginine

decarboxy-oxidase
Systematic name: L-arginine:oxygen 2-oxidoreductase (decarboxylating)

Comments: A flavoprotein. Also acts on canavanine and homoarginine.
References: [2877, 3863, 3864]

[EC 1.13.12.1 created 1972]

EC 1.13.12.2
Accepted name: lysine 2-monooxygenase

Reaction: L-lysine + O2 = 5-aminopentanamide + CO2 + H2O
Other name(s): lysine oxygenase; lysine monooxygenase; L-lysine-2-monooxygenase

Systematic name: L-lysine:oxygen 2-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FAD). Also acts on other diamino acids.
References: [2724, 3787, 3788]

[EC 1.13.12.2 created 1972]

EC 1.13.12.3
Accepted name: tryptophan 2-monooxygenase

Reaction: L-tryptophan + O2 = (indol-3-yl)acetamide + CO2 + H2O
Other name(s): tms1 (gene name); iaaM (gene name)

Systematic name: L-tryptophan:oxygen 2-oxidoreductase (decarboxylating)
Comments: The enzyme, studied from phytopathogenic bacteria such as Pseudomonas savastanoi, is involved in a

pathway for the production of (indol-3-yl)acetate (IAA), the main auxin hormone in plants.
References: [2040, 2084, 1614, 2885, 945]

[EC 1.13.12.3 created 1972]

EC 1.13.12.4
Accepted name: lactate 2-monooxygenase

Reaction: (S)-lactate + O2 = acetate + CO2 + H2O
Other name(s): lactate oxidative decarboxylase; lactate oxidase; lactic oxygenase; lactate oxygenase; lactic oxidase;

L-lactate monooxygenase; lactate monooxygenase; L-lactate-2-monooxygenase
Systematic name: (S)-lactate:oxygen 2-oxidoreductase (decarboxylating)

Comments: A flavoprotein (FMN).
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References: [1435, 3745]

[EC 1.13.12.4 created 1961 as EC 1.1.3.2, transferred 1972 to EC 1.13.12.4]

EC 1.13.12.5
Accepted name: Renilla-type luciferase

Reaction: coelenterazine h + O2 = excited coelenteramide h monoanion + CO2 (over-all reaction)
(1a) coelenterazine h + O2 = coelenterazine h dioxetanone
(1b) coelenterazine h dioxetanone = excited coelenteramide h monoanion + CO2

Other name(s): Renilla-luciferin 2-monooxygenase; luciferase (Renilla luciferin); Renilla-luciferin:oxygen 2-
oxidoreductase (decarboxylating)

Systematic name: coelenterazine h:oxygen 2-oxidoreductase (decarboxylating)
Comments: This enzyme has been studied from the soft coral Renilla reniformis. Before the reaction occurs the

substrate is sequestered by a coelenterazine-binding protein. Elevation in the concentration of cal-
cium ions releases the substrate, which then interacts with the luciferase. Upon binding the substrate,
the enzyme catalyses an oxygenation, producing a very short-lived hydroperoxide that cyclizes into
a dioxetanone structure, which collapses, releasing a CO2 molecule. The spontaneous breakdown of
the dioxetanone releases the energy (about 50 kcal/mole) that is necessary to generate the excited state
of the coelenteramide product, which is the singlet form of the monoanion. In vivo the product under-
goes the process of nonradiative energy transfer to an accessory protein, a green fluorescent protein
(GFP), which results in green bioluminescence. In vitro, in the absence of GFP, the product emits blue
light.

References: [664, 1567, 84, 3505, 547, 2299, 2290]

[EC 1.13.12.5 created 1976, modified 1981, modified 1982, modified 2004, modified 2017]

EC 1.13.12.6
Accepted name: Cypridina-luciferin 2-monooxygenase

Reaction: Cypridina luciferin + O2 = oxidized Cypridina luciferin + CO2 + hν

Other name(s): Cypridina-type luciferase; luciferase (Cypridina luciferin); Cypridina luciferase
Systematic name: Cypridina-luciferin:oxygen 2-oxidoreductase (decarboxylating)

Comments: Cypridina is a bioluminescent crustacea. The luciferins (and presumably the luciferases, since they
cross-react) of some luminous fish (e.g. Apogon, Parapriacanthus, Porichthys) are apparently similar.
The enzyme may be assayed by measurement of light emission.

References: [663, 1817, 1940, 3938]

[EC 1.13.12.6 created 1976, modified 1982]

EC 1.13.12.7
Accepted name: firefly luciferase

Reaction: D-firefly luciferin + O2 + ATP = firefly oxyluciferin + CO2 + AMP + diphosphate + hν

Other name(s): Photinus-luciferin 4-monooxygenase (ATP-hydrolysing); luciferase (firefly luciferin); Photinus lu-
ciferin 4-monooxygenase (adenosine triphosphate-hydrolyzing); firefly luciferin luciferase; Photinus
pyralis luciferase; Photinus-luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing)

Systematic name: D-firefly luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing)
Comments: The enzyme, which is found in fireflies (Lampyridae), is responsible for their biolouminescence. The

reaction begins with the formation of an acid anhydride between the carboxylic group of D-firefly
luciferin and AMP, with the release of diphosphate. An oxygenation follows, with release of the AMP
group and formation of a very short-lived peroxide that cyclizes into a dioxetanone structure, which
collapses, releasing a CO2 molecule. The spontaneous breakdown of the dioxetanone (rather than the
hydrolysis of the adenylate) releases the energy (about 50 kcal/mole) that is necessary to generate
the excited state of oxyluciferin. The excited luciferin then emits a photon, returning to its ground
state. The enzyme has a secondary acyl-CoA ligase activity when acting on L-firefly luciferin (see EC
6.2.1.52).
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References: [1269, 4188, 1560, 4189, 2028, 771, 2703, 3740]

[EC 1.13.12.7 created 1976, modified 1981, modified 1982, modified 2017]

EC 1.13.12.8
Accepted name: Watasenia-luciferin 2-monooxygenase

Reaction: Watasenia luciferin + O2 = oxidized Watasenia luciferin + CO2 + hν

Other name(s): Watasenia-type luciferase
Systematic name: Watasenia-luciferin:oxygen 2-oxidoreductase (decarboxylating)

Comments: The enzyme from the luminous squid Watasenia may be assayed by measurement of light emission.
References: [1654]

[EC 1.13.12.8 created 1982]

EC 1.13.12.9
Accepted name: phenylalanine 2-monooxygenase

Reaction: L-phenylalanine + O2 = 2-phenylacetamide + CO2 + H2O
Other name(s): L-phenylalanine oxidase (deaminating and decarboxylating); phenylalanine (deaminating, decarboxy-

lating)oxidase
Systematic name: L-phenylalanine:oxygen 2-oxidoreductase (decarboxylating)

Comments: The reaction shown above is about 80% of the reaction catalysed; the remaining 20% is:¡p¿ L-
phenylalanine + O2 + H2O = 3-phenylpyruvic acid + ammonia + H2O2¡p¿ a reaction similar to that
of EC 1.4.3.2, L-amino-acid oxidase.

References: [2046, 2048, 2047, 2049]

[EC 1.13.12.9 created 1986, modified 2003]

[1.13.12.10 Deleted entry. lysine 6-monooxygenase. Reaction covered by EC 1.14.13.59, L-lysine 6-monooxygenase (NADPH)]

[EC 1.13.12.10 created 1989, modified 1999, deleted 2001]

[1.13.12.11 Deleted entry. methylphenyltetrahydropyridine N-monooxygenase. The activity is due to EC 1.14.13.8, flavin-
containing monooxygenase]

[EC 1.13.12.11 created 1992, deleted 2006]

[1.13.12.12 Transferred entry. apo-β-carotenoid-14′,13′-dioxygenase. The enzyme was misclassified and has been trans-
ferred to EC 1.13.11.67, 8-apo-β-carotenoid 14′,13′-cleaving dioxygenase]

[EC 1.13.12.12 created 2000, modified 2001, deleted 2012]

EC 1.13.12.13
Accepted name: Oplophorus-luciferin 2-monooxygenase

Reaction: Oplophorus luciferin + O2 = oxidized Oplophorus luciferin + CO2 + hν

Other name(s): Oplophorus luciferase
Systematic name: Oplophorus-luciferin:oxygen 2-oxidoreductase (decarboxylating)

Comments: The luciferase from the deep sea shrimp Oplophorus gracilirostris is a complex composed of more
than one protein. The enzyme’s specificity is quite broad, with both coelenterazine and bisdeoxycoe-
lenterazine being good substrates.

References: [3507, 1656]

[EC 1.13.12.13 created 2004]

[1.13.12.14 Transferred entry. chlorophyllide-a oxygenase. Now EC 1.14.13.122, chlorophyllide-a oxygenase]

[EC 1.13.12.14 created 2006, deleted 2011]
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EC 1.13.12.15
Accepted name: 3,4-dihydroxyphenylalanine oxidative deaminase

Reaction: 2 L-dopa + O2 = 2 3,4-dihydroxyphenylpyruvate + 2 NH3
Other name(s): 3,4-dihydroxy-L-phenylalanine: oxidative deaminase; oxidative deaminase; DOPA oxidative deami-

nase; DOPAODA
Systematic name: 3,4-dihydroxy-L-phenylalanine:oxygen oxidoreductase (deaminating)

Comments: This enzyme is one of the three enzymes involved in L-dopa (3,4-dihydroxy-L-phenylalanine)
catabolism in the non-oxygenic phototrophic bacterium Rubrivivax benzoatilyticus OU5 (and not
Rhodobacter sphaeroides OU5 as had been thought [3123]), the other two being EC 4.3.1.22 (dihy-
droxyphenylalanine reductive deaminase) and EC 2.6.1.49 (3,4-dihydroxyphenylalanine transami-
nase). In addition to L-dopa, the enzyme can also use L-tyrosine, L-phenylalanine, L-tryptophan and
glutamate as substrate, but more slowly. The enzyme is inhibited by NADH and 2-oxoglutarate.

References: [3123]

[EC 1.13.12.15 created 2008]

EC 1.13.12.16
Accepted name: nitronate monooxygenase

Reaction: ethylnitronate + O2 = acetaldehyde + nitrite + other products
Other name(s): NMO; 2-nitropropane dioxygenase (incorrect)

Systematic name: nitronate:oxygen 2-oxidoreductase (nitrite-forming)
Comments: Previously classified as 2-nitropropane dioxygenase (EC 1.13.11.32), but it is now recognized that this

was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes
from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified
as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Neither hydrogen perox-
ide nor superoxide were detected during enzyme turnover. Active towards linear alkyl nitronates of
lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The en-
zyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity.

References: [1053, 1327, 1135, 1052]

[EC 1.13.12.16 created 1984 as EC 1.13.11.32, transferred 2009 to EC 1.13.12.16, modified 2011]

EC 1.13.12.17
Accepted name: dichloroarcyriaflavin A synthase

Reaction: dichlorochromopyrrolate + 4 O2 + 4 NADH + 4 H+ = dichloroarcyriaflavin A + 2 CO2 + 6 H2O + 4
NAD+

Systematic name: dichlorochromopyrrolate,NADH:oxygen 2,5-oxidoreductase (dichloroarcyriaflavin A-forming)
Comments: The conversion of dichlorochromopyrrolate to dichloroarcyriaflavin A is a complex process that in-

volves two enzyme components. RebP is an NAD-dependent cytochrome P-450 oxygenase that per-
forms an aryl-aryl bond formation yielding the six-ring indolocarbazole scaffold [2379]. Along with
RebC, a flavin-dependent hydroxylase, it also catalyses the oxidative decarboxylation of both car-
boxyl groups. The presence of RebC ensures that the only product is the rebeccamycin aglycone
dichloroarcyriaflavin A [1586]. The enzymes are similar, but not identical, to StaP and StaC, which
are involved in the synthesis of staurosporine [3303].

References: [2379, 1586, 3303]

[EC 1.13.12.17 created 2010]

EC 1.13.12.18
Accepted name: dinoflagellate luciferase

Reaction: dinoflagellate luciferin + O2 = oxidized dinoflagellate luciferin + H2O + hν

Other name(s): (dinoflagellate luciferin) luciferase; Gonyaulax luciferase
Systematic name: dinoflagellate-luciferin:oxygen 132-oxidoreductase
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Comments: A luciferase from dinoflagelates such as Gonyaulax polyedra, Lingulodinium polyedrum, Noctiluca
scintillans, and Pyrocystis lunula. It is a single protein with three luciferase domains. The luciferin is
strongly bound by a luciferin binding protein above a pH of 7.

References: [889, 2634, 160, 2227, 2633, 3399]

[EC 1.13.12.18 created 2011]

EC 1.13.12.19
Accepted name: 2-oxoglutarate dioxygenase (ethene-forming)

Reaction: 2-oxoglutarate + O2 = ethene + 3 CO2 + H2O
Other name(s): ethylene-forming enzyme; EFE; 2-oxoglutarate dioxygenase (ethylene-forming); 2-

oxoglutarate:oxygen oxidoreductase (decarboxylating, ethylene-forming)
Systematic name: 2-oxoglutarate:oxygen oxidoreductase (decarboxylating, ethene-forming)

Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethene
production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.14.20.7, 2-
oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)] the enzyme catalyses the
mono-oxygenation of both 2-oxoglutarate and L-arginine, forming succinate, carbon dioxide and L-
hydroxyarginine, which is subsequently cleaved into guanidine and (S)-1-pyrroline-5-carboxylate.The
enzymes catalyse two cycles of the ethene-forming reaction for each cycle of the succinate-forming
reaction, so that the stoichiometry of the products ethene and succinate is 2:1.

References: [2679, 1107, 1106]

[EC 1.13.12.19 created 2011]

EC 1.13.12.20
Accepted name: noranthrone monooxygenase

Reaction: norsolorinic acid anthrone + O2 = norsolorinic acid + H2O
Other name(s): norsolorinate anthrone oxidase

Systematic name: norsolorinic acid anthrone:oxygen 9-oxidoreductase (norsolorinic acid-forming)
Comments: Involved in the synthesis of aflatoxins in the fungus Aspergillus parasiticus.
References: [928]

[EC 1.13.12.20 created 2013]

EC 1.13.12.21
Accepted name: tetracenomycin-F1 monooxygenase

Reaction: tetracenomycin F1 + O2 = tetracenomycin D3 + H2O
Other name(s): tcmH (gene name)

Systematic name: tetracenomycin-F1:oxygen C5-monooxygenase
Comments: The enzyme is involved in biosynthesis of the anthracycline antibiotic tetracenomycin C by the bac-

terium Streptomyces glaucescens.
References: [3472]

[EC 1.13.12.21 created 2013]

EC 1.13.12.22
Accepted name: deoxynogalonate monooxygenase

Reaction: deoxynogalonate + O2 = nogalonate + H2O
Other name(s): SnoaB (gene name); 12-deoxynogalonic acid oxidoreductase; [4,5-dihydroxy-10-oxo-3-(3-

oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate oxidase; [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-
9,10-dihydroanthracen-2-yl]acetate monooxygenase; deoxynogalonate oxidoreductase

Systematic name: deoxynogalonate:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Streptomyces nogalater, is involved in the biosynthesis

of the aromatic polyketide nogalamycin.
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References: [2038, 1290]

[EC 1.13.12.22 created 2015]

EC 1.13.12.23
Accepted name: 4-hydroxy-3-prenylbenzoate synthase

Reaction: 3-dimethylallyl-4-hydroxymandelate + O2 = 3-dimethylallyl-4-hydroxybenzoate + CO2 + H2O
Other name(s): CloR; novR (gene name)

Systematic name: 3-dimethylallyl-4-hydroxymandelate:oxygen oxidoreductase (3-dimethylallyl-4-hydroxybenzoate
forming)

Comments: Isolated from the bacterium Streptomyces roseochromogenes DS 12976. A bifunctional enzyme in-
volved in clorobiocin biosynthesis that also catalyses the activity of EC 1.13.11.83, 3-dimethylallyl-4-
hydroxyphenylpyruvate oxygenase.

References: [3028]

[EC 1.13.12.23 created 2017]

EC 1.13.12.24
Accepted name: calcium-regulated photoprotein

Reaction: [apoaequorin] + coelenterazine + O2 + 3 Ca2+ = [excited state blue fluorescent protein] + CO2 (over-
all reaction)
(1a) [apoaequorin] + coelenterazine = [apoaequorin containing coelenterazine]
(1b) [apoaequorin containing coelenterazine] + O2 = [aequorin]
(1c) [aequorin] + 3 Ca2+ = [aequorin] 1,2-dioxetan-3-one
(1d) [aequorin] 1,2-dioxetan-3-one = [excited state blue fluorescent protein] + CO2

Other name(s): Ca2+-regulated photoprotein; calcium-activated photoprotein; aequorin; obelin; halistaurin; mitro-
comin; phialidin; clytin; mnemiopsin; berovin

Systematic name: coelenterazine:oxygen 2-oxidoreductase (decarboxylating, calcium-dependent)
Comments: Ca2+-regulated photoproteins are found in a variety of bioluminescent marine organisms, mostly

coelenterates, and are responsible for their light emission. The best studied enzyme is from the jelly-
fish Aequorea victoria. The enzyme tightly binds the imidazolopyrazinone derivative coelenterazine,
which is then peroxidized by oxygen. The hydroperoxide is stably bound until three Ca2+ ions bind to
the protein, inducing a structural change that results in the formation of a 1,2-dioxetan-3-one ring, fol-
lowed by decarboxylation and generation of a protein-bound coelenteramide in an excited state. The
calcium-bound protein-product complex is known as a blue fluorescent protein. In vivo the energy is
transferred to a green fluorescent protein (GFP) by Förster resonance energy transfer. In vitro, in the
absence of GFP, coelenteramide emits a photon of blue light while returning to its ground state.

References: [3503, 2624, 1655, 1447, 793]

[EC 1.13.12.24 created 2018]

EC 1.13.99 Miscellaneous

EC 1.13.99.1
Accepted name: inositol oxygenase

Reaction: myo-inositol + O2 = D-glucuronate + H2O
Other name(s): meso-inositol oxygenase; myo-inositol oxygenase; MOO

Systematic name: myo-inositol:oxygen oxidoreductase
Comments: An iron protein.
References: [545, 3146, 122]

[EC 1.13.99.1 created 1961 as EC 1.99.2.6, transferred 1965 to EC 1.13.1.11, transferred 1972 to EC 1.13.99.1, modified 2002]
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[1.13.99.2 Transferred entry. benzoate 1,2-dioxygenase. Now EC 1.14.12.10, benzoate 1,2-dioxygenase]

[EC 1.13.99.2 created 1972, deleted 1992]

EC 1.13.99.3
Accepted name: tryptophan 2′-dioxygenase

Reaction: L-tryptophan + O2 = (indol-3-yl)glycolaldehyde + CO2 + NH3
Other name(s): indole-3-alkane α-hydroxylase; tryptophan side-chain α,β-oxidase; tryptophan side chain oxidase II;

tryptophan side-chain oxidase; TSO; indolyl-3-alkan α-hydroxylase; tryptophan side chain oxidase
type I; TSO I ; TSO II; tryptophan side chain oxidase

Systematic name: L-tryptophan:oxygen 2′-oxidoreductase (side-chain-cleaving)
Comments: A hemoprotein. Acts on a number of indole-3-alkane derivatives, oxidizing the 3-side-chain in the

2′-position. Best substrates were L-tryptophan and 5-hydroxy-L-tryptophan.
References: [3203, 3783]

[EC 1.13.99.3 created 1984]

[1.13.99.4 Transferred entry. 4-chlorophenylacetate 3,4-dioxygenase. Now EC 1.14.12.9, 4-chlorophenylacetate 3,4-dioxygenase]

[EC 1.13.99.4 created 1989, deleted 1992]

[1.13.99.5 Transferred entry. now EC 1.13.11.47, 3-hydroxy-4-oxoquinoline 2,4-dioxygenase]

[EC 1.13.99.5 created 1999, deleted 2001]

EC 1.14 Acting on paired donors, with incorporation or reduction of molecular oxy-
gen
This subclass contains enzymes that act on two hydrogen-donors, and oxygen is incorporated into one or both of them. Sub-
subclasses are based on the second donor and the number of oxygen atoms that are incorporated into one or both donors:
2-oxoglutarate is one donor and one atom of oxygen is incorporated into each donor (EC 1.14.11), NADH or NADPH is one
donor, and two atoms of oxygen are incorporated into the other donor (EC 1.14.12), NADH or NADPH is one donor, but only
one atom of oxygen is incorporated into the other donor (EC 1.14.13). In sub-subclasses EC 1.14.14-1.14.18, one atom of
oxygen is incorporated into one donor, the other donor being a reduced flavin or flavoprotein (EC 1.14.14), a reduced iron-sulfur
protein (EC 1.14.15), a reduced pteridine (EC 1.14.16), reduced ascorbate (EC 1.14.17), or some other compound (EC 1.14.18).
Sub-subclass EC 1.14.19 differs from others in subclass EC 1.14 in that hydrogen atoms removed from the two donors are
combined with O2 to form two molecules of water. Sub-subclass EC 1.14.20 has 2-oxoglutarate as one donor, and the other is
dehydrogenated. Sub-subclass EC 1.14.21 has NADH or NADPH as one donor, and the other is dehydrogenated. Sub-subclass
EC 1.14.99 is for cases where information about the second donor is incomplete.

EC 1.14.1 With NADH or NADPH as one donor (deleted sub-subclass)

[1.14.1.1 Transferred entry. now EC 1.14.14.1, unspecific monooxygenase]

[EC 1.14.1.1 created 1961 as EC 1.99.1.1, transferred 1965 to EC 1.14.14.1, deleted 1972]

[1.14.1.2 Transferred entry. now EC 1.14.13.9, kynurenine 3-monooxygenase]

[EC 1.14.1.2 created 1965, deleted 1972]

[1.14.1.3 Deleted entry. squalene hydroxylase. Activity is covered by EC 1.14.99.7, squalene monooxygenase and EC
5.4.99.7, lanosterol synthase]

[EC 1.14.1.3 created 1961 as EC 1.99.1.13, transferred 1965 to EC 1.14.1.3, deleted 1972]

[1.14.1.4 Transferred entry. now EC 1.14.99.2, kynurenine 7,8-hydroxylase]
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[EC 1.14.1.4 created 1965, deleted 1972]

[1.14.1.5 Transferred entry. now EC 1.14.13.5, imidazoleacetate 4-monooxygenase]

[EC 1.14.1.5 created 1965, deleted 1972]

[1.14.1.6 Transferred entry. now EC 1.14.15.4, steroid 11β-monooxygenase]

[EC 1.14.1.6 created 1961 as EC 1.99.1.7, transferred 1965 to EC 1.14.1.6, deleted 1972]

[1.14.1.7 Transferred entry. now EC 1.14.99.9, steroid 17α-monooxygenase]

[EC 1.14.1.7 created 1965, deleted 1972]

[1.14.1.8 Transferred entry. now EC 1.14.99.10, steroid 21-monooxygenase]

[EC 1.14.1.8 created 1965, deleted 1972]

[1.14.1.9 Deleted entry. cholesterol 20-hydroxylase]

[EC 1.14.1.9 created 1965, deleted 1972]

[1.14.1.10 Transferred entry. now EC 1.14.99.11, estradiol 6β-monooxygenase]

[EC 1.14.1.10 created 1965, deleted 1972]

[1.14.1.11 Deleted entry. oestriol 2-hydroxylase]

[EC 1.14.1.11 created 1965, deleted 1972]

EC 1.14.2 With ascorbate as one donor (deleted sub-subclass)

[1.14.2.1 Transferred entry. now EC 1.14.17.1, dopamine β-monooxygenase]

[EC 1.14.2.1 created 1965, deleted 1972]

[1.14.2.2 Transferred entry. now EC 1.13.11.27, 4-hydroxyphenylpyruvate dioxygenase]

[EC 1.14.2.2 created 1961 as EC 1.99.1.14, transferred 1965 to EC 1.14.2.2, deleted 1972]

EC 1.14.3 With reduced pteridine as one donor (deleted sub-subclass)

[1.14.3.1 Transferred entry. now EC 1.14.16.1, phenylalanine 4-monooxygenase]

[EC 1.14.3.1 created 1961 as EC 1.99.1.2, transferred 1965 to EC 1.14.3.1, deleted 1972]

EC 1.14.11 With 2-oxoglutarate as one donor, and incorporation of one atom of oxygen into each
donor

EC 1.14.11.1
Accepted name: γ-butyrobetaine dioxygenase

Reaction: 4-trimethylammoniobutanoate + 2-oxoglutarate + O2 = 3-hydroxy-4-trimethylammoniobutanoate +
succinate + CO2

Other name(s): α-butyrobetaine hydroxylase; γ-butyrobetaine hydroxylase; butyrobetaine hydroxylase
Systematic name: 4-trimethylammoniobutanoate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires Fe2+ and ascorbate.
References: [2265]

[EC 1.14.11.1 created 1972]
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EC 1.14.11.2
Accepted name: procollagen-proline 4-dioxygenase

Reaction: procollagen L-proline + 2-oxoglutarate + O2 = procollagen trans-4-hydroxy-L-proline + succinate +
CO2

Other name(s): P4HA (gene name); P4HB (gene name); protocollagen hydroxylase; proline hydroxylase; proline,2-
oxoglutarate 4-dioxygenase; collagen proline hydroxylase; hydroxylase, collagen proline; peptidyl
proline hydroxylase; proline protocollagen hydroxylase; proline, 2-oxoglutarate dioxygenase; pro-
lyl hydroxylase; prolylprotocollagen dioxygenase; prolylprotocollagen hydroxylase; protocollagen
proline 4-hydroxylase; protocollagen proline dioxygenase; protocollagen proline hydroxylase; pro-
tocollagen prolyl hydroxylase; prolyl 4-hydroxylase; prolyl-glycyl-peptide, 2-oxoglutarate:oxygen
oxidoreductase, 4-hydroxylating; procollagen-proline 4-dioxygenase (ambiguous)

Systematic name: procollagen-L-proline,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: Requires Fe2+ and ascorbate.The enzyme, which is located within the lumen of the endoplasmic retic-

ulum, catalyses the 4-hydroxylation of prolines in -X-Pro-Gly- sequences. The 4-hydroxyproline
residues are essential for the formation of the collagen triple helix. The enzyme forms a complex with
protein disulfide isomerase and acts not only on procollagen but also on more than 15 other proteins
that have collagen-like domains.

References: [1615, 1954, 1952, 266, 1752, 2120, 2678, 1953]

[EC 1.14.11.2 created 1972, modified 1981, modified 1983, modified 2017]

EC 1.14.11.3
Accepted name: pyrimidine-deoxynucleoside 2′-dioxygenase

Reaction: 2′-deoxyuridine + 2-oxoglutarate + O2 = uridine + succinate + CO2
Other name(s): deoxyuridine 2′-dioxygenase; deoxyuridine 2′-hydroxylase; pyrimidine deoxyribonucleoside 2′-

hydroxylase; thymidine 2′-dioxygenase; thymidine 2′-hydroxylase; thymidine 2-oxoglutarate dioxy-
genase; thymidine dioxygenase

Systematic name: 2′-deoxyuridine,2-oxoglutarate:oxygen oxidoreductase (2′-hydroxylating)
Comments: Requires Fe(II) and ascorbate. Also acts on thymidine. cf. EC 1.14.11.10, pyrimidine-

deoxynucleoside 1′-dioxygenase.
References: [192, 3691, 4134]

[EC 1.14.11.3 created 1972, modified 1976, modified 1989, modified 2002]

EC 1.14.11.4
Accepted name: procollagen-lysine 5-dioxygenase

Reaction: [procollagen]-L-lysine + 2-oxoglutarate + O2 = [procollagen]-(2S,5R)-5-hydroxy-L-lysine + succinate
+ CO2

Other name(s): lysine hydroxylase; lysine,2-oxoglutarate 5-dioxygenase; protocollagen lysine dioxygenase; col-
lagen lysine hydroxylase; lysine-2-oxoglutarate dioxygenase; lysyl hydroxylase; lysylprotocolla-
gen dioxygenase; protocollagen lysyl hydroxylase; peptidyl-lysine, 2-oxoglutarate: oxygen ox-
idoreductase; peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase; protocollagen lysine hy-
droxylase; procollagen-L-lysine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating); L-lysine-
[procollagen],2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)

Systematic name: [procollagen]-L-lysine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
References: [1428, 3177, 3074, 3075]

[EC 1.14.11.4 created 1972, modified 1983]

[1.14.11.5 Deleted entry. 5-hydroxymethyluracil,2-oxoglutarate dioxygenase. Now included with EC 1.14.11.6 thymine
dioxygenase]

[EC 1.14.11.5 created 1972, deleted 1976]
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EC 1.14.11.6
Accepted name: thymine dioxygenase

Reaction: thymine + 2-oxoglutarate + O2 = 5-hydroxymethyluracil + succinate + CO2
Other name(s): thymine 7-hydroxylase; 5-hydroxy-methyluracil dioxygenase; 5-hydroxymethyluracil oxygenase

Systematic name: thymine,2-oxoglutarate:oxygen oxidoreductase (7-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Also acts on 5-hydroxymethyluracil to oxidize its -CH2OH group first

to -CHO and then to -COOH.
References: [191, 2275, 4134]

[EC 1.14.11.6 created 1972, modified 1976 (EC 1.14.11.5 created 1972, incorporated 1976)]

EC 1.14.11.7
Accepted name: procollagen-proline 3-dioxygenase

Reaction: [procollagen]-L-proline + 2-oxoglutarate + O2 = [procollagen]-trans-3-hydroxy-L-proline + succinate
+ CO2

Other name(s): proline,2-oxoglutarate 3-dioxygenase; prolyl 3-hydroxylase; protocollagen proline 3-hydroxylase;
prolyl-4-hydroxyprolyl-glycyl-peptide,2-oxoglutarate:oxygen oxidoreductase, 3-hydroxylating

Systematic name: [procollagen]-L-proline,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme forms a complex with protein disulfide isomerase, and is

located in the endoplasmic reticulum. It modifies proline residues within the procollagen peptide of
certain collagen types. The modification is essential for proper collagen triple helix formation.

References: [3194, 3195, 4068, 3884]

[EC 1.14.11.7 created 1981, modified 1983, modified 2017]

EC 1.14.11.8
Accepted name: trimethyllysine dioxygenase

Reaction: N6,N6,N6-trimethyl-L-lysine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-N6,N6,N6-trimethyl-L-lysine +
succinate + CO2

Other name(s): trimethyllysine α-ketoglutarate dioxygenase; TML-α-ketoglutarate dioxygenase; TML hydroxylase;
6-N,6-N,6-N-trimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Systematic name: N6,N6,N6-trimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+ and ascorbate.
References: [1609, 3843, 2204, 3150]

[EC 1.14.11.8 created 1983]

EC 1.14.11.9
Accepted name: flavanone 3-dioxygenase

Reaction: a (2S)-flavan-4-one + 2-oxoglutarate + O2 = a (2R,3R)-dihydroflavonol + succinate + CO2
Other name(s): naringenin 3-hydroxylase; flavanone 3-hydroxylase; flavanone 3β-hydroxylase; flavanone synthase I;

(2S)-flavanone 3-hydroxylase; naringenin,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating);
F3H; flavanone,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Systematic name: (2S)-flavan-4-one,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+ and ascorbate. This plant enzyme catalyses an early step in the flavonoid biosynthesis

pathway, leading to the production of flavanols and anthocyanins. Substrates include (2S)-naringenin,
(2S)-eriodictyol, (2S)-dihydrotricetin and (2S)-pinocembrin. Some enzymes are bifuctional and also
catalyse EC 1.14.20.6, flavonol synthase.

References: [1033, 552, 2976, 4172, 1745, 3474]

[EC 1.14.11.9 created 1983, modified 1989, modified 2004, modified 2016]

EC 1.14.11.10
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Accepted name: pyrimidine-deoxynucleoside 1′-dioxygenase
Reaction: 2′-deoxyuridine + 2-oxoglutarate + O2 = uracil + 2-deoxyribonolactone + succinate + CO2

Other name(s): deoxyuridine-uridine 1′-dioxygenase
Systematic name: 2′-deoxyuridine,2-oxoglutarate:oxygen oxidoreductase (1′-hydroxylating)

Comments: Requires Fe(II) and ascorbate. cf. EC 1.14.11.3, pyrimidine-deoxynucleoside 2′-dioxygenase.
References: [3691]

[EC 1.14.11.10 created 1989, modified 2002]

EC 1.14.11.11
Accepted name: hyoscyamine (6S)-dioxygenase

Reaction: L-hyoscyamine + 2-oxoglutarate + O2 = (6S)-hydroxyhyoscyamine + succinate + CO2
Other name(s): hyoscyamine 6β-hydroxylase; hyoscyamine 6β-dioxygenase; hyoscyamine 6-hydroxylase

Systematic name: L-hyoscyamine,2-oxoglutarate:oxygen oxidoreductase [(6S)-hydroxylating]
Comments: Requires Fe2+ and ascorbate.
References: [1411]

[EC 1.14.11.11 created 1989]

EC 1.14.11.12
Accepted name: gibberellin-44 dioxygenase

Reaction: gibberellin 44 + 2-oxoglutarate + O2 = gibberellin 19 + succinate + CO2
Other name(s): oxygenase, gibberellin A44 oxidase; (gibberellin-44), 2-oxoglutarate:oxygen oxidoreductase

Systematic name: (gibberellin-44),2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+.
References: [1206]

[EC 1.14.11.12 created 1990]

EC 1.14.11.13
Accepted name: gibberellin 2β-dioxygenase

Reaction: gibberellin 1 + 2-oxoglutarate + O2 = 2β-hydroxygibberellin 1 + succinate + CO2
Other name(s): gibberellin 2β-hydroxylase

Systematic name: (gibberellin-1),2-oxoglutarate:oxygen oxidoreductase (2β-hydroxylating)
Comments: Also acts on a number of other gibberellins.
References: [3567]

[EC 1.14.11.13 created 1990]

[1.14.11.14 Transferred entry. 6β-hydroxyhyoscyamine epoxidase. Now EC 1.14.20.13, 6β-hydroxyhyoscyamine epoxidase]

[EC 1.14.11.14 created 1992, deleted 2018]

EC 1.14.11.15
Accepted name: gibberellin 3β-dioxygenase

Reaction: gibberellin 20 + 2-oxoglutarate + O2 = gibberellin 1 + succinate + CO2
Other name(s): gibberellin 3β-hydroxylase; (gibberrellin-20),2-oxoglutarate: oxygen oxidoreductase (3β-

hydroxylating)
Systematic name: (gibberellin-20),2-oxoglutarate:oxygen oxidoreductase (3β-hydroxylating)

Comments: Requires Fe2+ and ascorbate.
References: [2105]

[EC 1.14.11.15 created 1992]
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EC 1.14.11.16
Accepted name: peptide-aspartate β-dioxygenase

Reaction: peptide-L-aspartate + 2-oxoglutarate + O2 = peptide-3-hydroxy-L-aspartate + succinate + CO2
Other name(s): aspartate β-hydroxylase; aspartylpeptide β-dioxygenase

Systematic name: peptide-L-aspartate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+. Some vitamin K-dependent coagulation factors, as well as synthetic peptides based on

the structure of the first epidermal growth factor domain of human coagulation factor IX or X, can act
as acceptors.

References: [1293]

[EC 1.14.11.16 created 1992]

EC 1.14.11.17
Accepted name: taurine dioxygenase

Reaction: taurine + 2-oxoglutarate + O2 = sulfite + aminoacetaldehyde + succinate + CO2
Other name(s): 2-aminoethanesulfonate dioxygenase; α-ketoglutarate-dependent taurine dioxygenase

Systematic name: taurine, 2-oxoglutarate:oxygen oxidoreductase (sulfite-forming)
Comments: Requires FeII. The enzyme from Escherichia coli also acts on pentanesulfonate, 3-(N-

morpholino)propanesulfonate and 2-(1,3-dioxoisoindolin-2-yl)ethanesulfonate, but at lower rates.
References: [929]

[EC 1.14.11.17 created 2000]

EC 1.14.11.18
Accepted name: phytanoyl-CoA dioxygenase

Reaction: phytanoyl-CoA + 2-oxoglutarate + O2 = 2-hydroxyphytanoyl-CoA + succinate + CO2
Other name(s): phytanoyl-CoA hydroxylase

Systematic name: phytanoyl-CoA, 2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Part of the peroxisomal phytanic acid α-oxidation pathway. Requires Fe2+ and ascorbate.
References: [1718, 1719, 1720, 2534, 2533]

[EC 1.14.11.18 created 2000]

[1.14.11.19 Transferred entry. anthocyanidin synthase. Now EC 1.14.20.4, anthocyanidin synthase]

[EC 1.14.11.19 created 2001, modified 2017, deleted 2018]

EC 1.14.11.20
Accepted name: deacetoxyvindoline 4-hydroxylase

Reaction: deacetoxyvindoline + 2-oxoglutarate + O2 = deacetylvindoline + succinate + CO2
Other name(s): desacetoxyvindoline 4-hydroxylase; desacetyoxyvindoline-17-hydroxylase; D17H;

desacetoxyvindoline,2-oxoglutarate:oxygen oxidoreductase (4β-hydroxylating)
Systematic name: deacetoxyvindoline,2-oxoglutarate:oxygen oxidoreductase (4β-hydroxylating)

Comments: Requires Fe2+ and ascorbate. Also acts on 3-hydroxy-16-methoxy-2,3-dihydrotabersonine and to a
lesser extent on 16-methoxy-2,3-dihydrotabersonine.

References: [508, 509, 4023]

[EC 1.14.11.20 created 2002, modified 2005]

EC 1.14.11.21
Accepted name: clavaminate synthase

Reaction: (1) deoxyamidinoproclavaminate + 2-oxoglutarate + O2 = amidinoproclavaminate + succinate + CO2
(2) proclavaminate + 2-oxoglutarate + O2 = dihydroclavaminate + succinate + CO2 + H2O
(3) dihydroclavaminate + 2-oxoglutarate + O2 = clavaminate + succinate + CO2 + H2O
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Other name(s): clavaminate synthase 2; clavaminic acid synthase
Systematic name: deoxyamidinoproclavaminate,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: Contains nonheme iron. Catalyses three separate oxidative reactions in the pathway for the biosythe-
sis of the β-lactamase inhibitor clavulanate in Streptomyces clavuligerus. The first step (hydroxy-
lation) is separated from the latter two (oxidative cyclization and desaturation) by the action of EC
3.5.3.22, proclavaminate amidinohydrolase. The three reactions are all catalysed at the same nonheme
iron site.

References: [3300, 4470, 4452, 4471, 3918]

[EC 1.14.11.21 created 2003]

[1.14.11.22 Transferred entry. flavone synthase. Now EC 1.14.20.5, flavone synthase]

[EC 1.14.11.22 created 2004, deleted 2018]

[1.14.11.23 Transferred entry. flavonol synthase. Now EC 1.14.20.6, flavonol synthase]

[EC 1.14.11.23 created 2004, deleted 2018]

EC 1.14.11.24
Accepted name: 2′-deoxymugineic-acid 2′-dioxygenase

Reaction: 2′-deoxymugineic acid + 2-oxoglutarate + O2 = mugineic acid + succinate + CO2
Other name(s): IDS3

Systematic name: 2′-deoxymugineic acid,2-oxoglutarate:oxygen oxidoreductase (2-hydroxylating)
Comments: Requires iron(II). It is also likely that this enzyme can catalyse the hydroxylation of 3-epihydroxy-2′-

deoxymugineic acid to form 3-epihydroxymugineic acid.
References: [2709, 1983]

[EC 1.14.11.24 created 2005]

EC 1.14.11.25
Accepted name: mugineic-acid 3-dioxygenase

Reaction: (1) mugineic acid + 2-oxoglutarate + O2 = 3-epihydroxymugineic acid + succinate + CO2
(2) 2′-deoxymugineic acid + 2-oxoglutarate + O2 = 3-epihydroxy-2′-deoxymugineic acid + succinate
+ CO2

Other name(s): IDS2
Systematic name: mugineic acid,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires iron(II).
References: [2709, 2869]

[EC 1.14.11.25 created 2005]

EC 1.14.11.26
Accepted name: deacetoxycephalosporin-C hydroxylase

Reaction: deacetoxycephalosporin C + 2-oxoglutarate + O2 = deacetylcephalosporin C + succinate + CO2
Other name(s): deacetylcephalosporin C synthase; 3′-methylcephem hydroxylase; DACS; DAOC hydroxylase; deace-

toxycephalosporin C hydroxylase
Systematic name: deacetoxycephalosporin-C,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires iron(II). The enzyme can also use 3-exomethylenecephalosporin C as a substrate to form
deacetoxycephalosporin C, although more slowly [172]. In Acremonium chrysogenum, the enzyme
forms part of a bifunctional protein along with EC 1.14.20.1, deactoxycephalosporin-C synthase. It is
a separate enzyme in Streptomyces clavuligerus.

References: [862, 172, 660, 1193, 2288, 4264, 2412]

[EC 1.14.11.26 created 2005]
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EC 1.14.11.27
Accepted name: [histone-H3]-lysine-36 demethylase

Reaction: protein N6,N6-dimethyl-L-lysine + 2 2-oxoglutarate + 2 O2 = protein L-lysine + 2 succinate + 2
formaldehyde + 2 CO2 (overall reaction)
(1a) protein N6,N6-dimethyl-L-lysine + 2-oxoglutarate + O2 = protein N6-methyl-L-lysine + succinate
+ formaldehyde + CO2
(1b) protein N6-methyl-L-lysine + 2-oxoglutarate + O2 = protein L-lysine + succinate + formaldehyde
+ CO2

Other name(s): JHDM1A; JmjC domain-containing histone demethylase 1A; H3-K36-specific demethylase;
histone-lysine (H3-K36) demethylase; histone demethylase; protein-6-N,6-N-dimethyl-L-lysine,2-
oxoglutarate:oxygen oxidoreductase

Systematic name: protein-N6,N6-dimethyl-L-lysine,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires iron(II). Of the seven potential methylation sites in histones H3 (K4, K9, K27, K36, K79)

and H4 (K20, R3) from HeLa cells, the enzyme is specific for Lys-36. Lysine residues exist in three
methylation states (mono-, di- and trimethylated). The enzyme preferentially demethylates the
dimethyl form of Lys-36 (K36me2), which is its natural substrate, to form the monomethyl and un-
methylated forms of Lys-36. It can also demethylate the monomethyl- but not the trimethyl form of
Lys-36.

References: [3941]

[EC 1.14.11.27 created 2006]

EC 1.14.11.28
Accepted name: proline 3-hydroxylase

Reaction: L-proline + 2-oxoglutarate + O2 = cis-3-hydroxy-L-proline + succinate + CO2
Other name(s): P-3-H

Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires iron(II) for activity. Unlike the proline hydroxylases involved in collagen biosynthesis [EC

1.14.11.2 (procollagen-proline dioxygenase) and EC 1.14.11.7 (procollagen-proline 3-dioxygenase)],
this enzyme does not require ascorbate for activity although it does increase the activity of the enzyme
[2618]. The enzyme is specific for L-proline as D-proline, trans-4-hydroxy-L-proline, cis-4-hydroxy-
L-proline and 3,4-dehydro-DL-proline are not substrates [2618].

References: [2617, 2618, 634]

[EC 1.14.11.28 created 2006]

EC 1.14.11.29
Accepted name: hypoxia-inducible factor-proline dioxygenase

Reaction: hypoxia-inducible factor-L-proline + 2-oxoglutarate + O2 = hypoxia-inducible factor-trans-4-
hydroxy-L-proline + succinate + CO2

Other name(s): HIF hydroxylase
Systematic name: hypoxia-inducible factor-L-proline, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)

Comments: Contains iron, and requires ascorbate. Specifically hydroxylates a proline residue in HIF-α, the α sub-
unit of the transcriptional regulator HIF (hypoxia-inducible factor), which targets HIF for proteasomal
destruction. The requirement of oxygen for the hydroxylation reaction enables animals to respond to
hypoxia.

References: [1701, 1688, 427, 960, 2841, 2491]

[EC 1.14.11.29 created 2010]

EC 1.14.11.30
Accepted name: hypoxia-inducible factor-asparagine dioxygenase

Reaction: hypoxia-inducible factor-L-asparagine + 2-oxoglutarate + O2 = hypoxia-inducible factor-(3S)-3-
hydroxy-L-asparagine + succinate + CO2

324

http://www.enzyme-database.org/query.php?ec=1.14.11.27
http://www.enzyme-database.org/query.php?ec=1.14.11.28
http://www.enzyme-database.org/query.php?ec=1.14.11.29
http://www.enzyme-database.org/query.php?ec=1.14.11.30


Other name(s): HIF hydroxylase
Systematic name: hypoxia-inducible factor-L-asparagine, 2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)

Comments: Contains iron, and requires ascorbate. Catalyses hydroxylation of an asparagine in the C-terminal
transcriptional activation domain of HIF-α, the α subunit of the transcriptional regulator HIF
(hypoxia-inducible factor), which reduces its interaction with the transcriptional coactivator protein
p300. The requirement of oxygen for the hydroxylation reaction enables animals to respond to hy-
poxia.

References: [2371, 1485, 744, 2124, 2011, 940]

[EC 1.14.11.30 created 2010]

EC 1.14.11.31
Accepted name: thebaine 6-O-demethylase

Reaction: thebaine + 2-oxoglutarate + O2 = neopinone + formaldehyde + succinate + CO2
Other name(s): T6ODM

Systematic name: thebaine,2-oxoglutarate:oxygen oxidoreductase (6-O-demethylating)
Comments: Requires Fe2+. Catalyses a step in morphine biosynthesis. The product neopinione spontaneously re-

arranges to the more stable codeinone. The enzyme also catalyses the 6-O-demethylation of oripavine
to morphinone, with lower efficiency.

References: [1337]

[EC 1.14.11.31 created 2010]

EC 1.14.11.32
Accepted name: codeine 3-O-demethylase

Reaction: codeine + 2-oxoglutarate + O2 = morphine + formaldehyde + succinate + CO2
Other name(s): codeine O-demethylase; CODM

Systematic name: codeine,2-oxoglutarate:oxygen oxidoreductase (3-O-demethylating)
Comments: Requires Fe2+. Catalyses a step in morphine biosynthesis. The enzyme also catalyses the 3-O-

demethylation of thebaine to oripavine, with lower efficiency.
References: [1337]

[EC 1.14.11.32 created 2010]

EC 1.14.11.33
Accepted name: DNA oxidative demethylase

Reaction: DNA-base-CH3 + 2-oxoglutarate + O2 = DNA-base + formaldehyde + succinate + CO2
Other name(s): alkylated DNA repair protein; α-ketoglutarate-dependent dioxygenase ABH1; alkB (gene name)

Systematic name: methyl DNA-base, 2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)
Comments: Contains iron; activity is slightly stimulated by ascorbate. Catalyses oxidative demethylation of the

DNA base lesions N1-methyladenine, N3-methylcytosine, N1-methylguanine, and N3-methylthymine.
It works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA.

References: [981, 4360, 4359]

[EC 1.14.11.33 created 2011]

[1.14.11.34 Transferred entry. 2-oxoglutarate/ L-arginine monooxygenase/decarboxylase (succinate-forming). Now EC
1.14.20.7, 2-oxoglutarate/ L-arginine monooxygenase/decarboxylase (succinate-forming)]

[EC 1.14.11.34 created 2011, deleted 2018]

EC 1.14.11.35
Accepted name: 1-deoxypentalenic acid 11β-hydroxylase

Reaction: 1-deoxypentalenate + 2-oxoglutarate + O2 = 1-deoxy-11β-hydroxypentalenate + succinate + CO2
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Other name(s): ptlH (gene name); sav2991 (gene name); pntH (gene name)
Systematic name: 1-deoxypentalenic acid,2-oxoglutarate:oxygen oxidoreductase

Comments: The enzyme requires Fe(II) and ascorbate. Isolated from the bacterium Streptomyces avermitilis. Part
of the pathway for pentalenolactone biosynthesis.

References: [4389, 4391]

[EC 1.14.11.35 created 2012]

EC 1.14.11.36
Accepted name: pentalenolactone F synthase

Reaction: pentalenolactone D + 2 2-oxoglutarate + 2 O2 = pentalenolactone F + 2 succinate + 2 CO2 + H2O
(overall reaction)
(1a) pentalenolactone D + 2-oxoglutarate + O2 = pentalenolactone E + succinate + CO2 + H2O
(1b) pentalenolactone E + 2-oxoglutarate + O2 = pentalenolactone F + succinate + CO2

Other name(s): penD (gene name); pntD (gene name); ptlD (gene name)
Systematic name: pentalenolactone-D,2-oxoglutarate:oxygen oxidoreductase

Comments: Requires Fe(II) and ascorbate. Isolated from the bacteria Streptomyces exfoliatus, Streptomyces are-
nae and Streptomyces avermitilis. Part of the pentalenolactone biosynthesis pathway.

References: [3443]

[EC 1.14.11.36 created 2012]

EC 1.14.11.37
Accepted name: kanamycin B dioxygenase

Reaction: kanamycin B + 2-oxoglutarate + O2 = 2′-dehydrokanamycin A + succinate + NH3 + CO2
Other name(s): kanJ (gene name)

Systematic name: kanamycin-B,2-oxoglutarate:oxygen oxidoreductase (deaminating, 2′-hydroxylating)
Comments: Requires Fe2+ and ascorbate. Found in the bacterium Streptomyces kanamyceticus where it is in-

volved in the conversion of the aminoglycoside antibiotic kanamycin B to kanamycin A.
References: [3704]

[EC 1.14.11.37 created 2013, modified 2013]

EC 1.14.11.38
Accepted name: verruculogen synthase

Reaction: fumitremorgin B + 2-oxoglutarate + 2 O2 + reduced acceptor = verruculogen + succinate + CO2 +
H2O + acceptor

Other name(s): fmtF (gene name); FmtOx1
Systematic name: fumitremorgin B,2-oxoglutarate:oxygen oxidoreductase (verruculogen-forming)

Comments: Requires Fe2+ and ascorbate. Found in the fungus Aspergillus fumigatus. Both atoms of a dioxygen
molecule are incorporated into verruculogen [3630, 1839]. Involved in the biosynthetic pathways of
several indole alkaloids such as fumitremorgin A.

References: [3630, 1839]

[EC 1.14.11.38 created 2013]

EC 1.14.11.39
Accepted name: L-asparagine hydroxylase

Reaction: L-asparagine + 2-oxoglutarate + O2 = (2S,3S)-3-hydroxyasparagine + succinate + CO2
Other name(s): L-asparagine 3-hydroxylase; AsnO

Systematic name: L-asparagine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Requires Fe2+. The enzyme is only able to hydroxylate free L-asparagine. It is not active toward D-

asparagine. The β-hydroxylated asparagine produced is incorporated at position 9 of the calcium-
dependent antibiotic (CDA), an 11-residue non-ribosomally synthesized acidic lipopeptide lactone.
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References: [3681]

[EC 1.14.11.39 created 2013]

EC 1.14.11.40
Accepted name: enduracididine β-hydroxylase

Reaction: L-enduracididine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-L-enduracididine + succinate + CO2
Other name(s): MppO; L-enduracididine,2-oxoglutarate:O2 oxidoreductase (3-hydroxylating)

Systematic name: L-enduracididine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Fe2+-dependent enzyme. The enzyme is involved in biosynthesis of the nonproteinogenic amino acid

β-hydroxyenduracididine, a component of the mannopeptimycins (cyclic glycopeptide antibiotic),
produced by Streptomyces hygroscopicus NRRL 30439.

References: [1350, 2358]

[EC 1.14.11.40 created 2013]

EC 1.14.11.41
Accepted name: L-arginine hydroxylase

Reaction: L-arginine + 2-oxoglutarate + O2 = (3S)-3-hydroxy-L-arginine + succinate + CO2
Other name(s): VioC (ambiguous); L-arginine,2-oxoglutarate:O2 oxidoreductase (3-hydroxylating)

Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)
Comments: Fe2+-dependent enzyme. The enzyme is involved in the biosynthesis of the cyclic pentapeptide antibi-

otic viomycin. It differs from EC 1.14.20.7, 2-oxoglutarate/L-arginine monooxygenase/decarboxylase
(succinate-forming), because it does not form guanidine and (S)-1-pyrroline-5-carboxylate from 3-
hydroxy-L-arginine.

References: [1781, 1472]

[EC 1.14.11.41 created 2013]

EC 1.14.11.42
Accepted name: tRNAPhe (7-(3-amino-3-carboxypropyl)wyosine37-C2)-hydroxylase

Reaction: 7-(3-amino-3-carboxypropyl)wyosine37 in tRNAPhe + 2-oxoglutarate + O2 = 7-(2-hydroxy-3-amino-
3-carboxypropyl)wyosine37 in tRNAPhe + succinate + CO2

Other name(s): TYW5; tRNA yW-synthesizing enzyme 5
Systematic name: tRNAPhe 7-(3-amino-3-carboxypropyl)wyosine37,2-oxoglutarate:oxygen oxidoreductase (2-

hydroxylating)
Comments: Requires Fe2+. The enzyme is not active with wybutosine.
References: [2813, 1836]

[EC 1.14.11.42 created 2013]

EC 1.14.11.43
Accepted name: (S)-dichlorprop dioxygenase (2-oxoglutarate)

Reaction: (1) (S)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol +
pyruvate + succinate + CO2
(2) (S)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate +
succinate + CO2

Other name(s): SdpA; α-ketoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-phenoxypropionate/α-
ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (S)-dichlorprop dioxygenase; (S)-mecoprop
dioxygenase; 2-oxoglutarate-dependent (S)-mecoprop dioxygenase

Systematic name: (S)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-
forming)
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Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1
and Sphingomonas herbicidovorans MH are involved in the degradation of the (S)-enantiomer of the
phenoxyalkanoic acid herbicides mecoprop and dichlorprop [4183, 2656].

References: [4183, 2656, 2657]

[EC 1.14.11.43 created 2013]

EC 1.14.11.44
Accepted name: (R)-dichlorprop dioxygenase (2-oxoglutarate)

Reaction: (1) (R)-2-(4-chloro-2-methylphenoxy)propanoate + 2-oxoglutarate + O2 = 4-chloro-2-methylphenol
+ pyruvate + succinate + CO2
(2) (R)-(2,4-dichlorophenoxy)propanoate + 2-oxoglutarate + O2 = 2,4-dichlorophenol + pyruvate +
succinate + CO2

Other name(s): RdpA; α-ketoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-phenoxypropionate/α-
ketoglutarate-dioxygenase; 2-oxoglutarate-dependent (R)-dichlorprop dioxygenase; (R)-mecoprop
dioxygenase; 2-oxoglutarate-dependent (R)-mecoprop dioxygenase

Systematic name: (R)-2-(4-chloro-2-methylphenoxy)propanoate,2-oxoglutarate:oxygen oxidoreductase (pyruvate-
forming)

Comments: Fe2+-dependent enzyme. The enzymes from the Gram-negative bacteria Delftia acidovorans MC1
and Sphingomonas herbicidovorans MH are involved in the degradation of the (R)-enantiomer of the
phenoxyalkanoic acid herbicides mecoprop and dichlorprop [4183, 2656].

References: [4183, 2656, 2657]

[EC 1.14.11.44 created 2013]

EC 1.14.11.45
Accepted name: L-isoleucine 4-hydroxylase

Reaction: L-isoleucine + 2-oxoglutarate + O2 = (4S)-4-hydroxy-L-isoleucine + succinate + CO2
Other name(s): ido (gene name)

Systematic name: L-isoleucine,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating)
Comments: The enzyme, characterized from the bacterium Bacillus thuringiensis, can also catalyse the hydrox-

ylation of L-leucine, L-norvaline, L-norleucine, and L-allo-isoleucine, as well as the sulfoxidation of
L-methionine, L-ethionine, S-methyl-L-cysteine, S-ethyl-L-cysteine, and S-allyl-L-cysteine.

References: [1988, 1487, 1488]

[EC 1.14.11.45 created 2014]

EC 1.14.11.46
Accepted name: 2-aminoethylphosphonate dioxygenase

Reaction: (2-aminoethyl)phosphonate + 2-oxoglutarate + O2 = (2-amino-1-hydroxyethyl)phosphonate + succi-
nate + CO2

Other name(s): phnY (gene name)
Systematic name: (2-aminoethyl)phosphonate,2-oxoglutarate:oxygen oxidoreductase (1-hydroxylating)

Comments: Requires Fe2+ and ascorbate. The enzyme, characterized from an uncultured marine bacterium, is
involved in a (2-aminoethyl)phosphonate degradation pathway.

References: [2493]

[EC 1.14.11.46 created 2014]

EC 1.14.11.47
Accepted name: 50S ribosomal protein L16 3-hydroxylase

Reaction: [50S ribosomal protein L16]-L-Arg81 + 2-oxoglutarate + O2 = [50S ribosomal protein L16]-(3R)-3-
hydroxy-L-Arg81 + succinate + CO2
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Other name(s): ycfD (gene name)
Systematic name: [50S ribosomal protein L16]-L-Arg81,2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating)

Comments: The enzyme, characterized from the bacterium Escherichia coli, hydroxylates an arginine residue on
the 50S ribosomal protein L16, and is involved in regulation of bacterial ribosome assembly.

References: [1176, 4010]

[EC 1.14.11.47 created 2014]

EC 1.14.11.48
Accepted name: xanthine dioxygenase

Reaction: xanthine + 2-oxoglutarate + O2 = urate + succinate + CO2
Other name(s): XanA; α-ketoglutarate-dependent xanthine hydroxylase

Systematic name: xanthine,2-oxoglutarate:oxygen oxidoreductase
Comments: Requires Fe2+ and L-ascorbate. The enzyme, which was characterized from fungi, is specific for xan-

thine.
References: [703, 2601, 2230]

[EC 1.14.11.48 created 2015]

EC 1.14.11.49
Accepted name: uridine-5′-phosphate dioxygenase

Reaction: UMP + 2-oxoglutarate + O2 = 5′-dehydrouridine + succinate + CO2 + phosphate
Other name(s): lipL (gene name)

Systematic name: UMP,2-oxoglutarate:oxygen oxidoreductase
Comments: The enzyme catalyses a net dephosphorylation and oxidation of UMP to generate 5′-dehydrouridine,

the first intermediate in the biosynthesis of the unusual aminoribosyl moiety found in several C7-
furanosyl nucleosides such as A-90289s, caprazamycins, liposidomycins, muraymycins and FR-
900453. Requires Fe2+.

References: [4343, 4345]

[EC 1.14.11.49 created 2015]

[1.14.11.50 Transferred entry. (–)-deoxypodophyllotoxin synthase. Now EC 1.14.20.8, (–)-deoxypodophyllotoxin synthase]

[EC 1.14.11.50 created 2016, deleted 2018]

EC 1.14.11.51
Accepted name: DNA N6-methyladenine demethylase

Reaction: N6-methyladenine in DNA + 2-oxoglutarate + O2 = adenine in DNA + formaldehyde + succinate +
CO2

Other name(s): ALKBH1
Systematic name: DNA-N6-methyladenosine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)

Comments: Contains iron(II). Catalyses oxidative demethylation of DNA N6-methyladenine, a prevalent modifi-
cation in LINE-1 transposons, which are specifically enriched on the human X chromosome.

References: [4263]

[EC 1.14.11.51 created 2016]

EC 1.14.11.52
Accepted name: validamycin A dioxygenase

Reaction: validamycin A + 2-oxoglutarate + O2 = validamycin B + succinate + CO2
Other name(s): vldW (gene name)

Systematic name: validamycin-A,2-oxoglutarate:oxygen oxidoreductase (6′-hydroxylating)
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Comments: The enzyme was characterized from the bacterium Streptomyces hygroscopicus subsp. limoneus. Re-
quires Fe2+.

References: [65]

[EC 1.14.11.52 created 2016]

EC 1.14.11.53
Accepted name: mRNA N6-methyladenine demethylase

Reaction: N6-methyladenine in mRNA + 2-oxoglutarate + O2 = adenine in mRNA + formaldehyde + succinate
+ CO2

Other name(s): ALKBH5; FTO
Systematic name: mRNA-N6-methyladenosine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)

Comments: Contains iron(II). Catalyses oxidative demethylation of mRNA N6-methyladenine. The FTO en-
zyme from human can also demethylate N3-methylthymine from single stranded DNA and N3-
methyluridine from single stranded RNA [1742, 1365] with low activity [1741].

References: [1742, 1365, 1741, 4467, 995, 4282, 39]

[EC 1.14.11.53 created 2016]

EC 1.14.11.54
Accepted name: mRNA N1-methyladenine demethylase

Reaction: N1-methyladenine in mRNA + 2-oxoglutarate + O2 = adenine in mRNA + formaldehyde + succinate
+ CO2

Other name(s): ALKBH3
Systematic name: mRNA-N1-methyladenine,2-oxoglutarate:oxygen oxidoreductase (formaldehyde-forming)

Comments: Contains iron(II). Catalyses oxidative demethylation of mRNA N1-methyladenine. The enzyme is
also involved in alkylation repair in DNA [742].

References: [3739, 742, 2236]

[EC 1.14.11.54 created 2016]

EC 1.14.11.55
Accepted name: ectoine hydroxylase

Reaction: ectoine + 2-oxoglutarate + O2 = 5-hydroxyectoine + succinate + CO2
Other name(s): ectD (gene name); ectoine dioxygenase

Systematic name: ectoine,2-oxoglutarate:oxygen oxidoreductase (5-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, found in bacteria, is specific for ectoine.
References: [455, 454, 3174]

[EC 1.14.11.55 created 2017]

EC 1.14.11.56
Accepted name: L-proline cis-4-hydroxylase

Reaction: L-proline + 2-oxoglutarate + O2 = cis-4-hydroxy-L-proline + succinate + CO2
Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (cis-4-hydroxylating)

Comments: Requires Fe2+ and ascorbate. The enzyme, isolated from Rhizobium species, only produces cis-4-
hydroxy-L-proline (cf. EC 1.14.11.57, L-proline trans-4-hydroxylase).

References: [1387]

[EC 1.14.11.56 created 2017]

EC 1.14.11.57
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Accepted name: L-proline trans-4-hydroxylase
Reaction: L-proline + 2-oxoglutarate + O2 = trans-4-hydroxy-L-proline + succinate + CO2

Systematic name: L-proline,2-oxoglutarate:oxygen oxidoreductase (trans-4-hydroxylating)
Comments: Requires Fe2+ and ascorbate. The enzyme, isolated from multiple bacterial species, only produces

trans-4-hydroxy-L-proline (cf. EC 1.14.11.56, L-proline cis-4-hydroxylase).
References: [2155, 3483]

[EC 1.14.11.57 created 2017]

EC 1.14.11.58
Accepted name: ornithine lipid ester-linked acyl 2-hydroxylase

Reaction: an ornithine lipid + 2-oxoglutarate + O2 = a 2-hydroxyornithine lipid + succinate + CO2
Other name(s): olsC (gene name)

Systematic name: ornithine lipid,2-oxoglutarate:oxygen oxidoreductase (ester-linked acyl 2-hydroxylase)
Comments: The enzyme, characterized from the bacterium Rhizobium tropici, catalyses the hydroxylation of C-2

of the fatty acyl group that is ester-linked to the 3-hydroxy position of the amide-linked fatty acid.
References: [3222, 4028]

[EC 1.14.11.58 created 2018]

EC 1.14.11.59
Accepted name: 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase

Reaction: (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + 2-oxoglutarate +
O2 = (2R)-4,7-dihydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside + succi-
nate + CO2 + H2O

Other name(s): BX6 (gene name); DIBOA-Glc dioxygenase
Systematic name: (2R)-4-hydroxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl β-D-glucopyranoside:oxygen oxidoreduc-

tase (7-hydroxylating)
Comments: The enzyme is involved in the biosynthesis of protective and allelophatic benzoxazinoids in some

plants, most commonly from the family of Poaceae (grasses).
References: [1768]

[EC 1.14.11.59 created 2012 as EC 1.14.20.2, transferred 2018 to EC 1.14.11.59]

EC 1.14.11.60
Accepted name: scopoletin 8-hydroxylase

Reaction: scopoletin + 2-oxoglutarate + O2 = fraxetin + succinate + CO2
Other name(s): S8H (gene name)

Systematic name: scopoletin,2-oxoglutarate:oxygen oxidoreductase (8-hydroxylating)
Comments: Requires iron(II) and ascorbate. A protein involved in biosynthesis of iron(III)-chelating coumarins in

higher plants.
References: [3546, 3113]

[EC 1.14.11.60 created 2018]

EC 1.14.12 With NADH or NADPH as one donor, and incorporation of two atoms of oxygen into the
other donor

EC 1.14.12.1
Accepted name: anthranilate 1,2-dioxygenase (deaminating, decarboxylating)

Reaction: anthranilate + NAD(P)H + 2 H+ + O2 = catechol + CO2 + NAD(P)+ + NH3
Other name(s): anthranilate hydroxylase; anthranilic hydroxylase; anthranilic acid hydroxylase
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Systematic name: anthranilate,NAD(P)H:oxygen oxidoreductase (1,2-hydroxylating, deaminating, decarboxylating)
Comments: Requires Fe2+.
References: [1982, 3814]

[EC 1.14.12.1 created 1972]

[1.14.12.2 Transferred entry. now EC 1.14.13.35 anthranilate 3-monooxygenase (deaminating)]

[EC 1.14.12.2 created 1972, deleted 1990]

EC 1.14.12.3
Accepted name: benzene 1,2-dioxygenase

Reaction: benzene + NADH + H+ + O2 = cis-cyclohexa-3,5-diene-1,2-diol + NAD+

Other name(s): benzene hydroxylase; benzene dioxygenase
Systematic name: benzene,NADH:oxygen oxidoreductase (1,2-hydroxylating)

Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), an iron-sulfur oxygenase
and ferredoxin. Requires Fe2+.

References: [1200]

[EC 1.14.12.3 created 1972]

[1.14.12.4 Transferred entry. 3-hydroxy-2-methylpyridinecarboxylate dioxygenase. Now EC 1.14.13.242, 3-hydroxy-2-
methylpyridinecarboxylate monooxygenase]

[EC 1.14.12.4 created 1972, deleted 2018]

[1.14.12.5 Transferred entry. 5-pyridoxate dioxygenase. Now EC 1.14.13.241, 5-pyridoxate monooxygenase]

[EC 1.14.12.5 created 1972, deleted 2018]

[1.14.12.6 Transferred entry. 2-hydroxycyclohexanone 2-monooxygenase. Now EC 1.14.13.66, 2-hydroxycyclohexanone
2-monooxygenase]

[EC 1.14.12.6 created 1978, deleted 1999]

EC 1.14.12.7
Accepted name: phthalate 4,5-dioxygenase

Reaction: phthalate + NADH + H+ + O2 = cis-4,5-dihydroxycyclohexa-1(6),2-diene-1,2-dicarboxylate + NAD+

Other name(s): PDO ; phthalate dioxygenase
Systematic name: phthalate,NADH:oxygen oxidoreductase (4,5-hydroxylating)

Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FMN), an iron-sulfur oxyge-
nase, and no independent ferredoxin. Requires Fe2+.

References: [212]

[EC 1.14.12.7 created 1990]

EC 1.14.12.8
Accepted name: 4-sulfobenzoate 3,4-dioxygenase

Reaction: 4-sulfobenzoate + NADH + H+ + O2 = 3,4-dihydroxybenzoate + sulfite + NAD+

Other name(s): 4-sulfobenzoate dioxygenase; 4-sulfobenzoate 3,4-dioxygenase system
Systematic name: 4-sulfobenzoate,NADH:oxygen oxidoreductase (3,4-hydroxylating, sulfite-forming)

Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FMN), an iron-sulfur oxyge-
nase, and no independent ferredoxin. Requires Fe2+.

References: [2289]

[EC 1.14.12.8 created 1992]
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EC 1.14.12.9
Accepted name: 4-chlorophenylacetate 3,4-dioxygenase

Reaction: 4-chlorophenylacetate + NADH + H+ + O2 = 3,4-dihydroxyphenylacetate + chloride + NAD+

Systematic name: 4-chlorophenylacetate,NADH:oxygen oxidoreductase (3,4-hydroxylating, dechlorinating)
Comments: A system, containing a reductase and an iron-sulfur oxygenase, and no independent ferredoxin. Re-

quires Fe2+. Also acts on 4-bromophenyl acetate.
References: [2402]

[EC 1.14.12.9 created 1989 as EC 1.13.99.4, transferred 1992 to EC 1.14.12.9]

EC 1.14.12.10
Accepted name: benzoate 1,2-dioxygenase

Reaction: benzoate + NADH + H+ + O2 = (1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+

Other name(s): benzoate hydroxylase; benzoate hydroxylase; benzoic hydroxylase; benzoate dioxygenase; ben-
zoate,NADH:oxygen oxidoreductase (1,2-hydroxylating, decarboxylating) [incorrect]

Systematic name: benzoate,NADH:oxygen oxidoreductase (1,2-hydroxylating)
Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), and an iron-sulfur oxy-

genase. Requires Fe2+.
References: [4306, 4307, 4308]

[EC 1.14.12.10 created 1972 as EC 1.13.99.2, transferred 1992 to EC 1.14.12.10]

EC 1.14.12.11
Accepted name: toluene dioxygenase

Reaction: toluene + NADH + H+ + O2 = (1S,2R)-3-methylcyclohexa-3,5-diene-1,2-diol + NAD+

Other name(s): toluene 2,3-dioxygenase
Systematic name: toluene,NADH:oxygen oxidoreductase (1,2-hydroxylating)

Comments: A system, containing a reductase which is an iron-sulfur flavoprotein (FAD), an iron-sulfur oxyge-
nase, and a ferredoxin. Some other aromatic compounds, including ethylbenzene, 4-xylene and some
halogenated toluenes, are converted into the corresponding cis-dihydrodiols.

References: [3168, 3702]

[EC 1.14.12.11 created 1992]

EC 1.14.12.12
Accepted name: naphthalene 1,2-dioxygenase

Reaction: naphthalene + NADH + H+ + O2 = (1R,2S)-1,2-dihydronaphthalene-1,2-diol + NAD+

Other name(s): naphthalene dioxygenase; naphthalene oxygenase; NDO
Systematic name: naphthalene,NADH:oxygen oxidoreductase (1,2-hydroxylating)

Comments: This enzyme is a member of the ring-hydroxylating dioxygenase (RHD) family of bacterial enzymes
that play a critical role in the degradation of aromatic compounds, such as polycyclic aromatic hydro-
carbons [1779]. This enzyme comprises a multicomponent system, containing a reductase that is an
iron-sulfur flavoprotein (FAD; EC 1.18.1.3, ferredoxin—NAD+ reductase), an iron-sulfur oxygenase,
and ferredoxin. Requires Fe2+.

References: [958, 1729, 1854, 2937, 1779]

[EC 1.14.12.12 created 1992]

EC 1.14.12.13
Accepted name: 2-halobenzoate 1,2-dioxygenase

Reaction: a 2-halobenzoate + NADH + H+ + O2 = catechol + a halide anion + NAD+ + CO2
Other name(s): 2-chlorobenzoate 1,2-dioxygenase

Systematic name: 2-halobenzoate,NADH:oxygen oxidoreductase (1,2-hydroxylating, dehalogenating, decarboxylating)
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Comments: A multicomponent enzyme system composed of a dioxygenase component and an electron transfer
component. The latter contains FAD. The enzyme, characterized from the bacterium Burkholde-
ria cepacia 2CBS, has a broad substrate specificity. Substrates include 2-fluorobenzoate, 2-
chlorobenzoate, 2-bromobenzoate, and 2-iodobenzoate, which are processed in this order of prefer-
ence.

References: [1006, 1007, 1328]

[EC 1.14.12.13 created 1992, modified 2012]

EC 1.14.12.14
Accepted name: 2-aminobenzenesulfonate 2,3-dioxygenase

Reaction: 2-aminobenzenesulfonate + NADH + H+ + O2 = 2,3-dihydroxybenzenesulfonate + NH3 + NAD+

Other name(s): 2-aminosulfobenzene 2,3-dioxygenase
Systematic name: 2-aminobenzenesulfonate,NADH:oxygen oxidoreductase (2,3-hydroxylating, ammonia-forming)

References: [1786, 1788]

[EC 1.14.12.14 created 1999]

EC 1.14.12.15
Accepted name: terephthalate 1,2-dioxygenase

Reaction: terephthalate + NADH + H+ + O2 = (1R,6S)-dihydroxycyclohexa-2,4-diene-1,4-dicarboxylate +
NAD+

Other name(s): benzene-1,4-dicarboxylate 1,2-dioxygenase; 1,4-dicarboxybenzoate 1,2-dioxygenase
Systematic name: benzene-1,4-dicarboxylate,NADH:oxygen oxidoreductase (1,2-hydroxylating)

Comments: Has been shown to contain a Rieske [2Fe-2S] cluster
References: [3368]

[EC 1.14.12.15 created 1999]

EC 1.14.12.16
Accepted name: 2-hydroxyquinoline 5,6-dioxygenase

Reaction: quinolin-2-ol + NADH + H+ + O2 = 2,5,6-trihydroxy-5,6-dihydroquinoline + NAD+

Other name(s): 2-oxo-1,2-dihydroquinoline 5,6-dioxygenase; quinolin-2-ol 5,6-dioxygenase; quinolin-2(1H)-one 5,6-
dioxygenase

Systematic name: quinolin-2-ol,NADH:oxygen oxidoreductase (5,6-hydroxylating)
Comments: 3-Methylquinolin-2-ol, quinolin-8-ol and quinolin-2,8-diol are also substrates. Quinolin-2-ols exist

largely as their quinolin-2(1H)-one tautomers
References: [3345]

[EC 1.14.12.16 created 1999]

EC 1.14.12.17
Accepted name: nitric oxide dioxygenase

Reaction: 2 nitric oxide + 2 O2 + NAD(P)H = 2 nitrate + NAD(P)+ + H+

Systematic name: nitric oxide,NAD(P)H:oxygen oxidoreductase
Comments: A flavohemoglobin (FAD). It has been proposed that FAD functions as the electron carrier from

NADPH to the ferric heme prosthetic group.
References: [1155, 1156]

[EC 1.14.12.17 created 2000]

EC 1.14.12.18
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Accepted name: biphenyl 2,3-dioxygenase
Reaction: biphenyl + NADH + H+ + O2 = (1S,2R)-3-phenylcyclohexa-3,5-diene-1,2-diol + NAD+

Other name(s): biphenyl dioxygenase
Systematic name: biphenyl,NADH:oxygen oxidoreductase (2,3-hydroxylating)

Comments: Requires Fe2+. The enzyme from Burkholderia fungorum LB400 (previously Pseudomonas sp.) is
part of a multicomponent system composed of an NADH:ferredoxin oxidoreductase (FAD cofactor),
a [2Fe-2S] Rieske-type ferredoxin, and a terminal oxygenase that contains a [2Fe-2S] Rieske-type
iron-sulfur cluster and a catalytic mononuclear nonheme iron centre. Chlorine-substituted biphenyls
can also act as substrates. Similar to the three-component enzyme systems EC 1.14.12.3 (benzene
1,2-dioxygenase) and EC 1.14.12.11 (toluene dioxygenase).

References: [1333, 1334, 408]

[EC 1.14.12.18 created 2001]

EC 1.14.12.19
Accepted name: 3-phenylpropanoate dioxygenase

Reaction: (1) 3-phenylpropanoate + NADH + H+ + O2 = 3-(cis-5,6-dihydroxycyclohexa-1,3-dien-1-
yl)propanoate + NAD+

(2) (2E)-3-phenylprop-2-enoate + NADH + H+ + O2 = (2E)-3-(2,3-dihydroxyphenyl)prop-2-enoate +
NAD+

Other name(s): HcaA1A2CD; Hca dioxygenase; 3-phenylpropionate dioxygenase
Systematic name: 3-phenylpropanoate,NADH:oxygen oxidoreductase (2,3-hydroxylating)

Comments: This enzyme catalyses a step in the pathway of phenylpropanoid compounds degradation. It catal-
yses the insertion of both atoms of molecular oxygen into positions 2 and 3 of the phenyl ring of 3-
phenylpropanoate or (2E)-3-phenylprop-2-enoate.

References: [813, 447]

[EC 1.14.12.19 created 2005, modified 2011]

[1.14.12.20 Transferred entry. pheophorbide a oxygenase. Now classified as EC 1.14.15.17, pheophorbide a oxygenase.]

[EC 1.14.12.20 created 2007, deleted 2016]

[1.14.12.21 Transferred entry. benzoyl-CoA 2,3-dioxygenase. Now EC 1.14.13.208, benzoyl-CoA 2,3-epoxidase]

[EC 1.14.12.21 created 2010, deleted 2015]

EC 1.14.12.22
Accepted name: carbazole 1,9a-dioxygenase

Reaction: 9H-carbazole + NAD(P)H + H+ + O2 = 2′-aminobiphenyl-2,3-diol + NAD(P)+

Other name(s): CARDO
Systematic name: 9H-carbazole,NAD(P)H:oxygen oxidoreductase (2,3-hydroxylating)

Comments: This enzyme catalyses the first reaction in the pathway of carbazole degradation. The enzyme attacks
at the 1 and 9a positions of carbazole, resulting in the formation of a highly unstable hemiaminal in-
termediate that undergoes a spontaneous cleavage and rearomatization, resulting in 2′-aminobiphenyl-
2,3-diol. In most bacteria the enzyme is a complex composed of a terminal oxygenase, a ferredoxin,
and a ferredoxin reductase. The terminal oxygenase component contains a nonheme iron centre and a
Rieske [2Fe-2S] iron-sulfur cluster.

References: [2726, 1139]

[EC 1.14.12.22 created 2010]

EC 1.14.12.23
Accepted name: nitroarene dioxygenase

Reaction: nitrobenzene + NADH + O2 = catechol + nitrite + NAD+
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Other name(s): cnbA (gene name)
Systematic name: nitrobenzene,NADH:oxygen oxidoreductase (1,2-hydroxylating, nitrite-releasing)

Comments: This enzyme is a member of the naphthalene family of bacterial Rieske non-heme iron dioxyge-
nases. It comprises a multicomponent system, containing a Rieske [2Fe-2S] ferredoxin, an NADH-
dependent flavoprotein reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase), and an α3β3 oxyge-
nase. The enzyme forms of a cis-dihydroxylated product that spontaneously rearranges to form a cat-
echol with accompanying release of nitrite. It can typically act on many different nitroaromatic com-
pounds, including chlorinated species. Enzymes found in different strains may have different substrate
preferences. Requires Fe2+.

References: [2936, 2205, 2277, 3536]

[EC 1.14.12.23 created 2015]

EC 1.14.12.24
Accepted name: 2,4-dinitrotoluene dioxygenase

Reaction: 2,4-dinitrotoluene + NADH + O2 = 4-methyl-5-nitrocatechol + nitrite + NAD+

Other name(s): dntA (gene name)
Systematic name: 2,4-dinitrotoluene,NADH:oxygen oxidoreductase (4,5-hydroxylating, nitrite-releasing)

Comments: This enzyme, characterized from the bacterium Burkholderia sp. strain DNT, is a member of the
naphthalene family of bacterial Rieske non-heme iron dioxygenases. It comprises a multicompo-
nent system, containing a Rieske [2Fe-2S] ferredoxin, an NADH-dependent flavoprotein reductase
(EC 1.18.1.3, ferredoxin—NAD+ reductase), and an α3β3 oxygenase. The enzyme forms a cis-
dihydroxylated product that spontaneously rearranges to form a catechol with accompanying release
of nitrite. It does not act on nitrobenzene. cf. EC 1.14.12.23, nitroarene dioxygenase.

References: [3706]

[EC 1.14.12.24 created 2015]

EC 1.14.12.25
Accepted name: p-cumate 2,3-dioxygenase

Reaction: p-cumate + NADH + H+ + O2 = (2R,3S)-2,3-dihydroxy-2,3-dihydro-p-cumate + NAD+

Systematic name: 4-isopropylbenzoate:oxygen 2,3-oxidoreductase
Comments: The enzyme, characterized from several Pseudomonas strains, is involved in the degradation of p-

cymene and p-cumate. It comprises four components: a ferredoxin, a ferredoxin reductase, and two
subunits of a catalytic component. The enzyme can also act on indole, transforming it to the water-
insoluble blue dye indigo.

References: [776, 4209, 911, 909]

[EC 1.14.12.25 created 2016]

EC 1.14.12.26
Accepted name: chlorobenzene dioxygenase

Reaction: chlorobenzene + NADH + H+ + O2 = (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+

Other name(s): TecA
Systematic name: chlorobenzene,NADH:oxygen oxidoreductase (1,2-hydroxylating)

Comments: This bacterial enzyme is a class IIB dioxygenase, comprising three components - a heterodimeric ter-
minal dioxygenase, a ferredoxin protein, and a ferredoxin reductase. The enzyme acts on a range of
aromatic compounds, including mono-, di-, tri-, and tetra-chlorinated benzenes and toluenes.

References: [3604, 3578, 247, 248]

[EC 1.14.12.26 created 2018]
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EC 1.14.13 With NADH or NADPH as one donor, and incorporation of one atom of oxygen into the
other donor

EC 1.14.13.1
Accepted name: salicylate 1-monooxygenase

Reaction: salicylate + NADH + 2 H+ + O2 = catechol + NAD+ + H2O + CO2
Other name(s): salicylate hydroxylase; salicylate 1-hydroxylase; salicylate monooxygenase; salicylate hydroxylase

(decarboxylating)
Systematic name: salicylate,NADH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)

Comments: A flavoprotein (FAD).
References: [3752, 3790, 3789, 4319]

[EC 1.14.13.1 created 1972]

EC 1.14.13.2
Accepted name: 4-hydroxybenzoate 3-monooxygenase

Reaction: 4-hydroxybenzoate + NADPH + H+ + O2 = 3,4-dihydroxybenzoate + NADP+ + H2O
Other name(s): p-hydroxybenzoate hydrolyase; p-hydroxybenzoate hydroxylase; 4-hydroxybenzoate 3-hydroxylase;

4-hydroxybenzoate monooxygenase; 4-hydroxybenzoic hydroxylase; p-hydroxybenzoate-
3-hydroxylase; p-hydroxybenzoic acid hydrolase; p-hydroxybenzoic acid hydroxylase; p-
hydroxybenzoic hydroxylase

Systematic name: 4-hydroxybenzoate,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: A flavoprotein (FAD). Most enzymes from Pseudomonas are highly specific for NADPH (cf. EC

1.14.13.33 4-hydroxybenzoate 3-monooxygenase [NAD(P)H]).
References: [1581, 1587, 3594, 3592, 3593, 3429]

[EC 1.14.13.2 created 1972, modified 1999]

[1.14.13.3 Transferred entry. 4-hydroxyphenylacetate 3-monooxygenase. Now EC 1.14.14.9, 4-hydroxyphenylacetate 3-
monooxygenase.]

[EC 1.14.13.3 created 1972, deleted 2011]

EC 1.14.13.4
Accepted name: melilotate 3-monooxygenase

Reaction: 3-(2-hydroxyphenyl)propanoate + NADH + H+ + O2 = 3-(2,3-dihydroxyphenyl)propanoate + NAD+

+ H2O
Other name(s): 2-hydroxyphenylpropionate hydroxylase; melilotate hydroxylase; 2-hydroxyphenylpropionic hydrox-

ylase; melilotic hydroxylase
Systematic name: 3-(2-hydroxyphenyl)propanoate,NADH:oxygen oxidoreductase (3-hydroxylating)

Comments: A flavoprotein (FAD).
References: [2213, 2214, 3678, 3677]

[EC 1.14.13.4 created 1972]

EC 1.14.13.5
Accepted name: imidazoleacetate 4-monooxygenase

Reaction: 4-imidazoleacetate + NADH + H+ + O2 = 5-hydroxy-4-imidazoleacetate + NAD+ + H2O
Other name(s): imidazoleacetic hydroxylase; imidazoleacetate hydroxylase; imidazoleacetic monooxygenase

Systematic name: 4-imidazoleacetate,NADH:oxygen oxidoreductase (5-hydroxylating)
Comments: A flavoprotein (FAD).
References: [2378]
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[EC 1.14.13.5 created 1965 as EC 1.14.1.5, transferred 1972 to EC 1.14.13.5]

EC 1.14.13.6
Accepted name: orcinol 2-monooxygenase

Reaction: orcinol + NADH + H+ + O2 = 2,3,5-trihydroxytoluene + NAD+ + H2O
Other name(s): orcinol hydroxylase

Systematic name: orcinol,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: A flavoprotein (FAD).
References: [2909]

[EC 1.14.13.6 created 1972]

EC 1.14.13.7
Accepted name: phenol 2-monooxygenase (NADPH)

Reaction: phenol + NADPH + H+ + O2 = catechol + NADP+ + H2O
Other name(s): phenol hydroxylase; phenol o-hydroxylase

Systematic name: phenol,NADPH:oxygen oxidoreductase (2-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme from the fungus Trichosporon cutaneum has a broad substrate

specificity, and has been reported to catalyse the hydroxylation of a variety of substituted phenols,
such as fluoro-, chloro-, amino- and methyl-phenols and also dihydroxybenzenes. cf. EC 1.14.14.20,
phenol 2-monooxygenase (FADH2).

References: [2699, 2767, 2768]

[EC 1.14.13.7 created 1972, modified 2011, modified 2016]

EC 1.14.13.8
Accepted name: flavin-containing monooxygenase

Reaction: N,N-dimethylaniline + NADPH + H+ + O2 = N,N-dimethylaniline N-oxide + NADP+ + H2O
Other name(s): dimethylaniline oxidase; dimethylaniline N-oxidase; FAD-containing monooxygenase; N,N-

dimethylaniline monooxygenase; DMA oxidase; flavin mixed function oxidase; Ziegler’s enzyme;
mixed-function amine oxidase; FMO; FMO-I; FMO-II; FMO1; FMO2; FMO3; FMO4; FMO5; flavin
monooxygenase; methylphenyltetrahydropyridine N-monooxygenase; 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine:oxygen N-oxidoreductase; dimethylaniline monooxygenase (N-oxide-forming)

Systematic name: N,N-dimethylaniline,NADPH:oxygen oxidoreductase (N-oxide-forming)
Comments: A flavoprotein. A broad spectrum monooxygenase that accepts substrates as diverse as hydrazines,

phosphines, boron-containing compounds, sulfides, selenides, iodide, as well as primary, secondary
and tertiary amines [517, 518]. This enzyme is distinct from other monooxygenases in that the en-
zyme forms a relatively stable hydroperoxy flavin intermediate [518, 1771]. This microsomal enzyme
generally converts nucleophilic heteroatom-containing chemicals and drugs into harmless, readily ex-
creted metabolites. For example, N-oxygenation is largely responsible for the detoxification of the
dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [591, 590]

References: [4486, 591, 517, 518, 1771, 590]

[EC 1.14.13.8 created 1972 (EC 1.13.12.11 created 1992, part-incorporated 2006), modified 2006]

EC 1.14.13.9
Accepted name: kynurenine 3-monooxygenase

Reaction: L-kynurenine + NADPH + H+ + O2 = 3-hydroxy-L-kynurenine + NADP+ + H2O
Other name(s): kynurenine 3-hydroxylase; kynurenine hydroxylase; L-kynurenine-3-hydroxylase

Systematic name: L-kynurenine,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: A flavoprotein (FAD).
References: [758, 2861, 3287]
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[EC 1.14.13.9 created 1961 as EC 1.99.1.5, transferred 1965 to EC 1.14.1.2, transferred 1972 to EC 1.14.13.9]

EC 1.14.13.10
Accepted name: 2,6-dihydroxypyridine 3-monooxygenase

Reaction: 2,6-dihydroxypyridine + NADH + H+ + O2 = 2,3,6-trihydroxypyridine + NAD+ + H2O
Other name(s): 2,6-dihydroxypyridine oxidase

Systematic name: 2,6-dihydroxypyridine,NADH:oxygen oxidoreductase (3-hydroxylating)
Comments: A flavoprotein.
References: [1547, 1548]

[EC 1.14.13.10 created 1976]

[1.14.13.11 Transferred entry. trans-cinnamate 4-monooxygenase. Now EC 1.14.14.91, trans-cinnamate 4-monooxygenase]

[EC 1.14.13.11 created 1976, deleted 2018]

[1.14.13.12 Transferred entry. benzoate 4-monooxygenase. Now EC 1.14.14.92, benzoate 4-monooxygenase]

[EC 1.14.13.12 created 1976, deleted 2018]

[1.14.13.13 Transferred entry. calcidiol 1-monooxygenase. Now classified as EC 1.14.15.18, calcidiol 1-monooxygenase]

[EC 1.14.13.13 created 1976, deleted 2016]

EC 1.14.13.14
Accepted name: trans-cinnamate 2-monooxygenase

Reaction: trans-cinnamate + NADPH + H+ + O2 = 2-hydroxycinnamate + NADP+ + H2O
Other name(s): cinnamic acid 2-hydroxylase; cinnamate 2-monooxygenase; cinnamic 2-hydroxylase; cinnamate 2-

hydroxylase; trans-cinnamic acid 2-hydroxylase
Systematic name: trans-cinnamate,NADPH:oxygen oxidoreductase (2-hydroxylating)

References: [1189]

[EC 1.14.13.14 created 1976]

[1.14.13.15 Transferred entry. cholestanetriol 26-monooxygenase. Now EC 1.14.15.15, cholestanetriol 26-monooxygenase.]

[EC 1.14.13.15 created 1976, modified 2005, modified 2012, deleted 2016]

EC 1.14.13.16
Accepted name: cyclopentanone monooxygenase

Reaction: cyclopentanone + NADPH + H+ + O2 = 5-valerolactone + NADP+ + H2O
Other name(s): cyclopentanone oxygenase

Systematic name: cyclopentanone,NADPH:oxygen oxidoreductase (5-hydroxylating, lactonizing)
References: [1282, 1283]

[EC 1.14.13.16 created 1976]

[1.14.13.17 Transferred entry. cholesterol 7α-monooxygenase. Now EC 1.14.14.23, cholesterol 7α-monooxygenase]

[EC 1.14.13.17 created 1976, deleted 2016]

EC 1.14.13.18
Accepted name: 4-hydroxyphenylacetate 1-monooxygenase

Reaction: 4-hydroxyphenylacetate + NAD(P)H + H+ + O2 = homogentisate + NAD(P)+ + H2O
Other name(s): 4-hydroxyphenylacetate 1-hydroxylase; 4-hydroxyphenylacetic 1-hydroxylase; 4-HPA 1-hydroxylase

Systematic name: 4-hydroxyphenylacetate,NAD(P)H:oxygen oxidoreductase (1-hydroxylating)
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Comments: A flavoprotein (FAD). Also acts on 4-hydroxyhydratropate (forming 2-methylhomogentisate) and on
4-hydroxyphenoxyacetate (forming hydroquinone and glycolate).

References: [1395]

[EC 1.14.13.18 created 1976]

EC 1.14.13.19
Accepted name: taxifolin 8-monooxygenase

Reaction: taxifolin + NAD(P)H + H+ + O2 = 2,3-dihydrogossypetin + NAD(P)+ + H2O
Other name(s): taxifolin hydroxylase

Systematic name: taxifolin,NAD(P)H:oxygen oxidoreductase (8-hydroxylating)
Comments: A flavoprotein, converting a flavanol into a flavanone. Also acts on fustin, but not on catechin,

quercetin or mollisacidin.
References: [1728]

[EC 1.14.13.19 created 1976]

EC 1.14.13.20
Accepted name: 2,4-dichlorophenol 6-monooxygenase

Reaction: 2,4-dichlorophenol + NADPH + H+ + O2 = 3,5-dichlorocatechol + NADP+ + H2O
Other name(s): 2,4-dichlorophenol hydroxylase; 2,4-dichlorophenol monooxygenase

Systematic name: 2,4-dichlorophenol,NADPH:oxygen oxidoreductase (6-hydroxylating)
Comments: A flavoprotein (FAD). Also acts, more slowly, on 4-chlorophenol and 4-chloro-2-methylphenol;

NADH can act instead of NADPH, but more slowly.
References: [226]

[EC 1.14.13.20 created 1983]

[1.14.13.21 Transferred entry. flavonoid 3′-monooxygenase. Now EC 1.14.14.82, flavonoid 3′-monooxygenase.]

[EC 1.14.13.21 created 1983, deleted 2018]

EC 1.14.13.22
Accepted name: cyclohexanone monooxygenase

Reaction: cyclohexanone + NADPH + H+ + O2 = hexano-6-lactone + NADP+ + H2O
Other name(s): cyclohexanone 1,2-monooxygenase; cyclohexanone oxygenase; cyclohexanone:NADPH:oxygen oxi-

doreductase (6-hydroxylating, 1,2-lactonizing)
Systematic name: cyclohexanone,NADPH:oxygen oxidoreductase (lactone-forming)

Comments: A flavoprotein (FAD). In the catalytic mechanism of this enzyme, the nucleophilic species that attacks
the carbonyl group is a peroxyflavin intermediate that is generated by reaction of the enzyme-bound
flavin cofactor with NAD(P)H and oxygen [3477]. This enzyme is able to catalyse a wide range of
oxidative reactions, including enantioselective Baeyer-Villiger reactions [3643], sulfoxidations [567],
amine oxidations [2913] and epoxidations [646].

References: [856, 3477, 3643, 567, 2913, 646]

[EC 1.14.13.22 created 1984, modified 2004]

EC 1.14.13.23
Accepted name: 3-hydroxybenzoate 4-monooxygenase

Reaction: 3-hydroxybenzoate + NADPH + H+ + O2 = 3,4-dihydroxybenzoate + NADP+ + H2O
Other name(s): 3-hydroxybenzoate 4-hydroxylase

Systematic name: 3-hydroxybenzoate,NADPH:oxygen oxidoreductase (4-hydroxylating)
Comments: A flavoprotein (FAD). Acts also on a number of analogues of 3-hydroxybenzoate substituted in the 2,

4, 5 and 6 positions.
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References: [2524, 3057]

[EC 1.14.13.23 created 1972 as EC 1.14.99.13, transferred 1984 to EC 1.14.13.23]

EC 1.14.13.24
Accepted name: 3-hydroxybenzoate 6-monooxygenase

Reaction: 3-hydroxybenzoate + NADH + H+ + O2 = 2,5-dihydroxybenzoate + NAD+ + H2O
Other name(s): 3-hydroxybenzoate 6-hydroxylase; m-hydroxybenzoate 6-hydroxylase; 3-hydroxybenzoic acid-6-

hydroxylase
Systematic name: 3-hydroxybenzoate,NADH:oxygen oxidoreductase (6-hydroxylating)

Comments: A flavoprotein (FAD). Acts also on a number of analogues of 3-hydroxybenzoate substituted in the 2,
4, 5 and 6 positions; NADPH can act instead of NADH, but more slowly.

References: [1294]

[EC 1.14.13.24 created 1984]

EC 1.14.13.25
Accepted name: methane monooxygenase (soluble)

Reaction: methane + NAD(P)H + H+ + O2 = methanol + NAD(P)+ + H2O
Other name(s): methane hydroxylase

Systematic name: methane,NAD(P)H:oxygen oxidoreductase (hydroxylating)
Comments: The enzyme is soluble, in contrast to the particulate enzyme, EC 1.14.18.3. Broad specificity; many

alkanes can be hydroxylated, and alkenes are converted into the corresponding epoxides; CO is oxi-
dized to CO2, ammonia is oxidized to hydroxylamine, and some aromatic compounds and cyclic alka-
nes can also be hydroxylated, but more slowly.

References: [640, 1618, 3652, 3908]

[EC 1.14.13.25 created 1984, modified 2011]

[1.14.13.26 Transferred entry. phosphatidylcholine 12-monooxygenase. Now classified as EC 1.14.18.4, phosphatidyl-
choline 12-monooxygenase.]

[EC 1.14.13.26 created 1984, deleted 2015]

EC 1.14.13.27
Accepted name: 4-aminobenzoate 1-monooxygenase

Reaction: 4-aminobenzoate + NAD(P)H + 2 H+ + O2 = 4-hydroxyaniline + NAD(P)+ + H2O + CO2
Other name(s): 4-aminobenzoate hydroxylase; 4-aminobenzoate monooxygenase

Systematic name: 4-aminobenzoate,NAD(P)H:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: A flavoprotein (FAD). Acts on anthranilate and 4-aminosalicylate but not on salicylate (cf. EC

1.14.13.1 salicylate 1-monooxygenase).
References: [3939]

[EC 1.14.13.27 created 1989]

[1.14.13.28 Transferred entry. 3,9-dihydroxypterocarpan 6a-monooxygenase. Now EC 1.14.14.93, 3,9-dihydroxypterocarpan
6a-monooxygenase]

[EC 1.14.13.28 created 1989, deleted 2018]

EC 1.14.13.29
Accepted name: 4-nitrophenol 2-monooxygenase

Reaction: 4-nitrophenol + NADH + H+ + O2 = 4-nitrocatechol + NAD+ + H2O
Other name(s): 4-nitrophenol hydroxylase; 4-nitrophenol-2-hydroxylase
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Systematic name: 4-nitrophenol,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: A flavoprotein (FAD).
References: [2565]

[EC 1.14.13.29 created 1989]

[1.14.13.30 Transferred entry. leukotriene-B4 20-monooxygenase. Now EC 1.14.14.94, leukotriene-B4 20-monooxygenase]

[EC 1.14.13.30 created 1989, deleted 2018]

EC 1.14.13.31
Accepted name: 2-nitrophenol 2-monooxygenase

Reaction: 2-nitrophenol + 2 NADPH + 2 H+ + O2 = catechol + nitrite + 2 NADP+ + H2O
Other name(s): 2-nitrophenol oxygenase; nitrophenol oxygenase

Systematic name: 2-nitrophenol,NADPH:oxygen 2-oxidoreductase (2-hydroxylating, nitrite-forming)
Comments: Involved in the metabolism of nitro-aromatic compounds by a strain of Pseudomonas putida.
References: [4436]

[EC 1.14.13.31 created 1989]

EC 1.14.13.32
Accepted name: albendazole monooxygenase

Reaction: albendazole + NADPH + H+ + O2 = albendazole S-oxide + NADP+ + H2O
Other name(s): albendazole oxidase (misleading); albendazole sulfoxidase (ambiguous); FMO3 (gene name); alben-

dazole monooxygenase (flavin-containing)
Systematic name: albendazole,NADPH:oxygen oxidoreductase (sulfoxide-forming)

Comments: A microsomal flavin-containing monooxygenase. A similar conversion is also carried out by some
microsomal cytochrome P-450 enzymes [EC 1.14.14.73, albendazole monooxygenase (sulfoxide-
forming)]. It is estimated that cytochrome P-450s are responsible for 70% of the activity.

References: [985, 2630, 3137]

[EC 1.14.13.32 created 1989, modified 2018]

EC 1.14.13.33
Accepted name: 4-hydroxybenzoate 3-monooxygenase [NAD(P)H]

Reaction: 4-hydroxybenzoate + NAD(P)H + H+ + O2 = 3,4-dihydroxybenzoate + NAD(P)+ + H2O
Other name(s): 4-hydroxybenzoate 3-monooxygenase (reduced nicotinamide adenine dinucleotide (phosphate)); 4-

hydroxybenzoate-3-hydroxylase; 4-hydroxybenzoate 3-hydroxylase
Systematic name: 4-hydroxybenzoate,NAD(P)H:oxygen oxidoreductase (3-hydroxylating)

Comments: A flavoprotein (FAD). The enzyme from Corynebacterium cyclohexanicum is highly specific for 4-
hydroxybenzoate, but uses NADH and NADPH at approximately equal rates (cf. EC 1.14.13.2 4-
hydroxybenzoate 3-monooxygenase). It is less specific for NADPH than EC 1.14.13.2.

References: [1090, 3429]

[EC 1.14.13.33 created 1989, modified 1999]

EC 1.14.13.34
Accepted name: leukotriene-E4 20-monooxygenase

Reaction: (7E,9E,11Z,14Z)-(5S,6R)-6-(cystein-S-yl)-5-hydroxyicosa-7,9,11,14-tetraenoate + NADPH + H+ +
O2 = 20-hydroxyleukotriene E4 + NADP+ + H2O

Other name(s): leukotriene-E4 ω-hydroxylase
Systematic name: (7E,9E,11Z,14Z)-(5S,6R)-6-(cystein-S-yl)-5-hydroxyicosa-7,9,11,14-tetraenoate,NADPH:oxygen

oxidoreductase (20-hydroxylating)
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Comments: Also acts on N-acetyl-leukotriene E4, but more slowly. Not identical with EC 1.14.13.30 leukotriene-
B4 20-monooxygenase.

References: [2896]

[EC 1.14.13.34 created 1989]

EC 1.14.13.35
Accepted name: anthranilate 3-monooxygenase (deaminating)

Reaction: anthranilate + NADPH + H+ + O2 = 2,3-dihydroxybenzoate + NADP+ + NH3
Other name(s): anthranilate hydroxylase; anthranilate 2,3-dioxygenase (deaminating); anthranilate hydroxylase

(deaminating); anthranilic hydroxylase; anthranilate 2,3-hydroxylase (deaminating)
Systematic name: anthranilate,NADPH:oxygen oxidoreductase (3-hydroxylating, deaminating)

Comments: The enzyme from Aspergillus niger is an iron protein; that from the yeast Trichosporon cutaneum is a
flavoprotein (FAD).

References: [3050, 3703]

[EC 1.14.13.35 created 1972 as EC 1.14.12.2, transferred 1990 to EC 1.14.13.35]

[1.14.13.36 Transferred entry. 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase. Now EC 1.14.14.96, 5-O-(4-coumaroyl)-
D-quinate 3′-monooxygenase]

[EC 1.14.13.36 created 1990, deleted 2018]

[1.14.13.37 Transferred entry. methyltetrahydroprotoberberine 14-monooxygenase. Now EC 1.14.14.97, methyltetrahy-
droprotoberberine 14-monooxygenase]

[EC 1.14.13.37 created 1990, deleted 2018]

EC 1.14.13.38
Accepted name: anhydrotetracycline 6-monooxygenase

Reaction: anhydrotetracycline + NADPH + H+ + O2 = 12-dehydrotetracycline + NADP+ + H2O
Other name(s): ATC oxygenase; anhydrotetracycline oxygenase; oxyS (gene name); anhydrotetracycline monooxyge-

nase
Systematic name: anhydrotetracycline,NADPH:oxygen oxidoreductase (6-hydroxylating)

Comments: The enzyme, characterized from the bacterium Streptomyces rimosus, participates in the biosyn-
thesis of tetracycline antibiotics. It can also catalyse EC 1.14.13.234, 12-dehydrotetracycline 5-
monooxygenase.

References: [244, 299, 4016, 4112]

[EC 1.14.13.38 created 1990, modified 2016]

EC 1.14.13.39
Accepted name: nitric-oxide synthase (NADPH)

Reaction: 2 L-arginine + 3 NADPH + 3 H+ + 4 O2 = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O (over-
all reaction)
(1a) 2 L-arginine + 2 NADPH + 2 H+ + 2 O2 = 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
(1b) 2 Nω-hydroxy-L-arginine + NADPH + H+ + 2 O2 = 2 L-citrulline + 2 nitric oxide + NADP+ + 2
H2O

Other name(s): NOS (gene name); nitric oxide synthetase (ambiguous); endothelium-derived relaxation factor-
forming enzyme; endothelium-derived relaxing factor synthase; NO synthase (ambiguous); NADPH-
diaphorase (ambiguous)

Systematic name: L-arginine,NADPH:oxygen oxidoreductase (nitric-oxide-forming)
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Comments: The enzyme consists of linked oxygenase and reductase domains. The eukaryotic enzyme binds FAD,
FMN, heme (iron protoporphyrin IX) and tetrahydrobiopterin, and its two domains are linked via a
regulatory calmodulin-binding domain. Upon calcium-induced calmodulin binding, the reductase and
oxygenase domains form a complex, allowing electrons to flow from NADPH via FAD and FMN to
the active center. The reductase domain of the enzyme from the bacterium Sorangium cellulosum uti-
lizes a [2Fe-2S] cluster to transfer the electrons from NADPH to the active center. cf. EC 1.14.14.47,
nitric-oxide synthase (flavodoxin).

References: [391, 3695, 3694, 28, 1032]

[EC 1.14.13.39 created 1992, modified 2012, modified 2017]

EC 1.14.13.40
Accepted name: anthraniloyl-CoA monooxygenase

Reaction: anthraniloyl-CoA + 2 NAD(P)H + 2 H+ + O2 = 2-amino-5-oxocyclohex-1-enecarboxyl-CoA + H2O +
2 NAD(P)+

Other name(s): anthraniloyl coenzyme A reductase; 2-aminobenzoyl-CoA monooxygenase/reductase
Systematic name: anthraniloyl-CoA,NAD(P)H:oxygen oxidoreductase (de-aromatizing)

Comments: A flavoprotein (FAD). The non-aromatic product is unstable and releases CO2 and NH3, forming 1,4-
cyclohexanedione.

References: [441, 442, 2134]

[EC 1.14.13.40 created 1992]

[1.14.13.41 Transferred entry. tyrosine N-monooxygenase. Now EC 1.14.14.36, tyrosine N-monooxygenase]

[EC 1.14.13.41 created 1992, modified 2001, modified 2005, deleted 2016]

[1.14.13.42 Deleted entry. hydroxyphenylacetonitrile 2-monooxygenase. The activity is covered by EC 1.14.13.68, 4-
hydroxyphenylacetaldehyde oxime monooxygenase, that performs the two consecutive reactions in the conversion of (Z)-4-
hydroxyphenylacetaldehyde oxime to (S)-4-hydroxymandelonitrile]

[EC 1.14.13.42 created 1992, deleted 2011]

EC 1.14.13.43
Accepted name: questin monooxygenase

Reaction: questin + NADPH + H+ + O2 = demethylsulochrin + NADP+

Other name(s): questin oxygenase
Systematic name: questin,NADPH:oxygen oxidoreductase (hydroxylating, anthraquinone-ring-opening)

Comments: The enzyme cleaves the anthraquinone ring of questin to form a benzophenone. Involved in the
biosynthesis of the seco-anthraquinone (+)-geodin.

References: [1089]

[EC 1.14.13.43 created 1992]

EC 1.14.13.44
Accepted name: 2-hydroxybiphenyl 3-monooxygenase

Reaction: 2-hydroxybiphenyl + NADH + H+ + O2 = 2,3-dihydroxybiphenyl + NAD+ + H2O
Systematic name: 2-hydroxybiphenyl,NADH:oxygen oxidoreductase (3-hydroxylating)

Comments: Also converts 2,2′-dihydroxybiphenyl into 2,2′,3-trihydroxy-biphenyl.
References: [2002]

[EC 1.14.13.44 created 1992]

[1.14.13.45 Transferred entry. CMP-N-acetylneuraminate monooxygenase. Now EC 1.14.18.2, CMP-N-acetylneuraminate
monooxygenase]
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[EC 1.14.13.45 created 1992, deleted 2003]

EC 1.14.13.46
Accepted name: (-)-menthol monooxygenase

Reaction: (-)-menthol + NADPH + H+ + O2 = p-menthane-3,8-diol + NADP+ + H2O
Other name(s): l-menthol monooxygenase

Systematic name: (-)-menthol,NADPH:oxygen oxidoreductase (8-hydroxylating)
References: [2355]

[EC 1.14.13.46 created 1992]

[1.14.13.47 Transferred entry. (S)-limonene 3-monooxygenase. Now EC 1.14.14.99, (S)-limonene 3-monooxygenase]

[EC 1.14.13.47 created 1992, modified 2003, deleted 2018]

[1.14.13.48 Transferred entry. (S)-limonene 6-monooxygenase. Now classified as EC 1.14.14.51, (S)-limonene 6-monooxygenase]

[EC 1.14.13.48 created 1992, modified 2003, deleted 2017]

[1.14.13.49 Transferred entry. (S)-limonene 7-monooxygenase. Now classified as EC 1.14.14.52, (S)-limonene 7-monooxygenase]

[EC 1.14.13.49 created 1992, modified 2003, deleted 2017]

EC 1.14.13.50
Accepted name: pentachlorophenol monooxygenase

Reaction: (1) pentachlorophenol + NADPH + H+ + O2 = 2,3,5,6-tetrachloro-1,4-benzoquinone + NADP+ +
chloride + H2O
(2) 2,3,5,6-tetrachlorophenol + NADPH + H+ + O2 = 2,3,5,6-tetrachlorohydroquinone + NADP+ +
H2O

Other name(s): pcpB (gene name); pentachlorophenol dechlorinase; pentachlorophenol dehalogenase; pen-
tachlorophenol 4-monooxygenase; PCP hydroxylase; pentachlorophenol hydroxylase; PCB 4-
monooxygenase; PCB4MO

Systematic name: pentachlorophenol,NADPH:oxygen oxidoreductase (hydroxylating, dechlorinating)
Comments: A flavoprotein (FAD). The enzyme displaces a diverse range of substituents from the 4-position of

polyhalogenated phenols but requires that a halogen substituent be present at the 2-position [4293]. If
C-4 carries a halogen substituent, reaction 1 is catalysed; if C-4 is unsubstituted, reaction 2 is catal-
ysed.

References: [3357, 4293, 4292, 2132, 2707, 571, 1523, 3251]

[EC 1.14.13.50 created 1992, modified 2005, modified 2017]

EC 1.14.13.51
Accepted name: 6-oxocineole dehydrogenase

Reaction: 6-oxocineole + NADPH + H+ + O2 = 1,6,6-trimethyl-2,7-dioxabicyclo[3.2.2]nonan-3-one + NADP+

+ H2O
Other name(s): 6-oxocineole oxygenase

Systematic name: 6-oxocineole,NADPH:oxygen oxidoreductase
Comments: The product undergoes non-enzymic cleavage and subsequent ring closure to form the lactone 4,5-

dihydro-5,5-dimethyl-4-(3-oxobutyl)furan-2(3H)-one.
References: [4217]

[EC 1.14.13.51 created 1992]

[1.14.13.52 Transferred entry. isoflavone 3′-hydroxylase. Now EC 1.14.14.88, isoflavone 3′-hydroxylase]

[EC 1.14.13.52 created 1992, deleted 2018]
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[1.14.13.53 Transferred entry. 4′-methoxyisoflavone 2′-hydroxylase. Now EC 1.14.14.89, 4′-methoxyisoflavone 2′-hydroxylase]

[EC 1.14.13.53 created 1992, modified 2005, deleted 2018]

EC 1.14.13.54
Accepted name: ketosteroid monooxygenase

Reaction: a ketosteroid + NADPH + H+ + O2 = a steroid ester/lactone + NADP+ + H2O (general reaction)
(1) progesterone + NADPH + H+ + O2 = testosterone acetate + NADP+ + H2O
(2) androstenedione + NADPH + H+ + O2 = testololactone + NADP+ + H2O
(3) 17α-hydroxyprogesterone + NADPH + H+ + O2 = androstenedione + acetate + NADP+ + H2O

Other name(s): steroid-ketone monooxygenase; progesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating,
ester-producing); 17α-hydroxyprogesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating,
side-chain cleaving); androstenedione, NADPH2:oxygen oxidoreductase (17-hydroxylating, lactoniz-
ing)

Systematic name: ketosteroid,NADPH:oxygen oxidoreductase (20-hydroxylating, ester-producing/20-hydroxylating,
side-chain cleaving/17-hydroxylating, lactonizing)

Comments: A single FAD-containing enzyme catalyses three types of monooxygenase (Baeyer-Villiger oxida-
tion) reaction. The oxidative esterification of a number of derivatives of progesterone to produce the
corresponding 17α-hydroxysteroid 17-acetate ester, such as testosterone acetate, is shown in Reac-
tion (1). The oxidative lactonization of a number of derivatives of androstenedione to produce the
13,17-secoandrosteno-17,13α-lactone, such as testololactone, is shown in Reaction (2). The oxidative
cleavage of the 17β-side-chain of 17α-hydroxyprogesterone to produce androstenedione and acetate
is shown in Reaction (3). Reaction (1) is also catalysed by EC 1.14.99.4 (progesterone monooxyge-
nase), and Reactions (2) and (3) correspond to that catalysed by EC 1.14.99.12 (androst-4-ene-3,17-
dione monooxygenase). The possibility that a single enzyme is responsible for the reactions ascribed
to EC 1.14.99.4 and EC 1.14.99.12 in other tissues cannot be excluded.

References: [1827, 1679, 1680]

[EC 1.14.13.54 created 1999]

[1.14.13.55 Transferred entry. protopine 6-monooxygenase. Now EC 1.14.14.98, protopine 6-monooxygenase]

[EC 1.14.13.55 created 1999, deleted 2018]

[1.14.13.56 Transferred entry. dihydrosanguinarine 10-monooxygenase. Now EC 1.14.14.100, dihydrosanguinarine 10-
monooxygenase]

[EC 1.14.13.56 created 1999, deleted 2018]

[1.14.13.57 Transferred entry. dihydrochelirubine 12-monooxygenase. Now EC 1.14.14.101, dihydrochelirubine 12-monooxygenase]

[EC 1.14.13.57 created 1999, deleted 2018]

EC 1.14.13.58
Accepted name: benzoyl-CoA 3-monooxygenase

Reaction: benzoyl-CoA + NADPH + H+ + O2 = 3-hydroxybenzoyl-CoA + NADP+ + H2O
Other name(s): benzoyl-CoA 3-hydroxylase

Systematic name: benzoyl-CoA,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: The enzyme from the denitrifying bacterium Pseudomonas KB740 catalyses a flavin-requiring reac-

tion (FAD or FMN). Benzoate is not a substrate.
References: [2787]

[EC 1.14.13.58 created 1999]

EC 1.14.13.59
Accepted name: L-lysine N6-monooxygenase (NADPH)

Reaction: L-lysine + NADPH + H+ + O2 = N6-hydroxy-L-lysine + NADP+ + H2O
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Other name(s): lysine N6-hydroxylase; L-lysine 6-monooxygenase (NADPH) (ambiguous)
Systematic name: L-lysine,NADPH:oxygen oxidoreductase (6-hydroxylating)

Comments: A flavoprotein (FAD). The enzyme from strain EN 222 of Escherichia coli is highly specific for L-
lysine; L-ornithine and L-homolysine are, for example, not substrates.

References: [3020, 2345, 3854, 766, 2406, 1229]

[EC 1.14.13.59 created 1999, modified 2001, modified 2012]

[1.14.13.60 Transferred entry. 27-hydroxycholesterol 7α-monooxygenase. Now included with EC 1.14.13.100, 25-hydroxycholesterol
7α-hydroxylase]

[EC 1.14.13.60 created 1999, deleted 2013]

EC 1.14.13.61
Accepted name: 2-hydroxyquinoline 8-monooxygenase

Reaction: quinolin-2-ol + NADH + H+ + O2 = quinolin-2,8-diol + NAD+ + H2O
Other name(s): 2-oxo-1,2-dihydroquinoline 8-monooxygenase

Systematic name: quinolin-2(1H)-one,NADH:oxygen oxidoreductase (8-oxygenating)
Comments: Requires iron. Quinolin-2-ol exists largely as the quinolin-2(1H)-one tautomer.
References: [3232]

[EC 1.14.13.61 created 1999]

EC 1.14.13.62
Accepted name: 4-hydroxyquinoline 3-monooxygenase

Reaction: quinolin-4-ol + NADH + H+ + O2 = quinolin-3,4-diol + NAD+ + H2O
Other name(s): quinolin-4(1H)-one 3-monooxygenase

Systematic name: quinolin-4(1H)-one,NADH:oxygen oxidoreductase (3-oxygenating)
Comments: Quinolin-4-ol exists largely as the quinolin-4(1H)-one tautomer.
References: [324]

[EC 1.14.13.62 created 1999]

EC 1.14.13.63
Accepted name: 3-hydroxyphenylacetate 6-hydroxylase

Reaction: 3-hydroxyphenylacetate + NAD(P)H + H+ + O2 = 2,5-dihydroxyphenylacetate + NAD(P)+ + H2O
Other name(s): 3-hydroxyphenylacetate 6-monooxygenase

Systematic name: 3-hydroxyphenylacetate,NAD(P)H:oxygen oxidoreductase (6-hydroxylating)
Comments: 3-hydroxyphenylacetate 6-hydroxylase from Flavobacterium sp. is highly specific for 3-

hydroxyphenylacetate and uses NADH and NADPH as electron donors with similar efficiency.
References: [3992]

[EC 1.14.13.63 created 1999]

EC 1.14.13.64
Accepted name: 4-hydroxybenzoate 1-hydroxylase

Reaction: 4-hydroxybenzoate + NAD(P)H + 2 H+ + O2 = hydroquinone + NAD(P)+ + H2O + CO2
Other name(s): 4-hydroxybenzoate 1-monooxygenase

Systematic name: 4-hydroxybenzoate,NAD(P)H:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: Requires FAD. The enzyme from Candida parapsilosis is specific for 4-hydroxybenzoate derivatives

and prefers NADH to NADPH as electron donor.
References: [3993]
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[EC 1.14.13.64 created 1999]

[1.14.13.65 Deleted entry. 2-hydroxyquinoline 8-monooxygenase]

[EC 1.14.13.65 created 1999, deleted 2006]

EC 1.14.13.66
Accepted name: 2-hydroxycyclohexanone 2-monooxygenase

Reaction: 2-hydroxycyclohexan-1-one + NADPH + H+ + O2 = 6-hydroxyhexan-6-olide + NADP+ + H2O
Systematic name: 2-hydroxycyclohexan-1-one,NADPH:oxygen 2-oxidoreductase (1,2-lactonizing)

Comments: The product decomposes spontaneously to 6-oxohexanoic acid (adipic semialdehyde).
References: [752]

[EC 1.14.13.66 created 1978 as EC 1.14.12.6, transferred 1999 to EC 1.14.13.66]

[1.14.13.67 Transferred entry. quinine 3-monooxygenase. Now EC 1.14.14.55, quinine 3-monooxygenase]

[EC 1.14.13.67 created 2000, deleted 2017]

[1.14.13.68 Transferred entry. 4-hydroxyphenylacetaldehyde oxime monooxygenase. Now EC 1.14.14.37, 4-hydroxyphenylacetaldehyde
oxime monooxygenase]

[EC 1.14.13.68 created 2000, modified 2005, deleted 2016]

EC 1.14.13.69
Accepted name: alkene monooxygenase

Reaction: propene + NADH + H+ + O2 = 1,2-epoxypropane + NAD+ + H2O
Other name(s): alkene epoxygenase; etnABCD (gene names); amoABCDE (gene names)

Systematic name: alkene,NADH:oxygen oxidoreductase
Comments: This bacterial binuclear non-heme iron enzyme is a multicomponent enzyme complex comprising an

oxygenase, a reductase, and a Rieske-type ferredoxin. The enzyme from the bacterium Xanthobac-
ter sp. strain Py2 contains an additional small protein of unknown function that is essential for ac-
tivity. In general, the enzyme oxygenates C2 to C6 aliphatic alkenes, although enzymes from differ-
ent organisms show different substrate range. With propene as substrate, the stereospecificity of the
epoxypropane formed is 95% (R) and 5% (S).

References: [3553, 1143, 4473, 535, 534]

[EC 1.14.13.69 created 2001]

[1.14.13.70 Transferred entry. sterol 14α-demethylase. Now EC 1.14.14.154, sterol 14α-demethylase]

[EC 1.14.13.70 created 2001, modified 2013, deleted 2018]

[1.14.13.71 Transferred entry. N-methylcoclaurine 3′-monooxygenase. Now EC 1.14.14.102, N-methylcoclaurine 3′-monooxygenase]

[EC 1.14.13.71 created 2001, deleted 2018]

[1.14.13.72 Transferred entry. methylsterol monooxygenase. Now classified as EC 1.14.18.9, methylsterol monooxygenase]

[EC 1.14.13.72 created 1972 as EC 1.14.99.16, transferred 2002 to EC 1.14.13.72, deleted 2017]

[1.14.13.73 Transferred entry. tabersonine 16-hydroxylase. Now EC 1.14.14.103, tabersonine 16-hydroxylase]

[EC 1.14.13.73 created 2002, deleted 2018]

[1.14.13.74 Transferred entry. 7-deoxyloganin 7-hydroxylase. Now EC 1.14.14.85, 7-deoxyloganin 7-hydroxylase]

[EC 1.14.13.74 created 2002, deleted 2018]

[1.14.13.75 Transferred entry. vinorine hydroxylase. Now EC 1.14.14.104, vinorine hydroxylase]
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[EC 1.14.13.75 created 2002, deleted 2018]

[1.14.13.76 Transferred entry. taxane 10β-hydroxylase. Now EC 1.14.14.105, taxane 10β-hydroxylase]

[EC 1.14.13.76 created 2002, deleted 2018]

[1.14.13.77 Transferred entry. taxane 13α-hydroxylase. Now EC 1.14.14.106, taxane 13α-hydroxylase]

[EC 1.14.13.77 created 2002, deleted 2018]

[1.14.13.78 Transferred entry. ent-kaurene oxidase. Now EC 1.14.14.86, ent-kaurene monooxygenase]

[EC 1.14.13.78 created 2002, deleted 2018]

[1.14.13.79 Transferred entry. ent-kaurenoic acid oxidase. Now EC 1.14.14.107, ent-kaurenoic acid oxidase]

[EC 1.14.13.79 created 2002, deleted 2018]

[1.14.13.80 Transferred entry. (R)-limonene 6-monooxygenase. Now classified as EC 1.14.14.53, (R)-limonene 6-monooxygenase]

[EC 1.14.13.80 created 2003, deleted 2017]

EC 1.14.13.81
Accepted name: magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase

Reaction: magnesium-protoporphyrin IX 13-monomethyl ester + 3 NADPH + 3 H+ + 3 O2 = 3,8-divinyl pro-
tochlorophyllide a + 3 NADP+ + 5 H2O (overall reaction)
(1a) magnesium-protoporphyrin IX 13-monomethyl ester + NADPH + H+ + O2 = 131-hydroxy-
magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ + H2O
(1b) 131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + NADPH + H+ + O2 = 131-
oxo-magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ + 2 H2O
(1c) 131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + NADPH + H+ + O2 = 3,8-divinyl
protochlorophyllide a + NADP+ + 2 H2O

Other name(s): Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase
Systematic name: magnesium-protoporphyrin-IX 13-monomethyl ester,NADPH:oxygen oxidoreductase (hydroxylating)

Comments: Requires Fe(II) for activity. The enzyme participates in the biosynthesis of chlorophyllide a in aerobic
organisms. The same transformation is achieved in anaerobic organisms by EC 1.21.98.3, anaerobic
magnesium-protoporphyrin IX monomethyl ester cyclase. Some facultative phototrophic bacteria,
such as Rubrivivax gelatinosus, possess both enzymes.

References: [4085, 340, 3015, 3916]

[EC 1.14.13.81 created 2003, modified 2017]

EC 1.14.13.82
Accepted name: vanillate monooxygenase

Reaction: vanillate + O2 + NADH + H+ = 3,4-dihydroxybenzoate + NAD+ + H2O + formaldehyde
Other name(s): 4-hydroxy-3-methoxybenzoate demethylase; vanillate demethylase

Systematic name: vanillate:oxygen oxidoreductase (demethylating)
Comments: Forms part of the vanillin degradation pathway in Arthrobacter sp.
References: [429, 3062]

[EC 1.14.13.82 created 2000 as EC 1.2.3.12, transferred 2003 to EC 1.14.13.82]

EC 1.14.13.83
Accepted name: precorrin-3B synthase

Reaction: precorrin-3A + NADH + H+ + O2 = precorrin-3B + NAD+ + H2O
Other name(s): precorrin-3X synthase; CobG

Systematic name: precorrin-3A,NADH:oxygen oxidoreductase (20-hydroxylating)

349

http://www.enzyme-database.org/query.php?ec=1.14.13.81
http://www.enzyme-database.org/query.php?ec=1.14.13.82
http://www.enzyme-database.org/query.php?ec=1.14.13.83


Comments: An iron-sulfur protein. An oxygen atom from dioxygen is incorporated into the macrocycle at C-
20. In the aerobic cobalamin biosythesis pathway, four enzymes are involved in the conversion of
precorrin-3A to precorrin-6A. The first of the four steps is carried out by EC 1.14.13.83, precorrin-3B
synthase (CobG), yielding precorrin-3B as the product. This is followed by three methylation reac-
tions, which introduce a methyl group at C-17 (CobJ; EC 2.1.1.131), C-11 (CobM; EC 2.1.1.133) and
C-1 (CobF; EC 2.1.1.152) of the macrocycle, giving rise to precorrin-4, precorrin-5 and precorrin-6A,
respectively.

References: [773, 3415, 4137]

[EC 1.14.13.83 created 2004]

EC 1.14.13.84
Accepted name: 4-hydroxyacetophenone monooxygenase

Reaction: (4-hydroxyphenyl)ethan-1-one + NADPH + H+ + O2 = 4-hydroxyphenyl acetate + NADP+ + H2O
Other name(s): HAPMO

Systematic name: (4-hydroxyphenyl)ethan-1-one,NADPH:oxygen oxidoreductase (ester-forming)
Comments: Contains FAD. The enzyme from Pseudomonas fluorescens ACB catalyses the conversion of a wide

range of acetophenone derivatives. Highest activity occurs with compounds bearing an electron-
donating substituent at the para position of the aromatic ring [1804]. In the absence of substrate, the
enzyme can act as an NAD(P)H oxidase (EC 1.6.3.1).

References: [1804, 1805]

[EC 1.14.13.84 created 2004]

[1.14.13.85 Transferred entry. glyceollin synthase. Now EC 1.14.14.135, glyceollin synthase]

[EC 1.14.13.85 created 2004, deleted 2018]

[1.14.13.86 Deleted entry. 2-hydroxyisoflavanone synthase. This enzyme was classified on the basis of an incorrect reaction.
The activity is covered by EC 1.14.14.87, 2-hydroxyisoflavanone synthase]

[EC 1.14.13.86 created 2004, deleted 2013]

[1.14.13.87 Transferred entry. licodione synthase. Now EC 1.14.14.140, licodione synthase]

[EC 1.14.13.87 created 2004, deleted 2018]

[1.14.13.88 Transferred entry. flavanoid 3,5-hydroxylase. Now EC 1.14.14.81, flavanoid 3,5-hydroxylase]

[EC 1.14.13.88 created 2004, deleted 2018]

[1.14.13.89 Transferred entry. isoflavone 2-hydroxylase. Now EC 1.14.14.90, isoflavone 2-hydroxylase]

[EC 1.14.13.89 created 2005, deleted 2018]

[1.14.13.90 Transferred entry. zeaxanthin epoxidase. Now EC 1.14.15.21, zeaxanthin epoxidase]

[EC 1.14.13.90 created 2005, deleted 2016]

[1.14.13.91 Transferred entry. deoxysarpagine hydroxylase. Now EC 1.14.14.136, deoxysarpagine hydroxylase]

[EC 1.14.13.91 created 2005, deleted 2018]

EC 1.14.13.92
Accepted name: phenylacetone monooxygenase

Reaction: phenylacetone + NADPH + H+ + O2 = benzyl acetate + NADP+ + H2O
Other name(s): PAMO

Systematic name: phenylacetone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). NADH cannot replace NADPH as coenzyme. In addition to phenylace-

tone, which is the best substrate found to date, this Baeyer-Villiger monooxygenase can oxidize
other aromatic ketones [1-(4-hydroxyphenyl)propan-2-one, 1-(4-hydroxyphenyl)propan-2-one and
3-phenylbutan-2-one], some alipatic ketones (e.g. dodecan-2-one) and sulfides (e.g. 1-methyl-4-
(methylsulfanyl)benzene).

References: [2380, 1048]
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[EC 1.14.13.92 created 2005]

[1.14.13.93 Transferred entry. (+)-abscisic acid 8-hydroxylase. Now EC 1.14.14.137, (+)-abscisic acid 8-hydroxylase]

[EC 1.14.13.93 created 2005, deleted 2018]

[1.14.13.94 Transferred entry. lithocholate 6β-hydroxylase. Now EC 1.14.14.138, lithocholate 6β-hydroxylase]

[EC 1.14.13.94 created 2005, deleted 2018]

[1.14.13.95 Transferred entry. 7α-hydroxycholest-4-en-3-one 12α-hydroxylase. Now EC 1.14.18.8, 7α-hydroxycholest-4-
en-3-one 12α-hydroxylase]

[EC 1.14.13.95 created 2005, deleted 2015]

[1.14.13.96 Transferred entry. 5β-cholestane-3α,7α-diol 12α-hydroxylase. Now EC 1.14.14.139, 5β-cholestane-3α,7α-diol
12α-hydroxylase]

[EC 1.14.13.96 created 2005, deleted 2018]

[1.14.13.97 Transferred entry. taurochenodeoxycholate 6α-hydroxylase. Now EC 1.14.14.57, taurochenodeoxycholate 6α-
hydroxylase]

[EC 1.14.13.97 created 2005, deleted 2018]

[1.14.13.98 Transferred entry. cholesterol 24-hydroxylase. Now EC 1.14.14.25, cholesterol 24-hydroxylase ]

[EC 1.14.13.98 created 2005, deleted 2016]

[1.14.13.99 Transferred entry. 24-hydroxycholesterol 7α-hydroxylase. Now EC 1.14.14.26, 24-hydroxycholesterol 7α-
hydroxylase]

[EC 1.14.13.99 created 2005, deleted 2016]

[1.14.13.100 Transferred entry. 25/26-hydroxycholesterol 7α-hydroxylase. Now classified as EC 1.14.14.29, 25/26-hydroxycholesterol
7α-hydroxylase]

[EC 1.14.13.100 created 2005, modified 2013 (EC 1.14.13.60 created 1999, incorporated 2013), deleted 2016]

EC 1.14.13.101
Accepted name: senecionine N-oxygenase

Reaction: senecionine + NADPH + H+ + O2 = senecionine N-oxide + NADP+ + H2O
Other name(s): senecionine monooxygenase (N-oxide-forming); SNO

Systematic name: senecionine,NADPH:oxygen oxidoreductase (N-oxide-forming)
Comments: A flavoprotein. NADH cannot replace NADPH. While pyrrolizidine alkaloids of the senecionine and

monocrotaline types are generally good substrates (e.g. senecionine, retrorsine and monocrotaline),
the enzyme does not use ester alkaloids lacking an hydroxy group at C-7 (e.g. supinine and pha-
laenopsine), 1,2-dihydro-alkaloids (e.g. sarracine) or unesterified necine bases (e.g. senkirkine) as
substrates [2262]. Senecionine N-oxide is used by insects as a chemical defense: senecionine N-oxide
is non-toxic, but it is bioactivated to a toxic form by the action of cytochrome P-450 oxidase when
absorbed by insectivores.

References: [2262, 2743]

[EC 1.14.13.101 created 2006]

[1.14.13.102 Transferred entry. psoralen synthase. Now EC 1.14.14.141, psoralen synthase]

[EC 1.14.13.102 created 2007, deleted 2018]

[1.14.13.103 Transferred entry. 8-dimethylallylnaringenin 2-hydroxylase. Now EC 1.14.14.142, 8-dimethylallylnaringenin
2-hydroxylase]
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[EC 1.14.13.103 created 2007, deleted 2018]

[1.14.13.104 Transferred entry. (+)-menthofuran synthase. Now EC 1.14.14.143, (+)-menthofuran synthase]

[EC 1.14.13.104 created 2008, deleted 2018]

EC 1.14.13.105
Accepted name: monocyclic monoterpene ketone monooxygenase

Reaction: (1) (–)-menthone + NADPH + H+ + O2 = (4R,7S)-7-isopropyl-4-methyloxepan-2-one + NADP+ +
H2O
(2) dihydrocarvone + NADPH + H+ + O2 = 4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(3) (iso)-dihydrocarvone + NADPH + H+ + O2 = 6-isopropenyl-3-methyloxepan-2-one + NADP+ +
H2O
(4a) 1-hydroxymenth-8-en-2-one + NADPH + H+ + O2 = 7-hydroxy-4-isopropenyl-7-methyloxepan-
2-one + NADP+ + H2O
(4b) 7-hydroxy-4-isopropenyl-7-methyloxepan-2-one = 3-isopropenyl-6-oxoheptanoate (spontaneous)

Other name(s): 1-hydroxy-2-oxolimonene 1,2-monooxygenase; dihydrocarvone 1,2-monooxygenase; MMKMO
Systematic name: (–)-menthone,NADPH:oxygen oxidoreductase

Comments: A flavoprotein (FAD). This Baeyer-Villiger monooxygenase enzyme from the Gram-positive bac-
terium Rhodococcus erythropolis DCL14 has wide substrate specificity, catalysing the lactonization
of a large number of monocyclic monoterpene ketones and substituted cyclohexanones [4176]. Both
(1R,4S)- and (1S,4R)-1-hydroxymenth-8-en-2-one are metabolized, with the lactone product sponta-
neously rearranging to form 3-isopropenyl-6-oxoheptanoate [4000].

References: [4000, 4176, 3999]

[EC 1.14.13.105 created 2008]

EC 1.14.13.106
Accepted name: epi-isozizaene 5-monooxygenase

Reaction: (+)-epi-isozizaene + 2 NADPH + 2 H+ + 2 O2 = albaflavenone + 2 NADP+ + 3 H2O (overall reac-
tion)
(1a) (+)-epi-isozizaene + NADPH + H+ + O2 = (5S)-albaflavenol + NADP+ + H2O
(1b) (5S)-albaflavenol + NADPH + H+ + O2 = albaflavenone + NADP+ + 2 H2O
(2a) (+)-epi-isozizaene + NADPH + H+ + O2 = (5R)-albaflavenol + NADP+ + H2O
(2b) (5R)-albaflavenol + NADPH + H+ + O2 = albaflavenone + NADP+ + 2 H2O

Other name(s): CYP170A1
Systematic name: (+)-epi-isozizaene,NADPH:oxygen oxidoreductase (5-hydroxylating)

Comments: This cytochrome-P-450 enzyme, from the soil-dwelling bacterium Streptomyces coelicolor A3(2),
catalyses two sequential allylic oxidation reactions. The substrate epi-isozizaene, which is formed by
the action of EC 4.2.3.37, epi-isozizaene synthase, is first oxidized to yield the epimeric intermediates
(5R)-albaflavenol and (5S)-albaflavenol, which can be further oxidized to yield the sesquiterpenoid
antibiotic albaflavenone.

References: [4457]

[EC 1.14.13.106 created 2008]

EC 1.14.13.107
Accepted name: limonene 1,2-monooxygenase

Reaction: (1) (S)-limonene + NAD(P)H + H+ + O2 = 1,2-epoxymenth-8-ene + NAD(P)+ + H2O
(2) (R)-limonene + NAD(P)H + H+ + O2 = 1,2-epoxymenth-8-ene + NAD(P)+ + H2O

Systematic name: limonene,NAD(P)H:oxygen oxidoreductase
Comments: A flavoprotein (FAD). Limonene is the most widespread terpene and is formed by more than 300

plants. Rhodococcus erythropolis DCL14, a Gram-positive bacterium, is able to grow on both (S)-
limonene and (R)-limonene as the sole source of carbon and energy. NADPH can act instead of
NADH, although more slowly. It has not been established if the product formed is optically pure or
a mixture of two enantiomers.

352

http://www.enzyme-database.org/query.php?ec=1.14.13.105
http://www.enzyme-database.org/query.php?ec=1.14.13.106
http://www.enzyme-database.org/query.php?ec=1.14.13.107


References: [4000]

[EC 1.14.13.107 created 2009]

[1.14.13.108 Transferred entry. abieta-7,13-diene hydroxylase. Now EC 1.14.14.144, abieta-7,13-diene hydroxylase]

[EC 1.14.13.108 created 2009, modified 2012, deleted 2018]

[1.14.13.109 Transferred entry. abieta-7,13-dien-18-ol hydroxylase. Now EC 1.14.14.145, abieta-7,13-dien-18-ol hydroxy-
lase]

[EC 1.14.13.109 created 2009, modified 2012, deleted 2018]

[1.14.13.110 Transferred entry. geranylgeraniol 18-hydroxylase. Now EC 1.14.14.146, geranylgeraniol 18-hydroxylase]

[EC 1.14.13.110 created 2009, deleted 2018]

EC 1.14.13.111
Accepted name: methanesulfonate monooxygenase (NADH)

Reaction: methanesulfonate + NADH + H+ + O2 = formaldehyde + NAD+ + sulfite + H2O
Other name(s): mesylate monooxygenase; mesylate,reduced-FMN:oxygen oxidoreductase; MsmABC; methanesul-

fonic acid monooxygenase; MSA monooxygenase; MSAMO
Systematic name: methanesulfonate,NADH:oxygen oxidoreductase

Comments: A flavoprotein. Methanesulfonate is the simplest of the sulfonates and is a substrate for the growth
of certain methylotrophic microorganisms. Compared with EC 1.14.14.5, alkanesulfonate monooxy-
genase, this enzyme has a restricted substrate range that includes only the short-chain aliphatic sul-
fonates (methanesulfonate to butanesulfonate) and excludes all larger molecules, such as arylsul-
fonates [768]. The enzyme from the bacterium Methylosulfonomonas methylovora is a multicom-
ponent system comprising a hydroxylase, a reductase (MsmD) and a ferredoxin (MsmC). The hy-
droxylase has both large (MsmA) and small (MsmB) subunits, with each large subunit containing a
Rieske-type [2Fe-2S] cluster. cf. EC 1.14.14.34, methanesulfonate monooxygenase (FMNH2).

References: [768, 1496]

[EC 1.14.13.111 created 2009 as EC 1.14.14.6, transferred 2010 to EC 1.14.13.111, modified 2016]

[1.14.13.112 Transferred entry. 3-epi-6-deoxocathasterone 23-monooxygenase. Now EC 1.14.14.147, 3-epi-6-deoxocathasterone
23-monooxygenase]

[EC 1.14.13.112 created 2010, deleted 2018]

EC 1.14.13.113
Accepted name: FAD-dependent urate hydroxylase

Reaction: urate + NADH + H+ + O2 = 5-hydroxyisourate + NAD+ + H2O
Other name(s): HpxO enzyme; FAD-dependent urate oxidase; urate hydroxylase

Systematic name: urate,NADH:oxygen oxidoreductase (5-hydroxyisourate forming)
Comments: A flavoprotein. The reaction is part of the purine catabolic pathway in the bacterium Klebsiella pneu-

moniae. The enzyme is different from EC 1.7.3.3, factor-independent urate hydroxylase, found in
most plants, which produces hydrogen peroxide. The product of the enzyme is a substrate for EC
3.5.2.17, hydroxyisourate hydrolase.

References: [2871]

[EC 1.14.13.113 created 2010]

EC 1.14.13.114
Accepted name: 6-hydroxynicotinate 3-monooxygenase

Reaction: 6-hydroxynicotinate + NADH + H+ + O2 = 2,5-dihydroxypyridine + NAD+ + H2O + CO2
Other name(s): NicC; 6HNA monooxygenase; HNA-3-monooxygenase

353

http://www.enzyme-database.org/query.php?ec=1.14.13.111
http://www.enzyme-database.org/query.php?ec=1.14.13.113
http://www.enzyme-database.org/query.php?ec=1.14.13.114


Systematic name: 6-hydroxynicotinate,NADH:oxygen oxidoreductase (3-hydroxylating, decarboxylating)
Comments: A flavoprotein (FAD) [2712]. The reaction is involved in the aerobic catabolism of nicotinic acid.
References: [2712, 1743]

[EC 1.14.13.114 created 2010]

[1.14.13.115 Transferred entry. angelicin synthase. Now EC 1.14.14.148, angelicin synthase]

[EC 1.14.13.115 created 2010, deleted 2018]

EC 1.14.13.116
Accepted name: geranylhydroquinone 3′′-hydroxylase

Reaction: geranylhydroquinone + NADPH + H+ + O2 = 3′′-hydroxygeranylhydroquinone + NADP+ + H2O
Other name(s): GHQ 3′′-hydroxylase

Systematic name: geranylhydroquinone,NADPH:oxygen oxidoreductase (3′′-hydroxylating)
Comments: Contains cytochrome P-450.
References: [4311]

[EC 1.14.13.116 created 2010]

[1.14.13.117 Transferred entry. isoleucine N-monooxygenase, Now EC 1.14.14.39, isoleucine N-monooxygenase]

[EC 1.14.13.117 created 2010, deleted 2017]

[1.14.13.118 Transferred entry. valine N-monooxygenase. Now EC 1.14.14.38, valine N-monooxygenase]

[EC 1.14.13.118 created 2010, deleted 2017]

[1.14.13.119 Transferred entry. 5-epiaristolochene 1,3-dihydroxylase. Now EC 1.14.14.149, 5-epiaristolochene 1,3-dihydroxylase]

[EC 1.14.13.119 created 2011, deleted 2018]

[1.14.13.120 Transferred entry. costunolide synthase. Now EC 1.14.14.150, costunolide synthase]

[EC 1.14.13.120 created 2011, deleted 2018]

[1.14.13.121 Transferred entry. premnaspirodiene oxygenase. Now EC 1.14.14.151, premnaspirodiene oxygenase]

[EC 1.14.13.121 created 2011, deleted 2018]

EC 1.14.13.122
Accepted name: chlorophyllide-a oxygenase

Reaction: chlorophyllide a + 2 O2 + 2 NADPH + 2 H+ = chlorophyllide b + 3 H2O + 2 NADP+ (overall reac-
tion)
(1a) chlorophyllide a + O2 + NADPH + H+ = 71-hydroxychlorophyllide a + H2O + NADP+

(1b) 71-hydroxychlorophyllide a + O2 + NADPH + H+ = chlorophyllide b + 2 H2O + NADP+

Other name(s): chlorophyllide a oxygenase; chlorophyll-b synthase; CAO
Systematic name: chlorophyllide-a:oxygen 71-oxidoreductase

Comments: Chlorophyll b is required for the assembly of stable light-harvesting complexes (LHCs) in the chloro-
plast of green algae, cyanobacteria and plants [2903, 926]. Contains a mononuclear iron centre [926].
The enzyme catalyses two successive hydroxylations at the 7-methyl group of chlorophyllide a. The
second step yields the aldehyde hydrate, which loses H2O spontaneously to form chlorophyllide b
[2903]. Chlorophyll a and protochlorophyllide a are not substrates [2903].

References: [965, 2903, 926, 3040]

[EC 1.14.13.122 created 2006 as EC 1.13.12.14, transferred 2011 to EC 1.14.13.122, modified 2011]

[1.14.13.123 Transferred entry. germacrene A hydroxylase. Now EC 1.14.14.95, germacrene A hydroxylase]
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[EC 1.14.13.123 created 2011, deleted 2018]

[1.14.13.124 Transferred entry. phenylalanine N-monooxygenase, now classified as EC 1.14.14.40, phenylalanine N-monooxygenase]

[EC 1.14.13.124 created 2011, deleted 2017]

[1.14.13.125 Transferred entry. tryptophan N-monooxygenase. Now EC 1.14.14.156, tryptophan N-monooxygenase]

[EC 1.14.13.125 created 2011, deleted 2018]

[1.14.13.126 Transferred entry. vitamin D3 24-hydroxylase. Now EC 1.14.15.16, vitamin D3 24-hydroxylase]

[EC 1.14.13.126 created 2011, deleted 2016]

EC 1.14.13.127
Accepted name: 3-(3-hydroxyphenyl)propanoate hydroxylase

Reaction: (1) 3-(3-hydroxyphenyl)propanoate + NADH + H+ + O2 = 3-(2,3-dihydroxyphenyl)propanoate +
H2O + NAD+

(2) (2E)-3-(3-hydroxyphenyl)prop-2-enoate + NADH + H+ + O2 = (2E)-3-(2,3-dihydroxyphenyl)prop-
2-enoate + H2O + NAD+

Other name(s): mhpA (gene name)
Systematic name: 3-(3-hydroxyphenyl)propanoate,NADH:oxygen oxidoreductase (2-hydroxylating)

Comments: A flavoprotein (FAD). This enzyme participates in a meta-cleavage pathway employed by the bac-
terium Escherichia coli for the degradation of various phenylpropanoid compounds.

References: [447, 448, 1000, 813]

[EC 1.14.13.127 created 2011]

EC 1.14.13.128
Accepted name: 7-methylxanthine demethylase

Reaction: 7-methylxanthine + O2 + NAD(P)H + H+ = xanthine + NAD(P)+ + H2O + formaldehyde
Other name(s): ndmC (gene name)

Systematic name: 7-methylxanthine:oxygen oxidoreductase (demethylating)
Comments: A non-heme iron oxygenase. The enzyme from the bacterium Pseudomonas putida prefers NADH

over NADPH. The enzyme is specific for 7-methylxanthine [3727]. Forms part of the caffeine degra-
dation pathway.

References: [3728, 3727]

[EC 1.14.13.128 created 2011]

[1.14.13.129 Transferred entry. β-carotene 3-hydroxylase. Now EC 1.14.15.24, β-carotene 3-hydroxylase.]

[EC 1.14.13.129 created 2011, deleted 2017]

EC 1.14.13.130
Accepted name: pyrrole-2-carboxylate monooxygenase

Reaction: pyrrole-2-carboxylate + NADH + H+ + O2 = 5-hydroxypyrrole-2-carboxylate + NAD+ + H2O
Other name(s): pyrrole-2-carboxylate oxygenase

Systematic name: pyrrole-2-carboxylate,NADH:oxygen oxidoreductase (5-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme initiates the degradation of pyrrole-2-carboxylate.
References: [1573, 236]

[EC 1.14.13.130 created 2011]

EC 1.14.13.131
Accepted name: dissimilatory dimethyl sulfide monooxygenase
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Reaction: dimethyl sulfide + O2 + NADH + H+ = methanethiol + formaldehyde + NAD+ + H2O
Other name(s): dmoAB (gene names); dimethyl sulfide C-monooxygenase; dimethylsulfide monooxygenase (ambigu-

ous); dimethyl sulfide monooxygenase (ambiguous)
Systematic name: dimethyl sulfide,NADH:oxygen oxidoreductase

Comments: The enzyme participates exclusively in sulfur dissimilation. It has lower activity with diethyl sulfide
and other short-chain alkyl methyl sulfides. Its activity is stimulated by combined addition of FMN,
and, after depletion of cations, of Mg2+ and Fe2+. The enzymes from bacteria of the Hyphomicro-
bium genus are a two component system that includes an FMN-dependent reductase subunit and a
monooxygenase subunit.

References: [348, 328]

[EC 1.14.13.131 created 2011]

[1.14.13.132 Transferred entry. squalene monooxygenase. Now EC 1.14.14.17, squalene monooxygenase]

[EC 1.14.13.132 created 1961 as EC 1.99.1.13, transferred 1965 to EC 1.14.1.3, part transferred 1972 to EC 1.14.99.7, transferred 2011 to EC
1.14.13.132, deleted 2015]

[1.14.13.133 Transferred entry. pentalenene oxygenase. Now EC 1.14.15.32, pentalenene oxygenase]

[EC 1.14.13.133 created 2011, deleted 2018]

[1.14.13.134 Transferred entry. β-amyrin 11-oxidase. Now EC 1.14.14.152, β-amyrin 11-oxidase]

[EC 1.14.13.134 created 2011, deleted 2018]

EC 1.14.13.135
Accepted name: 1-hydroxy-2-naphthoate hydroxylase

Reaction: 1-hydroxy-2-naphthoate + NAD(P)H + H+ + O2 = 1,2-dihydroxynaphthalene + NAD(P)+ + H2O +
CO2

Other name(s): 1-hydroxy-2-naphthoic acid hydroxylase
Systematic name: 1-hydroxy-2-naphthoate,NAD(P)H:oxygen oxidoreductase (2-hydroxylating, decarboxylating)

Comments: The enzyme is involved in the catabolic pathway for the degradation of chrysene in some bacteria
[2749].

References: [804, 2749]

[EC 1.14.13.135 created 2011]

[1.14.13.136 Transferred entry. 2-hydroxyisoflavanone synthase. Now EC 1.14.14.87, 2-hydroxyisoflavanone synthase]

[EC 1.14.13.136 created 2011, modified 2013, deleted 2018]

[1.14.13.137 Transferred entry. indole-2-monooxygenase. Now EC 1.14.14.153, indole-2-monooxygenase]

[EC 1.14.13.137 created 2012, deleted 2018]

[1.14.13.138 Transferred entry. indolin-2-one monooxygenase. Now EC 1.14.14.157, indolin-2-one monooxygenase]

[EC 1.14.13.138 created 2012, deleted 2018]

[1.14.13.139 Transferred entry. 3-hydroxyindolin-2-one monooxygenase. Now EC 1.14.14.109, 3-hydroxyindolin-2-one
monooxygenase]

[EC 1.14.13.139 created 2012, deleted 2018]

[1.14.13.140 Transferred entry. 2-hydroxy-1,4-benzoxazin-3-one monooxygenase. Now EC 1.14.14.110, 2-hydroxy-1,4-
benzoxazin-3-one monooxygenase.]

[EC 1.14.13.140 created 2012, deleted 2018]

[1.14.13.141 Transferred entry. cholest-4-en-3-one 26-monooxygenase [(25S)-3-oxocholest-4-en-26-oate forming]. Now
EC 1.14.15.29, cholest-4-en-3-one 26-monooxygenase [(25S)-3-oxocholest-4-en-26-oate forming]..]
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[EC 1.14.13.141 created 2012, modified 2016, deleted 2018]

[1.14.13.142 Transferred entry. 3-ketosteroid 9α-monooxygenase. Now EC 1.14.15.30, 3-ketosteroid 9α-monooxygenase]

[EC 1.14.13.142 created 2012, deleted 2018]

[1.14.13.143 Transferred entry. ent-isokaurene C2-hydroxylase. Now EC 1.14.14.76 ent-isokaurene C2/C3-hydroxylase]

[EC 1.14.13.143 created 2012, deleted 2018]

[1.14.13.144 Transferred entry. 9β-pimara-7,15-diene oxidase. Now EC 1.14.14.111, 9β-pimara-7,15-diene oxidase.]

[EC 1.14.13.144 created 2012, deleted 2018]

[1.14.13.145 Transferred entry. ent-cassa-12,15-diene 11-hydroxylase. Now EC 1.14.14.112, ent-cassa-12,15-diene 11-
hydroxylase.]

[EC 1.14.13.145 created 2012, deleted 2018]

EC 1.14.13.146
Accepted name: taxoid 14β-hydroxylase

Reaction: 10β-hydroxytaxa-4(20),11-dien-5α-yl acetate + O2 + NADPH + H+ = 10β,14β-dihydroxytaxa-
4(20),11-dien-5α-yl acetate + NADP+ + H2O

Systematic name: 10β-hydroxytaxa-4(20),11-dien-5α-yl-acetate,NADPH:oxygen 14-oxidoreductase
Comments: Requires cytochrome P450. From the yew Taxus cuspidata. Also acts on taxa-4(20),11-dien-5α-yl

acetate.
References: [1731]

[EC 1.14.13.146 created 2012]

EC 1.14.13.147
Accepted name: taxoid 7β-hydroxylase

Reaction: taxusin + O2 + NADPH + H+ = 7β-hydroxytaxusin + NADP+ + H2O
Systematic name: taxusin,NADPH:oxygen 7-oxidoreductase

Comments: Requires cytochrome P-450. From the yew tree Taxus cuspidata. Does not act on earlier intermedi-
ates in taxol biosynthesis.

References: [556]

[EC 1.14.13.147 created 2012]

EC 1.14.13.148
Accepted name: trimethylamine monooxygenase

Reaction: N,N,N-trimethylamine + NADPH + H+ + O2 = N,N,N-trimethylamine N-oxide + NADP+ + H2O
Other name(s): flavin-containing monooxygenase 3; FMO3; tmm (gene name)

Systematic name: N,N,N-trimethylamine,NADPH:oxygen oxidoreductase (N-oxide-forming)
Comments: A flavoprotein. The bacterial enzyme enables bacteria to use trimethylamine as the sole source of car-

bon and energy [2139, 577]. The mammalian enzyme is involved in detoxification of trimethylamine.
Mutations in the human enzyme cause the inheritable disease known as trimethylaminuria (fish odor
syndrome) [849, 3924].

References: [2139, 849, 3924, 577]

[EC 1.14.13.148 created 2012]

EC 1.14.13.149
Accepted name: phenylacetyl-CoA 1,2-epoxidase

Reaction: phenylacetyl-CoA + NADPH + H+ + O2 = 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA + NADP+ +
H2O
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Other name(s): ring 1,2-phenylacetyl-CoA epoxidase; phenylacetyl-CoA monooxygenase; PaaAC; PaaABC(D)E
Systematic name: phenylacetyl-CoA:oxygen oxidoreductase (1,2-epoxidizing)

Comments: Part of the aerobic pathway of phenylacetate catabolism in Escherichia coli and Pseudomonas putida.
References: [3853, 1288, 1287]

[EC 1.14.13.149 created 2012]

[1.14.13.150 Transferred entry. α-humulene 10-hydroxylase. Now EC 1.14.14.113, α-humulene 10-hydroxylase.]

[EC 1.14.13.150 created 2012, deleted 2018]

[1.14.13.151 Transferred entry. linalool 8-monooxygenase. Now EC 1.14.14.84, linalool 8-monooxygenase]

[EC 1.14.13.151 created 1989 as EC 1.14.99.28, transferred 2012 to EC 1.14.13.151, deleted 2018]

[1.14.13.152 Transferred entry. geraniol 8-hydroxylase. Now EC 1.14.14.83, geraniol 8-hydroxylase]

[EC 1.14.13.152 created 2012, deleted 2018]

EC 1.14.13.153
Accepted name: (+)-sabinene 3-hydroxylase

Reaction: (+)-sabinene + NADPH + H+ + O2 = (+)-cis-sabinol + NADP+ + H2O
Systematic name: (+)-sabinene,NADPH:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires cytochrome P-450. The enzyme has been characterized from Salvia officinalis (sage).
References: [1815]

[EC 1.14.13.153 created 2012]

EC 1.14.13.154
Accepted name: erythromycin 12-hydroxylase

Reaction: erythromycin D + NADPH + H+ + O2 = erythromycin C + NADP+ + H2O
Other name(s): EryK

Systematic name: erythromycin-D,NADPH:oxygen oxidoreductase (12-hydroxylating)
Comments: The enzyme is responsible for the C-12 hydroxylation of the macrolactone ring, one of the last steps

in erythromycin biosynthesis. It shows 1200-1900-fold preference for erythromycin D over the alter-
native substrate erythromycin B [2119].

References: [2119, 3329, 2600]

[EC 1.14.13.154 created 2012]

EC 1.14.13.155
Accepted name: α-pinene monooxygenase

Reaction: (–)-α-pinene + NADH + H+ + O2 = α-pinene oxide + NAD+ + H2O
Systematic name: (–)-α-pinene,NADH:oxygen oxidoreductase

Comments: Involved in the catabolism of α-pinene.
References: [645]

[EC 1.14.13.155 created 2012]

[1.14.13.156 Transferred entry. 1,8-cineole 2-endo-monooxygenase. Now EC 1.14.14.133, 1,8-cineole 2-endo-monooxygenase]

[EC 1.14.13.156 created 2012, deleted 2018]

[1.14.13.157 Transferred entry. 1,8-cineole 2-exo-monooxygenase. Now EC 1.14.14.56, 1,8-cineole 2-exo-monooxygenase]

[EC 1.14.13.157 created 2012, deleted 2017]
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[1.14.13.158 Transferred entry. amorpha-4,11-diene 12-monooxygenase. Now EC 1.14.14.114, amorpha-4,11-diene 12-
monooxygenase.]

[EC 1.14.13.158 created 2012, deleted 2018]

[1.14.13.159 Transferred entry. vitamin D 25-hydroxylase. Now EC 1.14.14.24, vitamin D 25-hydroxylase]

[EC 1.14.13.159 created 2012, deleted 2016]

EC 1.14.13.160
Accepted name: (2,2,3-trimethyl-5-oxocyclopent-3-enyl)acetyl-CoA 1,5-monooxygenase

Reaction: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + O2 + NADPH + H+ = [(2R)-3,3,4-
trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O

Other name(s): 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase; 2-oxo-∆3-4,5,5-
trimethylcyclopentenylacetyl-CoA 1,2-monooxygenase; OTEMO

Systematic name: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA,NADPH:oxygen oxidoreductase (1,5-
lactonizing)

Comments: A FAD dependent enzyme isolated from Pseudomonas putida. Forms part of the catabolism pathway
of camphor. It acts on the CoA ester in preference to the free acid.

References: [2918, 2194, 1792]

[EC 1.14.13.160 created 2012]

EC 1.14.13.161
Accepted name: (+)-camphor 6-exo-hydroxylase

Reaction: (+)-camphor + NADPH + H+ + O2 = (+)-6-exo-hydroxycamphor + NADP+ + H2O
Other name(s): (+)-camphor 6-hydroxylase

Systematic name: (+)-camphor,NADPH:oxygen oxidoreductase (6-exo-hydroxylating)
Comments: A cytochrome P-450 monooxygenase isolated from Salvia officinalis (sage). Involved in the

catabolism of camphor in senescent tissue.
References: [1116, 1114]

[EC 1.14.13.161 created 2012]

[1.14.13.162 Transferred entry. 2,5-diketocamphane 1,2-monooxygenase. Now EC 1.14.14.108, 2,5-diketocamphane 1,2-
monooxygenase]

[EC 1.14.13.162 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, deleted 2018]

EC 1.14.13.163
Accepted name: 6-hydroxy-3-succinoylpyridine 3-monooxygenase

Reaction: 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate + 2 NADH + 2 H+ + O2 = 2,5-dihydroxypyridine + succi-
nate semialdehyde + 2 NAD+ + H2O

Other name(s): 6-hydroxy-3-succinoylpyridine hydroxylase; hspA (gene name); hspB (gene name)
Systematic name: 4-(6-hydroxypyridin-3-yl)-4-oxobutanoate,NADH:oxygen oxidoreductase (3-hydroxylating, succinate

semialdehyde releasing)
Comments: The enzyme catalyses a reaction in the nicotine degradation pathway of Pseudomonas species. One of

the enzymes from the soil bacterium Pseudomonas putida S16 contains an FAD cofactor [3809].
References: [3808, 3809]

[EC 1.14.13.163 created 2012]

[1.14.13.164 Transferred entry. carotenoid isomerooxygenase. The enzyme was discovered at the public-review stage to
have been misclassified and so was withdrawn. See EC 1.13.11.65, carotenoid isomerooxygenase]

[EC 1.14.13.164 created 2012, deleted 2012]
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[1.14.13.165 Transferred entry. nitric-oxide synthase [NAD(P)H]. Now classified as EC 1.14.14.47, nitric-oxide synthase
(flavodoxin)]

[EC 1.14.13.165 created 2012, deleted 2017]

EC 1.14.13.166
Accepted name: 4-nitrocatechol 4-monooxygenase

Reaction: 4-nitrocatechol + NAD(P)H + H+ + O2 = 2-hydroxy-1,4-benzoquinone + nitrite + NAD(P)+ + H2O
Systematic name: 4-nitrocatechol,NAD(P)H:oxygen 4-oxidoreductase (4-hydroxylating, nitrite-forming)

Comments: Contains FAD. The enzyme catalyses the oxidation of 4-nitrocatechol with the concomitant removal
of the nitro group as nitrite. Forms a two-component system with a flavoprotein reductase [1791]. The
enzymes from the bacteria Lysinibacillus sphaericus JS905 and Rhodococcus sp. strain PN1 were
shown to also catalyse EC 1.14.13.29, 4-nitrophenol 2-monooxygenase [1791, 1943] while the en-
zyme from Pseudomonas sp. WBC-3 was shown to also catalyse EC 1.14.13.167, 4-nitrophenol 4-
monooxygenase [4440].

References: [1791, 1943, 4440]

[EC 1.14.13.166 created 2012]

EC 1.14.13.167
Accepted name: 4-nitrophenol 4-monooxygenase

Reaction: 4-nitrophenol + NADPH + H+ + O2 = 1,4-benzoquinone + nitrite + NADP+ + H2O
Other name(s): pnpA (gene name); pdcA (gene name)

Systematic name: 4-nitrophenol,NAD(P)H:oxygen 4-oxidoreductase (4-hydroxylating, nitrite-forming)
Comments: Contains FAD. The enzyme catalyses the first step in a degradation pathway for 4-nitrophenol, the

oxidation of 4-nitrophenol at position 4 with the concomitant removal of the nitro group as nitrite.
The enzyme from the bacterium Pseudomonas sp. strain WBC-3 also catalyses EC 1.14.13.166, 4-
nitrocatechol 4-monooxygenase.

References: [4440]

[EC 1.14.13.167 created 2012]

EC 1.14.13.168
Accepted name: indole-3-pyruvate monooxygenase

Reaction: (indol-3-yl)pyruvate + NADPH + H+ + O2 = (indol-3-yl)acetate + NADP+ + H2O + CO2
Other name(s): YUC2 (gene name); spi1 (gene name)

Systematic name: indole-3-pyruvate,NADPH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: This plant enzyme, along with EC 2.6.1.99 L-tryptophan—pyruvate aminotransferase, is responsible

for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
References: [2428, 4465]

[EC 1.14.13.168 created 2012]

[1.14.13.169 Transferred entry. sphinganine C4-monooxygenase. Now EC 1.14.18.5, sphingolipid C4-monooxygenase]

[EC 1.14.13.169 created 2012, deleted 2015]

EC 1.14.13.170
Accepted name: pentalenolactone D synthase

Reaction: 1-deoxy-11-oxopentalenate + NADPH + H+ + O2 = pentalenolactone D + NADP+ + H2O
Other name(s): penE (gene name); pntE (gene name)

Systematic name: 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (pentalenolactone-D forming)
Comments: A FAD-dependent oxygenase. Isolated from the bacteria Streptomyces exfoliatus and Streptomyces

arenae. The ketone undergoes a biological Baeyer-Villiger reaction. Part of the pathway of pentaleno-
lactone biosynthesis.

References: [3443]
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[EC 1.14.13.170 created 2012]

EC 1.14.13.171
Accepted name: neopentalenolactone D synthase

Reaction: 1-deoxy-11-oxopentalenate + NADPH + H+ + O2 = neopentalenolactone D + NADP+ + H2O
Other name(s): ptlE (gene name)

Systematic name: 1-deoxy-11-oxopentalenate,NADH:oxygen oxidoreductase (neopentalenolactone-D forming)
Comments: A FAD-dependent oxygenase. Isolated from the bacterium Streptomyces avermitilis. The ketone un-

dergoes a biological Baeyer-Villiger reaction.
References: [3443]

[EC 1.14.13.171 created 2012]

EC 1.14.13.172
Accepted name: salicylate 5-hydroxylase

Reaction: salicylate + NADH + H+ + O2 = 2,5-dihydroxybenzoate + NAD+ + H2O
Other name(s): nagG (gene name); nagH (gene name)

Systematic name: salicylate,NADH:oxygen oxidoreductase (5-hydroxylating)
Comments: This enzyme, which was characterized from the bacterium Ralstonia sp. U2, comprises a multi-

component system, containing a reductase that is an iron-sulfur flavoprotein (FAD; EC 1.18.1.7,
ferredoxin—NAD(P)+ reductase), an iron-sulfur oxygenase, and ferredoxin.

References: [1088]

[EC 1.14.13.172 created 2013]

[1.14.13.173 Transferred entry. 11-oxo-β-amyrin 30-oxidase. Now EC 1.14.14.115, 11-oxo-β-amyrin 30-oxidase.]

[EC 1.14.13.173 created 2013, deleted 2018]

[1.14.13.174 Transferred entry. averantin hydroxylase. Now EC 1.14.14.116, averantin hydroxylase]

[EC 1.14.13.174 created 2013, deleted 2018]

[1.14.13.175 Transferred entry. aflatoxin B synthase. Now EC 1.14.14.117, aflatoxin B synthase]

[EC 1.14.13.175 created 2013, deleted 2018]

[1.14.13.176 Transferred entry. tryprostatin B 6-hydroxylase. Now EC 1.14.14.118, tryprostatin B 6-hydroxylase]

[EC 1.14.13.176 created 2013, deleted 2018]

[1.14.13.177 Transferred entry. fumitremorgin C monooxygenase. Now EC 1.14.14.119, fumitremorgin C monooxygenase]

[EC 1.14.13.177 created 2013, deleted 2018]

EC 1.14.13.178
Accepted name: methylxanthine N1-demethylase

Reaction: (1) caffeine + O2 + NAD(P)H + H+ = theobromine + NAD(P)+ + H2O + formaldehyde
(2) theophylline + O2 + NAD(P)H + H+ = 3-methylxanthine + NAD(P)+ + H2O + formaldehyde
(3) paraxanthine + O2 + NAD(P)H + H+ = 7-methylxanthine + NAD(P)+ + H2O + formaldehyde

Other name(s): ndmA (gene name)
Systematic name: caffeine:oxygen oxidoreductase (N1-demethylating)

Comments: A non-heme iron oxygenase. The enzyme from the bacterium Pseudomonas putida shares an
NAD(P)H-FMN reductase subunit with EC 1.14.13.179, methylxanthine N3-demethylase, and has
a 5-fold higher activity with NADH than with NADPH [3727]. Also demethylate 1-methylxantine
with lower efficiency. Forms part of the degradation pathway of methylxanthines.

References: [3728, 3727]
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[EC 1.14.13.178 created 2013]

EC 1.14.13.179
Accepted name: methylxanthine N3-demethylase

Reaction: (1) theobromine + O2 + NAD(P)H + H+ = 7-methylxanthine + NAD(P)+ + H2O + formaldehyde
(2) 3-methylxanthine + O2 + NAD(P)H + H+ = xanthine + NAD(P)+ + H2O + formaldehyde

Other name(s): ndmB (gene name)
Systematic name: theobromine:oxygen oxidoreductase (N3-demethylating)

Comments: A non-heme iron oxygenase. The enzyme from the bacterium Pseudomonas putida shares an
NAD(P)H-FMN reductase subunit with EC 1.14.13.178, methylxanthine N1-demethylase, and has
higher activity with NADH than with NADPH [3728]. Also demethylates caffeine and theophylline
with lower efficiency. Forms part of the degradation pathway of methylxanthines.

References: [3728, 3727]

[EC 1.14.13.179 created 2013]

EC 1.14.13.180
Accepted name: aklavinone 12-hydroxylase

Reaction: aklavinone + NADPH + H+ + O2 = ε-rhodomycinone + NADP+ + H2O

Other name(s): DnrF; RdmE; aklavinone 11-hydroxylase (incorrect)
Systematic name: aklavinone,NADPH:oxygen oxidoreductase (12-hydroxylating)

Comments: The enzymes from the Gram-positive bacteria Streptomyces peucetius and Streptomyces purpuras-
cens participate in the biosynthesis of daunorubicin, doxorubicin and rhodomycins. The enzyme from
Streptomyces purpurascens is an FAD monooxygenase.

References: [1016, 2788]

[EC 1.14.13.180 created 2013]

EC 1.14.13.181
Accepted name: 13-deoxydaunorubicin hydroxylase

Reaction: (1) 13-deoxydaunorubicin + NADPH + H+ + O2 = 13-dihydrodaunorubicin + NADP+ + H2O
(2) 13-dihydrodaunorubicin + NADPH + H+ + O2 = daunorubicin + NADP+ + 2 H2O

Other name(s): DoxA
Systematic name: 13-deoxydaunorubicin,NADPH:oxygen oxidoreductase (13-hydroxylating)

Comments: The enzymes from the Gram-positive bacteria Streptomyces sp. C5 and Streptomyces peucetius show
broad substrate specificity for structures based on an anthracycline aglycone, but have a strong prefer-
ence for 4-methoxy anthracycline intermediates (13-deoxydaunorubicin and 13-dihydrodaunorubicin)
over their 4-hydroxy analogues (13-deoxycarminomycin and 13-dihydrocarminomycin), as well as a
preference for substrates hydroxylated at the C-13 rather than the C-14 position.

References: [4084, 817]

[EC 1.14.13.181 created 2013]

EC 1.14.13.182
Accepted name: 2-heptyl-3-hydroxy-4(1H)-quinolone synthase

Reaction: 2-heptyl-4(1H)-quinolone + NADH + H+ + O2 = 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ +
H2O

Other name(s): PqsH; 2-heptyl-3,4-dihydroxyquinoline synthase
Systematic name: 2-heptyl-4(1H)-quinolone,NADH:oxygen oxidoreductase (3-hydroxylating)

Comments: The enzyme from the bacterium Pseudomonas aeruginosa catalyses the terminal step in biosynthesis
of the signal molecule 2-heptyl-3,4-dihydroxyquinoline that plays a role in regulation of virulence
genes.

References: [3361]
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[EC 1.14.13.182 created 2013]

[1.14.13.183 Transferred entry. dammarenediol 12-hydroxylase. Now EC 1.14.14.120, dammarenediol 12-hydroxylase]

[EC 1.14.13.183 created 2013, deleted 2018]

[1.14.13.184 Transferred entry. protopanaxadiol 6-hydroxylase. Now EC 1.14.14.121, protopanaxadiol 6-hydroxylase]

[EC 1.14.13.184 created 2013, deleted 2018]

[1.14.13.185 Transferred entry. pikromycin synthase. Now EC 1.14.15.33, pikromycin synthase]

[EC 1.14.13.185 created 2014, deleted 2018]

[1.14.13.186 Transferred entry. 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase. Now EC 1.14.15.34, 20-oxo-5-O-
mycaminosyltylactone 23-monooxygenase]

[EC 1.14.13.186 created 2014, deleted 2018]

EC 1.14.13.187
Accepted name: L-evernosamine nitrososynthase

Reaction: dTDP-β-L-evernosamine + 2 NADPH + 2 H+ + 2 O2 = dTDP-2,3,6-trideoxy-3-C-methyl-4-O-
methyl-3-nitroso-β-L-arabino-hexopyranose + 2 NADP+ + 3 H2O (overall reaction)
(1a) dTDP-β-L-evernosamine + NADPH + H+ + O2 = dTDP-N-hydroxy-β-L-evernosamine + NADP+

+ H2O
(1b) dTDP-N-hydroxy-β-L-evernosamine + NADPH + H+ + O2 = dTDP-2,3,6-trideoxy-3-C-methyl-
4-O-methyl-3-nitroso-β-L-arabino-hexopyranose + NADP+ + 2 H2O

Systematic name: dTDP-β-L-evernosamine,NADPH:oxygen oxidoreductase (N-hydroxylating)
Comments: Requires FAD. Isolated from the bacterium Micromonospora carbonacea var. africana. The nitroso

group is probably spontaneously oxidized to a nitro group giving dTDP-β-L-evernitrose, which is in-
volved in the biosynthesis of the antibiotic everninomycin. The reaction was studied using dTDP-β-L-
4-epi-vancosamine (dTDP-4-O-desmethyl-β-L-evernitrosamine).

References: [1590, 4038]

[EC 1.14.13.187 created 2014]

[1.14.13.188 Transferred entry. 6-deoxyerythronolide B hydroxylase. Now EC 1.14.15.35, 6-deoxyerythronolide B hydroxy-
lase]

[EC 1.14.13.188 created 2014, deleted 2018]

EC 1.14.13.189
Accepted name: 5-methyl-1-naphthoate 3-hydroxylase

Reaction: 5-methyl-1-naphthoate + NADPH + H+ + O2 = 3-hydroxy-5-methyl-1-naphthoate + NADP+ + H2O
Other name(s): AziB1

Systematic name: 5-methyl-1-naphthoate,NADPH:oxygen oxidoreductase (3-hydroxylating)
Comments: The enzyme from the bacterium Streptomyces sahachiroi is involved in the biosynthesis of 3-

methoxy-5-methyl-1-naphthoate, a component of of the the antitumor antibiotic azinomycin B.
References: [831]

[EC 1.14.13.189 created 2014]

EC 1.14.13.190
Accepted name: ferruginol synthase

Reaction: abieta-8,11,13-triene + NADPH + H+ + O2 = ferruginol + NADP+ + H2O
Other name(s): miltiradiene oxidase (incorrect); CYP76AH1; miltiradiene,NADPH:oxygen oxidoreductase (ferrugi-

nol forming) (incorrect)
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Systematic name: miltiradiene,NADPH:oxygen oxidoreductase (ferruginol-forming)
Comments: The enzyme is found in some members of the Lamiaceae (mint family). The enzyme from Rosmari-

nus officinalis (rosemary) is involved in biosynthesis of carnosic acid, while the enzyme from the Chi-
nese medicinal herb Salvia miltiorrhiza is involved in the biosynthesis of the tanshinones, abietane-
type norditerpenoid naphthoquinones that are the main lipophilic bioactive components found in the
plant.

References: [1314, 4485, 375]

[EC 1.14.13.190 created 2014, modified 2015]

[1.14.13.191 Transferred entry. ent-sandaracopimaradiene 3-hydroxylase. Now EC 1.14.14.70, ent-sandaracopimaradiene
3-hydroxylase]

[EC 1.14.13.191 created 2014, deleted 2018]

[1.14.13.192 Transferred entry. oryzalexin E synthase. Now EC 1.14.14.122, oryzalexin E synthase]

[EC 1.14.13.192 created 2014, deleted 2018]

[1.14.13.193 Transferred entry. oryzalexin D synthase. Now EC 1.14.14.123, oryzalexin D synthase]

[EC 1.14.13.193 created 2014, deleted 2018]

[1.14.13.194 Transferred entry. phylloquinone ω-hydroxylase. Now EC 1.14.14.78, phylloquinone ω-hydroxylase]

[EC 1.14.13.194 created 2014, deleted 2018]

EC 1.14.13.195
Accepted name: L-ornithine N5-monooxygenase (NADPH)

Reaction: L-ornithine + NADPH + H+ + O2 = N5-hydroxy-L-ornithine + NADP+ + H2O
Other name(s): CchB; ornithine hydroxylase; EtcB; PvdA; Af-OMO; dffA (gene name)

Systematic name: L-ornithine,NADPH:oxygen oxidoreductase (N5-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme is involved in biosynthesis of N5-hydroxy-L-ornithine, N5-formyl-

N5-hydroxy-L-ornithine or N5-acetyl-N5-hydroxy-L-ornithine. These nonproteinogenic amino acids
are building blocks of siderophores produced by some bacteria (e.g. Streptomyces coelicolor, Saccha-
ropolyspora erythraea and Pseudomonas aeruginosa). The enzyme is specific for NADPH. cf. EC
1.14.13.196, L-ornithine N5-monooxygenase [NAD(P)H].

References: [1175, 2503, 3027, 3201]

[EC 1.14.13.195 created 2014]

EC 1.14.13.196
Accepted name: L-ornithine N5-monooxygenase [NAD(P)H]

Reaction: L-ornithine + NAD(P)H + H+ + O2 = N5-hydroxy-L-ornithine + NAD(P)+ + H2O
Other name(s): SidA (ambiguous)

Systematic name: L-ornithine,NAD(P)H:oxygen oxidoreductase (N5-hydroxylating)
Comments: A flavoprotein (FAD). The enzyme from the pathogenic fungus Aspergillus fumigatus catalyses a step

in the biosynthesis of the siderophores triacetylfusarinine and desferriferricrocin, while the enzyme
from the bacterium Kutzneria sp. 744 is involved in the biosynthesis of piperazate, a building block of
the kutzneride family of antifungal antibiotics. Activity of the fungal enzyme is higher with NADPH,
due to the fact that following the reduction of the flavin, NADP+ (but not NAD+) stabilizes the C4a-
hydroperoxyflavin intermediate that oxidizes the substrate [3228]. cf. EC 1.14.13.195, L-ornithine
N5-monooxygenase (NADPH).

References: [607, 1050, 3228, 2770]

[EC 1.14.13.196 created 2014]
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[1.14.13.197 Transferred entry. dihydromonacolin L hydroxylase. Now EC 1.14.14.124, dihydromonacolin L hydroxylase]

[EC 1.14.13.197 created 2014, deleted 2018]

[1.14.13.198 Transferred entry. monacolin L hydroxylase. Now EC 1.14.14.125, monacolin L hydroxylase]

[EC 1.14.13.198 created 2014, deleted 2018]

[1.14.13.199 Transferred entry. docosahexaenoic acid ω-hydroxylase. Now EC 1.14.14.79, docosahexaenoic acid ω-
hydroxylase]

[EC 1.14.13.199 created 2014, deleted 2018]

EC 1.14.13.200
Accepted name: tetracenomycin A2 monooxygenase-dioxygenase

Reaction: tetracenomycin A2 + 2 O2 + 2 NAD(P)H + 2 H+ = tetracenomycin C + 2 NAD(P)+ + H2O
Other name(s): TcmG; ElmG; tetracenomycin A2,NAD(P)H:O2 oxidoreductase (tetracenomycin C forming)

Systematic name: tetracenomycin A2,NAD(P)H:oxygen oxidoreductase (tetracenomycin C forming)
Comments: Isolated from the bacterium Streptomyces glaucescens. The enzyme was also isolated from the bac-

terium Streptomyces olivaceus, where it acts on 8-demethyltetracenomycin A2 (tetracenomycin B2)
as part of elloramycin biosynthesis. The reaction involves a monooxygenase reaction which is fol-
lowed by a dioxygenase reaction giving a gem-diol and an epoxide. Water opens the epoxide giving
two hydroxy groups. The gem-diol eliminates water to give a ketone which is then reduced to a hy-
droxy group.

References: [3473, 3100, 289]

[EC 1.14.13.200 created 2014]

[1.14.13.201 Transferred entry. β-amyrin 28-monooxygenase. Now EC 1.14.14.126, β-amyrin 28-monooxygenase]

[EC 1.14.13.201 created 2015, deleted 2018]

[1.14.13.202 Transferred entry. methyl farnesoate epoxidase. Now EC 1.14.14.127, methyl farnesoate epoxidase]

[EC 1.14.13.202 created 2015, deleted 2018]

[1.14.13.203 Transferred entry. farnesoate epoxidase. Now EC 1.14.14.128, farnesoate epoxidase]

[EC 1.14.13.203 created 2015, deleted 2018]

[1.14.13.204 Transferred entry. long-chain acyl-CoA ω-monooxygenase. Now EC 1.14.14.129, long-chain acyl-CoA ω-
monooxygenase]

[EC 1.14.13.204 created 2015, deleted 2018]

[1.14.13.205 Transferred entry. long-chain fatty acid ω-monooxygenase. Now EC 1.14.14.80, long-chain fatty acid ω-
monooxygenase]

[EC 1.14.13.205 created 2015, deleted 2018]

[1.14.13.206 Transferred entry. laurate 7-monooxygenase. Now EC 1.14.14.130, laurate 7-monooxygenase]

[EC 1.14.13.206 created 2015, deleted 2018]

[1.14.13.207 Transferred entry. ipsdienol synthase. Now EC 1.14.14.31, ipsdienol synthase]

[EC 1.14.13.207 created 2015, deleted 2016]

EC 1.14.13.208
Accepted name: benzoyl-CoA 2,3-epoxidase

Reaction: benzoyl-CoA + NADPH + H+ + O2 = 2,3-epoxy-2,3-dihydrobenzoyl-CoA + NADP+ + H2O
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Other name(s): benzoyl-CoA dioxygenase/reductase (incorrect); BoxBA; BoxA/BoxB system; benzoyl-CoA 2,3-
dioxygenase (incorrect)

Systematic name: benzoyl-CoA,NADPH:oxygen oxidoreductase (2,3-epoxydizing)
Comments: The enzyme is involved in aerobic benzoate metabolism in Azoarcus evansii. BoxB functions as the

oxygenase part of benzoyl-CoA oxygenase in conjunction with BoxA, the reductase component,
which upon binding of benzoyl-CoA, transfers two electrons to the ring in the course of monooxy-
genation. BoxA is a homodimeric 46 kDa iron-sulfur-flavoprotein (FAD), BoxB is a monomeric iron-
protein [4416].

References: [4416, 1188, 2588, 3129]

[EC 1.14.13.208 created 2010 as EC 1.14.12.21, transferred 2015 to EC 1.14.13.208]

EC 1.14.13.209
Accepted name: salicyloyl-CoA 5-hydroxylase

Reaction: 2-hydroxybenzoyl-CoA + NADH + H+ + O2 = gentisyl-CoA + NAD+ + H2O
Other name(s): sdgC (gene name)

Systematic name: salicyloyl-CoA,NADH:oxygen oxidoreductase (5-hydroxylating)
Comments: The enzyme, characterized from the bacterium Streptomyces sp. WA46, participates in a pathway for

salicylate degradation. cf. EC 1.14.13.172, salicylate 5-hydroxylase.
References: [1672]

[EC 1.14.13.209 created 2015]

EC 1.14.13.210
Accepted name: 4-methyl-5-nitrocatechol 5-monooxygenase

Reaction: 4-methyl-5-nitrocatechol + NAD(P)H + H+ + O2 = 2-hydroxy-5-methylquinone + nitrite + NAD(P)+

+ H2O
Other name(s): dntB (gene name); 4-methyl-5-nitrocatechol oxygenase; MNC monooxygenase

Systematic name: 4-methyl-5-nitrocatechol,NAD(P)H:oxygen 5-oxidoreductase (5-hydroxylating, nitrite-forming)
Comments: Contains FAD. The enzyme, isolated from the bacterium Burkholderia sp. DNT, can use both NADH

and NADPH, but prefers NADPH. It has a narrow substrate range, but can also act on 4-nitrocatechol.
References: [1343, 2207]

[EC 1.14.13.210 created 2016]

EC 1.14.13.211
Accepted name: rifampicin monooxygenase

Reaction: rifampicin + NAD(P)H + O2 = 2′-N-hydroxyrifampicin + NAD(P)+ + H2O
Other name(s): RIF-O

Systematic name: rifampicin:NAD(P)H:oxygen oxidoreductase (2′-N-hydroxyrifampicin-forming)
Comments: The enzyme has been found in the Corynebacteria Rhodococcus equi and Nocardia farcinica. It con-

fers increased resistance to the antibiotic rifampicin by initiating its degradation.
References: [82, 1579]

[EC 1.14.13.211 created 2016]

EC 1.14.13.212
Accepted name: 1,3,7-trimethyluric acid 5-monooxygenase

Reaction: 1,3,7-trimethylurate + NADH + H+ + O2 = 1,3,7-trimethyl-5-hydroxyisourate + NAD+ + H2O
Other name(s): tmuM (gene name)

Systematic name: 1,3,7-trimethylurate,NADH:oxygen oxidoreductase (1,3,7-trimethyl-5-hydroxyisourate forming)
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Comments: The enzyme, characterized from the bacterium Pseudomonas sp. CBB1, is part of the bacterial C-8
oxidation-based caffeine degradation pathway. The product decomposes spontaneously to a racemic
mixture of 3,6,8-trimethylallantoin. The enzyme shows no acitivity with urate. cf. EC 1.14.13.113,
FAD-dependent urate hydroxylase.

References: [2589, 3729]

[EC 1.14.13.212 created 2016]

[1.14.13.213 Transferred entry. bursehernin 5-monooxygenase. Now EC 1.14.14.131, bursehernin 5-monooxygenase]

[EC 1.14.13.213 created 2016, deleted 2018]

[1.14.13.214 Transferred entry. (–)-4′-demethyl-deoxypodophyllotoxin 4-hydroxylase. Now EC 1.14.14.132, (–)-4′-demethyl-
deoxypodophyllotoxin 4-hydroxylase]

[EC 1.14.13.214 created 2016, deleted 2018]

EC 1.14.13.215
Accepted name: protoasukamycin 4-monooxygenase

Reaction: protoasukamycin + NADH + H+ + O2 = 4-hydroxyprotoasukamycin + NAD+ + H2O
Systematic name: protoasukamycin,NADH:oxygen oxidoreductase (4-hydroxylating)

Comments: The enzyme, characterized from the bacterium Streptomyces nodosus subsp. asukaensis, is involved
in the biosynthesis of the antibiotic asukamycin. Requires a flavin cofactor, with no preference among
FMN, FAD or riboflavin. When flavin concentration is low, activity is enhanced by the presence of the
NADH-dependent flavin-reductase AsuE2.

References: [3258]

[EC 1.14.13.215 created 2016]

EC 1.14.13.216
Accepted name: asperlicin C monooxygenase

Reaction: asperlicin C + NAD(P)H + H+ + O2 = asperlicin E + NAD(P)+ + H2O
Other name(s): AspB

Systematic name: asperlicin C,NAD(P)H:oxygen oxidoreductase
Comments: The enzyme, characterized from the fungus Aspergillus alliaceus, contains an FAD cofactor. The en-

zyme inserts a hydroxyl group, leading to formation of a N-C bond that creates an additional cycle
between the bicyclic indole and the tetracyclic core moieties, resulting in the heptacyclic asperlicin E.

References: [1442]

[EC 1.14.13.216 created 2016]

EC 1.14.13.217
Accepted name: protodeoxyviolaceinate monooxygenase

Reaction: protodeoxyviolaceinate + NAD(P)H + O2 = protoviolaceinate + NAD(P)+ + H2O
Other name(s): vioD (gene name); protoviolaceinate synthase

Systematic name: protodeoxyviolaceinate,NAD(P)H:O2 oxidoreductase
Comments: The enzyme, characterized from the bacterium Chromobacterium violaceum, participates in the

biosynthesis of the violet pigment violacein. The product, protoviolaceinate, can be acted upon by
EC 1.14.13.224, violacein synthase, leading to violacein production. However, it is very labile, and in
the presence of oxygen can undergo non-enzymic autooxidation to the shunt product proviolacein.

References: [180, 3515]

[EC 1.14.13.217 created 2016, modified 2016]

EC 1.14.13.218
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Accepted name: 5-methylphenazine-1-carboxylate 1-monooxygenase
Reaction: 5-methylphenazine-1-carboxylate + NADH + O2 = pyocyanin + NAD+ + CO2 + H2O

Other name(s): phzS (gene name)
Systematic name: 5-methylphenazine-1-carboxylate,NADH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)

Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, is involved in the biosyn-
thesis of pyocyanin, a toxin produced and secreted by the organism. It can also act on phenazine-1-
carboxylate, converting it into phenazin-1-ol.

References: [2470, 2948, 1276]

[EC 1.14.13.218 created 2016]

EC 1.14.13.219
Accepted name: resorcinol 4-hydroxylase (NADPH)

Reaction: resorcinol + NADPH + H+ + O2 = hydroxyquinol + NADP+ + H2O
Systematic name: resorcinol,NADPH:oxygen oxidoreductase (4-hydroxylating)

Comments: The enzyme, characterized from the bacterium Corynebacterium glutamicum, is a single-component
hydroxylase. The enzyme has no activity with NADH. cf. EC 1.14.13.220, resorcinol 4-hydroxylase
(NADH), and EC 1.14.14.27, resorcinol 4-hydroxylase (FADH2).

References: [1598]

[EC 1.14.13.219 created 2016]

EC 1.14.13.220
Accepted name: resorcinol 4-hydroxylase (NADH)

Reaction: resorcinol + NADH + H+ + O2 = hydroxyquinol + NAD+ + H2O
Other name(s): tsdB (gene name)

Systematic name: resorcinol,NADH:oxygen oxidoreductase (4-hydroxylating)
Comments: The enzyme, characterized from the bacterium Rhodococcus jostii RHA1, is a single-component hy-

droxylase. The enzyme has no activity with NADPH. cf. EC 1.14.13.219, resorcinol 4-hydroxylase
(NADPH), and EC 1.14.14.27, resorcinol 4-hydroxylase (FADH2).

References: [1823]

[EC 1.14.13.220 created 2016]

[1.14.13.221 Transferred entry. cholest-4-en-3-one 26-monooxygenase [(25R)-3-oxocholest-4-en-26-oate forming]. Now
EC 1.14.15.28, cholest-4-en-3-one 26-monooxygenase [(25R)-3-oxocholest-4-en-26-oate forming]]

[EC 1.14.13.221 created 2016, deleted 2018]

EC 1.14.13.222
Accepted name: aurachin C monooxygenase/isomerase

Reaction: aurachin C + NAD(P)H + H+ + O2 = 4-hydroxy-2-methyl-3-oxo-4-[(2E,6E)-farnesyl]-3,4-
dihydroquinoline 1-oxide + NAD(P)+ + H2O (overall reaction)
(1a) aurachin C + NAD(P)H + H+ + O2 = 2-hydroxy-1a-methyl-7a-[(2E,6E)-farnesyl]-1a,2-
dihydrooxireno[2,3-b]quinolin-7(7aH)-one + NAD(P)+ + H2O
(1b) 2-hydroxy-1a-methyl-7a-[(2E,6E)-farnesyl]-1a,2-dihydrooxireno[2,3-b]quinolin-7(7aH)-one = 4-
hydroxy-2-methyl-3-oxo-4-[(2E,6E)-farnesyl]-3,4-dihydroquinoline 1-oxide

Other name(s): auaG (gene name); aurachin C monooxygenase
Systematic name: aurachin C:NAD(P)H:oxygen oxidoreductase (4-hydroxy-2-methyl-3-oxo-4-farnesyl-3,4-

dihydroquinoline-1-oxide-forming)
Comments: The aurachin C monooxygenase from the bacterium Stigmatella aurantiaca accepts both NADH and

NADPH as cofactor, but has a preference for NADH. It catalyses the initial steps in the conversion of
aurachin C to aurachin B. The FAD-dependent monooxygenase catalyses the epoxidation of the C2-
C3 double bond of aurachin C, which is followed by a semipinacol rearrangement, causing migration
of the farnesyl group from C3 to C4.

References: [1846]
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[EC 1.14.13.222 created 2016]

EC 1.14.13.223
Accepted name: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein] 5-monooxygenase

Reaction: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein] + NADH + H+ + O2 = 3,5-dihydroxy-4-
methylanthranilyl-[aryl-carrier protein] + NAD+ + H2O

Other name(s): sibG (gene name)
Systematic name: 3-hydroxy-4-methylanthranilyl-[aryl-carrier protein],NADH:oxygen oxidoreductase (5-

hydroxylating)
Comments: A flavoprotein (FAD). The enzyme, characterized from the bacterium Streptosporangium sibiricum,

is involved in the biosynthesis of the antitumor antibiotic sibiromycin. The enzyme is not active with
free 3-hydroxy-4-methylanthranilate.

References: [1203]

[EC 1.14.13.223 created 2016]

EC 1.14.13.224
Accepted name: violacein synthase

Reaction: (1) protoviolaceinate + NAD(P)H + O2 = violaceinate + NAD(P)+ + H2O
(2) protodeoxyviolaceinate + NAD(P)H + O2 = deoxyviolaceinate + NAD(P)+ + H2O

Other name(s): proviolaceinate monooxygenase; vioC (gene name)
Systematic name: protoviolaceinate,NAD(P)H:O2 oxidoreductase

Comments: The enzyme, characterized from the bacterium Chromobacterium violaceum, participates in the
biosynthesis of the violet pigment violacein. The products, violaceinate and deoxyviolaceinate, un-
dergo non-enzymic autooxidation into violacein and deoxyviolacein, respectively.

References: [180, 3515]

[EC 1.14.13.224 created 2016]

EC 1.14.13.225
Accepted name: F-actin monooxygenase

Reaction: [F-actin]-L-methionine + NADPH + O2 + H+ = [F-actin]-L-methionine-(R)-S-oxide + NADP+ + H2O
Other name(s): MICAL (gene name)

Systematic name: [F-actin]-L-methionine,NADPH:O2 S-oxidoreductase
Comments: The enzyme, characterized from the fruit fly Drosophila melanogaster, is a multi-domain oxidoreduc-

tase that acts as an F-actin disassembly factor. The enzyme selectively reduces two L-Met residues of
F-actin, causing fragmentation of the filaments and preventing repolymerization [1613]. Free methio-
nine is not a substrate [1611]. The reaction is stereospecific and generates the (R)-sulfoxide [1612]. In
the absence of substrate, the enzyme can act as an NAD(P)H oxidase (EC 1.6.3.1) [4494, 4048].

References: [1613, 1611, 1612, 4494, 4048]

[EC 1.14.13.225 created 2016]

EC 1.14.13.226
Accepted name: acetone monooxygenase (methyl acetate-forming)

Reaction: acetone + NADPH + H+ + O2 = methyl acetate + NADP+ + H2O
Other name(s): acmA (gene name)

Systematic name: acetone,NADPH:oxygen oxidoreductase (methyl acetate-forming)
Comments: Contains FAD. The enzyme, characterized from the bacterium Gordonia sp. TY-5, is a Baeyer-

Villiger type monooxygenase and participates in a propane utilization pathway.
References: [2042]

[EC 1.14.13.226 created 2016]
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EC 1.14.13.227
Accepted name: propane 2-monooxygenase

Reaction: propane + NADH + H+ + O2 = propan-2-ol + NAD+ + H2O
Other name(s): prmABCD (gene names)

Systematic name: propane,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme, characterized from several bacterial strains, is a multicomponent dinuclear iron

monooxygenase that includes a hydroxylase, an NADH-dependent reductase, and a coupling protein.
The enzyme has several additional activities, including acetone monooxygenase (acetol-forming) and
phenol 4-monooxygenase.

References: [2041, 3464, 1125]

[EC 1.14.13.227 created 2016]

EC 1.14.13.228
Accepted name: jasmonic acid 12-hydroxylase

Reaction: (–)-jasmonate + NADPH + H+ + O2 = trans-12-hydroxyjasmonate + NADP+ + H2O
Other name(s): ABM (gene name)

Systematic name: jasmonate,NADPH:oxygen oxidoreductase (12-hydroxylating)
Comments: Although believed to occur in plants, the enzyme has so far been characterized only from the rice

blast fungus, Magnaporthe oryzae. The fungus strategically deploys the enzyme to hydroxylate and
inactivate endogenous jasmonate to evade the jasmonate-based innate immunity in rice plants.

References: [2962]

[EC 1.14.13.228 created 2016]

EC 1.14.13.229
Accepted name: tert-butyl alcohol monooxygenase

Reaction: tert-butyl alcohol + NADPH + H+ + O2 = 2-methylpropane-1,2-diol + NADP+ + H2O
Other name(s): mdpJK (gene names); tert-butanol monooxygenase

Systematic name: tert-butyl alcohol,NADPH:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Aquincola tertiaricarbonis, is a Rieske nonheme

mononuclear iron oxygenase. It can also act, with lower efficiency, on propan-2-ol, converting it to
propane-1,2-diol. Depending on the substrate, the enzyme also catalyses EC 1.14.19.48, tert-amyl
alcohol desaturase.

References: [3347, 3406]

[EC 1.14.13.229 created 2016]

EC 1.14.13.230
Accepted name: butane monooxygenase (soluble)

Reaction: butane + NADH + H+ + O2 = butan-1-ol + NAD+ + H2O
Other name(s): sBMO; bmoBCDXYZ (gene names)

Systematic name: butane,NADH:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Thauera butanivorans, is similar to EC 1.14.13.25,

methane monooxygenase (soluble), but has a very low activity with methane. It comprises three com-
ponents - a carboxylate-bridged non-heme di-iron center-containing hydroxylase (made of three dif-
ferent subunits), a flavo-iron sulfur-containing NADH-oxidoreductase, and a small regulatory com-
ponent protein. The enzyme can also act on other C3-C6 linear and branched aliphatic alkanes with
lower activity.

References: [3552, 881, 864, 652]

[EC 1.14.13.230 created 2016]
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EC 1.14.13.231
Accepted name: tetracycline 11a-monooxygenase

Reaction: tetracycline + NADPH + H+ + O2 = 11a-hydroxytetracycline + NADP+ + H2O
Other name(s): tetX (gene name)

Systematic name: tetracycline,NADPH:oxygen oxidoreductase (11a-hydroxylating)
Comments: A flavoprotein (FAD). This bacterial enzyme confers resistance to all clinically relevant tetracyclines

when expressed under aerobic conditions. The hydroxylated products are very unstable and lead to
intramolecular cyclization and non-enzymic breakdown to undefined products.

References: [4337, 2607, 4060]

[EC 1.14.13.231 created 2016]

EC 1.14.13.232
Accepted name: 6-methylpretetramide 4-monooxygenase

Reaction: 6-methylpretetramide + NADPH + H+ + O2 = 4-hydroxy-6-methylpretetramide + NADP+ + H2O
Systematic name: 6-methylpretetramide,NADPH:oxygen oxidoreductase (4-hydroxylating)

Comments: The enzyme, characterized from the bacterium Streptomyces rimosus, participates in the biosynthe-
sis of tetracycline antibiotics. That bacterium possesses two enzymes that can catalyse the reaction -
OxyE is the main isozyme, while OxyL has a lower activity. OxyL is bifunctional, and its main func-
tion is EC 1.14.13.233, 4-hydroxy-6-methylpretetramide 12a-monooxygenase. Contains FAD.

References: [4446, 4113]

[EC 1.14.13.232 created 2016]

EC 1.14.13.233
Accepted name: 4-hydroxy-6-methylpretetramide 12a-monooxygenase

Reaction: 4-hydroxy-6-methylpretetramide + NADPH + H+ + O2 = 4-de(dimethylamino)-4-
oxoanhydrotetracycline + NADP+ + H2O

Other name(s): oxyL (gene name)
Systematic name: 4-hydroxy-6-methylpretetramide,NADPH:oxygen oxidoreductase (12a-hydroxylating)

Comments: Contains FAD. The enzyme, characterized from the bacterium Streptomyces rimosus, participates
in the biosynthesis of tetracycline antibiotics. The enzyme is bifunctional, and can also catalyse EC
1.14.13.232, 6-methylpretetramide 4-monooxygenase.

References: [4446]

[EC 1.14.13.233 created 2016]

EC 1.14.13.234
Accepted name: 5a,11a-dehydrotetracycline 5-monooxygenase

Reaction: 5a,11a-dehydrotetracycline + NADPH + H+ + O2 = 5a,11a-dehydrooxytetracycline + NADP+ + H2O
Other name(s): oxyS (gene name); 12-dehydrotetracycline 5-monooxygenase

Systematic name: 5a,11a-dehydrotetracycline,NADPH:oxygen oxidoreductase (5-hydroxylating)
Comments: The enzyme, characterized from the bacterium Streptomyces rimosus, is bifunctional, catalysing two

successive monooxygenation reactions. It starts by catalysing the stereospecific hydroxylation of an-
hydrotetracycline at C-6 (EC 1.14.13.38). If the released product is captured by EC 1.3.98.4, 5a,11a-
dehydrotetracycline dehydrogenase (OxyR), it is reduced to tetracycline. However, if the released
product is recaptured by OxyS, it performs an additional hydroxylation at C-5, producing 5a,11a-
dehydrooxytetracycline, which, following the action of OxyR, becomes oxytetracycline.

References: [299, 2544, 4016, 4112]

[EC 1.14.13.234 created 2016]

EC 1.14.13.235
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Accepted name: indole-3-acetate monooxygenase
Reaction: (indol-3-yl)acetate + NADH + H+ + O2 = (2-hydroxy-1H-indol-3-yl)acetate + NAD+ + H2O

Other name(s): iacA (gene name)
Systematic name: (indol-3-yl)acetate,NADH:oxygen oxidoreductase (2-hydroxylating)

Comments: The enzyme, characterized from Pseudomonas putida strains, catalyses the first step in a pathway for
degradation of the plant hormone indole-3-acetate. When acting on indole, the enzyme forms indoxyl,
which reacts spontaneously with oxygen to form the blue dye indigo.

References: [2210, 3418]

[EC 1.14.13.235 created 2017]

EC 1.14.13.236
Accepted name: toluene 4-monooxygenase

Reaction: toluene + NADH + H+ + O2 = 4-methylphenol + NAD+ + H2O
Other name(s): TMO

Systematic name: toluene,NADH:oxygen oxidoreductase (4-hydroxylating)
Comments: This bacterial enzyme belongs to a family of soluble diiron hydroxylases that includes toluene-,

benzene-, xylene- and methane monooxygenases, phenol hydroxylases, and alkene epoxidases. The
enzyme comprises a four-component complex that includes a hydroxylase, NADH-ferredoxin oxi-
doreductase, a Rieske-type [2Fe-2S] ferredoxin, and an effector protein.

References: [4193, 1475, 3410, 166, 1583]

[EC 1.14.13.236 created 2017]

EC 1.14.13.237
Accepted name: aliphatic glucosinolate S-oxygenase

Reaction: an ω-(methylsulfanyl)alkyl-glucosinolate + NADPH + H+ + O2 = an ω-(methylsulfinyl)alkyl-
glucosinolate + NADP+ + H2O

Other name(s): ω-(methylthio)alkylglucosinolate S-oxygenase; GS-OX1 (gene name); ω-(methylthio)alkyl-
glucosinolate,NADPH:oxygen S-oxidoreductase

Systematic name: ω-(methylsulfanyl)alkyl-glucosinolate,NADPH:oxygen S-oxidoreductase
Comments: The enzyme is a member of the flavin-dependent monooxygenase (FMO) family (cf. EC 1.14.13.8).

The plant Arabidopsis thaliana contains five isoforms. GS-OX1 through GS-OX4 are able to catalyse
the S-oxygenation independent of chain length, while GS-OX5 is specific for 8-(methylsulfanyl)octyl
glucosinolate.

References: [1372, 2226]

[EC 1.14.13.237 created 2017]

EC 1.14.13.238
Accepted name: dimethylamine monooxygenase

Reaction: dimethylamine + NADPH + H+ + O2 = methylamine + formaldehyde + NADP+ + H2O
Other name(s): dmmABC (gene names)

Systematic name: dimethylamine,NADPH:oxygen oxidoreductase (formaldehyde-forming)
Comments: The enzyme, characterized from several bacterial species, is involved in a pathway for the degradation

of methylated amines. It is composed of three subunits, one of which is a ferredoxin, and contains
heme iron and an FMN cofactor.

References: [903, 901, 53, 2246]

[EC 1.14.13.238 created 2017]

EC 1.14.13.239
Accepted name: carnitine monooxygenase
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Reaction: L-carnitine + NAD(P)H + H+ + O2 = (3R)-3-hydroxy-4-oxobutanoate + trimethylamine + NAD(P)+

+ H2O
Other name(s): cntAB (gene names); yeaWX (gene names)

Systematic name: L-carnitine,NAD(P)H:oxygen oxidoreductase (trimethylamine-forming)
Comments: The bacterial enzyme is a complex consisting of a reductase and an oxygenase components. The re-

ductase subunit contains a flavin and a plant-type ferredoxin [2Fe-2S] cluster, while the oxygenase
subunit is a Rieske-type protein in which a [2Fe-2S] cluster is coordinated by two histidine and two
cysteine residues.

References: [834, 4484, 1996]

[EC 1.14.13.239 created 2017]

EC 1.14.13.240
Accepted name: 2-polyprenylphenol 6-hydroxylase

Reaction: 2-(all-trans-polyprenyl)phenol + NADPH + H+ + O2 = 3-(all-trans-polyprenyl)benzene-1,2-diol +
NADP+ + H2O

Other name(s): ubiI (gene name); ubiM (gene name)
Systematic name: 2-(all-trans-polyprenyl)phenol,NADPH:oxygen oxidoreductase (6-hydroxylating)

Comments: Contains FAD. The enzyme from the bacterium Escherichia coli (UbiI) catalyses the first hydroxyla-
tion during the aerobic biosynthesis of ubiquinone. The enzyme from the bacterium Neisseria menin-
gitidis (UbiM) can also catalyse the two additional hydroxylations that occur in the pathway (cf. EC
1.14.99.60, 3-demethoxyubiquinol 3-hydroxylase).

References: [564, 2977]

[EC 1.14.13.240 created 2018]

EC 1.14.13.241
Accepted name: 5-pyridoxate monooxygenase

Reaction: 3-hydroxy-4-hydroxymethyl-2-methylpyridine-5-carboxylate + NADPH + H+ + O2 = 2-
(acetamidomethylene)-3-(hydroxymethyl)succinate + NADP+

Other name(s): 5-pyridoxate,NADPH:oxygen oxidoreductase (decyclizing); 5-pyridoxate oxidase (misleading); 5-
pyridoxate dioxygenase (incorrect)

Systematic name: 5-pyridoxate,NADPH:oxygen oxidoreductase (ring-opening)
Comments: Contains FAD. The enzyme, characterized from the bacterium Arthrobacter sp. Cr-7, participates in

the degradation of pyridoxine (vitamin B6). Although the enzyme was initially thought to be a dioxy-
genase, oxygen-tracer experiments have suggested that it is a monooxygenase, incorporating only
one oxygen atom from molecular oxygen into the product. The second oxygen atom originates from
a water molecule, which is regenerated during the reaction and thus does not show up in the reaction
equation.

References: [3591, 2761, 531]

[EC 1.14.13.241 created 2018 (EC 1.14.12.5 created 1972, incorporated 2018)]

EC 1.14.13.242
Accepted name: 3-hydroxy-2-methylpyridine-5-carboxylate monooxygenase

Reaction: 3-hydroxy-2-methylpyridine-5-carboxylate + NAD(P)H + H+ + O2 = 2-
(acetamidomethylidene)succinate + NAD(P)+

Other name(s): MHPCO; 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (decy-
clizing); methylhydroxypyridinecarboxylate oxidase (misleading); 2-methyl-3-hydroxypyridine
5-carboxylic acid dioxygenase (incorrect); methylhydroxypyridine carboxylate dioxygenase
(incorrect); 3-hydroxy-3-methylpyridinecarboxylate dioxygenase [incorrect]; 3-hydroxy-2-
methylpyridinecarboxylate dioxygenase (incorrect)

Systematic name: 3-hydroxy-2-methylpyridine-5-carboxylate,NAD(P)H:oxygen oxidoreductase (ring-opening)
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Comments: Contains FAD. The enzyme, characterized from the bacteria Pseudomonas sp. MA-1 and Mesorhizo-
bium loti, participates in the degradation of pyridoxine (vitamin B6). Although the enzyme was ini-
tially thought to be a dioxygenase, oxygen-tracer experiments have shown that it is a monooxygenase,
incorporating only one oxygen atom from molecular oxygen. The second oxygen atom that is incor-
porated into the product originates from a water molecule, which is regenerated during the reaction
and thus does not show up in the reaction equation.

References: [3591, 532, 2891, 4407, 2481, 3886, 3885]

[EC 1.14.13.242 created 2018 (EC 1.14.12.4 created 1972, incorporated 2018)]

EC 1.14.14 With reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
into the other donor

EC 1.14.14.1
Accepted name: unspecific monooxygenase

Reaction: RH + [reduced NADPH—hemoprotein reductase] + O2 = ROH + [oxidized NADPH—hemoprotein
reductase] + H2O

Other name(s): microsomal monooxygenase; xenobiotic monooxygenase; aryl-4-monooxygenase; aryl hydrocarbon
hydroxylase; microsomal P-450; flavoprotein-linked monooxygenase; flavoprotein monooxygenase;
substrate,reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating or -epoxidizing)

Systematic name: substrate,NADPH—hemoprotein reductase:oxygen oxidoreductase (RH-hydroxylating or -
epoxidizing)

Comments: A group of P-450 heme-thiolate proteins, acting on a wide range of substrates including many xeno-
biotics, steroids, fatty acids, vitamins and prostaglandins; reactions catalysed include hydroxylation,
epoxidation, N-oxidation, sulfooxidation, N-, S- and O-dealkylations, desulfation, deamination, and
reduction of azo, nitro and N-oxide groups. Together with EC 1.6.2.4, NADPH—hemoprotein re-
ductase, it forms a system in which two reducing equivalents are supplied by NADPH. Some of the
reactions attributed to EC 1.14.15.3, alkane 1-monooxygenase, belong here.

References: [351, 1099, 1425, 1644, 1756, 2086, 2129, 2130, 2199, 2306, 2563, 2564, 2731, 2754, 3719, 3857,
3868]

[EC 1.14.14.1 created 1961 as EC 1.99.1.1, transferred 1965 to EC 1.14.1.1, transferred 1972 to EC 1.14.14.1 (EC 1.14.14.2 created 1972,
incorporated 1976, EC 1.14.99.8 created 1972, incorporated 1984), modified 2015]

[1.14.14.2 Deleted entry. benzopyrene 3-monooxygenase. Now included with EC 1.14.14.1 unspecific monooxygenase]

[EC 1.14.14.2 created 1972, deleted 1976]

EC 1.14.14.3
Accepted name: bacterial luciferase

Reaction: a long-chain aldehyde + FMNH2 + O2 = a long-chain fatty acid + FMN + H2O + hν

Other name(s): aldehyde monooxygenase; luciferase; Vibrio fischeri luciferase; alkanal,reduced-FMN:oxygen
oxidoreductase (1-hydroxylating, luminescing); alkanal,FMNH2:oxygen oxidoreductase (1-
hydroxylating, luminescing); alkanal monooxygenase (FMN); aldehyde,FMNH2:oxygen oxidore-
ductase (1-hydroxylating, luminescing)

Systematic name: long-chain-aldehyde,FMNH2:oxygen oxidoreductase (1-hydroxylating, luminescing)
Comments: The reaction sequence starts with the incorporation of a molecule of oxygen into reduced FMN bound

to the enzyme, forming luciferase peroxyflavin. The peroxyflavin interacts with an aliphatic long-
chain aldehyde, producing a highly fluorescent species believed to be luciferase hydroxyflavin. The
enzyme is highly specific for reduced FMN and for long-chain aliphatic aldehydes with eight carbons
or more. The highest efficiency is achieved with tetradecanal. cf. EC 1.13.12.18, dinoflagellate lu-
ciferase.

References: [1414, 1413, 1415, 2753, 3750, 2089]
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[EC 1.14.14.3 created 1981, modified 2016]

[1.14.14.4 Deleted entry. choline monooxygenase. Identical to EC 1.14.15.7]

[EC 1.14.14.4 created 2000, deleted 2002]

EC 1.14.14.5
Accepted name: alkanesulfonate monooxygenase

Reaction: an alkanesulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
Other name(s): SsuD; sulfate starvation-induced protein 6; alkanesulfonate,reduced-FMN:oxygen oxidoreductase

Systematic name: alkanesulfonate,FMNH2:oxygen oxidoreductase
Comments: The enzyme from Escherichia coli catalyses the desulfonation of a wide range of aliphatic sulfonates

(unsubstituted C1- to C14-sulfonates as well as substituted C2-sulfonates). Does not desulfonate tau-
rine (2-aminoethanesulfonate) or aromatic sulfonates. Does not use FMN as a bound cofactor. In-
stead, it uses reduced FMN (i.e., FMNH2) as a substrate. FMNH2 is provided by SsuE, the associated
FMN reductase (EC 1.5.1.38).

References: [930]

[EC 1.14.14.5 created 2002]

[1.14.14.6 Transferred entry. methanesulfonate monooxygenase. Now EC 1.14.13.111, methanesulfonate monooxygenase.
Formerly thought to involve FMNH2 but now shown to use NADH.]

[EC 1.14.14.6 created 2009, deleted 2010]

[1.14.14.7 Transferred entry. tryptophan 7-halogenase. As oxygen is completely reduced to H2O and is not incorporated
into the donor chloride, the enzyme has been transferred to EC 1.14.19.9, tryptophan 7-halogenase]

[EC 1.14.14.7 created 2009, deleted 2014]

EC 1.14.14.8
Accepted name: anthranilate 3-monooxygenase (FAD)

Reaction: anthranilate + FADH2 + O2 = 3-hydroxyanthranilate + FAD + H2O
Other name(s): anthranilate 3-hydroxylase; anthranilate hydroxylase

Systematic name: anthranilate,FADH2:oxygen oxidoreductase (3-hydroxylating)
Comments: This enzyme, isolated from the bacterium Geobacillus thermodenitrificans, participates in the path-

way of tryptophan degradation. The enzyme is part of a system that also includes a bifunctional ri-
boflavin kinase/FMN adenylyltransferase and an FAD reductase, which ensures ample supply of FAD
to the monooxygenase.

References: [2285]

[EC 1.14.14.8 created 2010]

EC 1.14.14.9
Accepted name: 4-hydroxyphenylacetate 3-monooxygenase

Reaction: 4-hydroxyphenylacetate + FADH2 + O2 = 3,4-dihydroxyphenylacetate + FAD + H2O
Other name(s): p-hydroxyphenylacetate 3-hydroxylase; 4-hydroxyphenylacetic acid-3-hydroxylase; p-

hydroxyphenylacetate hydroxylase (FAD); 4 HPA 3-hydroxylase; p-hydroxyphenylacetate 3-
hydroxylase (FAD); HpaB

Systematic name: 4-hydroxyphenylacetate,FADH2:oxygen oxidoreductase (3-hydroxylating)
Comments: The enzyme from Escherichia coli attacks a broad spectrum of phenolic compounds. The enzyme

uses FADH2 as a substrate rather than a cofactor [4291]. FADH2 is provided by EC 1.5.1.36, flavin
reductase (NADH) [1141, 2302].

References: [12, 3064, 3063, 4291, 1141, 2302]

[EC 1.14.14.9 created 1972 as EC 1.14.13.3, transferred 2011 to EC 1.14.14.9]
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EC 1.14.14.10
Accepted name: nitrilotriacetate monooxygenase

Reaction: nitrilotriacetate + FMNH2 + H+ + O2 = iminodiacetate + glyoxylate + FMN + H2O
Systematic name: nitrilotriacetate,FMNH2:oxygen oxidoreductase (glyoxylate-forming)

Comments: Requires Mg2+. The enzyme from Aminobacter aminovorans (previously Chelatobacter heintzii)
is part of a two component system that also includes EC 1.5.1.42 (FMN reductase), which provides
reduced flavin mononucleotide for this enzyme.

References: [3966, 1976, 4287]

[EC 1.14.14.10 created 2011]

EC 1.14.14.11
Accepted name: styrene monooxygenase

Reaction: styrene + FADH2 + O2 = (S)-2-phenyloxirane + FAD + H2O
Other name(s): StyA; SMO; NSMOA

Systematic name: styrene,FADH2:oxygen oxidoreductase
Comments: The enzyme catalyses the first step in the aerobic styrene degradation pathway. It forms a two-

component system with a reductase (StyB) that utilizes NADH to reduce flavin-adenine dinucleotide,
which is then transferred to the oxygenase.

References: [2912, 3897]

[EC 1.14.14.11 created 2011]

EC 1.14.14.12
Accepted name: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase

Reaction: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 = 3,4-dihydroxy-9,10-
secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H2O

Other name(s): HsaA
Systematic name: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione,FMNH2:oxygen oxidoreductase

Comments: This bacterial enzyme participates in the degradation of several steroids, including cholesterol
and testosterone. It can use either FADH or FMNH2 as flavin cofactor. The enzyme forms a two-
component system with a reductase (HsaB) that utilizes NADH to reduce the flavin, which is then
transferred to the oxygenase subunit.

References: [871]

[EC 1.14.14.12 created 2011]

EC 1.14.14.13
Accepted name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] monooxygenase

Reaction: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + FMNH2 + O2 = 4-(γ-L-glutamylamino)-
(2S)-2-hydroxybutanoyl-[BtrI acyl-carrier protein] + FMN + H2O

Other name(s): btrO (gene name)
Systematic name: 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein],FMNH2:oxygen oxidoreductase (2-

hydroxylating)
Comments: Catalyses a step in the biosynthesis of the side chain of the aminoglycoside antibiotics of the butirosin

family. FMNH2 is used as a free cofactor. Forms a complex with a dedicated NAD(P)H:FMN oxi-
doreductase. The enzyme is not able to hydroxylate free substrates, activation by the acyl-carrier pro-
tein is mandatory. Octanoyl-S-[BtrI acyl-carrier protein] is also accepted.

References: [2238]

[EC 1.14.14.13 created 2012]

EC 1.14.14.14
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Accepted name: aromatase
Reaction: (1) testosterone + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = 17β-estradiol + formate + 4

H2O + 3 [oxidized NADPH—hemoprotein reductase] (overall reaction)
(1a) testosterone + O2 + [reduced NADPH—hemoprotein reductase] = 19-hydroxytestosterone + H2O
+ [oxidized NADPH—hemoprotein reductase]
(1b) 19-hydroxytestosterone + O2 + [reduced NADPH—hemoprotein reductase] = 19-oxotestosterone
+ 2 H2O + [oxidized NADPH—hemoprotein reductase]
(1c) 19-oxotestosterone + O2 + [reduced NADPH—hemoprotein reductase] = 17β-estradiol + formate
+ H2O + [oxidized NADPH—hemoprotein reductase]
(2) androst-4-ene-3,17-dione + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = estrone + for-
mate + 4 H2O + 3 [oxidized NADPH—hemoprotein reductase] (overall reaction)
(2a) androst-4-ene-3,17-dione + O2 + [reduced NADPH—hemoprotein reductase] = 19-
hydroxyandrost-4-ene-3,17-dione + H2O + [oxidized NADPH—hemoprotein reductase]
(2b) 19-hydroxyandrost-4-ene-3,17-dione + O2 + [reduced NADPH—hemoprotein reductase] = 19-
oxo-androst-4-ene-3,17-dione + 2 H2O + [oxidized NADPH—hemoprotein reductase]
(2c) 19-oxoandrost-4-ene-3,17-dione + O2 + [reduced NADPH—hemoprotein reductase] = estrone +
formate + H2O + [oxidized NADPH—hemoprotein reductase]

Other name(s): CYP19A1 (gene name); estrogen synthetase (incorrect)
Systematic name: testosteronel,NADPH—hemoprotein reductase:oxygen oxidoreductase (17β-estradiol-forming)

Comments: A cytochrome P-450. The enzyme catalyses three sequential hydroxylations of the androgens androst-
4-ene-3,17-dione and testosterone, resulting in their aromatization and forming the estrogens estrone
and 17β-estradiol, respectively. The direct electron donor to the enzyme is EC 1.6.2.4, NADPH—
hemoprotein reductase.

References: [3873, 1022, 1877, 1194]

[EC 1.14.14.14 created 2013]

EC 1.14.14.15
Accepted name: (3S)-3-amino-3-(3-chloro-4-hydroxyphenyl)propanoyl-[peptidyl-carrier protein SgcC2] monooxyge-

nase
Reaction: (3S)-3-amino-3-(3-chloro-4-hydroxyphenyl)propanoyl-[peptidyl-carrier protein SgcC2] + FADH2 +

O2 = (3S)-3-amino-3-(3-chloro-4,5-dihydroxyphenyl)propanoyl-[peptidyl-carrier protein SgcC2] +
FAD + H2O

Other name(s): SgcC
Systematic name: (3S)-3-amino-3-(3-chloro-4-hydroxyphenyl)propanoyl-[peptidyl-carrier protein

SgcC2],FADH2:oxygen oxidoreductase (5-hydroxylating)
Comments: The enzyme from the bacterium Streptomyces globisporus is involved in the biosynthesis of the (S)-3-

chloro-5-hydroxy-β-tyrosine moiety prior to incorporation into the chromoprotein antitumor antibiotic
C-1027.

References: [2257]

[EC 1.14.14.15 created 2014]

EC 1.14.14.16
Accepted name: steroid 21-monooxygenase

Reaction: a C21 steroid + [reduced NADPH—hemoprotein reductase] + O2 = a 21-hydroxy-C21-steroid + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): steroid 21-hydroxylase; 21-hydroxylase; P450c21; CYP21A2 (gene name)
Systematic name: steroid,NADPH—hemoprotein reductase:oxygen oxidoreductase (21-hydroxylating)

Comments: A P-450 heme-thiolate protein responsible for the conversion of progesterone and 17α-
hydroxyprogesterone to their respective 21-hydroxylated derivatives, 11-deoxycorticosterone and
11-deoxycortisol. Involved in the biosynthesis of the hormones aldosterone and cortisol. The electron
donor is EC 1.6.2.4, NADPH—hemoprotein reductase.

References: [1437, 3019, 3267, 2018, 2416, 112]
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[EC 1.14.14.16 created 1961 as EC 1.99.1.11, transferred 1965 to EC 1.14.1.8, transferred 1972 to EC 1.14.99.10, modified 2013, transferred
2015 to EC 1.14.14.16]

EC 1.14.14.17
Accepted name: squalene monooxygenase

Reaction: squalene + [reduced NADPH—hemoprotein reductase] + O2 = (3S)-2,3-epoxy-2,3-dihydrosqualene +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): squalene epoxidase; squalene-2,3-epoxide cyclase; squalene 2,3-oxidocyclase; squalene hydroxylase;
squalene oxydocyclase; squalene-2,3-epoxidase

Systematic name: squalene,NADPH—hemoprotein:oxygen oxidoreductase (2,3-epoxidizing)
Comments: A flavoprotein (FAD). This enzyme, together with EC 5.4.99.7, lanosterol synthase, was formerly

known as squalene oxidocyclase. The electron donor is EC 1.6.2.4, NADPH—hemoprotein reductase
[2890, 621].

References: [661, 3836, 4011, 4317, 2890, 3322, 621, 1446]

[EC 1.14.14.17 created 1961 as EC 1.99.1.13, transferred 1965 to EC 1.14.1.3, part transferred 1972 to EC 1.14.99.7, transferred 2011 to EC
1.14.13.132, transferred 2015 to EC 1.14.14.17]

EC 1.14.14.18
Accepted name: heme oxygenase (biliverdin-producing)

Reaction: protoheme + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = biliverdin + Fe2+ + CO + 3 [oxi-
dized NADPH—hemoprotein reductase] + 3 H2O

Other name(s): ORP33 proteins; haem oxygenase (ambiguous); heme oxygenase (decyclizing) (ambiguous); heme
oxidase (ambiguous); haem oxidase (ambiguous); heme oxygenase (ambiguous); heme,hydrogen-
donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)

Systematic name: protoheme,NADPH—hemoprotein reductase:oxygen oxidoreductase (α-methene-oxidizing, hydroxy-
lating)

Comments: This mammalian enzyme participates in the degradation of heme. The terminal oxygen atoms that are
incorporated into the carbonyl groups of pyrrole rings A and B of biliverdin are derived from two sep-
arate oxygen molecules [2810]. The third oxygen molecule provides the oxygen atom that converts
the α-carbon to CO. The enzyme requires NAD(P)H and EC 1.6.2.4, NADPH—hemoprotein reduc-
tase. cf. EC 1.14.15.20, heme oxygenase (biliverdin-producing, ferredoxin).

References: [2375, 3738, 4380, 2810, 2111]

[EC 1.14.14.18 created 1972 as EC 1.14.99.3, modified 2006, transferred 2015 to EC 1.14.14.18, modified 2016]

EC 1.14.14.19
Accepted name: steroid 17α-monooxygenase

Reaction: a C21-steroid + [reduced NADPH—hemoprotein reductase] + O2 = a 17α-hydroxy-C21-steroid + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): steroid 17α-hydroxylase; cytochrome P-450 17α; cytochrome P-450 (P-450 17α,lyase); 17α-
hydroxylase-C17,20 lyase; CYP17; CYP17A1 (gene name)

Systematic name: steroid,NADPH—hemoprotein reductase:oxygen oxidoreductase (17α-hydroxylating)
Comments: Requires NADPH and EC 1.6.2.4, NADPH—hemoprotein reductase. A microsomal hemeprotein that

catalyses two independent reactions at the same active site - the 17α-hydroxylation of pregnenolone
and progesterone, which is part of glucocorticoid hormones biosynthesis, and the conversion of the
17α-hydroxylated products via a 17,20-lyase reaction to form androstenedione and dehydroepiandros-
terone, leading to sex hormone biosynthesis (EC 1.14.14.32, 17α-hydroxyprogesterone deacetylase).
The ratio of the 17α-hydroxylase and 17,20-lyase activities is an important factor in determining the
directions of steroid hormone biosynthesis towards biosynthesis of glucocorticoid or sex hormones.

References: [2326, 4377, 1205, 2014, 2970]

[EC 1.14.14.19 created 1961 as EC 1.99.1.9, transferred 1965 to EC 1.14.1.7, transferred 1972 to EC 1.14.99.9, modified 2013, transferred
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2015 to EC 1.14.14.19]

EC 1.14.14.20
Accepted name: phenol 2-monooxygenase (FADH2)

Reaction: phenol + FADH2 + O2 = catechol + FAD + H2O
Other name(s): pheA1 (gene name)

Systematic name: phenol,FADH2:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme catalyses the ortho-hydroxylation of simple phenols into the corresponding catechols.

It accepts 4-methylphenol, 4-chlorophenol, and 4-fluorophenol [1937] as well as 4-nitrophenol, 3-
nitrophenol, and resorcinol [3271]. The enzyme is part of a two-component system that also includes
an NADH-dependent flavin reductase. It is strictly dependent on FADH2 and does not accept FMNH2
[1937, 3271]. cf. EC 1.14.13.7, phenol 2-monooxygenase (NADPH).

References: [1937, 3997, 3271]

[EC 1.14.14.20 created 2016]

EC 1.14.14.21
Accepted name: dibenzothiophene monooxygenase

Reaction: dibenzothiophene + 2 FMNH2 + 2 O2 = dibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O (overall
reaction)
(1a) dibenzothiophene + FMNH2 + O2 = dibenzothiophene-5-oxide + FMN + H2O
(1b) dibenzothiophene-5-oxide + FMNH2 + O2 = dibenzothiophene-5,5-dioxide + FMN + H2O

Other name(s): dszC (gene name)
Systematic name: dibenzothiophene,FMNH2:oxygen oxidoreductase

Comments: This bacterial enzyme catalyses the first two steps in the desulfurization pathway of dibenzothio-
phenes, the oxidation of dibenzothiophene into dibenzothiophene sulfone via dibenzothiophene-5-
oxide. The enzyme forms a two-component system with a dedicated NADH-dependent FMN reduc-
tase (EC 1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.22, dibenzothio-
phene sulfone monooxygenase.

References: [1266, 2284, 1306]

[EC 1.14.14.21 created 2016]

EC 1.14.14.22
Accepted name: dibenzothiophene sulfone monooxygenase

Reaction: dibenzothiophene-5,5-dioxide + 2 FMNH2 + O2 = 2′-hydroxybiphenyl-2-sulfinate + 2 FMN + H2O
Other name(s): dszA (gene name)

Systematic name: dibenzothiophene-5,5-dioxide,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme catalyses a step in the desulfurization pathway of dibenzothiophenes. The

enzyme forms a two-component system with a dedicated NADH-dependent FMN reductase (EC
1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.21, dibenzothiophene
monooxygenase.

References: [1266, 2852, 2023, 2851]

[EC 1.14.14.22 created 2016]

EC 1.14.14.23
Accepted name: cholesterol 7α-monooxygenase

Reaction: cholesterol + [reduced NADPH—hemoprotein reductase] + O2 = 7α-hydroxycholesterol + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): cholesterol 7α-hydroxylase; CYP7A1 (gene name)
Systematic name: cholesterol,NADPH—hemoprotein reductase:oxygen oxidoreductase (7α-hydroxylating)

Comments: A P-450 heme-thiolate liver protein that catalyses the first step in the biosynthesis of bile acids. The
direct electron donor to the enzyme is EC 1.6.2.4, NADPH—hemoprotein reductase.
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References: [2568, 373, 2843, 2778, 2777]

[EC 1.14.14.23 created 1976 as EC 1.14.13.17, transferred 2016 to EC 1.14.14.23]

EC 1.14.14.24
Accepted name: vitamin D 25-hydroxylase

Reaction: calciol + O2 + [reduced NADPH—hemoprotein reductase] = calcidiol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): vitamin D2 25-hydroxylase; vitamin D3 25-hydroxylase; CYP2R1
Systematic name: calciol,NADPH—hemoprotein reductase:oxygen oxidoreductase (25-hydroxylating)

Comments: A microsomal enzyme isolated from human and mouse liver that bioactivates vitamin D3. While mul-
tiple isoforms (CYP27A1, CYP2J2/3, CYP3A4, CYP2D25 and CYP2C11) are able to catalyse the
reaction in vitro, only CYP2R1 is thought to catalyse the reaction in humans in vivo [4478]. The di-
rect electron donor to the enzyme is EC 1.6.2.4, NADPH—hemoprotein reductase.

References: [581, 3514, 3690, 4478]

[EC 1.14.14.24 created 2012 as EC 1.14.13.159, transferred 2016 to EC 1.14.14.24]

EC 1.14.14.25
Accepted name: cholesterol 24-hydroxylase

Reaction: cholesterol + [reduced NADPH—hemoprotein reductase] + O2 = (24S)-cholest-5-ene-3β,24-diol +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): cholesterol 24-monooxygenase; CYP46; CYP46A1; cholesterol 24S-hydroxylase; cytochrome P450
46A1

Systematic name: cholesterol,NADPH—hemoprotein reductase:oxygen oxidoreductase (24-hydroxylating)
Comments: A P-450 heme-thiolate protein. The enzyme can also produce 25-hydroxycholesterol. In addition, it

can further hydroxylate the product to 24,25-dihydroxycholesterol and 24,27-dihydroxycholesterol
[333]. This reaction is the first step in the enzymic degradation of cholesterol in the brain as hydrox-
ycholesterol can pass the blood—brain barrier whereas cholesterol cannot [2436]. The direct electron
donor to the enzyme is EC 1.6.2.4, NADPH—hemoprotein reductase [2436].

References: [2318, 333, 2436, 2320, 3263]

[EC 1.14.14.25 created 2005 as EC 1.14.13.98, transferred 2016 to EC 1.14.14.25]

EC 1.14.14.26
Accepted name: 24-hydroxycholesterol 7α-hydroxylase

Reaction: (24S)-cholest-5-ene-3β,24-diol + [reduced NADPH—hemoprotein reductase] + O2 = (24S)-cholest-5-
ene-3β,7α,24-triol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 24-hydroxycholesterol 7α-monooxygenase; CYP39A1; CYP39A1 oxysterol 7α-hydroxylase
Systematic name: (24S)-cholest-5-ene-3β,24-diol,NADPH—hemoprotein reductase:oxygen oxidoreductase (7α-

hydroxylating)
Comments: A P-450 heme-thiolate protein that is found in liver microsomes and in ciliary non-pigmented epithe-

lium [1631]. The enzyme is specific for (24S)-cholest-5-ene-3β,24-diol, which is formed mostly in
the brain by EC 1.14.14.25, cholesterol 24-hydroxylase. The direct electron donor to the enzyme is
EC 1.6.2.4, NADPH—hemoprotein reductase.

References: [2240, 1631, 3263]

[EC 1.14.14.26 created 2005 as EC 1.14.13.99, transferred 2016 to EC 1.14.14.26]

EC 1.14.14.27
Accepted name: resorcinol 4-hydroxylase (FADH2)

Reaction: resorcinol + FADH2 + O2 = hydroxyquinol + FAD + H2O
Other name(s): graA (gene name)
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Systematic name: resorcinol,FADH2:oxygen oxidoreductase (4-hydroxylating)
Comments: The enzyme, characterized from the bacterium Rhizobium sp. strain MTP-10005, uses FADH2 as

a substrate rather than a cofactor. FADH2 is provided by a dedicated EC 1.5.1.36, flavin reduc-
tase (NADH). The enzyme participates in the degradation of γ-resorcylate and resorcinol. cf. EC
1.14.13.220, resorcinol 4-hydroxylase (NADH), and EC 1.14.13.219, resorcinol 4-hydroxylase
(NADPH).

References: [2854, 4378]

[EC 1.14.14.27 created 2016]

EC 1.14.14.28
Accepted name: long-chain alkane monooxygenase

Reaction: a long-chain alkane + FMNH2 + O2 = a long-chain primary alcohol + FMN + H2O
Systematic name: long-chain-alkane,FMNH2:oxygen oxidoreductase

Comments: The enzyme, characterized from the bacterium Geobacillus thermodenitrificans NG80-2, is capable
of converting alkanes ranging from C15 to C36 into their corresponding primary alcohols [996, 2228].
The FMNH2 cofactor is provided by an FMN reductase [855].

References: [996, 2228, 855]

[EC 1.14.14.28 created 2016]

EC 1.14.14.29
Accepted name: 25/26-hydroxycholesterol 7α-hydroxylase

Reaction: (1) cholest-5-ene-3β,25-diol + [reduced NADPH—hemoprotein reductase] + O2 = cholest-5-ene-
3β,7α,25-triol + [oxidized NADPH—hemoprotein reductase] + H2O
(2) (25R)-cholest-5-ene-3β,26-diol + [reduced NADPH—hemoprotein reductase] + O2 = (25R)-
cholest-5-ene-3β,7α,26-triol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 25-hydroxycholesterol 7α-monooxygenase; CYP7B1; CYP7B1 oxysterol 7α-hydroxylase; 27-
hydroxycholesterol 7-monooxygenase; 27-hydroxycholesterol 7α-hydroxylase; cholest-5-ene-3β,25-
diol,NADPH:oxygen oxidoreductase (7α-hydroxylating); 25-hydroxycholesterol 7α-hydroxylase

Systematic name: cholest-5-ene-3β,25/26-diol,[NADPH—hemoprotein reductase]:oxygen oxidoreductase (7α-
hydroxylating)

Comments: A P-450 (heme-thiolate) protein. Unlike EC 1.14.14.26, 24-hydroxycholesterol 7α-monooxygenase,
which is specific for its oxysterol substrate, this enzyme can also metabolize the oxysterols 24,25-
epoxycholesterol, 22-hydroxycholesterol and 24-hydroxycholesterol, but to a lesser extent [3903].
The direct electron donor to the enzyme is EC 1.6.2.4, NADPH—hemoprotein reductase.

References: [2074, 3903, 2240, 3167, 3263]

[EC 1.14.14.29 created 2005 as EC 1.14.13.100, modified 2013 (EC 1.14.13.60 created 1999, incorporated 2013), transferred 2016 to EC
1.14.14.29]

EC 1.14.14.30
Accepted name: isobutylamine N-monooxygenase

Reaction: (1) 2-methylpropan-1-amine + FADH2 + O2 = N-(2-methylpropyl)hydroxylamine + FAD + H2O
(2) 2-methylpropan-1-amine + FMNH2 + O2 = N-(2-methylpropyl)hydroxylamine + FMN + H2O

Other name(s): vlmH (gene name)
Systematic name: 2-methylpropan-1-amine,FADH2:O2 N-oxidoreductase

Comments: The enzyme, characterized from the bacterium Streptomyces viridifaciens, is part of a two component
system that also includes a flavin reductase, which provides reduced flavin mononucleotide for this
enzyme. The enzyme, which is involved in the biosynthesis of the azoxy antibiotic valanimycin, has a
similar activity with either FMNH2 or FADH2. It exhibits broad specificity, and also accepts propan-
1-amine, butan-1-amine, butan-2-amine and benzylamine.

References: [2945, 2946, 2944]
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[EC 1.14.14.30 created 2016, modified 2017]

EC 1.14.14.31
Accepted name: ipsdienol synthase

Reaction: myrcene + [reduced NADPH—hemoprotein reductase] + O2 = (R)-ipsdienol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): myrcene hydroxylase; CYP9T2; CYP9T3
Systematic name: myrcene,NADPH—hemoprotein reductase:O2 oxidoreductase (hydroxylating)

Comments: A cytochrome P-450 heme-thiolate protein. Involved in the insect aggregation pheromone production.
Isolated from the pine engraver beetle, Ips pini. A small amount of (S)-ipsdienol is also formed. In
vitro it also hydroxylated (+)- and (–)-α-pinene, 3-carene, and (+)-limonene, but not α-phellandrene,
(–)-β-pinene, γ-terpinene, or terpinolene.

References: [3307, 3581]

[EC 1.14.14.31 created 2015 as EC 1.14.13.207, transferred 2016 to EC 1.14.14.31]

EC 1.14.14.32
Accepted name: 17α-hydroxyprogesterone deacetylase

Reaction: (1) 17α-hydroxyprogesterone + [reduced NADPH—hemoprotein reductase] + O2 = androstenedione
+ acetate + [oxidized NADPH—hemoprotein reductase] + H2O
(2) 17α-hydroxypregnenolone + [reduced NADPH—hemoprotein reductase] + O2 = 3β-
hydroxyandrost-5-en-17-one + acetate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): C-17/C-20 lyase; 17α-hydroxyprogesterone acetaldehyde-lyase; CYP17; CYP17A1 (gene name);
17α-hydroxyprogesterone 17,20-lyase

Systematic name: 17α-hydroxyprogesterone,NADPH—hemoprotein reductase:oxygen oxidoreductase (17α-
hydroxylating, acetate-releasing)

Comments: A microsomal cytochrome P-450 (heme-thiolate) protein that catalyses two independent reactions at
the same active site - the 17-hydroxylation of pregnenolone and progesterone, which is part of gluco-
corticoid hormones biosynthesis (EC 1.14.14.19), and the conversion of the 17-hydroxylated products
via a 17,20-lyase reaction to form androstenedione and 3β-hydroxyandrost-5-en-17-one, leading to
sex hormone biosynthesis. The activity of this reaction is dependent on the allosteric interaction of the
enzyme with cytochrome b5 without any transfer of electrons from the cytochrome [138, 3534]. The
enzymes from different organisms differ in their substrate specificity. While the enzymes from pig,
hamster, and rat accept both 17α-hydroxyprogesterone and 17α-hydroxypregnenolone, the enzymes
from human, bovine, sheep, goat, and bison do not accept the former, and the enzyme from guinea pig
does not accept the latter [1205].

References: [1205, 138, 2376, 3534, 293]

[EC 1.14.14.32 created 1976 as EC 4.1.2.30, transferred 2016 to EC 1.14.14.32]

EC 1.14.14.33
Accepted name: ethylenediaminetetraacetate monooxygenase

Reaction: ethylenediaminetetraacetate + 2 FMNH2 + 2 O2 = ethylenediamine-N,N′-diacetate + 2 glyoxylate + 2
FMN + 2 H2O (overall reaction)
(1a) ethylenediaminetetraacetate + FMNH2 + O2 = ethylenediaminetriacetate + glyoxylate + FMN +
H2O
(1b) ethylenediaminetriacetate + FMNH2 + O2 = ethylenediamine-N,N′-diacetate + glyoxylate + FMN
+ H2O

Systematic name: ethylenediaminetetraacetate,FMNH2:O2 oxidoreductase (glyoxylate-forming)
Comments: The enzyme is part of a two component system that also includes EC 1.5.1.42, FMN reductase

(NADH), which provides reduced flavin mononucleotide for this enzyme. It acts on EDTA only when
it is complexed with divalent cations such as Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. While the enzyme
has a substrate overlap with EC 1.14.14.10, nitrilotriacetate monooxygenase, it has a much wider sub-
strate range, which includes nitrilotriacetate (NTA) and diethylenetriaminepentaacetate (DTPA) in
addition to EDTA.
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References: [4233, 2967, 336]

[EC 1.14.14.33 created 2016]

EC 1.14.14.34
Accepted name: methanesulfonate monooxygenase (FMNH2)

Reaction: methanesulfonate + FMNH2 + O2 = formaldehyde + FMN + sulfite + H2O
Other name(s): msuD (gene name); ssuD (gene name)

Systematic name: methanesulfonate,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from Pseudomonas strains, allows the organisms to utilize methanesul-

fonate as their sulfur source. It acts in combination with a dedicated NADH-dependent FMN re-
ductase (EC 1.5.1.42), which provides it with reduced FMN. cf. EC 1.14.13.111, methanesulfonate
monooxygenase (NADH).

References: [1889, 948]

[EC 1.14.14.34 created 2016]

EC 1.14.14.35
Accepted name: dimethylsulfone monooxygenase

Reaction: dimethyl sulfone + FMNH2 + O2 = methanesulfinate + formaldehyde + FMN + H2O
Other name(s): sfnG (gene name)

Systematic name: dimethyl sulfone,FMNH2:oxygen oxidoreductase
Comments: The enzyme, characterized from Pseudomonas spp., is involved in a dimethyl sulfide degradation

pathway. It is dependent on NAD(P)H-dependent FMN reductase (EC 1.5.1.38, EC 1.5.1.39, or EC
1.5.1.42), which provides it with reduced FMN. The product, methanesulfinate, is oxidized sponta-
neously to methanesulfonate in the presence of dioxygen and FMNH2.

References: [947, 4203]

[EC 1.14.14.35 created 2016]

EC 1.14.14.36
Accepted name: tyrosine N-monooxygenase

Reaction: L-tyrosine + 2 O2 + 2 [reduced NADPH—hemoprotein reductase] = (E)-[4-
hydroxyphenylacetaldehyde oxime] + 2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3
H2O (overall reaction)
(1a) L-tyrosine + O2 + [reduced NADPH—hemoprotein reductase] = N-hydroxy-L-tyrosine + [oxidized
NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-tyrosine + O2 + [reduced NADPH—hemoprotein reductase] = N,N-dihydroxy-L-
tyrosine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) N,N-dihydroxy-L-tyrosine = (E)-[4-hydroxyphenylacetaldehyde oxime] + CO2 + H2O

Other name(s): tyrosine N-hydroxylase; CYP79A1
Systematic name: L-tyrosine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from Sorghum is involved in the biosynthe-
sis of the cyanogenic glucoside dhurrin. In Sinapis alba (white mustard) the enzyme is involved in the
biosynthesis of the glucosinolate sinalbin.

References: [1345, 3525, 259, 1801, 169, 2786, 460, 2060, 630]

[EC 1.14.14.36 created 1992 as EC 1.14.13.41, modified 2001, modified 2005, transferred 2016 to EC 1.14.14.36]

EC 1.14.14.37
Accepted name: 4-hydroxyphenylacetaldehyde oxime monooxygenase

Reaction: (E)-4-hydroxyphenylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + O2 = (S)-4-
hydroxymandelonitrile + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
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(1a) (E)-4-hydroxyphenylacetaldehyde oxime = (Z)-4-hydroxyphenylacetaldehyde oxime
(1b) (Z)-4-hydroxyphenylacetaldehyde oxime = 4-hydroxyphenylacetonitrile + H2O
(1c) 4-hydroxyphenylacetonitrile + [reduced NADPH—hemoprotein reductase] + O2 = (S)-4-
hydroxymandelonitrile + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 4-hydroxybenzeneacetaldehyde oxime monooxygenase; cytochrome P450II-dependent monooxyge-
nase; NADPH-cytochrome P450 reductase (CYP71E1); CYP71E1; 4-hydroxyphenylacetaldehyde
oxime,NADPH:oxygen oxidoreductase

Systematic name: (E)-4-hydroxyphenylacetaldehyde oxime,[reduced NADPH—hemoprotein reductase]:oxygen oxi-
doreductase

Comments: This cytochrome P-450 (heme thiolate) enzyme is involved in the biosynthesis of the cyanogenic glu-
coside dhurrin in sorghum. It catalyses three different activities - isomerization of the (E) isomer to
the (Z) isomer, dehydration, and C-hydroxylation.

References: [2344, 3494, 460, 2060, 630]

[EC 1.14.14.37 created 2000 as EC 1.14.13.68, modified 2005, transferred 2016 to EC 1.14.14.37]

EC 1.14.14.38
Accepted name: valine N-monooxygenase

Reaction: L-valine + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = (E)-2-methylpropanal oxime + 2
[oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O (overall reaction)
(1a) L-valine + [reduced NADPH—hemoprotein reductase] + O2 = N-hydroxy-L-valine + [oxidized
NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-valine + [reduced NADPH—hemoprotein reductase] + O2 = N,N-dihydroxy-L-
valine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) N,N-dihydroxy-L-valine = (E)-2-methylpropanal oxime + CO2 + H2O

Other name(s): CYP79D1; CYP79D2
Systematic name: L-valine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. This enzyme catalyses two successive N-hydroxylations
of L-valine, the committed step in the biosynthesis of the cyanogenic glucoside linamarin in Manihot
esculenta (cassava). The product of the two hydroxylations, N,N-dihydroxy-L-valine, is labile and
undergoes dehydration and decarboxylation that produce the (E) isomer of the oxime. It is still not
known whether the decarboxylation is spontaneous or catalysed by the enzyme. The enzyme can also
accept L-isoleucine as substrate, with a lower activity. It is different from EC 1.14.14.39, isoleucine
N-monooxygenase, which prefers L-isoleucine.

References: [80, 1040]

[EC 1.14.14.38 created 2010 as EC 1.14.13.118, transferred 2017 to EC 1.14.14.38]

EC 1.14.14.39
Accepted name: isoleucine N-monooxygenase

Reaction: L-isoleucine + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = (1E,2S)-2-methylbutanal
oxime + 2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O (overall reaction)
(1a) L-isoleucine + [reduced NADPH—hemoprotein reductase] + O2 = N-hydroxy-L-isoleucine + [ox-
idized NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-isoleucine + [reduced NADPH—hemoprotein reductase] + O2 = N,N-dihydroxy-L-
isoleucine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) N,N-dihydroxy-L-isoleucine = (1E,2S)-2-methylbutanal oxime + CO2 + H2O (spontaneous)

Other name(s): CYP79D3 (gene name); CYP79D4 (gene name)
Systematic name: L-isoleucine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-hydroxylating)

Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in plants, catalyses two successive N-
hydroxylations of L-isoleucine, the committed step in the biosynthesis of the cyanogenic glucoside
lotaustralin. The product of the two hydroxylations, N,N-dihydroxy-L-isoleucine, is labile and under-
goes dehydration followed by decarboxylation, producing the oxime. It is still not known whether the
decarboxylation is spontaneous or catalysed by the enzyme. The enzyme can also accept L-valine, but
with a lower activity. cf. EC 1.14.14.38, valine N-monooxygenase.
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References: [80, 1040]

[EC 1.14.14.39 created 2010 as EC 1.14.13.117, transferred 2017 to EC 1.14.14.39]

EC 1.14.14.40
Accepted name: phenylalanine N-monooxygenase

Reaction: L-phenylalanine + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = (E)-phenylacetaldoxime +
2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O (overall reaction)
(1a) L-phenylalanine + [reduced NADPH—hemoprotein reductase] + O2 = N-hydroxy-L-phenylalanine
+ [oxidized NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-phenylalanine + [reduced NADPH—hemoprotein reductase] + O2 = N,N-dihydroxy-
L-phenylalanine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) N,N-dihydroxy-L-phenylalanine = (E)-phenylacetaldoxime + CO2 + H2O

Other name(s): phenylalanine N-hydroxylase; CYP79A2 (gene name); CYP79D16 (gene name)
Systematic name: L-phenylalanine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-

hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in plants, catalyses two successive N-

hydroxylations of L-phenylalanine, a committed step in the biosynthesis of benzylglucosinolate and
the cyanogenic glucosides (R)-prunasin and (R)-amygdalin. The product of the two hydroxylations,
N,N-dihydroxy-L-phenylalanine, is labile and undergoes dehydration followed by decarboxylation,
producing an oxime. It is still not known whether the decarboxylation is spontaneous or catalysed by
the enzyme.

References: [4234, 4310]

[EC 1.14.14.40 created 2011 as EC 1.14.13.124, transferred 2017 to EC 1.14.14.40]

EC 1.14.14.41
Accepted name: (E)-2-methylbutanal oxime monooxygenase

Reaction: (1) (E)-2-methylbutanal oxime + [reduced NADPH—hemoprotein reductase] + O2 = 2-hydroxy-2-
methylbutanenitrile + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) (E)-2-methylbutanal oxime = (Z)-2-methylbutanal oxime
(1b) (Z)-2-methylbutanal oxime = 2-methylbutanenitrile + H2O
(1c) 2-methylbutanenitrile + [reduced NADPH—hemoprotein reductase] + O2 = 2-hydroxy-2-
methylbutanenitrile + [oxidized NADPH—hemoprotein reductase] + H2O
(2) (E)-2-methylpropanal oxime + [reduced NADPH—hemoprotein reductase] + O2 = 2-hydroxy-2-
methylpropanenitrile + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(2a) (E)-2-methylpropanal oxime = (Z)-2-methylpropanal oxime
(2b) (Z)-2-methylpropanal oxime = 2-methylpropanenitrile + H2O
(2c) 2-methylpropanenitrile + [reduced NADPH—hemoprotein reductase] + O2 = 2-hydroxy-2-
methylpropanenitrile + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71E7 (gene name)
Systematic name: (E)-2-methylbutanal oxime,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: This cytochrome P-450 (heme thiolate) enzyme is involved in the biosynthesis of the cyanogenic glu-
cosides lotaustralin and linamarin. It catalyses three different activities - isomerization of its substrate,
the (E) isomer, to the (Z) isomer, dehydration, and C-hydroxylation.

References: [1774]

[EC 1.14.14.41 created 2017]

EC 1.14.14.42
Accepted name: homomethionine N-monooxygenase

Reaction: an L-polyhomomethionine + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = an (E)-ω-
(methylsulfanyl)alkanal oxime + 2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O
(overall reaction)
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(1a) an L-polyhomomethionine + [reduced NADPH—hemoprotein reductase] + O2 = an L-N-
hydroxypolyhomomethionine + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) an L-N-hydroxypolyhomomethionine + [reduced NADPH—hemoprotein reductase] + O2 = an
L-N,N-dihydroxypolyhomomethionine + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) an L-N,N-dihydroxypolyhomomethionine = an (E)-ω-(methylsulfanyl)alkanal oxime + CO2 + H2O

Other name(s): CYP79F1 (gene name); CYP79F2 (gene name)
Systematic name: L-polyhomomethionine,[NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: This plant cytochrome P-450 (heme thiolate) enzyme is involved in methionine-derived aliphatic glu-
cosinolates biosynthesis. It catalyses two successive N-hydroxylations, which are followed by dehy-
dration and decarboxylation. CYP79F1 from Arabidopsis thaliana can metabolize mono-, di-, tri-,
tetra-, penta-, and hexahomomethionine to their corresponding aldoximes, while CYP79F2 from the
same plant can only metabolize penta- and hexahomomethionine.

References: [1373, 575]

[EC 1.14.14.42 created 2017]

EC 1.14.14.43
Accepted name: (methylsulfanyl)alkanaldoxime N-monooxygenase

Reaction: an (E)-ω-(methylsulfanyl)alkanal oxime + [reduced NADPH—hemoprotein reductase] + glutathione
+ O2 = an S-[(1E)-1-(hydroxyimino)-ω-(methylsulfanyl)alkyl]-L-glutathione + [oxidized NADPH—
hemoprotein reductase] + 2 H2O (overall reaction)
(1a) an (E)-ω-(methylsulfanyl)alkanal oxime + [reduced NADPH—hemoprotein reductase] + O2 = a
1-(methylsulfanyl)-4-aci-nitroalkane + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) a 1-(methylsulfanyl)-4-aci-nitroalkane + glutathione = an S-[(1E)-1-(hydroxyimino)-ω-
(methylsulfanyl)alkyl]-L-glutathione + H2O

Other name(s): CYP83A1 (gene name); (methylthio)alkanaldoxime N-monooxygenase; (E)-ω-
(methylthio)alkananaldoxime,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
(N-hydroxylating)

Systematic name: (E)-ω-(methylsulfanyl)alkananal oxime,[reduced NADPH—hemoprotein reductase]:oxygen oxidore-
ductase (N-hydroxylating)

Comments: This cytochrome P-450 (heme thiolate) enzyme is involved in the biosynthesis of glucosinolates
in plants. The enzyme catalyses an N-hydroxylation of the E isomer of ω-(methylsulfanyl)alkanal
oximes, forming an aci-nitro intermediate that reacts non-enzymically with glutathione to produce an
N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates. In the absence of a thiol
compound, the enzyme is suicidal, probably due to interaction of the reactive aci-nitro intermediate
with active site residues.

References: [170, 2745, 630]

[EC 1.14.14.43 created 2017]

EC 1.14.14.44
Accepted name: phenylacetaldehyde oxime monooxygenase

Reaction: (E)-phenylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + O2 = (R)-
mandelonitrile + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) (E)-phenylacetaldehyde oxime = (Z)-phenylacetaldehyde oxime
(1b) (Z)-phenylacetaldehyde oxime = phenylacetonitrile + H2O
(1c) phenylacetonitrile + [reduced NADPH—hemoprotein reductase] + O2 = (R)-mandelonitrile + [ox-
idized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71AN24 (gene name)
Systematic name: (E)-phenylacetaldehyde oxime,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: This cytochrome P-450 (heme-thiolate) enzyme is involved in the biosynthesis of the cyanogenic glu-
cosides (R)-prunasin and (R)-amygdalin. It catalyses three different activities - isomerization of the
(E) isomer to the (Z) isomer, dehydration, and C-hydroxylation.

References: [4310]
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[EC 1.14.14.44 created 2017]

EC 1.14.14.45
Accepted name: aromatic aldoxime N-monooxygenase

Reaction: (1) (E)-indol-3-ylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + glutathione +
O2 = S-[(E)-N-hydroxy(indol-3-yl)acetimidoyl]-L-glutathione + [oxidized NADPH—hemoprotein
reductase] + 2 H2O (overall reaction)
(1a) (E)-indol-3-ylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + O2 = 1-(1H-
indol-3-yl)-2-aci-nitroethane + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 1-(1H-indol-3-yl)-2-aci-nitroethane + glutathione = S-[(E)-N-hydroxy(indol-3-yl)acetimidoyl]-L-
glutathione + H2O (spontaneous)
(2) (E)-phenylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + glutathione + O2 =
S-[(Z)-N-hydroxy(phenyl)acetimidoyl]-L-glutathione + [oxidized NADPH—hemoprotein reductase] +
2 H2O (overall reaction)
(2a) (E)-phenylacetaldehyde oxime + [reduced NADPH—hemoprotein reductase] + O2 = 1-aci-nitro-
2-phenylethane + [oxidized NADPH—hemoprotein reductase] + H2O
(2b) 1-aci-nitro-2-phenylethane + glutathione = S-[(Z)-N-hydroxy(phenyl)acetimidoyl]-L-glutathione
+ H2O (spontaneous)

Other name(s): CYP83B1 (gene name)
Systematic name: (E)-indol-3-ylacetaldoxime,[reduced NADPH—hemoprotein reductase],glutathione:oxygen oxidore-

ductase (oxime-hydroxylating)
Comments: This cytochrome P-450 (heme thiolate) enzyme is involved in the biosynthesis of glucosinolates in

plants. The enzyme catalyses the N-hydroxylation of aromatic aldoximes derived from L-tryptophan,
L-phenylalanine, and L-tyrosine, forming an aci-nitro intermediate that reacts non-enzymically with
glutathione to produce an N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates.
In the absence of glutathione, the enzyme is suicidal, probably due to interaction of the reactive aci-
nitro compound with catalytic residues in the active site.

References: [170, 2745, 1191]

[EC 1.14.14.45 created 2017]

EC 1.14.14.46
Accepted name: pimeloyl-[acyl-carrier protein] synthase

Reaction: a long-chain acyl-[acyl-carrier protein] + 2 reduced flavodoxin + 3 O2 = pimeloyl-[acyl-carrier pro-
tein] + an n-alkanal + 2 oxidized flavodoxin + 3 H2O (overall reaction)
(1a) a long-chain acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7S)-7-hydroxy-long-chain-
acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1b) a (7S)-7-hydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a (7R,8R)-
7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + oxidized flavodoxin + H2O
(1c) a (7R,8R)-7,8-dihydroxy-long-chain-acyl-[acyl-carrier protein] + reduced flavodoxin + O2 = a 7-
oxoheptanoyl-[acyl-carrier protein] + an n-alkanal + oxidized flavodoxin + 2 H2O
(1d) a 7-oxoheptanoyl-[acyl-carrier protein] + oxidized flavodoxin + H2O = a pimeloyl-[acyl-carrier
protein] + reduced flavodoxin + H+

Other name(s): bioI (gene name); P450BioI; CYP107H1
Systematic name: acyl-[acyl-carrier protein],reduced-flavodoxin:oxygen oxidoreductase (pimeloyl-[acyl-carrier protein]

forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme catalyses an oxidative C-C bond cleavage

of long-chain acyl-[acyl-carrier protein]s of various lengths to generate pimeloyl-[acyl-carrier pro-
tein], an intermediate in the biosynthesis of biotin. The preferred substrate of the enzyme from the
bacterium Bacillus subtilis is palmitoyl-[acyl-carrier protein] which then gives heptanal as the alka-
nal. The mechanism is similar to EC 1.14.15.6, cholesterol monooxygenase (side-chain-cleaving),
followed by a hydroxylation step, which may occur spontaneously [702].

References: [3661, 702, 701, 699]

387

http://www.enzyme-database.org/query.php?ec=1.14.14.45
http://www.enzyme-database.org/query.php?ec=1.14.14.46


[EC 1.14.14.46 created 2013 as EC 1.14.15.12, transferred 2017 to EC 1.14.14.46]

EC 1.14.14.47
Accepted name: nitric-oxide synthase (flavodoxin)

Reaction: 2 L-arginine + 3 reduced flavodoxin + 4 O2 = 2 L-citrulline + 2 nitric oxide + 3 oxidized flavodoxin +
4 H2O (overall reaction)
(1a) 2 L-arginine + 2 reduced flavodoxin + 2 O2 = 2 Nω-hydroxy-L-arginine + 2 oxidized flavodoxin +
2 H2O
(1b) 2 Nω-hydroxy-L-arginine + reduced flavodoxin + 2 O2 = 2 L-citrulline + 2 nitric oxide + oxidized
flavodoxin + 2 H2O

Other name(s): nitric oxide synthetase (ambiguous); NO synthase (ambiguous)
Systematic name: L-arginine,reduced-flavodoxin:oxygen oxidoreductase (nitric-oxide-forming)

Comments: Binds heme (iron protoporphyrin IX) and tetrahydrobiopterin. The enzyme, found in bacteria and
archaea, consist of only an oxygenase domain and functions together with bacterial ferredoxins or
flavodoxins. The orthologous enzymes from plants and animals also contain a reductase domain and
use only NADPH as the electron donor (cf. EC 1.14.13.39).

References: [2934, 17, 4128, 28, 1539]

[EC 1.14.14.47 created 2012 as EC 1.14.13.165, transferred 2017 to EC 1.14.14.47]

EC 1.14.14.48
Accepted name: jasmonoyl-L-amino acid 12-hydroxylase

Reaction: a jasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-
hydroxyjasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP94B1 (gene name); CYP94B3 (gene name)
Systematic name: jasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-

hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-

amino acid conjugates, catalysing the hydroxylation of the C-12 position of jasmonic acid. While the
best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the enzyme was shown to be active with
jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and is likely to be active with other jasmonoyl-
amino acid conjugates.

References: [2026, 1946, 1466, 1945, 2027, 4206]

[EC 1.14.14.48 created 2017]

EC 1.14.14.49
Accepted name: 12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase

Reaction: a 12-hydroxyjasmonoyl-L-amino acid + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = a 12-
hydroxy-12-oxojasmonoyl-L-amino acid + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O
(overall reaction)
(1a) a 12-hydroxyjasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-
oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b) a 12-oxojasmonoyl-L-amino acid + [reduced NADPH—hemoprotein reductase] + O2 = a 12-
hydroxy-12-oxojasmonoyl-L-amino acid + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP94C1 (gene name)
Systematic name: 12-hydroxyjasmonoyl-L-amino acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreduc-

tase (12-hydroxylating)
Comments: A cytochrome P450 (heme thiolate) enzyme found in plants. The enzyme acts on jasmonoyl-L-amino

acid conjugates that have been hydroxylated at the C-12 position of jasmonic acid by EC 1.14.14.48,
jasmonoyl-L-amino acid 12-hydroxylase, further oxidizing that position to a carboxylate via an alde-
hyde intermediate. While the best studied substrate is (+)-7-epi-jasmonoyl-L-isoleucine, the en-
zyme was shown to be active with jasmonoyl-L-phenylalanine, and is likely to be active with other
jasmonoyl-amino acid conjugates.

References: [1466, 4206, 421]
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[EC 1.14.14.49 created 2017]

EC 1.14.14.50
Accepted name: tabersonine 3-oxygenase

Reaction: (1) 16-methoxytabersonine + [reduced NADPH—hemoprotein reductase] + O2 = (3R)-3-hydroxy-
16-methoxy-1,2-didehydro-2,3-dihydrotabersonine + [oxidized NADPH—hemoprotein reductase] +
H2O
(2) tabersonine + [reduced NADPH—hemoprotein reductase] + O2 = (3R)-3-hydroxy-1,2-didehydro-
2,3-dihydrotabersonine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): T3O; CYP71D1V2
Systematic name: 16-methoxytabersonine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-

hydroxylating)
Comments: This cytochrome P-450 (heme thiolate) enzyme acts on 16-methoxytabersonine, leading to biosynthe-

sis of vindoline in the plant Catharanthus roseus (Madagascar periwinkle). It can also act on taberso-
nine, resulting in the production of small amounts of vindorosine. The products are unstable and, in
the absence of EC 1.1.99.41, 3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase, will convert
into 3-epoxylated compounds.

References: [3085]

[EC 1.14.14.50 created 2017]

EC 1.14.14.51
Accepted name: (S)-limonene 6-monooxygenase

Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-carveol + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): (–)-limonene 6-hydroxylase; (–)-limonene 6-monooxygenase; (–)-limonene,NADPH:oxygen oxidore-
ductase (6-hydroxylating)

Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme participates in the biosynthesis of (–)-

carvone, which is responsible for the aroma of spearmint.
References: [1816]

[EC 1.14.14.51 created 1992 as EC 1.14.13.48, modified 2003, transferred 2017 to EC 1.14.14.51]

EC 1.14.14.52
Accepted name: (S)-limonene 7-monooxygenase

Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-perillyl alcohol + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): (–)-limonene 7-monooxygenase; (–)-limonene hydroxylase; (–)-limonene monooxygenase; (–)-
limonene,NADPH:oxygen oxidoreductase (7-hydroxylating)

Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The enzyme, characterized from the plant Perilla

frutescens, participates in the biosynthesis of perillyl aldehyde, the major constituent of the essential
oil that accumulates in the glandular trichomes of this plant. Some forms of the enzyme also catalyse
the oxidation of (–)-perillyl alcohol to (–)-perillyl aldehyde.

References: [1816, 2469, 1102]

[EC 1.14.14.52 created 1992 as EC 1.14.13.49, modified 2003, transferred 2017 to EC 1.14.14.52]

EC 1.14.14.53
Accepted name: (R)-limonene 6-monooxygenase

Reaction: (R)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (+)-trans-carveol + [oxidized
NADPH—hemoprotein reductase] + H2O
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Other name(s): (+)-limonene-6-hydroxylase; (+)-limonene 6-monooxygenase
Systematic name: (R)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)

Comments: The reaction is stereospecific with over 95% yield of (+)-trans-carveol from (R)-limonene. (S)-
Limonene, the substrate for EC 1.14.14.51, (S)-limonene 6-monooxygenase, is not a substrate. Forms
part of the carvone biosynthesis pathway in Carum carvi (caraway) seeds.

References: [368, 369]

[EC 1.14.14.53 created 2003 as EC 1.14.13.80, transferred 2017 to EC 1.14.14.53]

EC 1.14.14.54
Accepted name: phenylacetate 2-hydroxylase

Reaction: phenylacetate + [reduced NADPH—hemoprotein reductase] + O2 = (2-hydroxyphenyl)acetate + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP504; phaA (gene name)
Systematic name: phenylacetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)

Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in Aspergillus nidulans, is involved in the
degradation of phenylacetate.

References: [2552, 3213]

[EC 1.14.14.54 created 2017]

EC 1.14.14.55
Accepted name: quinine 3-monooxygenase

Reaction: quinine + [reduced NADPH—hemoprotein reductase] + O2 = 3-hydroxyquinine + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP3A4 (gene name)
Systematic name: quinine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein.
References: [3164, 4437, 4463, 4464]

[EC 1.14.14.55 created 2000 as EC 1.14.13.67, transferred 2017 to EC 1.14.14.55]

EC 1.14.14.56
Accepted name: 1,8-cineole 2-exo-monooxygenase

Reaction: 1,8-cineole + [reduced NADPH—hemoprotein reductase] + O2 = 2-exo-hydroxy-1,8-cineole + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP3A4
Systematic name: 1,8-cineole,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-exo-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. The mammalian enzyme, expressed in liver micro-
somes, performs a variety of oxidation reactions of structurally unrelated compounds, including
steroids, fatty acids, and xenobiotics. cf. EC 1.14.14.55, quinine 3-monooxygenase, EC 1.14.14.57,
taurochenodeoxycholate 6-hydroxylase and EC 1.14.14.73, albendazole monooxygenase (sulfoxide-
forming).

References: [2577, 2576, 2578]

[EC 1.14.14.56 created 2012 as EC 1.14.13.157, transferred 2017 to EC 1.14.14.56, modified 2018]

EC 1.14.14.57
Accepted name: taurochenodeoxycholate 6α-hydroxylase

Reaction: (1) taurochenodeoxycholate + [reduced NADPH—hemoprotein reductase] + O2 = taurohyocholate +
[oxidized NADPH—hemoprotein reductase] + H2O
(2) lithocholate + [reduced NADPH—hemoprotein reductase] + O2 = hyodeoxycholate + [oxidized
NADPH—hemoprotein reductase] + H2O

390

http://www.enzyme-database.org/query.php?ec=1.14.14.54
http://www.enzyme-database.org/query.php?ec=1.14.14.55
http://www.enzyme-database.org/query.php?ec=1.14.14.56
http://www.enzyme-database.org/query.php?ec=1.14.14.57


Other name(s): CYP3A4; CYP4A21; taurochenodeoxycholate 6α-monooxygenase
Systematic name: taurochenodeoxycholate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6α-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Requires cytochrome b5 for maximal activity. Acts on

taurochenodeoxycholate, taurodeoxycholate and less readily on lithocholate and chenodeoxycholate.
In adult pig (Sus scrofa), hyocholic acid replaces cholic acid as a primary bile acid [2322].

References: [115, 114, 2053, 2321, 2322, 3263]

[EC 1.14.14.57 created 2005 asEC 1.14.13.97, transferred 2018 to EC 1.14.14.57]

EC 1.14.14.58
Accepted name: trimethyltridecatetraene synthase

Reaction: (6E,10E)-geranyllinalool + [reduced NADPH—hemoprotein reductase] + O2 = (3E,7E)-4,8,12-
trimethyltrideca-1,3,7,11-tetraene + [oxidized NADPH—hemoprotein reductase] + but-3-en-2-one
+ 2 H2O

Other name(s): CYP82G1; CYP92C5; CYP92C6; DMNT/TMTT homoterpene synthase
Systematic name: (6E,10E)-geranyllinalool,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Arabidopsis thaliana (thale
cress) and Zea mays (maize). It forms this C16 homoterpene in response to herbivore attack. In vitro
some variants of the enzyme also convert (3S,6E)-nerolidol to (3E)-4,8-dimethylnona-1,3,7-triene
(see EC 1.14.14.59, dimethylnonatriene synthase).

References: [2174, 3182]

[EC 1.14.14.58 created 2018]

EC 1.14.14.59
Accepted name: dimethylnonatriene synthase

Reaction: (3S,6E)-nerolidol + [reduced NADPH—hemoprotein reductase] + O2 = (3E)-4,8-dimethylnona-1,3,7-
triene + [oxidized NADPH—hemoprotein reductase] + but-3-en-2-one + 2 H2O

Other name(s): CYP82G1; CYP92C5; DMNT/TMTT homoterpene synthase
Systematic name: (3S,6E)-nerolidol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Arabidopsis thaliana (thale
cress) and Zea mays (maize). It forms this C11 homoterpene in response to herbivore attack. In vitro
the enzyme also converts (6E,10E)-geranyllinalool to (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-
tetraene (see EC 1.14.14.58, trimethyltridecatetraene synthase).

References: [2174, 3182]

[EC 1.14.14.59 created 2018]

EC 1.14.14.60
Accepted name: ferruginol monooxygenase

Reaction: ferruginol + [reduced NADPH—hemoprotein reductase] + O2 = 11-hydroxyferruginol + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP76AH24; CYP76AH3
Systematic name: ferruginol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (11-hydroxyferruginol

forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Salvia pomifera (apple sage) and

Salvia miltiorrhiza (danshen). 11-Hydroxyferruginol is a precursor of carnosic acid, a potent antioxi-
dant.

References: [1629, 3355, 1313]

[EC 1.14.14.60 created 2018]
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EC 1.14.14.61
Accepted name: carnosic acid synthase

Reaction: 11-hydroxyferruginol + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = carnosic acid + 3 [ox-
idized NADPH—hemoprotein reductase] + 4 H2O

Other name(s): CYP76AK6; CYP76AK7; CYP76AK8
Systematic name: 11-hydroxyferruginol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plants Salvia pomifera (apple sage), S.
miltiorrhiza (red sage), S. fruticosa (Greek sage) and Rosmarinus officinalis (Rosemary).

References: [1629, 3355]

[EC 1.14.14.61 created 2018]

EC 1.14.14.62
Accepted name: salviol synthase

Reaction: ferruginol + [reduced NADPH—hemoprotein reductase] + O2 = salviol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): CYP71BE52
Systematic name: ferruginol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (salviol forming)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Salvia pomifera (apple sage).
References: [1629]

[EC 1.14.14.62 created 2018]

EC 1.14.14.63
Accepted name: β-amyrin 16β-monooxygenase

Reaction: β-amyrin + [reduced NADPH—hemoprotein reductase] + O2 = maniladiol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): CYP716A141
Systematic name: β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (maniladiol forming)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Platycodon grandiflorus (baloon
flower). The enzyme is also able to oxidize oleanolic acid to cochalic acid.

References: [3799]

[EC 1.14.14.63 created 2018]

EC 1.14.14.64
Accepted name: β-amyrin 6β-monooxygenase

Reaction: β-amyrin + [reduced NADPH—hemoprotein reductase] + O2 = daturadiol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): CYP716E26
Systematic name: β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (daturadiol forming)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Solanum lycopersicum (tomato).
References: [4351]

[EC 1.14.14.64 created 2018]

EC 1.14.14.65
Accepted name: sugiol synthase

Reaction: ferruginol + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = sugiol + 2 [oxidized NADPH—
hemoprotein reductase] + 3 H2O

Other name(s): CYP76AH3
Systematic name: ferruginol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (sugiol forming)
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Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Salvia miltiorrhiza (danshen).
The enzyme also oxidizes 11-hydroxyferruginol to 11-hydroxysugiol. It also oxidizes at C-12 of fer-
ruginol (EC 1.14.14.60 ferruginol monooxygenase).

References: [1313]

[EC 1.14.14.65 created 2018]

EC 1.14.14.66
Accepted name: marmesin synthase

Reaction: demethylsuberosin + [reduced NADPH—hemoprotein reductase] + O2 = (+)-marmesin + [oxidized
NADPH—hemoprotein reductase] + H2O

Systematic name: demethylsuberosin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
Comments: A P-450 monoxygenase involved in psoralen biosynthesis, see EC 1.14.13.102, psoralen synthase.
References: [1356]

[EC 1.14.14.66 created 2018]

EC 1.14.14.67
Accepted name: 11-hydroxysugiol 20-monooxygenase

Reaction: 11-hydroxysugiol + [reduced NADPH—hemoprotein reductase] + O2 = 11,20-dihydroxysugiol + [ox-
idized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP76AK1
Systematic name: 11-hydroxysugiol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (11,20-

dihydroxysugiol forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Salvia miltiorrhiza (danshen).

The enzyme also oxidizes 11-hydroxyferruginol to 11,20-dihydroxyferruginol.
References: [1313]

[EC 1.14.14.67 created 2018]

EC 1.14.14.68
Accepted name: syn-pimaradiene 3-monooxygenase

Reaction: 9β-pimara-7,15-diene + [reduced NADPH—hemoprotein reductase] + O2 = 9β-pimara-7,15-diene-
3β-ol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP701A8
Systematic name: 9β-pimara7,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (9β-pimara-

7,15-diene-3β-ol forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from rice, Oryza sativa.
References: [1947]

[EC 1.14.14.68 created 2018]

EC 1.14.14.69
Accepted name: ent-cassadiene hydroxylase

Reaction: ent-cassa-12,15-diene + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = ent-3β-hydroxycassa-
12,15-dien-2-one + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) ent-cassa-12,15-diene + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-dien-
2β-ol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) ent-cassa-12,15-dien-2β-ol + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-
dien-2-one + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1b′) ent-cassa-12,15-dien-2β-ol + [reduced NADPH—hemoprotein reductase] + O2 = ent-cassa-12,15-
diene-2β,3β-diol + [oxidized NADPH—hemoprotein reductase] + H2O
(1c) ent-cassa-12,15-dien-2-one + [reduced NADPH—hemoprotein reductase] + O2 = ent-3β-
hydroxycassa-12,15-dien-2-one + [oxidized NADPH—hemoprotein reductase] + H2O
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(1c′) ent-cassa-12,15-diene-2β,3β-diol + [reduced NADPH—hemoprotein reductase] + O2 = ent-3β-
hydroxycassa-12,15-dien-2-one + [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP71Z7
Systematic name: ent-cassa-12,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ent-3β-

hydroxycassa-12,15-dien-2-one forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Oryza sativa (rice) that is in-

volved in phytocassanes biosynthesis. Depending on the order of activities, the enzyme may form
either ent-cassa-12,15-dien-2-one or ent-cassa-12,15-diene-2β,3β-diol as an intermediate.

References: [1947]

[EC 1.14.14.69 created 2018]

EC 1.14.14.70
Accepted name: ent-sandaracopimaradiene 3-hydroxylase

Reaction: ent-sandaracopimaradiene + [reduced NADPH—hemoprotein reductase] + O2 = ent-
sandaracopimaradien-3β-ol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP701A; OsKOL4
Systematic name: ent-sandaracopimaradiene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ent-

sandaracopimaradien-3β-ol forming)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from Oryza sativa (rice). Participates in the

pathway for the biosynthesis of oryzalexins, a group of related phytoalexins produced by rice. Can
also use 9β-pimara-7,15-diene as substrate (cf. EC 1.14.14.68, syn-pimaradiene 3-monooxygenase).

References: [4116, 4266]

[EC 1.14.14.70 created 2014 as EC 1.14.13.191, transferred 2018 to EC 1.14.14.70]

EC 1.14.14.71
Accepted name: cucurbitadienol 11-hydroxylase

Reaction: cucurbitadienol + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = 11-oxocucurbitadienol + 2
[oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) cucurbitadienol + [reduced NADPH—hemoprotein reductase] + O2 = 11-hydroxycucurbitadienol
+ [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 11-hydroxycucurbitadienol + [reduced NADPH—hemoprotein reductase] + O2 = 11-
oxocucurbitadienol + [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP87D18
Systematic name: cucurbitadienol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (11-

oxocucurbitadienol forming)
Comments: Isolated from the plant Siraitia grosvenorii (monk fruit).
References: [4439]

[EC 1.14.14.71 created 2018]

EC 1.14.14.72
Accepted name: drimenol monooxygenase

Reaction: drimenol + [reduced NADPH—hemoprotein reductase] + O2 = drimendiol + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): PhDOX1
Systematic name: drimenol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (drimendiol forming)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Persicaria hydropiper (water
pepper).

References: [1478]

[EC 1.14.14.72 created 2018]
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EC 1.14.14.73
Accepted name: albendazole monooxygenase (sulfoxide-forming)

Reaction: (1) albendazole + [reduced NADPH—hemoprotein reductase] + O2 = albendazole S-oxide + [oxi-
dized NADPH—hemoprotein reductase] + H2O
(2) fenbendazole + [reduced NADPH—hemoprotein reductase] + O2 = fenbendazole S-oxide + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): albendazole sulfoxidase (ambiguous); albendazole hydroxylase (ambiguous); CYP3A4 (gene name);
CYP2J2 (gene name); CYP1A2 (gene name)

Systematic name: albendazole,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (sulfoxide-forming)
Comments: This is one of the activities carried out by some microsomal cytochrome P-450 monooxygenases. A

similar conversion is also carried out by a different microsomal enzyme (EC 1.14.13.32, albendazole
monooxygenase (flavin-containing)), but it is estimated that cytochrome P-450s are responsible for
70% of the activity.

References: [2630, 3137, 135, 2164, 4267]

[EC 1.14.14.73 created 2018]

EC 1.14.14.74
Accepted name: albendazole monooxygenase (hydroxylating)

Reaction: albendazole + [reduced NADPH—hemoprotein reductase] + O2 = hydroxyalbendazole + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP2J2 (gene name)
Systematic name: albendazole,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hydroxylating)

Comments: CYP2J2 is a microsomal cytochrome P-450 monooxygenase that catalyses the hydroxylation of
the terminal carbon of the propylsulfanyl chain in albendazole, a broad-spectrum anthelmintic used
against gastrointestinal nematodes and the larval stages of cestodes. cf. EC 1.14.14.73, albendazole
monooxygenase (sulfoxide-forming).

References: [4267]

[EC 1.14.14.74 created 2018]

EC 1.14.14.75
Accepted name: fenbendazole monooxygenase (4′-hydroxylating)

Reaction: fenbendazole + [reduced NADPH—hemoprotein reductase] + O2 = 4′-hydroxyfenbendazole + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP2C19 (gene name)
Systematic name: fenbendazole,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (4′-hydroxylating)

Comments: CYP2C19 is microsomal cytochrome P-450 monooxygenase that catalyses the hydroxylation of the
benzene ring of fenbendazole, a broad-spectrum anthelmintic used against gastrointestinal nematodes
and the larval stages of cestodes. This activity is also carried out by CYP2J2. cf. EC 1.14.14.74, al-
bendazole monooxygenase (hydroxylating). CYP2C19 does not act on albendazole.

References: [4267]

[EC 1.14.14.75 created 2018]

EC 1.14.14.76
Accepted name: ent-isokaurene C2/C3-hydroxylase

Reaction: ent-isokaurene + 2 O2 + 2 [reduced NADPH—hemoprotein reductase] = ent-isokaurene-2β,3β-diol +
[oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) ent-isokaurene + O2 + [reduced NADPH—hemoprotein reductase] = ent-isokauren-2β-ol + [oxi-
dized NADPH—hemoprotein reductase] + H2O
(1b) ent-isokauren-2β-ol + O2 + [reduced NADPH—hemoprotein reductase] = ent-isokaurene-2β,3β-
diol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71Z6; ent-isokaurene C2-hydroxylase
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Systematic name: ent-isokaurene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ent-isokaurene-
2β,3β-diol forming)

Comments: This cytochrome P-450 (heme thiolate) enzyme has been characterized from the plant Oryza sativa
(rice). It may be involved in production of oryzadione.

References: [4265, 1947]

[EC 1.14.14.76 created 2012 as EC 1.14.13.143, transferred 2018 to EC 1.14.14.76]

EC 1.14.14.77
Accepted name: phenylacetonitrile α-monooxygenase

Reaction: phenylacetonitrile + [reduced NADPH—hemoprotein reductase] + O2 = (R)-mandelonitrile + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP3201B1 (gene name)
Systematic name: phenylacetonitrile,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase [(R)-

mandelonitrile-forming]
Comments: The enzyme has been characterized from the cyanogenic millipede Chamberlinius hualienen-

sis. Unlike plant enzymes that can catalyse this reaction (EC 1.14.14.44, phenylacetaldehyde
oxime monooxygenase), this enzyme cannot act on phenylacetaldehyde oximes. It can accept (4-
hydroxyphenyl)acetonitrile, (2-methylphenyl)acetonitrile, and (3-methylphenyl)acetonitrile as sub-
strates at a lower rate.

References: [4309]

[EC 1.14.14.77 created 2018]

EC 1.14.14.78
Accepted name: phylloquinone ω-hydroxylase

Reaction: phylloquinone + [reduced NADPH—hemoprotein reductase] + O2 = ω-hydroxyphylloquinone + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): vitamin K1 ω-hydroxylase; CYP4F2; CYP4F11
Systematic name: phylloquinone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-

hydroxyphylloquinone forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Isolated from human tissue. The enzyme will also

act on menaquinone-4. Prolonged action of CYP4F2, but not CYP4F11, on the ω hydroxyl group
oxidizes it to the corresponding carboxylic acid. CYP4F2 also oxidizes leukotriene B4; see EC
1.14.13.30, leukotriene-B4 20-monooxygenase [1744].

References: [1744, 3811, 922]

[EC 1.14.14.78 created 2014 as EC 1.14.13.194, transferred 2018 to EC 1.14.14.78]

EC 1.14.14.79
Accepted name: docosahexaenoic acid ω-hydroxylase

Reaction: docosahexaenoate + [reduced NADPH—hemoprotein reductase] + O2 = 22-
hydroxydocosahexaenoate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP4F3B; CYP4V2; docosahexaenoate,NADPH:O2 oxidoreductase (22-hydroxydocosahexaenoate
forming)

Systematic name: docosahexaenoate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (22-
hydroxydocosahexaenoate forming)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from human eye tissue. Defects in the enzyme
are associated with Bietti crystalline corneoretinal dystrophy. The enzyme also produces some 21-
hydroxydocosahexaenoate. Acts in a similar way on icosapentaenoic acid.

References: [2714]

[EC 1.14.14.79 created 2014 as EC 1.14.13.199, transferred 2018 to EC 1.14.14.79]
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EC 1.14.14.80
Accepted name: long-chain fatty acid ω-monooxygenase

Reaction: a long-chain fatty acid + [reduced NADPH—hemoprotein reductase] + O2 = an ω-hydroxy-long-
chain fatty acid + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP704B1 (gene name); CYP52M1 (gene name); CYP4A (gene name); CYP86A (gene name)
Systematic name: long-chain fatty acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-

hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) enzyme. The plant enzyme CYP704B1, which is involved in

the synthesis of sporopollenin, a complex polymer found at the outer layer of spores and pollen, acts
on palmitate (18:0), stearate (18:0) and oleate (18:1). The plant enzyme CYP86A1 also acts on lau-
rate (12:0). The enzyme from the yeast Starmerella bombicola (CYP52M1) acts on C16 to C20 sat-
urated and unsaturated fatty acids and can also hydroxylate the (ω-1) position. The mammalian en-
zyme CYP4A acts on laurate (12:0), myristate (14:0), palmitate (16:0), oleate (18:1), and arachido-
nate (20:4).

References: [261, 1525, 846, 1593]

[EC 1.14.14.80 created 2015 as EC 1.14.13.205, transferred 2018 to EC 1.14.14.80]

EC 1.14.14.81
Accepted name: flavanoid 3′,5′-hydroxylase

Reaction: a flavanone + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = a 3′,5′-dihydroxyflavanone + 2
[oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) a flavanone + [reduced NADPH—hemoprotein reductase] + O2 = a 3′-hydroxyflavanone + [oxi-
dized NADPH—hemoprotein reductase] + H2O
(1b) a 3′-hydroxyflavanone + [reduced NADPH—hemoprotein reductase] + O2 = a 3′,5′-
dihydroxyflavanone + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): flavonoid 3′,5′-hydroxylase
Systematic name: flavanone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′,5′-dihydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The 3′,5′-dihydroxyflavanone is formed
via the 3′-hydroxyflavanone. In Petunia hybrida the enzyme acts on naringenin, eriodictyol, dihydro-
quercetin (taxifolin) and dihydrokaempferol (aromadendrin). The enzyme catalyses the hydroxylation
of 5,7,4′-trihydroxyflavanone (naringenin) at either the 3′ position to form eriodictyol or at both the 3′

and 5′ positions to form 5,7,3′,4′,5′-pentahydroxyflavanone (dihydrotricetin). The enzyme also catal-
yses the hydroxylation of 3,5,7,3′,4′-pentahydroxyflavanone (taxifolin) at the 5′ position, forming
ampelopsin.

References: [2506, 3495, 769]

[EC 1.14.14.81 created 2004 as EC 1.14.13.88, transferred 2018 to EC 1.14.14.81]

EC 1.14.14.82
Accepted name: flavonoid 3′-monooxygenase

Reaction: a flavonoid + [reduced NADPH—hemoprotein reductase] + O2 = a 3′-hydroxyflavonoid + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP75B1 (gene name); flavonoid 3′-hydroxylase; flavonoid 3-hydroxylase (incorrect);
NADPH:flavonoid-3′-hydroxylase (incorrect); flavonoid 3-monooxygenase (incorrect)

Systematic name: flavonoid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. Acts on a number of flavonoids, includ-

ing the flavanone naringenin and the flavone apigenin. Does not act on 4-coumarate or 4-coumaroyl-
CoA.

References: [1033, 425, 3388]

[EC 1.14.14.82 created 1983 as EC 1.14.13.21, transferred 2018 to EC 1.14.14.82]

EC 1.14.14.83
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Accepted name: geraniol 8-hydroxylase
Reaction: geraniol + [reduced NADPH—hemoprotein reductase] + O2 = (6E)-8-hydroxygeraniol + [oxidized

NADPH—hemoprotein reductase] + H2O
Other name(s): CYP76B6 (gene name); G10H (gene name)

Systematic name: geraniol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8-hydroxylating)
Comments: A cytochrome P-450 (heme thiolate) protein found in plants. Also hydroxylates nerol and citronel-

lol, cf. EC 1.14.14.84, linalool 8-monooxygenase. The recommended numbering of geraniol gives 8-
hydroxygeraniol as the product rather than 10-hydroxygeraniol as used by references 1-3. See prenol
nomenclature Pr-1. The cloned enzyme also catalysed, but less efficiently, the 3′-hydroxylation of
naringenin (cf. EC 1.14.14.82, flavonoid 3′-monooxygenase) [3743].

References: [644, 4107, 3743]

[EC 1.14.14.83 created 2012 as EC 1.14.13.152, transferred 2018 to EC 1.14.14.83]

EC 1.14.14.84
Accepted name: linalool 8-monooxygenase

Reaction: linalool + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = (6E)-8-oxolinalool + 2 [oxidized
NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) linalool + [reduced NADPH—hemoprotein reductase] + O2 = (6E)-8-hydroxylinalool + [oxidized
NADPH—hemoprotein reductase] + H2O
(1b) (6E)-8-hydroxylinalool + [reduced NADPH—hemoprotein reductase] + O2 = (6E)-8-oxolinalool
+ [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): P-450lin; CYP111
Systematic name: linalool,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The secondary electron donor is a spe-
cific [2Fe-2S] ferredoxin from the same bacterial strain.

References: [3968, 3230]

[EC 1.14.14.84 created 1989 as EC 1.14.99.28, transferred 2012 to EC 1.14.13.151, transferred 2018 to EC 1.14.14.84]

EC 1.14.14.85
Accepted name: 7-deoxyloganate 7-hydroxylase

Reaction: 7-deoxyloganate + [reduced NADPH—hemoprotein reductase] + O2 = loganate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP72A224 (gene name); 7-deoxyloganin 7-hydroxylase (incorrect); 7-deoxyloganin,[reduced
NADPH—hemoprotein reductase]:oxygen oxidoreductase (7α-hydroxylating) (incorrect)

Systematic name: 7-deoxyloganate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7α-
hydroxylating)

Comments: The enzyme, characterized from the plant Catharanthus roseus, is a cytochrome P-450 (heme-
thiolate) enzyme. It catalyses a reaction in the pathway leading to biosynthesis of monoterpenoid in-
dole alkaloids.

References: [1829, 2531]

[EC 1.14.14.85 created 2002 as EC 1.14.13.74, transferred 2018 to EC 1.14.14.85, modified 2018]

EC 1.14.14.86
Accepted name: ent-kaurene monooxygenase

Reaction: ent-kaur-16-ene + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = ent-kaur-16-en-19-oate + 3
[oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) ent-kaur-16-ene + [reduced NADPH—hemoprotein reductase] + O2 = ent-kaur-16-en-19-ol + [ox-
idized NADPH—hemoprotein reductase] + H2O
(1b) ent-kaur-16-en-19-ol + [reduced NADPH—hemoprotein reductase] + O2 = ent-kaur-16-en-19-al
+ [oxidized NADPH—hemoprotein reductase] + 2 H2O

398

http://www.enzyme-database.org/query.php?ec=1.14.14.84
http://www.enzyme-database.org/query.php?ec=1.14.14.85
http://www.enzyme-database.org/query.php?ec=1.14.14.86


(1c) ent-kaur-16-en-19-al + [reduced NADPH—hemoprotein reductase] + O2 = ent-kaur-16-en-19-oate
+ [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): ent-kaurene oxidase (misleading)
Systematic name: ent-kaur-16-ene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hydroxylating)

Comments: A cytochrome P-450 (heme thiolate) protein found in plants. Catalyses three successive oxidations of
the 4-methyl group of ent-kaurene giving kaurenoic acid.

References: [131, 116, 1471]

[EC 1.14.14.86 created 2002 as EC 1.14.13.78, transferred 2018 to EC 1.14.14.86]

EC 1.14.14.87
Accepted name: 2-hydroxyisoflavanone synthase

Reaction: (1) liquiritigenin + O2 + [reduced NADPH—hemoprotein reductase] = 2,4′,7-trihydroxyisoflavanone
+ H2O + [oxidized NADPH—hemoprotein reductase]
(2) (2S)-naringenin + O2 + [reduced NADPH—hemoprotein reductase] = 2,4′,5,7-
tetrahydroxyisoflavanone + H2O + [oxidized NADPH—hemoprotein reductase]

Other name(s): CYP93C; IFS; isoflavonoid synthase
Systematic name: liquiritigenin, [reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hydroxylating,

aryl migration)
Comments: A cytochrome P-450 (heme thiolate) protein found in plants. The reaction involves the migration of

the 2-phenyl group of the flavanone to the 3-position of the isoflavanone. The 2-hydroxyl group is
derived from the oxygen molecule. EC 4.2.1.105, 2-hydroxyisoflavanone dehydratase, acts on the
products with loss of water and formation of genistein and daidzein, respectively.

References: [1987, 1409, 3626, 3334, 3333]

[EC 1.14.14.87 created 2011 as EC 1.14.13.136, modified 2013, transferred 2018 to EC 1.14.14.87]

EC 1.14.14.88
Accepted name: isoflavone 3′-hydroxylase

Reaction: formononetin + [reduced NADPH—hemoprotein reductase] + O2 = calycosin + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): isoflavone 3′-monooxygenase; CYP81E9
Systematic name: formononetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. Also acts on biochanin A and other isoflavones with
a 4′-methoxy group. Involved in the biosynthesis of the pterocarpin phytoalexins medicarpin and
maackiain.

References: [1509]

[EC 1.14.14.88 created 1992 as EC 1.14.13.52, transferred 2018 to EC 1.14.14.88]

EC 1.14.14.89
Accepted name: 4′-methoxyisoflavone 2′-hydroxylase

Reaction: formononetin + [reduced NADPH—hemoprotein reductase] + O2 = 2′-hydroxyformononetin + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP81E1 (gene name); CYP81E3 (gene name); CYP81E7 (gene name); isoflavone 2′-
monooxygenase (ambiguous); isoflavone 2′-hydroxylase (ambiguous)

Systematic name: formononetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2′-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Acts on isoflavones with a 4′-methoxy group, such as

formononetin and biochanin A. Involved in the biosynthesis of the pterocarpin phytoalexins medi-
carpin and maackiain. EC 1.14.14.90, isoflavone 2′-hydroxylase, is less specific and acts on other
isoflavones as well as 4′-methoxyisoflavones.

References: [1509, 45, 2276]

[EC 1.14.14.89 created 1992 as EC 1.14.13.53, modified 2005, transferred 2018 to EC 1.14.14.89]
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EC 1.14.14.90
Accepted name: isoflavone 2′-hydroxylase

Reaction: an isoflavone + [reduced NADPH—hemoprotein reductase] + O2 = a 2′-hydroxyisoflavone + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): isoflavone 2′-monooxygenase; CYP81E1; CYP Ge-3
Systematic name: isoflavone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2′-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. Acts on daidzein, formononetin and genistein. EC
1.14.14.89, 4′-methoxyisoflavone 2′-hydroxylase, has the same reaction but is more specific as it re-
quires a 4′-methoxyisoflavone.

References: [45]

[EC 1.14.14.90 created 2005 as EC 1.14.13.89, transferred 2018 to EC 1.14.14.90]

EC 1.14.14.91
Accepted name: trans-cinnamate 4-monooxygenase

Reaction: trans-cinnamate + [reduced NADPH—hemoprotein reductase] + O2 = 4-hydroxycinnamate + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): cinnamic acid 4-hydroxylase; CA4H; cytochrome P450 cinnamate 4-hydroxylase; cinnamate 4-
hydroxylase; cinnamate 4-monooxygenase; cinnamate hydroxylase; cinnamic 4-hydroxylase; cin-
namic acid 4-monooxygenase; cinnamic acid p-hydroxylase; t-cinnamic acid hydroxylase; trans-
cinnamate 4-hydroxylase; trans-cinnamic acid 4-hydroxylase; CYP73A1 (gene name)

Systematic name: trans-cinnamate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (4-
hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The enzyme is involved in flavonoid
biosynthesis.

References: [3044, 3264, 3006]

[EC 1.14.14.91 created 1976 as EC 1.14.13.11, transferred 2018 to EC 1.14.14.91]

EC 1.14.14.92
Accepted name: benzoate 4-monooxygenase

Reaction: benzoate + [reduced NADPH—hemoprotein reductase] + O2 = 4-hydroxybenzoate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): benzoic acid 4-hydroxylase; benzoate 4-hydroxylase; benzoic 4-hydroxylase; benzoate-p-
hydroxylase; p-hydroxybenzoate hydroxylase; CYP53A1 (gene name)

Systematic name: benzoate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (4-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein found in Aspergillus fungi.
References: [3147, 977]

[EC 1.14.14.92 created 1976 as EC 1.14.13.12, transferred 2018 to EC 1.14.14.92]

EC 1.14.14.93
Accepted name: 3,9-dihydroxypterocarpan 6a-monooxygenase

Reaction: (6aR,11aR)-3,9-dihydroxypterocarpan + [reduced NADPH—hemoprotein reductase] + O2 =
(6aS,11aS)-3,6a,9-trihydroxypterocarpan + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 3,9-dihydroxypterocarpan 6a-hydroxylase; 3,9-dihydroxypterocarpan 6α-monooxygenase (erro-
neous); CYP93A1 (gene name)

Systematic name: (6aR,11aR)-3,9-dihydroxypterocarpan,[reduced NADPH—hemoprotein reductase]:oxygen oxidore-
ductase (6a-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in soybean. The product of the reaction is the
biosynthetic precursor of the glyceollin phytoalexins.

References: [1341, 3391]

[EC 1.14.14.93 created 1989 as EC 1.14.13.28, transferred 2018 to EC 1.14.14.93]
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EC 1.14.14.94
Accepted name: leukotriene-B4 20-monooxygenase

Reaction: (6Z,8E,10E,14Z)-(5S,12R)-5,12-dihydroxyicosa-6,8,10,14-tetraenoate + [reduced NADPH—
hemoprotein reductase] + O2 = (6Z,8E,10E,14Z)-(5S,12R)-5,12,20-trihydroxyicosa-6,8,10,14-
tetraenoate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): leukotriene-B4 20-hydroxylase; leucotriene-B4 ω-hydroxylase; LTB4 20-hydroxylase; LTB4 ω-
hydroxylase; CYP4F2 (gene name); CYP4F3 (gene name)

Systematic name: (6Z,8E,10E,14Z)-(5S,12R)-5,12-dihydroxyicosa-6,8,10,14-tetraenoate,[reduced NADPH—
hemoprotein reductase]:oxygen oxidoreductase (20-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in mammals.
References: [3225, 3457, 3569]

[EC 1.14.14.94 created 1989 as EC 1.14.13.30, transferred 2018 to EC 1.14.14.94]

EC 1.14.14.95
Accepted name: germacrene A hydroxylase

Reaction: (+)-germacrene A + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = germacra-1(10),4,11(13)-
trien-12-oate + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) (+)-germacrene A + O2 + [reduced NADPH—hemoprotein reductase] = germacra-1(10),4,11(13)-
trien-12-ol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) germacra-1(10),4,11(13)-trien-12-ol + O2 + [reduced NADPH—hemoprotein reductase] =
germacra-1(10),4,11(13)-trien-12-al + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) germacra-1(10),4,11(13)-trien-12-al + O2 + [reduced NADPH—hemoprotein reductase] =
germacra-1(10),4,11(13)-trien-12-oate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): GAO (gene name)
Systematic name: (+)-germacrene-A,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. This plant enzyme catalyses three steps in a pathway

that leads to the biosynthesis of many sesquiterpenoid lactones.
References: [2776, 2283]

[EC 1.14.14.95 created 2011 as EC 1.14.13.123, transferred 2018 to EC 1.14.14.95]

EC 1.14.14.96
Accepted name: 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase

Reaction: trans-5-O-(4-coumaroyl)-D-quinate + [reduced NADPH—hemoprotein reductase] + O2 = trans-5-O-
caffeoyl-D-quinate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 5-O-(4-coumaroyl)-D-quinate/shikimate 3′-hydroxylase; coumaroylquinate(coumaroylshikimate) 3′-
monooxygenase; CYP98A3 (gene name)

Systematic name: trans-5-O-(4-coumaroyl)-D-quinate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreduc-
tase (3′-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein, found in plants. It also acts on trans-5-O-(4-
coumaroyl)shikimate.

References: [2072, 3387, 1054, 2453]

[EC 1.14.14.96 created 1990 as EC 1.14.13.36, transferred 2018 to EC 1.14.14.96]

EC 1.14.14.97
Accepted name: methyltetrahydroprotoberberine 14-monooxygenase

Reaction: (S)-N-methylcanadine + [reduced NADPH—hemoprotein reductase] + O2 = allocryptopine + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): methyltetrahydroprotoberberine 14-hydroxylase; (S)-cis-N-methyltetrahydroberberine 14-
monooxygenase; (S)-cis-N-methyltetrahydroprotoberberine-14-hydroxylase; CYP82N4 (gene name)
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Systematic name: (S)-N-methylcanadine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (14-
hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants.
References: [3254, 233]

[EC 1.14.14.97 created 1990 as EC 1.14.13.37, transferred 2018 to EC 1.14.14.97]

EC 1.14.14.98
Accepted name: protopine 6-monooxygenase

Reaction: protopine + [reduced NADPH—hemoprotein reductase] + O2 = 6-hydroxyprotopine + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): protopine 6-hydroxylase; CYP82N2 (gene name)
Systematic name: protopine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein involved in benzophenanthridine alkaloid synthesis in
higher plants.

References: [3801, 3791]

[EC 1.14.14.98 created 1999 as EC 1.14.13.55, transferred 2018 to EC 1.14.14.98]

EC 1.14.14.99
Accepted name: (S)-limonene 3-monooxygenase

Reaction: (S)-limonene + [reduced NADPH—hemoprotein reductase] + O2 = (–)-trans-isopiperitenol + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): (–)-limonene 3-hydroxylase; (–)-limonene 3-monooxygenase; CYP71D15 (gene name)
Systematic name: (S)-limonene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein from peppermint (Mentha piperita).
References: [1816, 2324, 4269]

[EC 1.14.14.99 created 1992 as EC 1.14.13.47, modified 2003, transferred 2018 1.14.14.99]

EC 1.14.14.100
Accepted name: dihydrosanguinarine 10-monooxygenase

Reaction: dihydrosanguinarine + [reduced NADPH—hemoprotein reductase] + O2 = 10-
hydroxydihydrosanguinarine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): dihydrosanguinarine 10-hydroxylase
Systematic name: dihydrosanguinarine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (10-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein involved in benzophenanthridine alkaloid synthesis in

higher plants.
References: [759]

[EC 1.14.14.100 created 1999 as EC 1.14.13.56, transferred 2018 to EC 1.14.14.100]

EC 1.14.14.101
Accepted name: dihydrochelirubine 12-monooxygenase

Reaction: dihydrochelirubine + [reduced NADPH—hemoprotein reductase] + O2 = 12-
hydroxydihydrochelirubine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): dihydrochelirubine 12-hydroxylase
Systematic name: dihydrochelirubine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Thalictrum bulgaricum.
References: [1806]
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[EC 1.14.14.101 created 1999 as EC 1.14.13.57, transferred 2018 to EC 1.14.14.101]

EC 1.14.14.102
Accepted name: N-methylcoclaurine 3′-monooxygenase

Reaction: (S)-N-methylcoclaurine + [reduced NADPH—hemoprotein reductase] + O2 = (S)-3′-hydroxy-N-
methylcoclaurine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): N-methylcoclaurine 3′-hydroxylase; CYP80B1 (gene name)
Systematic name: (S)-N-methylcoclaurine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3′-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein involved in benzylisoquinoline alkaloid synthesis in

higher plants.
References: [2965]

[EC 1.14.14.102 created 2001 as 1.14.13.71, transferred 2018 to EC 1.14.14.102]

EC 1.14.14.103
Accepted name: tabersonine 16-hydroxylase

Reaction: tabersonine + [reduced NADPH—hemoprotein reductase] + O2 = 16-hydroxytabersonine + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): tabersonine-11-hydroxylase; T11H; CYP71D12 (gene name)
Systematic name: tabersonine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (16-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Madagascar periwinkle (Catharanthus
roseus).

References: [3611, 287]

[EC 1.14.14.103 created 2002 as EC 1.14.13.73, transferred 2018 to EC 1.14.14.103]

EC 1.14.14.104
Accepted name: vinorine hydroxylase

Reaction: vinorine + [reduced NADPH—hemoprotein reductase] + O2 = vomilenine + [oxidized NADPH—
hemoprotein reductase] + H2O

Systematic name: vinorine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (21α-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Rauvolfia serpentina. Forms a stage in the

biosynthesis of the indole alkaloid ajmaline.
References: [980]

[EC 1.14.14.104 created 2002 as EC 1.14.13.75, transferred 2018 to EC 1.14.14.104]

EC 1.14.14.105
Accepted name: taxane 10β-hydroxylase

Reaction: taxa-4(20),11-dien-5α-yl acetate + [reduced NADPH—hemoprotein reductase] + O2 = 10β-
hydroxytaxa-4(20),11-dien-5α-yl acetate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP725A1 (gene name); 5-α-taxadienol-10-β-hydroxylase
Systematic name: taxa-4(20),11-dien-5α-yl acetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(10β-hydroxylating)
Comments: This microsomal cytochrome-P-450 (heme-thiolate) enzyme from the plant Taxus cuspidata is in-

volved in the biosynthesis of the diterpenoid antineoplastic drug taxol (paclitaxel).
References: [4185, 1732, 3389]

[EC 1.14.14.105 created 2002 as EC 1.14.13.76, transferred 2018 to EC 1.14.14.105]

EC 1.14.14.106

403

http://www.enzyme-database.org/query.php?ec=1.14.14.102
http://www.enzyme-database.org/query.php?ec=1.14.14.103
http://www.enzyme-database.org/query.php?ec=1.14.14.104
http://www.enzyme-database.org/query.php?ec=1.14.14.105
http://www.enzyme-database.org/query.php?ec=1.14.14.106


Accepted name: taxane 13α-hydroxylase
Reaction: taxa-4(20),11-dien-5α-ol + [reduced NADPH—hemoprotein reductase] + O2 = taxa-4(20),11-dien-

5α,13α-diol + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP725A2 (gene name)

Systematic name: taxa-4(20),11-dien-5α-ol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (13α-
hydroxylating)

Comments: This cytochrome-P-450(heme-thiolate) enzyme from the plant Taxus cuspidata is involved in the
biosynthesis of the diterpenoid antineoplastic drug taxol (paclitaxel).

References: [4185, 1732]

[EC 1.14.14.106 created 2002 as EC 1.14.13.77, transferred 2018 to EC 1.14.14.106]

EC 1.14.14.107
Accepted name: ent-kaurenoic acid monooxygenase

Reaction: ent-kaur-16-en-19-oate + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = gibberellin A12 + 3
[oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) ent-kaur-16-en-19-oate + [reduced NADPH—hemoprotein reductase] + O2 = ent-7α-hydroxykaur-
16-en-19-oate + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) ent-7α-hydroxykaur-16-en-19-oate + [reduced NADPH—hemoprotein reductase] + O2 = gib-
berellin A12 aldehyde + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) gibberellin A12 aldehyde + [reduced NADPH—hemoprotein reductase] + O2 = gibberellin A12 +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): KAO1 (gene name); CYP88A3 (gene name); ent-kaurenoic acid oxidase
Systematic name: ent-kaur-16-en-19-oate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hydroxy-

lating)
Comments: A cytochrome P-450 (heme-thiolate) protein from plants. Catalyses three sucessive oxidations of ent-

kaurenoic acid. The second step includes a ring-B contraction giving the gibbane skeleton. In pump-
kin (Cucurbita maxima) ent-6α,7α-dihydroxykaur-16-en-19-oate is also formed.

References: [1470]

[EC 1.14.14.107 created 2002 as EC 1.14.13.79, transferred 2018 to EC 1.14.14.107]

EC 1.14.14.108
Accepted name: 2,5-diketocamphane 1,2-monooxygenase

Reaction: (+)-bornane-2,5-dione + FMNH2 + O2 = (+)-5-oxo-1,2-campholide + FMN + H2O
Other name(s): 2,5-diketocamphane lactonizing enzyme; ketolactonase I (ambiguous); 2,5-diketocamphane

1,2-monooxygenase oxygenating component; 2,5-DKCMO; camP (gene name); camphor 1,2-
monooxygenase; camphor ketolactonase I

Systematic name: (+)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida

and encoded on the cam plasmid. Involved in the degradation of (+)-camphor. Requires a dedicated
NADH-FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [650, 4398, 3833]. Can accept
several bicyclic ketones including (+)- and (–)-camphor [1793] and adamantanone [3438]. The prod-
uct spontaneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.

References: [650, 4398, 3833, 3438, 1772, 1793, 1693]

[EC 1.14.14.108 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, transferred 2018 to EC 1.14.14.108]

EC 1.14.14.109
Accepted name: 3-hydroxyindolin-2-one monooxygenase

Reaction: 3-hydroxyindolin-2-one + [reduced NADPH—hemoprotein reductase] + O2 = 2-hydroxy-2H-1,4-
benzoxazin-3(4H)-one [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): BX4 (gene name); CYP71C1 (gene name)
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Systematic name: 3-hydroxyindolin-2-one,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-
hydroxy-2H-1,4-benzoxazin-3(4H)-one-forming)

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme is involved in the biosynthesis of protec-
tive and allelophatic benzoxazinoids in some plants, most commonly from the family of Poaceae
(grasses).

References: [1220, 1063, 3605]

[EC 1.14.14.109 created 2012 as EC 1.14.13.139, transferred 2018 to EC 1.14.14.109]

EC 1.14.14.110
Accepted name: 2-hydroxy-1,4-benzoxazin-3-one monooxygenase

Reaction: 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one + [reduced NADPH—hemoprotein reductase] + O2 = 2,4-
dihydroxy-2H-1,4-benzoxazin-3(4H)-one + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): BX5 (gene name); CYP71C3 (gene name)
Systematic name: 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one,[reduced NADPH—hemoprotein reductase]:oxygen oxi-

doreductase (N-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme is involved in the biosynthesis of protec-

tive and allelophatic benzoxazinoids in some plants, most commonly from the family of Poaceae
(grasses).

References: [164, 1220]

[EC 1.14.14.110 created 2012 as EC 1.14.13.140, transferred 2018 to EC 1.14.14.110]

EC 1.14.14.111
Accepted name: 9β-pimara-7,15-diene oxidase

Reaction: 9β-pimara-7,15-diene + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-
19-oate + 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) 9β-pimara-7,15-diene + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-dien-
19-ol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 9β-pimara-7,15-dien-19-ol + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-
dien-19-al + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) 9β-pimara-7,15-dien-19-al + O2 + [reduced NADPH—hemoprotein reductase] = 9β-pimara-7,15-
dien-19-oate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP99A3; 9β-pimara-7,15-diene monooxygenase
Systematic name: 9β-pimara-7,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen 19-oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from rice (Oryza sativa) is involved in the
biosynthesis of the phytoalexin momilactone. It also acts similarly on 9β-stemod-13(17)-ene.

References: [4115]

[EC 1.14.14.111 created 2012 as EC 1.14.13.144, transferred 2018 to EC 1.14.14.111]

EC 1.14.14.112
Accepted name: ent-cassa-12,15-diene 11-hydroxylase

Reaction: ent-cassa-12,15-diene + O2 + [reduced NADPH—hemoprotein reductase] = ent-11β-hydroxycassa-
12,15-diene + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): ent-cassadiene C11α-hydroxylase; CYP76M7
Systematic name: ent-cassa-12,15-diene,[reduced NADPH—hemoprotein reductase]:oxygen 11-oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from rice (Oryza sativa) is involved in the
biosynthesis of the antifungal phytocassanes.

References: [3760]

[EC 1.14.14.112 created 2012 as EC 1.14.13.145, transferred 2018 to EC 1.14.14.112]
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EC 1.14.14.113
Accepted name: α-humulene 10-hydroxylase

Reaction: α-humulene + O2 + [reduced NADPH—hemoprotein reductase] = 10-hydroxy-α-humulene + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71BA1
Systematic name: α-humulene,[reduced NADPH—hemoprotein reductase]:oxygen 10-oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The recommended numbering of humulene gives 10-
hydroxy-α-humulene as the product rather than 8-hydroxy-α-humulene as used by the reference. See
Section F: Natural Product Nomenclature.

References: [4400]

[EC 1.14.14.113 created 2012 as EC 1.14.13.150, transferred 2018 to EC 1.14.14.113]

EC 1.14.14.114
Accepted name: amorpha-4,11-diene 12-monooxygenase

Reaction: amorpha-4,11-diene + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = artemisinate + 3 [oxi-
dized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) amorpha-4,11-diene + O2 + [reduced NADPH—hemoprotein reductase] = artemisinic alcohol +
[oxidized NADPH—hemoprotein reductase] + H2O
(1b) artemisinic alcohol + O2 + [reduced NADPH—hemoprotein reductase] = artemisinic aldehyde +
[oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) artemisinic aldehyde + O2 + [reduced NADPH—hemoprotein reductase] = artemisinate + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71AV1
Systematic name: amorpha-4,11-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Cloned from the plant Artemisia annua (sweet worm-

wood). Part of the biosynthetic pathway of artemisinin.
References: [3847]

[EC 1.14.14.114 created 2012 as EC 1.14.13.158, transferred 2018 to EC 1.14.14.114]

EC 1.14.14.115
Accepted name: 11-oxo-β-amyrin 30-oxidase

Reaction: 11-oxo-β-amyrin + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = glycyrrhetinate + 3 [oxi-
dized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) 11-oxo-β-amyrin + O2 + [reduced NADPH—hemoprotein reductase] = 30-hydroxy-11-oxo-β-
amyrin + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 30-hydroxy-11-oxo-β-amyrin + O2 + [reduced NADPH—hemoprotein reductase] = gly-
cyrrhetaldehyde + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) glycyrrhetaldehyde + O2 + [reduced NADPH—hemoprotein reductase] = glycyrrhetinate + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP72A; CYP72A154; 11-oxo-β-amyrin 30-monooxygenase
Systematic name: 11-oxo-β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (30-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from the plant Glycyrrhiza uralensis

(licorice) is involved in the biosynthesis of the triterpenoid saponin glycyrrhizin. The enzyme from
the plant Medicago truncatula can also hydroxylate β-amyrin.

References: [3434]

[EC 1.14.14.115 created 2013 as EC 1.14.13.173, transferred 2018 to EC 1.14.14.115]

EC 1.14.14.116
Accepted name: averantin hydroxylase
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Reaction: (1) (1′S)-averantin + [reduced NADPH—hemoprotein reductase] + O2 = (1′S,5′S)-5′-
hydroxyaverantin + [oxidized NADPH—hemoprotein reductase] + H2O
(2) (1′S)-averantin + [reduced NADPH—hemoprotein reductase] + O2 = (1′S,5′R)-5′-hydroxyaverantin
+ [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): AVN hydroxylase; avnA (gene name); CYP60A1
Systematic name: (1′S)-averantin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (5′-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the saprophytic mold Aspergillus parasiti-
cus. Involved in aflatoxin biosynthesis. Does not react with (1′R)-averantin.

References: [4295, 4402]

[EC 1.14.14.116 created 2013 as EC 1.14.13.174, transferred 2018 to EC 1.14.14.116]

EC 1.14.14.117
Accepted name: aflatoxin B synthase

Reaction: (1) 8-O-methylsterigmatocystin + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = aflatoxin
B1 + 2 [oxidized NADPH—hemoprotein reductase] + H2O + methanol + CO2
(2) 8-O-methyldihydrosterigmatocystin + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = afla-
toxin B2 + 2 [oxidized NADPH—hemoprotein reductase] + H2O + methanol + CO2

Other name(s): ordA (gene name)
Systematic name: 8-O-methylsterigmatocystin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(aflatoxin-B forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Isolated from the mold Aspergillus parasiticus.
References: [292, 4403, 3959]

[EC 1.14.14.117 created 2013 as EC 1.14.13.175, transferred 2018 to EC 1.14.14.117]

EC 1.14.14.118
Accepted name: tryprostatin B 6-hydroxylase

Reaction: tryprostatin B + [reduced NADPH—hemoprotein reductase] + O2 = 6-hydroxytryprostatin B + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): ftmC (gene name)
Systematic name: tryprostatin B,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6-

hydroxytryprostatin B-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Involved in the biosynthetic pathways of several indole

alkaloids such as tryprostatins, fumitremorgins and verruculogen.
References: [1838]

[EC 1.14.14.118 created 2013 as EC 1.14.13.176, transferred 2018 to EC 1.14.14.118]

EC 1.14.14.119
Accepted name: fumitremorgin C monooxygenase

Reaction: fumitremorgin C + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = 12α,13α-
dihydroxyfumitremorgin C + 2 [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): ftmG (gene name)
Systematic name: fumitremorgin C,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12α,13α-

dihydroxyfumitremorgin C-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Involved in the biosynthetic pathway of the indole alka-

loid verruculogen.
References: [1838]

[EC 1.14.14.119 created 2013 as EC 1.14.13.177, transferred 2018 to EC 1.14.14.119]

EC 1.14.14.120
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Accepted name: dammarenediol 12-hydroxylase
Reaction: dammarenediol-II + [reduced NADPH—hemoprotein reductase] + O2 = protopanaxadiol + [oxidized

NADPH—hemoprotein reductase] + H2O
Other name(s): protopanaxadiol synthase; CYP716A47

Systematic name: dammarenediol-II,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12β-
hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from ginseng (Panax ginseng). Involved in the
biosynthetic pathway of ginsenosides.

References: [1362]

[EC 1.14.14.120 created 2013 as EC 1.14.13.183, transferred 2018 to EC 1.14.14.120]

EC 1.14.14.121
Accepted name: protopanaxadiol 6-hydroxylase

Reaction: protopanaxadiol + [reduced NADPH—hemoprotein reductase] + O2 = protopanaxatriol + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): protopanaxatriol synthase; P6H; CYP716A53v2
Systematic name: protopanaxadiol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6α-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the rhizomes of ginseng (Panax ginseng).

Involved in the biosynthetic pathway of ginsenosides.
References: [4411, 1361]

[EC 1.14.14.121 created 2013 as EC 1.14.13.184, transferred 2018 to EC 1.14.14.121]

EC 1.14.14.122
Accepted name: oryzalexin E synthase

Reaction: ent-sandaracopimaradien-3β-ol + [reduced NADPH—hemoprotein reductase] + O2 = oryzalexin E +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP76M6
Systematic name: ent-sandaracopimaradien-3β-ol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(oryzalexin E forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Isolated from Oryza sativa (rice). Oryzalexin E is a

phytoalexin.
References: [4266]

[EC 1.14.14.122 created 2014 as EC 1.14.13.192, transferred 2018 to EC 1.14.14.122]

EC 1.14.14.123
Accepted name: oryzalexin D synthase

Reaction: ent-sandaracopimaradien-3β-ol + [reduced NADPH—hemoprotein reductase] + O2 = oryzalexin D +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP76M8
Systematic name: ent-sandaracopimaradien-3β-ol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(oryzalexin D forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. Isolated from Oryza sativa (rice). Oryzalexin D is a

phytoalexin.
References: [4266]

[EC 1.14.14.123 created 2014 as EC 1.14.13.193, transferred 2018 to EC 1.14.14.123]

EC 1.14.14.124
Accepted name: dihydromonacolin L hydroxylase
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Reaction: dihydromonacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = monacolin L acid +
[oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) dihydromonacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = 3α-hydroxy-3,5-
dihydromonacolin L acid + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 3α-hydroxy-3,5-dihydromonacolin L acid = monacolin L acid + H2O (spontaneous)

Other name(s): LovA (ambiguous)
Systematic name: dihydromonacolin L acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The dehydration of 3α-hydroxy-3,5-dihydromonacolin

L acid is believed to be spontaneous [3926, 2706]. The enzyme from fungi also catalyses the reaction
of EC 1.14.14.125, monacolin L hydroxylase [205].

References: [3926, 2706, 205]

[EC 1.14.14.124 created 2014 as EC 1.14.13.197, transferred 2018 to EC 1.14.14.124]

EC 1.14.14.125
Accepted name: monacolin L hydroxylase

Reaction: monacolin L acid + O2 + [reduced NADPH—hemoprotein reductase] = monacolin J acid + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): LovA (ambiguous)
Systematic name: monacolin L acid,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from fungi also catalyses the reaction of

EC 1.14.14.124, dihydromonacolin L hydroxylase.
References: [205]

[EC 1.14.14.125 created 2014 as EC 1.14.13.198, transferred 2018 to EC 1.14.14.125]

EC 1.14.14.126
Accepted name: β-amyrin 28-monooxygenase

Reaction: β-amyrin + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = oleanolate + 3 [oxidized
NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) β-amyrin + O2 + [reduced NADPH—hemoprotein reductase] = erythrodiol + [oxidized NADPH—
hemoprotein reductase] + H2O
(1b) erythrodiol + O2 + [reduced NADPH—hemoprotein reductase] = oleanolic aldehyde + [oxidized
NADPH—hemoprotein reductase] + 2 H2O
(1c) oleanolic aldehyde + O2 + [reduced NADPH—hemoprotein reductase] = oleanolate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP716A52v2; CYP716A12; CYP16A75; β-amyrin 28-oxidase
Systematic name: β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (28-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The enzyme is involved in the biosyn-
thesis of oleanane-type triterpenoids, such as ginsenoside Ro. The enzyme from Medicago truncatula
(barrel medic) (CYP716A12) can also convert α-amyrin and lupeol to ursolic acid and betulinic acid,
respectively. The enzyme from Maesa lanceolata (false assegai) (CYP16A75) does not catalyse the
reaction to completion, resulting in accumulation of both intermediates.

References: [1111, 1363, 2637]

[EC 1.14.14.126 created 2015 as EC 1.14.13.201, transferred 2018 to EC 1.14.14.126]

EC 1.14.14.127
Accepted name: methyl farnesoate epoxidase

Reaction: methyl (2E,6E)-farnesoate + [reduced NADPH—hemoprotein reductase] + O2 = juvenile hormone III
+ [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP15A1
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Systematic name: methyl (2E,6E)-farnesoate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme, found in insects except for Lepidoptera

(moths and butterflies) is specific for methyl farnesoate (cf. EC 1.14.14.128, farnesoate epoxidase)
[1473, 729].

References: [1473, 729]

[EC 1.14.14.127 created 2015 as EC 1.14.13.202, transferred 2018 to EC 1.14.14.127]

EC 1.14.14.128
Accepted name: farnesoate epoxidase

Reaction: (2E,6E)-farnesoate + [reduced NADPH—hemoprotein reductase] + O2 = juvenile-hormone-III car-
boxylate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP15C1
Systematic name: (2E,6E)-farnesoate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme, found in Lepidoptera (moths and butter-
flies), is specific for farnesoate (cf. EC 1.14.14.127, methyl farnesoate epoxidase) [728, 729]. It is
involved in the synthesis of juvenile hormone.

References: [728, 729]

[EC 1.14.14.128 created 2015 as EC 1.14.13.203, transferred 2018 to EC 1.14.14.128]

EC 1.14.14.129
Accepted name: long-chain acyl-CoA ω-monooxygenase

Reaction: (1) oleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxyoleoyl-CoA + [oxi-
dized NADPH—hemoprotein reductase] + H2O
(2) linoleoyl-CoA + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxylinoleoyl-CoA +
[oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): long-chain acyl-CoA ω-hydroxylase; CYP86A22 (gene name); CYP52M1 (gene name)
Systematic name: long-chain acyl-CoA,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ω-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzymes from solanaceous plants are involved in

the biosynthesis of stigmatic estolide, a lipid-based polyester that forms a major component of the
exudate.

References: [1359]

[EC 1.14.14.129 created 2015 as EC 1.14.13.204, transferred 2018 to EC 1.14.14.129]

EC 1.14.14.130
Accepted name: laurate 7-monooxygenase

Reaction: dodecanoate + [reduced NADPH—hemoprotein reductase] + O2 = 7-hydroxydodecanoate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP703A2 (gene name)
Systematic name: dodecanoate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (7-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The enzyme is involved in the synthesis
of sporopollenin - a complex polymer found at the outer layer of spores and pollen. It can also act on
decanoate (C10), myristate (C14), and palmitate (C16) with lower activity. The enzyme also produces a
small amount of products that are hydroxylated at neighboring positions (C-6, C-8 and C-9).

References: [2611]

[EC 1.14.14.130 created 2015 as EC 1.14.13.206, transferred 2018 to EC 1.14.14.130]

EC 1.14.14.131
Accepted name: bursehernin 5′-monooxygenase
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Reaction: (–)-bursehernin + [reduced NADPH—hemoprotein reductase] + O2 = (–)-5′-demethylyatein + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP71CU1 (gene name); bursehernin 5′-hydroxylase
Systematic name: (–)-bursehernin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (5′-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein characterized from the plant Sinopodophyllum hexan-

drum. The enzyme is involved in the biosynthetic pathway of podophyllotoxin, a non-alkaloid toxin
lignan whose derivatives are important anticancer drugs.

References: [2151]

[EC 1.14.14.131 created 2016 as EC 1.14.13.213, transferred 2018 to EC 1.14.14.131]

EC 1.14.14.132
Accepted name: (–)-4′-demethyl-deoxypodophyllotoxin 4-hydroxylase

Reaction: (–)-4′-demethyldeoxypodophyllotoxin + [reduced NADPH—hemoprotein reductase] + O2 = (–)-4′-
demethylepipodophyllotoxin + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP82D61 (gene name)
Systematic name: (–)-deoxypodophyllotoxin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (4-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein characterized from the plant Sinopodophyllum hexan-

drum. The enzyme produces the direct precursor to etoposide, a potent anticancer drug. It can also act
on (–)-deoxypodophyllotoxin with lower efficiency.

References: [2151]

[EC 1.14.14.132 created 2016 as EC 1.14.13.214, transferred 2018 to EC 1.14.14.132]

EC 1.14.14.133
Accepted name: 1,8-cineole 2-endo-monooxygenase

Reaction: 1,8-cineole + [reduced flavodoxin] + O2 = 2-endo-hydroxy-1,8-cineole + [oxidized flavodoxin] + H2O
Other name(s): P450cin; CYP176A; CYP176A1

Systematic name: 1,8-cineole,[reduced flavodoxin]:oxygen oxidoreductase (2-endo-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein that uses a flavodoxin-like redox partner to reduce the

heme iron. Isolated from the bacterium Citrobacter braakii, which can use 1,8-cineole as the sole
source of carbon.

References: [1429, 2497, 1931, 2498]

[EC 1.14.14.133 created 2012 as EC 1.14.13.156, transferred 2018 to EC 1.14.14.133]

EC 1.14.14.134
Accepted name: β-amyrin 24-hydroxylase

Reaction: (1) β-amyrin + [reduced NADPH—hemoprotein reductase] + O2 = 24-hydroxy-β-amyrin + [oxidized
NADPH—hemoprotein reductase] + H2O
(2) sophoradiol + [reduced NADPH—hemoprotein reductase] + O2 = 24-hydroxysophoradiol + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): sophoradiol 24-hydroxylase; CYP93E1
Systematic name: β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (24-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. Found in plants and participates in the biosynthesis of
soybean saponins.

References: [3485]

[EC 1.14.14.134 created 2011 as EC 1.14.99.43, transferred 2018 to EC 1.14.14.134]

EC 1.14.14.135
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Accepted name: glyceollin synthase
Reaction: (1) 2-dimethylallyl-(6aS,11aS)-3,6a,9-trihydroxypterocarpan + [reduced NADPH—hemoprotein re-

ductase] + O2 = glyceollin II + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(2) 2-dimethylallyl-(6aS,11aS)-3,6a,9-trihydroxypterocarpan + [reduced NADPH—hemoprotein re-
ductase] + O2 = glyceollin III + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(3) 4-dimethylallyl-(6aS,11aS)-3,6a,9-trihydroxypterocarpan + [reduced NADPH—hemoprotein re-
ductase] + O2 = glyceollin I + [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): dimethylallyl-3,6a,9-trihydroxypterocarpan cyclase
Systematic name: 2-dimethylallyl-(6aS,11aS)-3,6a,9-trihydroxypterocarpan,[reduced NADPH—hemoprotein reduc-

tase]:oxygen oxidoreductase (cyclizing)
Comments: A cytochrome P-450 (heme-thiolate) protein purified from soybean.
References: [4168]

[EC 1.14.14.135 created 2004 as EC 1.14.13.85, transferred 2018 to EC 1.14.14.135]

EC 1.14.14.136
Accepted name: deoxysarpagine hydroxylase

Reaction: 10-deoxysarpagine + [reduced NADPH—hemoprotein reductase] + O2 = sarpagine + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): DOSH
Systematic name: 10-deoxysarpagine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (10-

hydroxylating)
Comments: A cytohrome P-450 (heme-thiolate) protein isolated from the plant Rauvolfia serpentina.
References: [4397]

[EC 1.14.14.136 created 2005 as EC 1.14.13.91, transferred 2018 to EC 1.14.14.136]

EC 1.14.14.137
Accepted name: (+)-abscisic acid 8′-hydroxylase

Reaction: (+)-abscisate + [reduced NADPH—hemoprotein reductase] + O2 = 8′-hydroxyabscisate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): (+)-ABA 8′-hydroxylase; ABA 8′-hydroxylase; CYP707A1 (gene name)
Systematic name: abscisate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (8′-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. Catalyses the first step in the oxida-
tive degradation of abscisic acid and is considered to be the pivotal enzyme in controlling the rate of
degradation of this plant hormone [713]. CO inhibits the reaction, but its effects can be reversed by
the presence of blue light [713]. The 8′-hydroxyabscisate formed can be converted into (–)-phaseic
acid, most probably spontaneously.

References: [713, 2061, 3285]

[EC 1.14.14.137 created 2005 as EC 1.14.13.93, transferred 2018 EC 1.14.14.137]

EC 1.14.14.138
Accepted name: lithocholate 6β-hydroxylase

Reaction: lithocholate + [reduced NADPH—hemoprotein reductase] + O2 = 6β-hydroxylithocholate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): lithocholate 6β-monooxygenase; CYP3A10; 6β-hydroxylase; cytochrome P450 3A10; lithocholic
acid 6β-hydroxylase

Systematic name: lithocholate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (6β-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from Mesocricetus auratus (golden hamster). Expres-

sion of the gene for this enzyme is 50-fold higher in male compared to female hamsters [3842].
References: [3842, 542, 3701, 3263]

[EC 1.14.14.138 created 2005 as EC 1.14.13.94, transferred 2018 to EC 1.14.14.138]
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EC 1.14.14.139
Accepted name: 5β-cholestane-3α,7α-diol 12α-hydroxylase

Reaction: 5β-cholestane-3α,7α-diol + [reduced NADPH—hemoprotein reductase] + O2 = 5β-cholestane-
3α,7α,12α-triol + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): 5β-cholestane-3α,7α-diol 12α-monooxygenase; sterol 12α-hydroxylase (ambiguous); CYP8B1; cy-
tochrome P450 8B1

Systematic name: 5β-cholestane-3α,7α-diol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (12α-
hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein found in mammals. This is the key enzyme in the
biosynthesis of the bile acid cholic acid (3α,7α,12α-trihydroxy-5β-cholanoic acid). The activity of
this enzyme determines the biosynthetic ratio between cholic acid and chenodeoxycholic acid [2322].
The enzyme can also hydroxylate the substrate at the 25 and 26 position, but to a lesser extent [1378].

References: [1378, 1377, 2322, 784, 4341, 3263]

[EC 1.14.14.139 created 2005 as EC 1.14.13.96, transferred 2018 to EC 1.14.14.139]

[1.14.14.140 Transferred entry. licodione synthase. Now included with EC 1.14.14.162, flavanone 2-hydroxylase]

[EC 1.14.14.140 created 2004 as EC 1.14.13.87, transferred 2018 to EC 1.14.14.140, transferred 2018 to EC 1.14.14.162, deleted 2018]

EC 1.14.14.141
Accepted name: psoralen synthase

Reaction: (+)-marmesin + [reduced NADPH—hemoprotein reductase] + O2 = psoralen + [oxidized NADPH—
hemoprotein reductase] + acetone + 2 H2O

Other name(s): CYP71AJ1
Systematic name: (+)-marmesin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: This microsomal cytochrome P-450 (heme-thiolate) enzyme is rather specific for (+)-marmesin, al-
though it can also accept 5-hydroxymarmesin to a much lesser extent. Furanocoumarins protect plants
from fungal invasion and herbivore attack. (+)-Columbianetin, the angular furanocoumarin analogue
of the linear furanocoumarin (+)-marmesin, acts as a competitive inhibitor even though it is not a sub-
strate.

References: [2137]

[EC 1.14.14.141 created 2007 as EC 1.14.13.102, transferred 2018 to EC 1.14.14.141]

EC 1.14.14.142
Accepted name: 8-dimethylallylnaringenin 2′-hydroxylase

Reaction: sophoraflavanone B + [reduced NADPH—hemoprotein reductase] + O2 = leachianone G + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): 8-DMAN 2′-hydroxylase
Systematic name: sophoraflavanone-B,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2′-

hydroxylating)
Comments: A membrane-bound cytochrome P-450 (heme-thiolate) protein that is associated with the endoplas-

mic reticulum [4314, 4460]. This enzyme is specific for sophoraflavanone B as substrate. Along
with EC 2.5.1.70 (naringenin 8-dimethylallyltransferase) and EC 2.5.1.71 (leachianone G 2′′-
dimethylallyltransferase), this enzyme forms part of the sophoraflavanone G biosynthetic pathway.

References: [4314, 4460]

[EC 1.14.14.142 created 2007 asEC 1.14.13.103, transferred 2018 to EC 1.14.14.142]

EC 1.14.14.143
Accepted name: (+)-menthofuran synthase

Reaction: (+)-pulegone + [reduced NADPH—hemoprotein reductase] + O2 = (+)-menthofuran + [oxidized
NADPH—hemoprotein reductase] + H2O
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Other name(s): menthofuran synthase; (+)-pulegone 9-hydroxylase; (+)-MFS; cytochrome P450 menthofuran syn-
thase

Systematic name: (+)-pulegone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (9-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. The conversion of substrate into product involves the

hydroxylation of the syn-methyl (C9), intramolecular cyclization to the hemiketal and dehydration to
the furan [278]. This is the second cytochrome P-450-mediated step of monoterpene metabolism in
peppermint, with the other step being catalysed by EC 1.14.14.99, (S)-limonene 3-monooxygenase
[278].

References: [278, 2370]

[EC 1.14.14.143 created 2008 as EC 1.14.13.104, transferred 2018 to EC 1.14.14.143]

EC 1.14.14.144
Accepted name: abieta-7,13-diene hydroxylase

Reaction: abieta-7,13-diene + [reduced NADPH—hemoprotein reductase] + O2 = abieta-7,13-dien-18-ol + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): abietadiene hydroxylase (ambiguous)
Systematic name: abieta-7,13-diene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (18-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. This enzyme catalyses a step in the pathway of abi-

etic acid biosynthesis. The activity has been demonstrated in cell-free stem extracts of Abies grandis
(grand fir) and Pinus contorta (lodgepole pine). Activity is induced by wounding of the plant tissue
[1117].

References: [1115, 1117]

[EC 1.14.14.144 created 2009 as EC 1.14.13.108, modified 2012, transferred 2018 to EC 1.14.14.144]

EC 1.14.14.145
Accepted name: abieta-7,13-dien-18-ol hydroxylase

Reaction: abieta-7,13-dien-18-ol + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = abieta-7,13-dien-18-
oate + 2 [oxidized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) abieta-7,13-dien-18-ol + [reduced NADPH—hemoprotein reductase] + O2 = abieta-7,13-dien-
18,18-diol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) abieta-7,13-dien-18,18-diol = abieta-7,13-dien-18-al + H2O (spontaneous)
(1c) abieta-7,13-dien-18-al + [reduced NADPH—hemoprotein reductase] + O2 = abieta-7,13-dien-18-
oate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP720B1; PtAO; abietadienol hydroxylase (ambiguous)
Systematic name: abieta-7,13-dien-18-ol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (18-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. This enzyme catalyses a step in the pathway of abi-

etic acid biosynthesis. The activity has been demonstrated in cell-free stem extracts of Abies gran-
dis (grand fir) and Pinus contorta (lodgepole pine) [1115], and the gene encoding the enzyme has
been identified in Pinus taeda (loblolly pine) [3198]. The recombinant enzyme catalyses the oxida-
tion of multiple diterpene alcohol and aldehydes, including levopimaradienol, isopimara-7,15-dienol,
isopimara-7,15-dienal, dehydroabietadienol and dehydroabietadienal. It is not able to oxidize abieta-
diene.

References: [1115, 1117, 3198]

[EC 1.14.14.145 created 2009 as EC 1.14.13.109, modified 2012, transferred 2018 to EC 1.14.14.145]

EC 1.14.14.146
Accepted name: geranylgeraniol 18-hydroxylase

Reaction: geranylgeraniol + [reduced NADPH—hemoprotein reductase] + O2 = 18-hydroxygeranylgeraniol +
[oxidized NADPH—hemoprotein reductase] + H2O
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Other name(s): GGOH-18-hydroxylase
Systematic name: geranylgeraniol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (18-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the plant Croton sublyratus.
References: [3820]

[EC 1.14.14.146 created 2009 as EC 1.14.13.110, transferred 2018 to EC 1.14.14.146]

EC 1.14.14.147
Accepted name: 3-epi-6-deoxocathasterone 23-monooxygenase

Reaction: (1) 3-epi-6-deoxocathasterone + [reduced NADPH—hemoprotein reductase] + O2 = 6-
deoxotyphasterol + [oxidized NADPH—hemoprotein reductase] + H2O
(2) (22S,24R)-22-hydroxy-5α-ergostan-3-one + [reduced NADPH—hemoprotein reductase] + O2 = 3-
dehydro-6-deoxoteasterone + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): cytochrome P450 90C1; CYP90D1; CYP90C1
Systematic name: 3-epi-6-deoxocathasterone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (C-23-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein involved in brassinosteroid biosynthesis. C-23 hydroxy-

lation shortcuts bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly
from (22S,24R)-22-hydroxy-5α-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-
deoxoteasterone and 6-deoxotyphasterol [2850].

References: [2850]

[EC 1.14.14.147 created 2010 as EC 1.14.13.112, transferred 2018 to EC 1.14.14.147]

EC 1.14.14.148
Accepted name: angelicin synthase

Reaction: (+)-columbianetin + [reduced NADPH—hemoprotein reductase] + O2 = angelicin + [oxidized
NADPH—hemoprotein reductase] + acetone + 2 H2O

Other name(s): CYP71AJ4 (gene name)
Systematic name: (+)-columbianetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: This cytochrome P-450 (heme-thiolate) enzyme from wild parsnip is involved in the formation of
angular furanocoumarins. Attacks its substrate by syn-elimination of hydrogen from C-3′.

References: [2136]

[EC 1.14.14.148 created 2010 as EC 1.14.13.115, transferred 2018 to EC 1.14.14.148]

EC 1.14.14.149
Accepted name: 5-epiaristolochene 1,3-dihydroxylase

Reaction: 5-epiaristolochene + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = capsidiol + 2 [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): 5-epi-aristolochene 1,3-dihydroxylase; EAH; CYP71D20
Systematic name: 5-epiaristolochene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (1- and 3-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Kinetic studies suggest that 1β-hydroxyepiaristolochene

is mainly formed first followed by hydroxylation at C-3. However the reverse order via 3α-
hydroxyepiaristolochene does occur.

References: [3114, 3782]

[EC 1.14.14.149 created 2011 as EC 1.14.13.119, transferred 2018 to EC 1.14.14.149]

EC 1.14.14.150
Accepted name: costunolide synthase
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Reaction: germacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2 = (+)-
costunolide + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) germacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2 = 6α-
hydroxygermacra-1(10),4,11(13)-trien-12-oate + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 6α-hydroxygermacra-1(10),4,11(13)-trien-12-oate = (+)-costunolide + H2O (spontaneous)

Other name(s): CYP71BL2
Systematic name: germacra-1(10),4,11(13)-trien-12-oate,[reduced NADPH—hemoprotein reductase]:oxygen oxidore-

ductase (6α-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from chicory plants. The enzyme hydroxylates carbon

C-6 of germacra-1(10),4,11(13)-trien-12-oate to give 6α-hydroxygermacra-1(10),4,11(13)-trien-12-
oate, which spontaneously cyclises to form the lactone ring.

References: [763]

[EC 1.14.14.150 created 2011 as EC 1.14.13.120, transferred 2018 to EC 1.14.14.150]

EC 1.14.14.151
Accepted name: premnaspirodiene oxygenase

Reaction: (–)-vetispiradiene + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = solavetivone + 2 [oxi-
dized NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) (–)-vetispiradiene + [reduced NADPH—hemoprotein reductase] + O2 = solavetivol + [oxidized
NADPH—hemoprotein reductase] + H2O
(1b) solavetivol + [reduced NADPH—hemoprotein reductase] + O2 = solavetivone + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): HPO; Hyoscymus muticus premnaspirodiene oxygenase; CYP71D55
Systematic name: (–)-vetispiradiene,[reduced NADPH—hemoprotein reductase]:oxygen 2α-oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from the plant Hyoscymus muticus also
hydroxylates valencene at C-2 to give the α-hydroxy compound, nootkatol, and this is converted into
nootkatone. 5-Epiaristolochene and epieremophilene are hydroxylated at C-2 to give a 2β-hydroxy
derivatives that are not oxidized further.

References: [3781]

[EC 1.14.14.151 created 2011 as EC 1.14.13.121, transferred 2018 to EC 1.14.14.151]

EC 1.14.14.152
Accepted name: β-amyrin 11-oxidase

Reaction: β-amyrin + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = 11-oxo-β-amyrin + 2 [oxidized
NADPH—hemoprotein reductase] + 3 H2O (overall reaction)
(1a) β-amyrin + [reduced NADPH—hemoprotein reductase] + O2 = 11α-hydroxy-β-amyrin + [oxi-
dized NADPH—hemoprotein reductase] + H2O
(1b) 11α-hydroxy-β-amyrin + [reduced NADPH—hemoprotein reductase] + O2 = 11-oxo-β-amyrin +
[oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP88D6
Systematic name: β-amyrin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Glycyrrhiza uralensis (Chinese licorice)
that participates in the glycyrrhizin biosynthesis pathway. The enzyme is also able to oxidize 30-
hydroxy-β-amyrin to 11α,30-dihydroxy-β-amyrin but this is not thought to be part of glycyrrhizin
biosynthesis.

References: [3433]

[EC 1.14.14.152 created 2011 as EC 1.14.13.134, transferred 2018 to EC 1.14.14.152]

EC 1.14.14.153
Accepted name: indole-2-monooxygenase
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Reaction: indole + [reduced NADPH—hemoprotein reductase] + O2 = indolin-2-one + [oxidized NADPH—
hemoprotein reductase] + H2O

Other name(s): BX2 (gene name); CYP71C4 (gene name)
Systematic name: indole,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme is involved in the biosynthesis of protec-
tive and allelophatic benzoxazinoids in some plants, most commonly from the family of Poaceae
(grasses).

References: [1063, 1220]

[EC 1.14.14.153 created 2012 as EC 1.14.13.137, transferred 2018 to EC 1.14.14.153]

EC 1.14.14.154
Accepted name: sterol 14α-demethylase

Reaction: a 14α-methylsteroid + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = a ∆14-steroid + formate
+ 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) a 14α-methylsteroid + [reduced NADPH—hemoprotein reductase] + O2 = a 14α-
hydroxymethylsteroid + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) a 14α-hydroxysteroid + [reduced NADPH—hemoprotein reductase] + O2 = a 14α-formylsteroid
+ [oxidized NADPH—hemoprotein reductase] + 2 H2O
(1c) a 14α-formylsteroid + [reduced NADPH—hemoprotein reductase] + O2 = a ∆14-steroid + formate
+ [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): obtusufoliol 14-demethylase; lanosterol 14-demethylase; lanosterol 14α-demethylase; sterol 14-
demethylase; CYP51 (gene name); ERG11 (gene name)

Systematic name: sterol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (14-methyl cleaving)
Comments: This cytochrome P-450 (heme-thiolate) enzyme acts on a range of steroids with a 14α-methyl group,

such as obtusifoliol and lanosterol. The enzyme catalyses a hydroxylation and a reduction of the 14α-
methyl group, followed by a second hydroxylation, resulting in the elimination of formate and forma-
tion of a 14(15) double bond.

References: [59, 4381, 104, 102, 103, 168]

[EC 1.14.14.154 created 2001 as EC 1.14.13.70, modified 2013, transferred 2018 EC 1.14.14.154]

EC 1.14.14.155
Accepted name: 3,6-diketocamphane 1,2-monooxygenase

Reaction: (–)-bornane-2,5-dione + O2 + FMNH2 = (–)-5-oxo-1,2-campholide + FMN + H2O
Other name(s): 3,6-diketocamphane lactonizing enzyme; 3,6-DKCMO

Systematic name: (–)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida

and encoded on the cam plasmid. Involved in the degradation of (–)-camphor. Requires a dedicated
NADH—FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [1693, 1678]. The product spon-
taneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.

References: [1693, 1678]

[EC 1.14.14.155 created 2018]

EC 1.14.14.156
Accepted name: tryptophan N-monooxygenase

Reaction: L-tryptophan + 2 [reduced NADPH—hemoprotein reductase] + 2 O2 = (E)-indol-3-ylacetaldoxime +
2 [oxidized NADPH—hemoprotein reductase] + CO2 + 3 H2O (overall reaction)
(1a) L-tryptophan + [reduced NADPH—hemoprotein reductase] + O2 = N-hydroxy-L-tryptophan +
[oxidized NADPH—hemoprotein reductase] + H2O
(1b) N-hydroxy-L-tryptophan + [reduced NADPH—hemoprotein reductase] + O2 = N,N-dihydroxy-L-
tryptophan + [oxidized NADPH—hemoprotein reductase] + H2O
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(1c) N,N-dihydroxy-L-tryptophan = (E)-indol-3-ylacetaldoxime + CO2 + H2O
Other name(s): tryptophan N-hydroxylase; CYP79B1; CYP79B2; CYP79B3

Systematic name: L-tryptophan,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (N-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Arabidopsis thaliana. This enzyme catal-

yses two successive N-hydroxylations of L-tryptophan, the first steps in the biosynthesis of both
auxin and the indole alkaloid phytoalexin camalexin. The product of the two hydroxylations, N,N-
dihydroxy-L-tryptophan, is extremely labile and dehydrates spontaneously. The dehydrated product is
then subject to a decarboxylation that produces an oxime. It is still not known whether the decarboxy-
lation is spontaneous or catalysed by the enzyme.

References: [2538, 1608, 4466, 2744]

[EC 1.14.14.156 created 2011 as EC 1.14.13.125, transferred 2018 to EC 1.14.14.156]

EC 1.14.14.157
Accepted name: indolin-2-one monooxygenase

Reaction: indolin-2-one + [reduced NADPH—hemoprotein reductase] + O2 = 3-hydroxyindolin-2-one + [oxi-
dized NADPH—hemoprotein reductase] + H2O

Other name(s): BX3 (gene name); CYP71C2 (gene name)
Systematic name: indolin-2-one,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme is involved in the biosynthesis of protec-
tive and allelophatic benzoxazinoids in some plants, most commonly from the family of Poaceae
(grasses).

References: [1063, 1220]

[EC 1.14.14.157 created 2012 as EC 1.14.13.138, transferred 2018 to EC 1.14.14.157]

EC 1.14.14.158
Accepted name: carotenoid ε hydroxylase

Reaction: (1) α-carotene + [reduced NADPH-hemoprotein reductase] + O2 = α-cryptoxanthin + [oxidized
NADPH-hemoprotein reductase] + H2O
(2) zeinoxanthin + [reduced NADPH-hemoprotein reductase] + O2 = lutein + [oxidized NADPH-
hemoprotein reductase] + H2O

Other name(s): CYP97C1; LUT1; CYP97C; carotene ε-monooxygenase
Systematic name: α-carotene,[reduced NADPH-hemoprotein reductase]:oxygen oxidoreductase (3-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein.
References: [3025, 3887, 3647, 539, 3148]

[EC 1.14.14.158 created 2011 as EC 1.14.99.45, transferred 2018 to EC 1.14.14.158]

EC 1.14.14.159
Accepted name: dolabradiene monooxygenase

Reaction: (1) dolabradiene + O2 + [reduced NADPH—hemoprotein reductase] = 15,16-epoxydolabrene + H2O
+ [oxidized NADPH—hemoprotein reductase]
(2) 15,16-epoxydolabrene + O2 + [reduced NADPH—hemoprotein reductase] = 3β-hydroxy-15,16-
epoxydolabrene + H2O + [oxidized NADPH—hemoprotein reductase]

Other name(s): CYP71Z16 (gene name)
Systematic name: dolabradiene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (3β-hydroxy-15,16-

epoxydolabrene-forming)
Comments: A cytochrome P-450 (heme thiolate) enzyme characterized from maize. The enzyme catalyses the

epoxidation of dolabradiene at C-16, followed by hydroxylation at C-3.
References: [2357]

[EC 1.14.14.159 created 2018]
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EC 1.14.14.160
Accepted name: zealexin A1 synthase

Reaction: (S)-β-macrocarpene + 3 O2 + 3 [reduced NADPH—hemoprotein reductase] = zealexin A1 + 4 H2O +
3 [oxidized NADPH—hemoprotein reductase] (overall reaction)
(1a) (S)-β-macrocarpene + O2 + [reduced NADPH—hemoprotein reductase] = [(4S)-4-(5,5-
dimethylcyclohex-1-en-1-yl)-cyclohex-1-en-1-yl]methanol + H2O + [oxidized NADPH—hemoprotein
reductase]
(1b) [(4S)-4-(5,5-dimethylcyclohex-1-en-1-yl)-cyclohex-1-en-1-yl] methanol + O2 + [reduced
NADPH—hemoprotein reductase] = (4S)-4-(5,5-dimethylcyclohex-1-en-1-yl)cyclohex-1-ene-1-
carbaldehyde + 2 H2O + [oxidized NADPH—hemoprotein reductase]
(1c) (4S)-4-(5,5-dimethylcyclohex-1-en-1-yl)cyclohex-1-ene-1-carbaldehyde + O2 + [reduced
NADPH—hemoprotein reductase] = zealexin A1 + H2O + [oxidized NADPH—hemoprotein
reductase]

Other name(s): CYP71Z18 (gene name)
Systematic name: (S)-β-macrocarpene,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (zealexin

A1-forming)
Comments: A cytochrome P-450 (heme thiolate) enzyme characterized from maize. The enzyme sequentially

oxidizes(S)-β-macrocarpene via alcohol and aldehyde intermediates to form zealexin A1, a maize
phytoalexin that provides biochemical protection against fungal infection.

References: [2389]

[EC 1.14.14.160 created 2018]

EC 1.14.14.161
Accepted name: nepetalactol monooxygenase

Reaction: (+)-cis,trans-nepetalactol + 3 [reduced NADPH—hemoprotein reductase] + 3 O2 = 7-deoxyloganetate
+ 3 [oxidized NADPH—hemoprotein reductase] + 4 H2O (overall reaction)
(1a) (+)-cis,trans-nepetalactol + [reduced NADPH—hemoprotein reductase] + O2 = 7-deoxyloganetic
alcohol + [oxidized NADPH—hemoprotein reductase] + H2O
(1b) 7-deoxyloganetic alcohol + [reduced NADPH—hemoprotein reductase] + O2 = iridotrial + [oxi-
dized NADPH—hemoprotein reductase] + 2 H2O
(1c) iridotrial + [reduced NADPH—hemoprotein reductase] + O2 = 7-deoxyloganetate + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP76A26 (gene name); iridoid oxidase (misleading)
Systematic name: (+)-cis,trans-nepetalactol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (hy-

droxylating)
Comments: The enzyme, characterized from the plant Catharanthus roseus, is a cytochrome P-450 (heme thio-

late) protein. It catalyses three successive reactions in the pathway leading to biosynthesis of monoter-
penoid indole alkaloids.

References: [2531]

[EC 1.14.14.161 created 2018]

EC 1.14.14.162
Accepted name: flavanone 2-hydroxylase

Reaction: a flavanone + [reduced NADPH—hemoprotein reductase] + O2 = a 2-hydroxyflavanone + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP93G2 (gene name); CYP93B1 (gene name); (2S)-flavanone 2-hydroxylase; licodione synthase
Systematic name: flavanone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)

Comments: A cytochrome P-450 (heme thiolate) plant enzyme that catalyses the 2-hydroxylation of multiple fla-
vanones such as (2S)-naringenin, (2S)-eriodictyol, (2S)-pinocembrin, and (2S)-liquiritigenin. The
products are meta-stable and exist in an equilibrium with open forms such as 1-(4-hydroxyphenyl)-
3-(2,4,6-trihydroxyphenyl)propane-1,3-dione.

References: [2908, 44, 877]
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[EC 1.14.14.162 created 2018. EC 1.14.14.140 created 2004 as EC 1.14.13.87, transferred 2018 to EC 1.14.14.140, transferred 2018 to EC
1.14.14.162]

EC 1.14.14.163
Accepted name: (S)-1-hydroxy-N-methylcanadine 13-hydroxylase

Reaction: (S)-1-hydroxy-N-methylcanadine + [reduced NADPH—hemoprotein reductase] + O2 = (13S,14R)-
1,13-dihydroxy-N-methylcanadine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP82X2 (gene name)
Systematic name: (S)-1-hydroxy-N-methylcanadine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(13-hydroxylating)
Comments: The enzyme, characterized from the plant Papaver somniferum (opium poppy), participates in the

biosynthesis of the isoquinoline alkaloid noscapine.
References: [737, 2239, 2237]

[EC 1.14.14.163 created 2018]

EC 1.14.14.164
Accepted name: fraxetin 5-hydroxylase

Reaction: fraxetin + [reduced NADPH—hemoprotein reductase] + O2 = sideretin (reduced form) + [oxidized
NADPH—hemoprotein reductase] + H2O

Other name(s): CYP82C4; fraxetin 5-monooxygenase
Systematic name: fraxetin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (5-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein involved in biosynthesis of iron(III)-chelating coumarins
in higher plants.

References: [3113]

[EC 1.14.14.164 created 2018]

EC 1.14.14.165
Accepted name: indole-3-carbonyl nitrile 4-hydroxylase

Reaction: indole-3-carbonyl nitrile + [reduced NADPH—hemoprotein reductase] + O2 = 4-hydroxyindole-3-
carbonyl nitrile + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP82C2
Systematic name: indole-3-carbonyl nitrile,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (4-

hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein characterized from the plant Arabidopsis thaliana. In-

volved in biosynthesis of small cyanogenic compounds that take part in pathogen defense. The en-
zyme also catalyses the 5-hydroxylation of xanthotoxin [2063].

References: [2063, 3112]

[EC 1.14.14.165 created 2018]

EC 1.14.14.166
Accepted name: (S)-N-methylcanadine 1-hydroxylase

Reaction: (S)-N-methylcanadine + [reduced NADPH—hemoprotein reductase] + O2 = (S)-1-hydroxy-N-
methylcanadine + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): CYP82Y1 (gene name)
Systematic name: (S)-N-methylcanadine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (1-

hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, characterized from the plant Papaver somniferum

(opium poppy), participates in the biosynthesis of the isoquinoline alkaloid noscapine.
References: [739, 2237]
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[EC 1.14.14.166 created 2018]

EC 1.14.14.167
Accepted name: (13S,14R)-13-O-acetyl-1-hydroxy-N-methylcanadine 8-hydroxylase

Reaction: (13S,14R)-13-O-acetyl-1-hydroxy-N-methylcanadine + [reduced NADPH—hemoprotein reductase]
+ O2 = (13S,14R)-13-O-acetyl-1,8-dihydroxy-N-methylcanadine + [oxidized NADPH—hemoprotein
reductase] + H2O

Other name(s): CYP82X1 (gene name)
Systematic name: (13S,14R)-13-O-acetyl-1-hydroxy-N-methylcanadine 8-hydroxylase,[reduced NADPH—hemoprotein

reductase]:oxygen oxidoreductase (8-hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, characterized from the plant Papaver somniferum

(opium poppy), participates in the biosynthesis of the isoquinoline alkaloid noscapine.
References: [737, 2239, 2237]

[EC 1.14.14.167 created 2018]

EC 1.14.14.168
Accepted name: germacrene A acid 8β-hydroxylase

Reaction: germacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2 = 8β-
hydroxygermacra-1(10),4,11(13)-trien-12-oate + [oxidized NADPH—hemoprotein reductase] + H2O

Other name(s): HaG8H; CYP71BL1; CYP71BL6
Systematic name: germacra-1(10),4,11(13)-trien-12-oate,[reduced NADPH—hemoprotein reductase]:oxygen oxidore-

ductase (8β-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Helianthus annuus (common sun-

flower). The cyclisation of 8β-hydroxygermacra-1(10),4,11(13)-triene-12-oate to inunolide (12,8β)
does not seem to occur spontaneously. The enzyme from Inula hupehensis also forms some 8α-
hydroxygermacra-1(10),4,11(13)-triene-12-oate, which spontaneously cyclises to 8-epi-inunolide
(12,8α) (cf. EC 1.14.14.170 8-epi-inunolide synthase).

References: [1065, 1250]

[EC 1.14.14.168 created 2018]

EC 1.14.14.169
Accepted name: eupatolide synthase

Reaction: 8β-hydroxygermacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2
= eupatolide + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) 8β-hydroxygermacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase]
+ O2 = 6α,8β-dihydroxygermacra-1(10),4,11(13)-trien-12-oate + [oxidized NADPH—hemoprotein re-
ductase] + H2O
(1b) 6α,8β-dihydroxygermacra-1(10),4,11(13)-trien-12-oate = eupatolide + H2O (spontaneous)

Other name(s): CYP71DD6; HaES
Systematic name: 8β-hydroxygermacra-1(10),4,11(13)-trien-12-oate,[reduced NADPH—hemoprotein reduc-

tase]:oxygen oxidoreductase (6α-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Helianthus annuus (common sunflower).
References: [1065]

[EC 1.14.14.169 created 2018]

EC 1.14.14.170
Accepted name: 8-epi-inunolide synthase

Reaction: germacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2 = 8-epi-
inunolide + [oxidized NADPH—hemoprotein reductase] + 2 H2O (overall reaction)
(1a) germacra-1(10),4,11(13)-trien-12-oate + [reduced NADPH—hemoprotein reductase] + O2 = 8α-
hydroxygermacra-1(10),4,11(13)-trien-12-oate + [oxidized NADPH—hemoprotein reductase] + H2O
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(1b) 8α-hydroxygermacra-1(10),4,11(13)-trien-12-oate = 8-epi-inunolide + H2O (spontaneous)
Other name(s): CYP71BL1

Systematic name: germacra-1(10),4,11(13)-trien-12-oate,[reduced NADPH—hemoprotein reductase]:oxygen oxidore-
ductase (8α-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein from the plant Inula hupehensis. The enzyme also pro-
duces 8β-hydroxygermacra-1(10),4,11(13)-triene-12-oate (EC 1.14.14.168, germacrene A acid 8β-
hydroxylase).

References: [1250]

[EC 1.14.14.170 created 2018]

EC 1.14.15 With reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen
into the other donor

EC 1.14.15.1
Accepted name: camphor 5-monooxygenase

Reaction: (+)-camphor + reduced putidaredoxin + O2 = (+)-exo-5-hydroxycamphor + oxidized putidaredoxin +
H2O

Other name(s): camphor 5-exo-methylene hydroxylase; 2-bornanone 5-exo-hydroxylase; bornanone 5-exo-
hydroxylase; camphor 5-exo-hydroxylase; camphor 5-exohydroxylase; camphor hydroxylase; d-
camphor monooxygenase; methylene hydroxylase; methylene monooxygenase; D-camphor-exo-
hydroxylase; camphor methylene hydroxylase

Systematic name: (+)-camphor,reduced putidaredoxin:oxygen oxidoreductase (5-hydroxylating)
Comments: A heme-thiolate protein (P-450). Also acts on (-)-camphor and 1,2-campholide, forming 5-exo-

hydroxy-1,2-campholide.
References: [1453, 3954]

[EC 1.14.15.1 created 1972, modified 1986]

[1.14.15.2 Transferred entry. camphor 1,2-monooxygenase. Now EC 1.14.13.162, 2,5-diketocamphane 1,2-monooxygenase.]

[EC 1.14.15.2 created 1972, deleted 2012]

EC 1.14.15.3
Accepted name: alkane 1-monooxygenase

Reaction: octane + 2 reduced rubredoxin + O2 + 2 H+ = 1-octanol + 2 oxidized rubredoxin + H2O
Other name(s): alkane 1-hydroxylase; ω-hydroxylase; fatty acid ω-hydroxylase; alkane monooxygenase; 1-

hydroxylase; alkane hydroxylase
Systematic name: alkane,reduced-rubredoxin:oxygen 1-oxidoreductase

Comments: Some enzymes in this group are heme-thiolate proteins (P-450). Also hydroxylates fatty acids in the
ω-position.

References: [502, 2488, 2988]

[EC 1.14.15.3 created 1972]

EC 1.14.15.4
Accepted name: steroid 11β-monooxygenase

Reaction: a steroid + 2 reduced adrenodoxin + O2 + 2 H+ = an 11β-hydroxysteroid + 2 oxidized adrenodoxin +
H2O

Other name(s): steroid 11β-hydroxylase; steroid 11β/18-hydroxylase
Systematic name: steroid,reduced-adrenodoxin:oxygen oxidoreductase (11β-hydroxylating)

Comments: A heme-thiolate protein (P-450). Also hydroxylates steroids at the 18-position, and converts 18-
hydroxycorticosterone into aldosterone.

References: [1259, 1438, 3907, 4335, 4495]
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[EC 1.14.15.4 created 1961 as EC 1.99.1.7, transferred 1965 to EC 1.14.1.6, transferred 1972 to EC 1.14.15.4, modified 1989, modified 2014]

EC 1.14.15.5
Accepted name: corticosterone 18-monooxygenase

Reaction: corticosterone + 2 reduced adrenodoxin + O2 + 2 H+ = 18-hydroxycorticosterone + 2 oxidized adren-
odoxin + H2O

Other name(s): corticosterone 18-hydroxylase; corticosterone methyl oxidase
Systematic name: corticosterone,reduced-adrenodoxin:oxygen oxidoreductase (18-hydroxylating)

References: [3119]

[EC 1.14.15.5 created 1972]

EC 1.14.15.6
Accepted name: cholesterol monooxygenase (side-chain-cleaving)

Reaction: cholesterol + 6 reduced adrenodoxin + 3 O2 + 6 H+ = pregnenolone + 4-methylpentanal + 6 oxidized
adrenodoxin + 4 H2O (overall reaction)
(1a) cholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = (22R)-22-hydroxycholesterol + 2 oxidized
adrenodoxin + H2O
(1b) (22R)-22-hydroxycholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = (20R,22R)-20,22-
dihydroxycholesterol + 2 oxidized adrenodoxin + H2O
(1c) (20R,22R)-20,22-dihydroxy-cholesterol + 2 reduced adrenodoxin + O2 + 2 H+ = pregnenolone +
4-methylpentanal + 2 oxidized adrenodoxin + 2 H2O

Other name(s): cholesterol desmolase; cytochrome P-450scc; C27-side chain cleavage enzyme; cholesterol 20-22-
desmolase; cholesterol C20−22 desmolase; cholesterol side-chain cleavage enzyme; cholesterol side-
chain-cleaving enzyme; steroid 20-22 desmolase; steroid 20-22-lyase; CYP11A1 (gene name)

Systematic name: cholesterol,reduced-adrenodoxin:oxygen oxidoreductase (side-chain-cleaving)
Comments: A heme-thiolate protein (cytochrome P-450). The reaction proceeds in three stages, with two hydrox-

ylations at C-22 and C-20 preceding scission of the side-chain between carbons 20 and 22. The initial
source of the electrons is NADPH, which transfers the electrons to the adrenodoxin via EC 1.18.1.6,
adrenodoxin-NADP+ reductase.

References: [453, 1382, 1380, 3689, 2435]

[EC 1.14.15.6 created 1983, modified 2013, modified 2014]

EC 1.14.15.7
Accepted name: choline monooxygenase

Reaction: choline + O2 + 2 reduced ferredoxin + 2 H+ = betaine aldehyde hydrate + H2O + 2 oxidized ferre-
doxin

Systematic name: choline,reduced-ferredoxin:oxygen oxidoreductase
Comments: The spinach enzyme, which is located in the chloroplast, contains a Rieske-type [2Fe-2S] cluster, and

probably also a mononuclear Fe centre. Requires Mg2+. Catalyses the first step of glycine betaine
synthesis. In many bacteria, plants and animals, betaine is synthesized in two steps: (1) choline to
betaine aldehyde and (2) betaine aldehyde to betaine. Different enzymes are involved in the first re-
action. In plants, the reaction is catalysed by this enzyme whereas in animals and many bacteria it is
catalysed by either membrane-bound EC 1.1.99.1 (choline dehydrogenase) or soluble EC 1.1.3.17
(choline oxidase) [4077]. The enzyme involved in the second step, EC 1.2.1.8 (betaine-aldehyde de-
hydrogenase), appears to be the same in plants, animals and bacteria. In some bacteria, betaine is syn-
thesized from glycine through the actions of EC 2.1.1.156 (glycine/sarcosine N-methyltransferase)
and EC 2.1.1.157 (sarcosine/dimethylglycine N-methyltransferase).

References: [414, 450, 3130, 3262, 2827, 2828, 4077]

[EC 1.14.15.7 created 2001, modified 2002 (EC 1.14.14.4 created 2000, incorporated 2002), modified 2005, modified 2011]

423

http://www.enzyme-database.org/query.php?ec=1.14.15.5
http://www.enzyme-database.org/query.php?ec=1.14.15.6
http://www.enzyme-database.org/query.php?ec=1.14.15.7


EC 1.14.15.8
Accepted name: steroid 15β-monooxygenase

Reaction: progesterone + 2 reduced [2Fe-2S] ferredoxin + O2 = 15β-hydroxyprogesterone + 2 oxidized [2Fe-
2S] ferredoxin + H2O

Other name(s): cytochrome P-450meg; cytochrome P450meg; steroid 15β-hydroxylase; CYP106A2; BmCYP106A2
Systematic name: progesterone,reduced-ferredoxin:oxygen oxidoreductase (15β-hydroxylating)

Comments: The enzyme from the bacterium Bacillus megaterium hydroxylates a variety of 3-oxo-∆4-steroids in
position 15β. Ring A-reduced, aromatic, and 3β-hydroxy-∆4-steroids do not serve as substrates [263].

References: [264, 263, 2271, 1238, 2272]

[EC 1.14.15.8 created 2010]

EC 1.14.15.9
Accepted name: spheroidene monooxygenase

Reaction: (1) spheroidene + 4 reduced ferredoxin [iron-sulfur] cluster + 2 O2 + 4 H+ = spheroiden-2-one + 4
oxidized ferredoxin [iron-sulfur] cluster + 3 H2O (overall reaction)
(1a) spheroidene + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2-hydroxyspheroidene + 2
oxidized ferredoxin [iron-sulfur] cluster + H2O
(1b) 2-hydroxyspheroidene + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2,2-
dihydroxyspheroidene + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(1c) 2,2-dihydroxyspheroidene = spheroiden-2-one + H2O (spontaneous)
(2) spirilloxanthin + 4 reduced ferredoxin [iron-sulfur] cluster + 2 O2 + 4 H+ = 2-oxospirilloxanthin +
4 oxidized ferredoxin [iron-sulfur] cluster + 3 H2O (overall reaction)
(2a) spirilloxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2-hydroxyspirilloxanthin
+ 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(2b) 2-hydroxyspirilloxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2,2-
dihydroxyspirilloxanthin + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(2c) 2,2-dihydroxyspirilloxanthin = 2-oxospirilloxanthin + H2O (spontaneous)
(3) 2-oxospirilloxanthin + 4 reduced ferredoxin [iron-sulfur] cluster + 2 O2 + 4 H+ = 2,2′-
dioxospirilloxanthin + 4 oxidized ferredoxin [iron-sulfur] cluster + 3 H2O (overall reaction)
(3a) 2-oxospirilloxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2′-hydroxy-2-
oxospirilloxanthin + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(3b) 2′-hydroxy-2-oxospirilloxanthin + reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 2′,2′-
dihydroxy-2-oxospirilloxanthin + oxidized ferredoxin [iron-sulfur] cluster + H2O
(3c) 2′,2′-dihydroxy-2-oxospirilloxanthin = 2,2′-dioxospirilloxanthin + H2O (spontaneous)

Other name(s): CrtA; acyclic carotenoid 2-ketolase; spirilloxanthin monooxygenase; 2-oxo-spirilloxanthin monooxy-
genase

Systematic name: spheroidene,reduced-ferredoxin:oxygen oxidoreductase (spheroiden-2-one-forming)
Comments: The enzyme is involved in spheroidenone biosynthesis and in 2,2′-dioxospirilloxanthin biosynthesis.

The enzyme from Rhodobacter sphaeroides contains heme at its active site [2173].
References: [2173, 1184]

[EC 1.14.15.9 created 2012, modified 2016]

EC 1.14.15.10
Accepted name: (+)-camphor 6-endo-hydroxylase

Reaction: (+)-camphor + reduced putidaredoxin + O2 = (+)-6-endo-hydroxycamphor + oxidized putidaredoxin
+ H2O

Other name(s): P450camr
Systematic name: (+)-camphor,reduced putidaredoxin:oxygen oxidoreductase (6-endo-hydroxylating)

Comments: A cytochrome P-450 monooxygenase from the bacterium Rhodococcus sp. NCIMB 9784.
References: [1292]
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[EC 1.14.15.10 created 2012]

EC 1.14.15.11
Accepted name: pentalenic acid synthase

Reaction: 1-deoxypentalenate + reduced ferredoxin + O2 = pentalenate + oxidized ferredoxin + H2O
Other name(s): CYP105D7; sav7469 (gene name); 1-deoxypentalenate,reduced ferredoxin:O2 oxidoreductase

Systematic name: 1-deoxypentalenate,reduced ferredoxin:oxygen oxidoreductase
Comments: A heme-thiolate enzyme (P-450). Isolated from the bacterium Streptomyces avermitilis. The product,

pentalenate, is a co-metabolite from pentalenolactone biosynthesis.
References: [3786]

[EC 1.14.15.11 created 2012]

[1.14.15.12 Transferred entry. pimeloyl-[acyl-carrier protein] synthase. Now EC 1.14.14.46, pimeloyl-[acyl-carrier pro-
tein] synthase]

[EC 1.14.15.12 created 2013, deleted 2017]

EC 1.14.15.13
Accepted name: pulcherriminic acid synthase

Reaction: cyclo(L-leucyl-L-leucyl) + 6 reduced ferredoxin + 3 O2 = pulcherriminic acid + 6 oxidized ferredoxin
+ 4 H2O

Other name(s): cyclo-L-leucyl-L-leucyl dipeptide oxidase; CYP134A1; CypX (ambiguous)
Systematic name: cyclo(L-leucyl-L-leucyl),reduced-ferredoxin:oxygen oxidoreductase (N-hydroxylating,aromatizing)

Comments: A heme-thiolate (P-450) enzyme from the bacterium Bacillus subtilis. The order of events during the
overall reaction is unknown. Pulcherrimic acid spontaneously forms an iron chelate with Fe(3+) to
form the red pigment pulcherrimin [700].

References: [2342, 700]

[EC 1.14.15.13 created 2013]

EC 1.14.15.14
Accepted name: methyl-branched lipid ω-hydroxylase

Reaction: a methyl-branched lipid + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = an ω-hydroxy-
methyl-branched lipid + H2O + 2 oxidized ferredoxin [iron-sulfur] cluster

Other name(s): CYP124
Systematic name: methyl-branched lipid,reduced-ferredoxin:oxygen oxidoreductase (ω-hydroxylating)

Comments: The enzyme, found in pathogenic and nonpathogenic mycobacteria species, actinomycetes, and some
proteobacteria, hydroxylates the ω-carbon of a number of methyl-branched lipids, including (2E,6E)-
farnesol, phytanate, geranylgeraniol, 15-methylpalmitate and (2E,6E)-farnesyl diphosphate. It is a
P-450 heme-thiolate enzyme.

References: [1765]

[EC 1.14.15.14 created 2015]

EC 1.14.15.15
Accepted name: cholestanetriol 26-monooxygenase

Reaction: 5β-cholestane-3α,7α,12α-triol + 6 reduced adrenodoxin + 6 H+ + 3 O2 = (25R)-3α,7α,12α-
trihydroxy-5β-cholestan-26-oate + 6 oxidized adrenodoxin + 4 H2O (overall reaction)
(1a) 5β-cholestane-3α,7α,12α-triol + 2 reduced adrenodoxin + 2 H+ + O2 = (25R)-5β-cholestane-
3α,7α,12α,26-tetraol + 2 oxidized adrenodoxin + H2O
(1b) (25R)-5β-cholestane-3α,7α,12α,26-tetraol + 2 reduced adrenodoxin + 2 H+ + O2 = (25R)-
3α,7α,12α-trihydroxy-5β-cholestan-26-al + 2 oxidized adrenodoxin + 2 H2O
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(1c) (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-al + 2 reduced adrenodoxin + 2 H+ + O2 = (25R)-
3α,7α,12α-trihydroxy-5β-cholestan-26-oate + 2 oxidized adrenodoxin + H2O

Other name(s): 5β-cholestane-3α,7α,12α-triol 26-hydroxylase; 5β-cholestane-3α,7α,12α-triol hydroxylase;
cholestanetriol 26-hydroxylase; sterol 27-hydroxylase; sterol 26-hydroxylase; cholesterol 27-
hydroxylase; CYP27A; CYP27A1; cytochrome P450 27A1′

Systematic name: 5β-cholestane-3α,7α,12α-triol,adrenodoxin:oxygen oxidoreductase (26-hydroxylating)
Comments: This mitochondrial cytochrome P-450 enzyme requires adrenodoxin. It catalyses the first three sterol

side chain oxidations in bile acid biosynthesis via the neutral (classic) pathway. Can also act on
cholesterol, cholest-5-ene-3β,7α-diol, 7α-hydroxycholest-4-en-3-one, and 5β-cholestane-3α,7α-
diol. The enzyme can also hydroxylate cholesterol at positions 24 and 25. The initial source of the
electrons is NADPH, which transfers the electrons to the adrenodoxin via EC 1.18.1.6, adrenodoxin-
NADP+ reductase.

References: [2440, 2868, 4211, 85, 719, 1545, 3011, 1119, 3012]

[EC 1.14.15.15 created 1976 as EC 1.14.13.15, modified 2005, modified 2012, transferred 2016 to EC 1.14.15.15]

EC 1.14.15.16
Accepted name: vitamin D3 24-hydroxylase

Reaction: (1) calcitriol + 2 reduced adrenodoxin + 2 H+ + O2 = calcitetrol + 2 oxidized adrenodoxin + H2O
(2) calcidiol + 2 reduced adrenodoxin + 2 H+ + O2 = secalciferol + 2 oxidized adrenodoxin + H2O

Other name(s): CYP24A1
Systematic name: calcitriol,adrenodoxin:oxygen oxidoreductase (24-hydroxylating)

Comments: This mitochondrial cytochrome P-450 enzyme requires adrenodoxin. The enzyme can perform up
to 6 rounds of hydroxylation of the substrate calcitriol leading to calcitroic acid. The human enzyme
also shows 23-hydroxylating activity leading to 1,25 dihydroxyvitamin D3-26,23-lactone as end prod-
uct while the mouse and rat enzymes do not. The initial source of the electrons is NADPH, which
transfers the electrons to the adrenodoxin via EC 1.18.1.6, adrenodoxin-NADP+ reductase.

References: [2439, 1351, 3291, 3069, 2098, 3330, 3068]

[EC 1.14.15.16 created 2011 as EC 1.14.13.126, transferred 2016 to EC 1.14.15.16]

EC 1.14.15.17
Accepted name: pheophorbide a oxygenase

Reaction: pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = red chlorophyll catabolite
+ 2 oxidized ferredoxin [iron-sulfur] cluster (overall reaction)
(1a) pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = epoxypheophorbide a
+ 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(1b) epoxypheophorbide a + H2O = red chlorophyll catabolite (spontaneous)

Other name(s): pheide a monooxygenase; pheide a oxygenase; PaO; PAO
Systematic name: pheophorbide-a,ferredoxin:oxygen oxidoreductase (biladiene-forming)

Comments: This enzyme catalyses a key reaction in chlorophyll degradation, which occurs during leaf senescence
and fruit ripening in higher plants. The enzyme from Arabidopsis contains a Rieske-type iron-sulfur
cluster [3071] and requires reduced ferredoxin, which is generated either by NADPH through the
pentose-phosphate pathway or by the action of photosystem I [3209]. While still attached to this en-
zyme, the product is rapidly converted into primary fluorescent chlorophyll catabolite by the action of
EC 1.3.7.12, red chlorophyll catabolite reductase [3071, 3070]. Pheophorbide b acts as an inhibitor.
In 18O2 labelling experiments, only the aldehyde oxygen is labelled, suggesting that the other oxygen
atom may originate from H2O [1576].

References: [1576, 3071, 623, 3209, 1575, 3070]

[EC 1.14.15.17 created 2007 as EC 1.14.12.20, transferred 2016 to EC 1.14.15.17]

EC 1.14.15.18
Accepted name: calcidiol 1-monooxygenase
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Reaction: (1) calcidiol + 2 reduced adrenodoxin + 2 H+ + O2 = calcitriol + 2 oxidized adrenodoxin + H2O
(2) secalciferol + 2 reduced adrenodoxin + 2 H+ + O2 = calcitetrol + 2 oxidized adrenodoxin + H2O

Other name(s): 25-hydroxycholecalciferol 1-hydroxylase; 25-hydroxycholecalciferol 1-monooxygenase; 1-
hydroxylase-25-hydroxyvitamin D3; 25-hydroxy D3-1α-hydroxylase; 25-hydroxycholecalciferol 1α-
hydroxylase; 25-hydroxyvitamin D3 1α-hydroxylase

Systematic name: calcidiol,adrenodoxin:oxygen oxidoreductase (1-hydroxylating)
Comments: A P-450 (heme-thiolate) enzyme found in mammals.
References: [1268, 3292, 3331]

[EC 1.14.15.18 created 1976 as EC 1.14.13.13, transferred 2016 to EC 1.14.15.18]

EC 1.14.15.19
Accepted name: C-19 steroid 1α-hydroxylase

Reaction: testosterone + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 1α-hydroxytestosterone +
H2O + 2 oxidized ferredoxin [iron-sulfur] cluster

Other name(s): CYP260A1
Systematic name: testosterone,reduced-ferredoxin:oxygen oxidoreductase (1α-hydroxylating)

Comments: The enzyme, characterized from the bacterium Sorangium cellulosum, is a class I cytochrome P-450,
and uses ferredoxin as its electron donor [973]. It was shown to act on several C-19 steroid substrates,
including testosterone, androstenedione, testosterone-acetate and 11-oxoandrostenedione [1897].

References: [973, 1897]

[EC 1.14.15.19 created 2016]

EC 1.14.15.20
Accepted name: heme oxygenase (biliverdin-producing, ferredoxin)

Reaction: protoheme + 6 reduced ferredoxin [iron-sulfur] cluster + 3 O2 + 6 H+ = biliverdin + Fe2+ + CO + 6
oxidized ferredoxin [iron-sulfur] cluster + 3 H2O

Other name(s): HO1 (gene name); HY1 (gene name); HO3 (gene name); HO4 (gene name); pbsA1 (gene name)
Systematic name: protoheme,reduced ferredoxin:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)

Comments: The enzyme, found in plants, algae, and cyanobacteria, participates in the biosynthesis of phytochro-
mobilin and phytobilins. The terminal oxygen atoms that are incorporated into the carbonyl groups
of pyrrole rings A and B of biliverdin are derived from two separate oxygen molecules. The third
oxygen molecule provides the oxygen atom that converts the α-carbon to CO. Unlike this enzyme,
which uses ferredoxin as its electron donor, the electron source for the related mammalian enzyme
(EC 1.14.14.18) is EC 1.6.2.4, NADPH—hemoprotein reductase.

References: [2602, 3715, 734]

[EC 1.14.15.20 created 2016]

EC 1.14.15.21
Accepted name: zeaxanthin epoxidase

Reaction: zeaxanthin + 4 reduced ferredoxin [iron-sulfur] cluster + 4 H+ + 2 O2 = violaxanthin + 4 oxidized
ferredoxin [iron-sulfur] cluster + 2 H2O (overall reaction)
(1a) zeaxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = antheraxanthin + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(1b) antheraxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = violaxanthin + 2 oxi-
dized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): Zea-epoxidase
Systematic name: zeaxanthin,reduced ferredoxin:oxygen oxidoreductase

Comments: A flavoprotein (FAD) that is active under conditions of low light. Along with EC 1.23.5.1, violax-
anthin de-epoxidase, this enzyme forms part of the xanthophyll (or violaxanthin) cycle, which is in-
volved in protecting the plant against damage by excess light. It will also epoxidize lutein in some
higher-plant species.
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References: [435, 443, 3871, 1493, 1083, 1082, 2442]

[EC 1.14.15.21 created 2005 as EC 1.14.13.90, transferred 2016 to EC 1.14.15.21]

EC 1.14.15.22
Accepted name: vitamin D 1,25-hydroxylase

Reaction: (1) calciol + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = calcidiol + 2 oxidized ferre-
doxin [iron-sulfur] cluster + H2O
(2) calcidiol + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = calcitriol + 2 oxidized ferredoxin
[iron-sulfur] cluster + H2O

Other name(s): CYP105A1; Streptomyces griseolus cytochrome P450SU-1
Systematic name: calciol,ferredoxin:oxygen oxidoreductase (1,25-hydroxylating)

Comments: A P-450 (heme-thiolate) enzyme found in the bacterium Streptomyces griseolus. cf. EC 1.14.14.24,
vitamin D 25-hydroxylase and EC 1.14.15.18, calcidiol 1-monooxygenase.

References: [3332, 3711]

[EC 1.14.15.22 created 2016]

EC 1.14.15.23
Accepted name: chloroacetanilide N-alkylformylase

Reaction: butachlor + 2 reduced ferredoxin [iron-sulfur] cluster + O2 = 2-chloro-N-(2,6-
diethylphenyl)acetamide + butyl formate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): cndA (gene name)
Systematic name: butachlor,ferredoxin:oxygen oxidoreductase (butyl formate-releasing)

Comments: The enzyme, characterized from the bacterium Sphingomonas sp. DC-6, initiates the degradation of
several chloroacetanilide herbicides, including alachlor, acetochlor, and butachlor. The enzyme is a
Rieske non-heme iron oxygenase, and requires a ferredoxin and EC 1.18.1.3, ferredoxin—NAD+ re-
ductase, for activity.

References: [574]

[EC 1.14.15.23 created 2017]

EC 1.14.15.24
Accepted name: β-carotene 3-hydroxylase

Reaction: β-carotene + 4 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + 2 O2 = zeaxanthin + 4 oxidized
ferredoxin [iron-sulfur] cluster + 2 H2O (overall reaction)
(1a) β-carotene + 2 reduced ferredoxin [iron-sulfur] cluster + H+ + O2 = β-cryptoxanthin + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(1b) β-cryptoxanthin + 2 reduced ferredoxin [iron-sulfur] cluster + H+ + O2 = zeaxanthin + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O

Other name(s): β-carotene 3,3′-monooxygenase; CrtZ
Systematic name: β-carotene,reduced ferredoxin [iron-sulfur] cluster:oxygen 3-oxidoreductase

Comments: Requires ferredoxin and Fe(II). Also acts on other carotenoids with a β-end group. In some species
canthaxanthin is the preferred substrate.

References: [3734, 1059, 1060, 367, 2261, 4476, 610]

[EC 1.14.15.24 created 2011 as EC 1.14.13.129, transferred 2017 to EC 1.14.15.24]

EC 1.14.15.25
Accepted name: p-cymene methyl-monooxygenase

Reaction: p-cymene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 4-isopropylbenzyl alcohol + 2
oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): cymAa (gene name); cymA (gene name); p-cymene methyl hydroxylase
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Systematic name: p-cymene,ferredoxin:oxygen oxidoreductase (methyl-hydroxylating)
Comments: The enzyme, characterized from several Pseudomonas strains, initiates p-cymene catabolism through

hydroxylation of the methyl group. The enzyme has a distinct preference for substrates containing at
least an alkyl or heteroatom substituent at the para-position of toluene. The electrons are provided by
a reductase (EC 1.18.1.3, ferredoxin—NAD+ reductase) that transfers electrons from NADH via FAD
and an [2Fe-2S] cluster. In Pseudomonas chlororaphis the presence of a third component of unknown
function greatly increases the activity. cf. EC 1.14.15.26, toluene methyl-monooxygenase.

References: [910, 895, 2799, 894]

[EC 1.14.15.25 created 2018]

EC 1.14.15.26
Accepted name: toluene methyl-monooxygenase

Reaction: (1) toluene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = benzyl alcohol + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(2) p-xylene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 4-methylbenzyl alcohol + 2
oxidized ferredoxin [iron-sulfur] cluster + H2O
(3) m-xylene + O2 + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ = 3-methylbenzyl alcohol + 2
oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): xylM (gene names); ntnM (gene names)
Systematic name: methylbenzene,ferredoxin:oxygen oxidoreductase (methyl-hydroxylating)

Comments: The enzyme, characterized from several Pseudomonas strains, catalyses the first step in the degra-
dation of toluenes and xylenes. It has a broad substrate specificity and is also active with substi-
tuted compounds, such as chlorotoluenes. The electrons are provided by a reductase (EC 1.18.1.3,
ferredoxin—NAD+ reductase) that transfers electrons from NADH via FAD and an [2Fe-2S] cluster.
The enzyme can also act on its products, producing gem-diols that spontaneously dehydrate to form
aldehydes.

References: [3754, 3467, 402, 1716]

[EC 1.14.15.26 created 2018]

EC 1.14.15.27
Accepted name: β-dihydromenaquinone-9 ω-hydroxylase

Reaction: β-dihydromenaquinone-9 + 2 reduced ferredoxin [iron-sulfur] cluster + O2 = ω-hydroxy-β-
dihydromenaquinone-9 + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): cyp128 (gene name)
Systematic name: β-dihydromenaquinone-9,reduced ferredoxin:oxygen oxidoreductase (ω-hydroxylating)

Comments: The bacterial cytochrome P-450 enzyme is involved in the biosynthesis of ω-sulfo-β-
dihydromenaquinone-9 by members of the Mycobacterium tuberculosis complex.

References: [1550, 3570]

[EC 1.14.15.27 created 2018]

EC 1.14.15.28
Accepted name: cholest-4-en-3-one 26-monooxygenase [(25R)-3-oxocholest-4-en-26-oate forming]

Reaction: cholest-4-en-3-one + 6 reduced [2Fe-2S] ferredoxin + 3 O2 = (25R)-3-oxocholest-4-en-26-oate + 6
oxidized [2Fe-2S] ferredoxin + 4 H2O (overall reaction)
(1a) cholest-4-en-3-one + 2 reduced [2Fe-2S] ferredoxin + O2 = (25R)-26-hydroxycholest-4-en-3-one
+ 2 oxidized [2Fe-2S] ferredoxin + H2O
(1b) (25R)-26-hydroxycholest-4-en-3-one + 2 reduced [2Fe-2S] ferredoxin + O2 = (25R)-26-
oxocholest-4-en-3-one + 2 oxidized [2Fe-2S] ferredoxin + 2 H2O
(1c) (25R)-26-oxocholest-4-en-3-one + 2 reduced [2Fe-2S] ferredoxin + O2 = (25R)-3-oxocholest-4-
en-26-oate + 2 oxidized [2Fe-2S] ferredoxin + H2O

Other name(s): CYP142
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Systematic name: cholest-4-en-3-one,reduced [2Fe-2S] ferredoxin:oxygen oxidoreductase [(25R)-3-oxocholest-4-en-26-
oate forming]

Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in several bacterial pathogens, is involved in
degradation of the host cholesterol. It catalyses the hydroxylation of the C-26 carbon, followed by
oxidation of the alcohol to the carboxylic acid via the aldehyde intermediate, initiating the degra-
dation of the alkyl side-chain of cholesterol. The products are exclusively in the (25R) conforma-
tion. The enzyme also accepts cholesterol as a substrate. cf. EC 1.14.15.29, cholest-4-en-3-one 26-
monooxygenase [(25S)-3-oxocholest-4-en-26-oate forming]. The enzyme can receive electrons from
ferredoxin reductase in vitro, its natural electron donor is not known yet.

References: [872, 1766]

[EC 1.14.15.28 created 2016 as EC 1.14.13.221, transferred 2018 to EC 1.14.15.28]

EC 1.14.15.29
Accepted name: cholest-4-en-3-one 26-monooxygenase [(25S)-3-oxocholest-4-en-26-oate forming]

Reaction: cholest-4-en-3-one + 6 reduced ferredoxin [iron-sulfur] cluster + 6 H+ + 3 O2 = (25S)-3-oxocholest-
4-en-26-oate + 6 oxidized ferredoxin [iron-sulfur] cluster + 4 H2O (overall reaction)
(1a) cholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = (25S)-26-
hydroxycholest-4-en-3-one + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(1b) (25S)-26-hydroxycholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 =
(25S)-26-oxocholest-4-en-3-one + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(1c) (25S)-26-oxocholest-4-en-3-one + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = (25S)-
3-oxocholest-4-en-26-oate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): CYP125; CYP125A1; cholest-4-en-3-one 27-monooxygenase (misleading); cholest-4-en-3-
one,NADH:oxygen oxidoreductase (26-hydroxylating); cholest-4-en-3-one 26-monooxygenase (am-
biguous)

Systematic name: cholest-4-en-3-one,[reduced ferredoxin]:oxygen oxidoreductase [(25S)-3-oxocholest-4-en-26-oate
forming]

Comments: A cytochrome P-450 (heme-thiolate) protein found in several bacterial pathogens. The enzyme is
involved in degradation of the host’s cholesterol. It catalyses the hydroxylation of the C-26 carbon,
followed by oxidation of the alcohol to the carboxylic acid via the aldehyde intermediate, initiat-
ing the degradation of the alkyl side-chain of cholesterol [2917]. The products are exclusively in
the (25S) configuration. The enzyme is part of a two-component system that also includes a ferre-
doxin reductase (most likely KshB, which also interacts with EC 1.14.15.30, 3-ketosteroid 9α-
monooxygenase). The enzyme also accepts cholesterol as a substrate. cf. EC 1.14.15.28, cholest-4-
en-3-one 27-monooxygenase.

References: [3237, 2489, 499, 2917]

[EC 1.14.15.29 created 2012 as EC 1.14.13.141, modified 2016, transferred 2018 to EC 1.14.15.29]

EC 1.14.15.30
Accepted name: 3-ketosteroid 9α-monooxygenase

Reaction: androsta-1,4-diene-3,17-dione + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 9α-
hydroxyandrosta-1,4-diene-3,17-dione + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): KshA; 3-ketosteroid 9α-hydroxylase
Systematic name: androsta-1,4-diene-3,17-dione,[reduced ferredoxin]:oxygen oxidoreductase (9α-hydroxylating)

Comments: The enzyme is involved in the cholesterol degradation pathway of several bacterial pathogens, such as
Mycobacterium tuberculosis. It forms a two-component system with a ferredoxin reductase (KshB).
The enzyme contains a Rieske-type iron-sulfur center and non-heme iron. The product of the enzyme
is unstable, and spontaneously converts to 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione.

References: [2994, 498, 497]

[EC 1.14.15.30 created 2012 as EC 1.14.13.142, transferred 2018 to EC 1.14.15.30]
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EC 1.14.15.31
Accepted name: 2-hydroxy-5-methyl-1-naphthoate 7-hydroxylase

Reaction: 2-hydroxy-5-methyl-1-naphthoate + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 2,7-
dihydroxy-5-methyl-1-naphthoate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): NcsB3
Systematic name: 2-hydroxy-5-methyl-1-naphthoate,reduced ferredoxin:oxygen oxidoreductase (7-hydroxylating)

Comments: A cytochrome P-450 (heme-thiolate) protein involved in the synthesis of neocarzinostatin in the bac-
terium Streptomyces carzinostaticus.

References: [1368]

[EC 1.14.15.31 created 2014 as EC 1.14.99.49, transferred 2018 to EC 1.14.15.31]

EC 1.14.15.32
Accepted name: pentalenene oxygenase

Reaction: pentalenene + 4 reduced ferredoxin [iron-sulfur] cluster + 4 H+ + 2 O2 = pentalen-13-al + 4 oxidized
ferredoxin [iron-sulfur] cluster + 3 H2O (overall reaction)
(1a) pentalenene + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = pentalen-13-ol + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(1b) pentalen-13-ol + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = pentalen-13-al + 2
oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): PtlI
Systematic name: pentalenene,reduced ferredoxin:oxygen 13-oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein found in the bacterium Streptomyces avermitilis. The
enzyme is involved in the biosynthesis of pentalenolactone and related antibiotics.

References: [3088]

[EC 1.14.15.32 created 2011 as EC 1.14.13.133, transferred 2018 to EC 1.14.15.32]

EC 1.14.15.33
Accepted name: pikromycin synthase

Reaction: (1) narbomycin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = pikromycin + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(2) narbomycin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = neopikromycin + 2 oxidized
ferredoxin [iron-sulfur] cluster + H2O
(3) narbomycin + 4 reduced ferredoxin [iron-sulfur] cluster + 4 H+ + 2 O2 = novapikromyin + 4
oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(4) 10-deoxymethymycin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = methymycin + 2
oxidized ferredoxin [iron-sulfur] cluster + H2O
(5) 10-deoxymethymycin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = neomethymycin
+ 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
(6) 10-deoxymethymycin + 4 reduced ferredoxin [iron-sulfur] cluster + 4 H+ + 2 O2 = novamethymycin
+ 4 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): PikC; CYP107L1
Systematic name: narbomycin,reduced ferredoxin:oxygen oxidoreductase (pikromycin-forming)

Comments: A cytochrome P-450 (heme-thiolate) protein. Involved in the biosynthesis of a number of bacte-
rial macrolide antibiotics containing a desosamine glycoside unit. With narbomycin it hydroxy-
lates at either C-12 to give pikromycin or C-14 to give neopikromycin or both positions to give nar-
vopikromycin. With 10-deoxymethymycin it hydroxylates at either C-10 to give methymycin or C-12
to give neomethymycin or both positions to give novamethymycin.

References: [4289, 3480, 2232]

[EC 1.14.15.33 created 2014 as EC 1.14.13.185, transferred 2018 to EC 1.14.15.33]

EC 1.14.15.34
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Accepted name: 20-oxo-5-O-mycaminosyltylactone 23-monooxygenase
Reaction: 20-oxo-5-O-β-mycaminosyltylactone + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 5-O-

β-mycaminosyltylonolide + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O
Other name(s): tylH1 (gene name)

Systematic name: 20-oxo-5-O-β-mycaminosyltylactone,reduced ferredoxin:oxygen oxidoreductase (23-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein. Involved in the biosynthetic pathway of the macrolide

antibiotic tylosin, which is produced by several species of Streptomyces bacteria.
References: [183, 3155]

[EC 1.14.15.34 created 2014 as EC 1.14.13.186, transferred 2018 to EC 1.14.15.34]

EC 1.14.15.35
Accepted name: 6-deoxyerythronolide B hydroxylase

Reaction: 6-deoxyerythronolide B + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = erythronolide B +
2 oxidized ferredoxin [iron-sulfur] cluster + H2O

Other name(s): DEB hydroxylase; eryF (gene name); P450(eryF); CYP107A1
Systematic name: 6-deoxyerythronolide-B,reduced ferredoxin:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the bacterium Saccharopolyspora ery-
thraea. The enzyme is involved in the biosynthesis of the antibiotic erythromycin.

References: [4153, 3456, 710, 2685]

[EC 1.14.15.35 created 2014 as EC 1.14.13.188, transferred 2018 to EC 1.14.15.35]

EC 1.14.16 With reduced pteridine as one donor, and incorporation of one atom of oxygen into the
other donor

EC 1.14.16.1
Accepted name: phenylalanine 4-monooxygenase

Reaction: L-phenylalanine + tetrahydrobiopterin + O2 = L-tyrosine + 4a-hydroxytetrahydrobiopterin
Other name(s): phenylalaninase; phenylalanine 4-hydroxylase; phenylalanine hydroxylase

Systematic name: L-phenylalanine,tetrahydrobiopterin:oxygen oxidoreductase (4-hydroxylating)
Comments: The active centre contains mononuclear iron(II). The reaction involves an arene oxide that rearranges

to give the phenolic hydroxy group. This results in the hydrogen at C-4 migrating to C-3 and in part
being retained. This process is known as the NIH-shift. The 4a-hydroxytetrahydrobiopterin formed
can dehydrate to 6,7-dihydrobiopterin, both spontaneously and by the action of EC 4.2.1.96, 4a-
hydroxytetrahydrobiopterin dehydratase. The 6,7-dihydrobiopterin can be enzymically reduced back
to tetrahydrobiopterin, by EC 1.5.1.34, 6,7-dihydropteridine reductase, or slowly rearranges into the
more stable compound 7,8-dihydrobiopterin.

References: [1320, 1851, 2562, 3958, 511, 81, 964]

[EC 1.14.16.1 created 1961 as EC 1.99.1.2, transferred 1965 to EC 1.14.3.1, transferred 1972 to EC 1.14.16.1, modified 2002, modified 2003]

EC 1.14.16.2
Accepted name: tyrosine 3-monooxygenase

Reaction: L-tyrosine + tetrahydrobiopterin + O2 = L-dopa + 4a-hydroxytetrahydrobiopterin
Other name(s): L-tyrosine hydroxylase; tyrosine 3-hydroxylase; tyrosine hydroxylase

Systematic name: L-tyrosine,tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating)
Comments: The active centre contains mononuclear iron(II). The enzyme is activated by phosphorylation, catal-

ysed by EC 2.7.11.27, [acetyl-CoA carboxylase] kinase. The 4a-hydroxytetrahydrobiopterin formed
can dehydrate to 6,7-dihydrobiopterin, both spontaneously and by the action of EC 4.2.1.96, 4a-
hydroxytetrahydrobiopterin dehydratase. The 6,7-dihydrobiopterin can be enzymically reduced back
to tetrahydrobiopterin, by EC 1.5.1.34 (6,7-dihydropteridine reductase), or slowly rearranges into the
more stable compound 7,8-dihydrobiopterin.
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References: [2512, 1632, 2688, 3009, 1244]

[EC 1.14.16.2 created 1972, modified 2003]

EC 1.14.16.3
Accepted name: anthranilate 3-monooxygenase

Reaction: anthranilate + tetrahydrobiopterin + O2 = 3-hydroxyanthranilate + dihydrobiopterin + H2O
Other name(s): anthranilate 3-hydroxylase; anthranilate hydroxylase; anthranilic hydroxylase; anthranilic acid hy-

droxylase
Systematic name: anthranilate,tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating)

Comments: Requires Fe2+.
References: [1734, 2694]

[EC 1.14.16.3 created 1972]

EC 1.14.16.4
Accepted name: tryptophan 5-monooxygenase

Reaction: L-tryptophan + tetrahydrobiopterin + O2 = 5-hydroxy-L-tryptophan + 4a-hydroxytetrahydrobiopterin
Other name(s): L-tryptophan hydroxylase; indoleacetic acid-5-hydroxylase; tryptophan 5-hydroxylase; tryptophan

hydroxylase
Systematic name: L-tryptophan,tetrahydrobiopterin:oxygen oxidoreductase (5-hydroxylating)

Comments: The active centre contains mononuclear iron(II). The enzyme is activated by phosphorylation,
catalysed by a Ca2+-activated protein kinase. The 4a-hydroxytetrahydrobiopterin formed can
dehydrate to 6,7-dihydrobiopterin, both spontaneously and by the action of EC 4.2.1.96, 4a-
hydroxytetrahydrobiopterin dehydratase. The 6,7-dihydrobiopterin can be enzymically reduced back
to tetrahydrobiopterin, by EC 1.5.1.34 (6,7-dihydropteridine reductase), or slowly rearranges into the
more stable compound 7,8-dihydrobiopterin.

References: [1071, 1357, 1628, 1734, 4109]

[EC 1.14.16.4 created 1972, modified 2003]

EC 1.14.16.5
Accepted name: alkylglycerol monooxygenase

Reaction: 1-O-alkyl-sn-glycerol + tetrahydrobiopterin + O2 = 1-O-(1-hydroxyalkyl)-sn-glycerol + dihydro-
biopterin + H2O

Other name(s): glyceryl-ether monooxygenase; glyceryl-ether cleaving enzyme; glyceryl ether oxygenase; glyceryl
etherase; O-alkylglycerol monooxygenase

Systematic name: 1-alkyl-sn-glycerol,tetrahydrobiopterin:oxygen oxidoreductase
Comments: The enzyme cleaves alkylglycerols, but does not cleave alkenylglycerols (plasmalogens). Requires

non-heme iron [4150], reduced glutathione and phospholipids for full activity. The product sponta-
neously breaks down to form a fatty aldehyde and glycerol.

References: [1665, 2999, 3568, 3585, 3891, 3775, 4150, 4178]

[EC 1.14.16.5 created 1972 as EC 1.14.99.17, transferred 1976 to EC 1.14.16.5, modified 2010]

EC 1.14.16.6
Accepted name: mandelate 4-monooxygenase

Reaction: (S)-2-hydroxy-2-phenylacetate + tetrahydrobiopterin + O2 = (S)-4-hydroxymandelate + dihydro-
biopterin + H2O

Other name(s): L-mandelate 4-hydroxylase; mandelic acid 4-hydroxylase
Systematic name: (S)-2-hydroxy-2-phenylacetate,tetrahydrobiopterin:oxygen oxidoreductase (4-hydroxylating)

Comments: Requires Fe2+.
References: [291]
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[EC 1.14.16.6 created 1984]

EC 1.14.16.7
Accepted name: phenylalanine 3-monooxygenase

Reaction: L-phenylalanine + tetrahydrobiopterin + O2 = 3-hydroxy-L-phenylalanine + 4a-
hydroxytetrahydrobiopterin

Other name(s): PacX; phenylalanine 3-hydroxylase
Systematic name: L-phenylalanine,tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating)

Comments: The enzyme from the bacterium Streptomyces coeruleorubidus forms 3-hydroxy-L-phenylalanine (i.e.
m-L-tyrosine), which is one of the building blocks in the biosynthesis of the uridyl peptide antibiotics
pacidamycins.

References: [4445]

[EC 1.14.16.7 created 2014]

EC 1.14.17 With reduced ascorbate as one donor, and incorporation of one atom of oxygen into the
other donor

EC 1.14.17.1
Accepted name: dopamine β-monooxygenase

Reaction: dopamine + ascorbate + O2 = noradrenaline + dehydroascorbate + H2O
Other name(s): dopamine β-hydroxylase; MDBH (membrane-associated dopamine β-monooxygenase); SDBH

(soluble dopamine β-monooxygenase); dopamine-B-hydroxylase; 3,4-dihydroxyphenethylamine
β-oxidase; 4-(2-aminoethyl)pyrocatechol β-oxidase; dopa β-hydroxylase; dopamine β-oxidase;
dopamine hydroxylase; phenylamine β-hydroxylase; (3,4-dihydroxyphenethylamine)β-mono-
oxygenase; DβM (gene name)

Systematic name: dopamine,ascorbate:oxygen oxidoreductase (β-hydroxylating)
Comments: A copper protein. Stimulated by fumarate.
References: [1072, 2211]

[EC 1.14.17.1 created 1965 as EC 1.14.2.1, transferred 1972 to EC 1.14.17.1]

[1.14.17.2 Deleted entry. 4-coumarate 3-monooxygenase. Now included with EC 1.14.18.1 monophenol monooxygenase]

[EC 1.14.17.2 created 1972, deleted 1984]

EC 1.14.17.3
Accepted name: peptidylglycine monooxygenase

Reaction: peptidylglycine + ascorbate + O2 = peptidyl(2-hydroxyglycine) + dehydroascorbate + H2O
Other name(s): peptidylglycine 2-hydroxylase; peptidyl α-amidating enzyme; peptide-α-amide synthetase; syn-

thase, peptide α-amide; peptide α-amidating enzyme; peptide α-amide synthase; peptidylglycine α-
hydroxylase; peptidylglycine α-amidating monooxygenase; PAM-A; PAM-B; PAM

Systematic name: peptidylglycine,ascorbate:oxygen oxidoreductase (2-hydroxylating)
Comments: A copper protein. Peptidylglycines with a neutral amino acid residue in the penultimate position are

the best substrates for the enzyme. The product is unstable and dismutates to glyoxylate and the corre-
sponding desglycine peptide amide, a reaction catalysed by EC 4.3.2.5 peptidylamidoglycolate lyase.
Involved in the final step of biosynthesis of α-melanotropin and related biologically active peptides.

References: [379, 380, 1221, 1845, 2673, 2674]

[EC 1.14.17.3 created 1989]

EC 1.14.17.4
Accepted name: aminocyclopropanecarboxylate oxidase
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Reaction: 1-aminocyclopropane-1-carboxylate + ascorbate + O2 = ethene + cyanide + dehydroascorbate + CO2
+ 2 H2O

Other name(s): ACC oxidase; ethylene-forming enzyme; 1-aminocyclopropane-1-carboxylate oxygenase (ethylene-
forming)

Systematic name: 1-aminocyclopropane-1-carboxylate oxygenase (ethene-forming)
Comments: A nonheme iron enzyme. Requires CO2 for activity. In the enzyme from plants, the ethene has sig-

nalling functions such as stimulation of fruit-ripening.
References: [4453, 4451, 3016, 549, 3881]

[EC 1.14.17.4 created 2003]

EC 1.14.18 With another compound as one donor, and incorporation of one atom of oxygen into the
other donor

EC 1.14.18.1
Accepted name: tyrosinase

Reaction: (1) L-tyrosine + O2 = dopaquinone + H2O (overall reaction)
(1a) L-tyrosine + 1

2 O2 = L-dopa
(1b) L-dopa + 1

2 O2 = dopaquinone + H2O
(2) 2 L-dopa + O2 = 2 dopaquinone + 2 H2O

Other name(s): monophenol monooxygenase; phenolase; monophenol oxidase; cresolase; monophenolase; tyrosine-
dopa oxidase; monophenol monooxidase; monophenol dihydroxyphenylalanine:oxygen oxidoreduc-
tase; N-acetyl-6-hydroxytryptophan oxidase; monophenol, dihydroxy-L-phenylalanine oxygen oxi-
doreductase; o-diphenol:O2 oxidoreductase; phenol oxidase

Systematic name: L-tyrosine,L-dopa:oxygen oxidoreductase
Comments: A type III copper protein found in a broad variety of bacteria, fungi, plants, insects, crustaceans, and

mammals, which is involved in the synthesis of betalains and melanin. The enzyme, which is acti-
vated upon binding molecular oxygen, can catalyse both a monophenolase reaction cycle (reaction
1) or a diphenolase reaction cycle (reaction 2). During the monophenolase cycle, one of the bound
oxygen atoms is transferred to a monophenol (such as L-tyrosine), generating an o-diphenol interme-
diate, which is subsequently oxidized to an o-quinone and released, along with a water molecule. The
enzyme remains in an inactive deoxy state, and is restored to the active oxy state by the binding of a
new oxygen molecule. During the diphenolase cycle the enzyme binds an external diphenol molecule
(such as L-dopa) and oxidizes it to an o-quinone that is released along with a water molecule, leaving
the enzyme in the intermediate met state. The enzyme then binds a second diphenol molecule and re-
peats the process, ending in a deoxy state [3223]. The second reaction is identical to that catalysed by
the related enzyme catechol oxidase (EC 1.10.3.1). However, the latter can not catalyse the hydroxy-
lation or monooxygenation of monophenols.

References: [757, 2961, 3034, 3200, 3304, 3636, 3223]

[EC 1.14.18.1 created 1972, modified 1976, modified 1980 (EC 1.14.17.2 created 1972, incorporated 1984), modified 2012]

EC 1.14.18.2
Accepted name: CMP-N-acetylneuraminate monooxygenase

Reaction: CMP-N-acetylneuraminate + 2 ferrocytochrome b5 + O2 + 2 H+ = CMP-N-glycoloylneuraminate + 2
ferricytochrome b5 + H2O

Other name(s): CMP-N-acetylneuraminic acid hydroxylase; CMP-Neu5Ac hydroxylase; cytidine monophos-
phoacetylneuraminate monooxygenase; N-acetylneuraminic monooxygenase; cytidine-5′-
monophosphate-N-acetylneuraminic acid hydroxylase

Systematic name: CMP-N-acetylneuraminate,ferrocytochrome-b5:oxygen oxidoreductase (N-acetyl-hydroxylating)
Comments: This enzyme contains both a Rieske-type [2Fe-2S] cluster and a second iron site. The ferricytochrome

b5 produced is reduced by NADH and cytochrome-b5 reductase (EC 1.6.2.2). The enzyme can be
activated by Fe2+ or Fe3+.

References: [3469, 2050, 3378, 1861, 3370]
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[EC 1.14.18.2 created 1992 as EC 1.14.13.45, transferred 2003 to EC 1.14.18.2]

EC 1.14.18.3
Accepted name: methane monooxygenase (particulate)

Reaction: methane + quinol + O2 = methanol + quinone + H2O
Systematic name: methane,quinol:oxygen oxidoreductase

Comments: Contains copper. It is membrane-bound, in contrast to the soluble methane monooxygenase (EC
1.14.13.25).

References: [3486, 210, 1949, 179]

[EC 1.14.18.3 created 2011]

EC 1.14.18.4
Accepted name: phosphatidylcholine 12-monooxygenase

Reaction: a 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine + 2 ferrocytochrome b5 + O2 + 2 H+ = a 1-acyl-2-
[(12R)-12-hydroxyoleoyl]-sn-glycero-3-phosphocholine + 2 ferricytochrome b5 + H2O

Other name(s): ricinoleic acid synthase; oleate ∆12-hydroxylase; oleate ∆12-monooxygenase
Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12-

hydroxylating)
Comments: The enzyme, characterized from the plant Ricinus communis (castor bean), is involved in produc-

tion of the 12-hydroxylated fatty acid ricinoleate. The enzyme, which shares sequence similarity with
fatty-acyl desaturases, requires a cytochrome b5 as the electron donor.

References: [1144, 2614, 3561, 2254, 413]

[EC 1.14.18.4 created 1984 as EC 1.14.13.26, transferred 2015 to EC 1.14.18.4]

EC 1.14.18.5
Accepted name: sphingolipid C4-monooxygenase

Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R)-4-hydroxysphinganine ceramide + 2
ferricytochrome b5 + H2O

Other name(s): sphinganine C4-monooxygenase; sphingolipid C4-hydroxylase; SUR2 (gene name); SBH1 (gene
name); SBH2 (gene name); DEGS2 (gene name)

Systematic name: dihydroceramide,ferrocytochrome b5:oxygen oxidoreductase (C4-hydroxylating)
Comments: The enzyme, which belongs to the familiy of endoplasmic reticular cytochrome b5-dependent en-

zymes, is involved in the biosynthesis of sphingolipids in eukaryotes. Some enzymes are bifunctional
and also catalyse EC 1.14.19.17, sphingolipid 4-desaturase [3849].

References: [1329, 1286, 3600, 3849, 2583]

[EC 1.14.18.5 created 2012 as EC 1.14.13.169, transferred 2015 to EC 1.14.18.5]

EC 1.14.18.6
Accepted name: 4-hydroxysphinganine ceramide fatty acyl 2-hydroxylase

Reaction: a phytoceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2′R)-2′-hydroxyphytoceramide + 2 ferricy-
tochrome b5 + H2O

Other name(s): FA2H (gene name); SCS7 (gene name)
Systematic name: (4R)-4-hydroxysphinganine ceramide,ferrocytochrome-b5:oxygen oxidoreductase (fatty acyl 2-

hydroxylating)
Comments: The enzyme, characterized from yeast and mammals, catalyses the hydroxylation of carbon 2 of long-

or very-long-chain fatty acids attached to (4R)-4-hydroxysphinganine during de novo ceramide syn-
thesis. The enzymes from yeast and from mammals contain an N-terminal cytochrome b5 domain that
acts as the direct electron donor to the desaturase active site. The newly introduced 2-hydroxyl group
has R-configuration. cf. EC 1.14.18.7, dihydroceramide fatty acyl 2-hydroxylase.

References: [2561, 890, 58, 913, 1318]
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[EC 1.14.18.6 created 2015]

EC 1.14.18.7
Accepted name: dihydroceramide fatty acyl 2-hydroxylase

Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (2′R)-2′-hydroxydihydroceramide + 2
ferricytochrome b5 + H2O

Other name(s): FAH1 (gene name); FAH2 (gene name); plant sphingolipid fatty acid 2-hydroxylase
Systematic name: dihydroceramide,ferrocytochrome-b5:oxygen oxidoreductase (fatty acyl 2-hydroxylating)

Comments: The enzyme, characterized from plants, catalyses the hydroxylation of carbon 2 of long- or very-
long-chain fatty acids attached to sphinganine during de novo ceramide synthesis. The enzyme re-
quires an external cytochrome b5 as the electron donor. The newly introduced 2-hydroxyl group has
R-configuration. cf. EC 1.14.18.6, 4-hydroxysphinganine ceramide fatty acyl 2-hydroxylase.

References: [2682, 2683, 2684]

[EC 1.14.18.7 created 2015]

EC 1.14.18.8
Accepted name: 7α-hydroxycholest-4-en-3-one 12α-hydroxylase

Reaction: 7α-hydroxycholest-4-en-3-one + 2 ferrocytochrome b5 + 2 H+ + O2 = 7α,12α-dihydroxycholest-4-
en-3-one + 2 ferricytochrome b5 + + H2O

Other name(s): 7α-hydroxy-4-cholesten-3-one 12α-monooxygenase; CYP12; sterol 12α-hydroxylase (ambiguous);
HCO 12α-hydroxylase

Systematic name: 7α-hydroxycholest-4-en-3-one,ferrocytochrome-b5:oxygen oxidoreductase (12α-hydroxylating)
Comments: A P-450 heme-thiolate protein. Requires EC 1.6.2.4, NADPH—hemoprotein reductase and cy-

tochrome b5 for maximal activity. This enzyme is important in bile acid biosynthesis, being respon-
sible for the balance between the formation of cholic acid and chenodeoxycholic acid [925].

References: [1666, 925, 3263]

[EC 1.14.18.8 created 2005 as EC 1.14.13.95, transferred 2015 to EC 1.14.18.8]

EC 1.14.18.9
Accepted name: methylsterol monooxygenase

Reaction: 4,4-dimethyl-5α-cholest-7-en-3β-ol + 6 ferrocytochrome b5 + 3 O2 + 6 H+ = 3β-hydroxy-4β-methyl-
5α-cholest-7-ene-4α-carboxylate + 6 ferricytochrome b5 + 4 H2O (overall reaction)
(1a) 4,4-dimethyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 4β-hydroxymethyl-
4α-methyl-5α-cholest-7-en-3β-ol + 2 ferricytochrome b5 + H2O
(1b) 4β-hydroxymethyl-4α-methyl-5α-cholest-7-en-3β-ol + 2 ferrocytochrome b5 + O2 + 2 H+ = 3β-
hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferricytochrome b5 + 2 H2O
(1c) 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + 2 ferrocytochrome b5 + O2 + 2 H+ =
3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + 2 ferricytochrome b5 + H2O

Other name(s): methylsterol hydroxylase; 4-methylsterol oxidase; 4,4-dimethyl-5α-cholest-7-en-3β-ol,hydrogen-
donor:oxygen oxidoreductase (hydroxylating)

Systematic name: 4,4-dimethyl-5α-cholest-7-en-3β-ol,ferrocytochrome-b5:oxygen oxidoreductase (hydroxylating)
Comments: Also acts on 4α-methyl-5α-cholest-7-en-3β-ol. The sterol can be based on cycloartenol as well as

lanosterol.
References: [2548, 1172, 381, 1112, 1863, 2951, 3103]

[EC 1.14.18.9 created 1972 as EC 1.14.99.16, transferred 2002 to EC 1.14.13.72, transferred 2017 to EC 1.14.18.9]

EC 1.14.19 With oxidation of a pair of donors resulting in the reduction of O2 to two molecules of
water
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EC 1.14.19.1
Accepted name: stearoyl-CoA 9-desaturase

Reaction: stearoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = oleoyl-CoA + 2 ferricytochrome b5 + 2 H2O
Other name(s): ∆9-desaturase; acyl-CoA desaturase; fatty acid desaturase; stearoyl-CoA, hydrogen-donor:oxygen

oxidoreductase
Systematic name: stearoyl-CoA,ferrocytochrome-b5:oxygen oxidoreductase (9,10-dehydrogenating)

Comments: An iron protein. The rat liver enzyme is an enzyme system involving cytochrome b5 and EC 1.6.2.2,
cytochrome-b5 reductase. The ferricytochrome b5 produced is reduced by NADH and cytochrome-b5
reductase (EC 1.6.2.2).

References: [1113, 2901, 2902, 3684]

[EC 1.14.19.1 created 1972 as EC 1.14.99.5, modified 1986, modified 2000, transferred 2000 to EC 1.14.19.1, modified 2003]

EC 1.14.19.2
Accepted name: stearoyl-[acyl-carrier-protein] 9-desaturase

Reaction: stearoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = oleoyl-[acyl-
carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): stearyl acyl carrier protein desaturase; stearyl-ACP desaturase; acyl-[acyl-carrier-protein] desaturase;
acyl-[acyl-carrier protein],hydrogen-donor:oxygen oxidoreductase

Systematic name: stearoyl-[acyl-carrier protein],reduced ferredoxin:oxygen oxidoreductase (9,10 cis-dehydrogenating)
Comments: The enzyme is found in the lumen of plastids, where de novo biosynthesis of fatty acids occurs, and

acts on freshly synthesized saturated fatty acids that are still linked to acyl-carrier protein. The en-
zyme determines the position of the double bond by its distance from the carboxylic acid end of the
fatty acid. It also acts on palmitoyl-[acyl-carrier-protein] [470, 495].

References: [1726, 2680, 3459, 470, 495]

[EC 1.14.19.2 created 1972 as EC 1.14.99.6, modified 2000, transferred 2000 to EC 1.14.19.2, modified 2015]

EC 1.14.19.3
Accepted name: acyl-CoA 6-desaturase

Reaction: (1) linoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = γ-linolenoyl-CoA + 2 ferricytochrome b5 +
2 H2O
(2) α-linolenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = stearidonoyl-CoA + 2 ferricytochrome b5
+ 2 H2O

Other name(s): ∆6-desaturase; ∆6-fatty acyl-CoA desaturase; ∆6-acyl CoA desaturase; fatty acid ∆6-desaturase;
fatty acid 6-desaturase; linoleate desaturase; linoleic desaturase; linoleic acid desaturase; linoleoyl
CoA desaturase; linoleoyl-coenzyme A desaturase; long-chain fatty acid ∆6-desaturase; linoleoyl-
CoA,hydrogen-donor:oxygen oxidoreductase; linoleoyl-CoA desaturase; FADS2 (gene name)

Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (6,7 cis-dehydrogenating)
Comments: An iron protein. The enzyme introduces a cis double bond at carbon 6 of acyl-CoAs. It is a front-end

desaturase, introducing the new double bond between a pre-existing double bond and the carboxyl-
end of the fatty acid. The human enzyme has a broad substrate range. It also acts on palmitoyl-CoA,
generating sapienoyl-CoA [1174], and on (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl-
CoA, converting it to (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl-CoA as part of a
pathway that produces docosahexaenoate [3608]. The enzyme contains a cytochrome b5 domain that
is assumed to act in vivo as the electron donor to the active site of the desaturase.

References: [2865, 602, 3608, 1174, 852]

[EC 1.14.19.3 created 1986 as EC 1.14.99.25, transferred 2000 to EC 1.14.19.3, modified 2015]

EC 1.14.19.4
Accepted name: acyl-lipid (11-3)-desaturase

Reaction: (1) an (11Z,14Z)-icosa-11,14-dienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an
(8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
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(2) an (11Z,14Z,17Z)-icosa-11,14,17-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an
(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O

Other name(s): acyl-lipid 8-desaturase; ∆8 fatty acid desaturase; ∆8-desaturase; ∆8-fatty-acid desaturase; efd1 (gene
name); D8Des (gene name); phytosphinganine,hydrogen donor:oxygen ∆8-oxidoreductase (incorrect);
SLD

Systematic name: acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase [(11-3),(11-2)-cis-dehydrogenating]
Comments: The enzyme, characterized from the protist Euglena gracilis [4094] and the microalga Rebecca salina

[4475], introduces a cis double bond at the 8-position in 20-carbon fatty acids that are incorporated
into a glycerolipid and have an existing ∆11 desaturation. The enzyme is a front-end desaturase, intro-
ducing the new double bond between the pre-existing double bond and the carboxyl-end of the fatty
acid. It contains a cytochrome b5 domain that acts as the direct electron donor to the active site of
the desaturase, and does not require an external cytochrome. Involved in alternative pathways for the
biosynthesis of the polyunsaturated fatty acids arachidonate and icosapentaenoate.

References: [4094, 4475]

[EC 1.14.19.4 created 2008, modified 2015]

EC 1.14.19.5
Accepted name: acyl-CoA 11-(Z)-desaturase

Reaction: an acyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = an (11Z)-enoyl-CoA + 2 ferricytochrome b5 + 2
H2O

Other name(s): ∆11 desaturase; fatty acid ∆11-desaturase; TpDESN; Cro-PG; ∆11 fatty acid desaturase; Z/E11-
desaturase; ∆11-palmitoyl-CoA desaturase; acyl-CoA,hydrogen donor:oxygen ∆11-oxidoreductase;
∆11-fatty-acid desaturase

Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (11,12 cis-dehydrogenating)
Comments: The enzyme introduces a cis double bond at position C-11 of saturated fatty acyl-CoAs. In moths the

enzyme participates in the biosynthesis of their sex pheromones. The enzyme from the marine mi-
croalga Thalassiosira pseudonana is specific for palmitoyl-CoA (16:0) [3910], that from the leafroller
moth Choristoneura rosaceana desaturates myristoyl-CoA (14:0) [1385], while that from the moth
Spodoptera littoralis accepts both substrates [2420]. The enzyme contains three histidine boxes that
are conserved in all desaturases [3211]. It is membrane-bound, and contains a cytochrome b5-like do-
main at the N-terminus that serves as the electron donor for the active site of the desaturase.

References: [2420, 3211, 2748, 3910, 1385]

[EC 1.14.19.5 created 2008 (EC 1.14.99.32 created 2000, incorporated 2015), modified 2015]

EC 1.14.19.6
Accepted name: acyl-CoA (9+3)-desaturase

Reaction: (1) oleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = linoleoyl-CoA + 2 ferricytochrome b5 + 2
H2O
(2) palmitoleoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (9Z,12Z)-hexadeca-9,12-dienoyl-CoA +
2 ferricytochrome b5 + 2 H2O

Other name(s): oleoyl-CoA 12-desaturase; ∆12 fatty acid desaturase; ∆12(ω6)-desaturase; oleoyl-CoA ∆12 desaturase;
∆12 desaturase; ∆12-desaturase; ∆12-fatty-acid desaturase; acyl-CoA,hydrogen donor:oxygen ∆12-
oxidoreductase

Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond at position 12 of fatty-acyl-CoAs that con-

tain a cis double bond at position 9. When acting on 19:1∆10 fatty acyl-CoA the enzyme from the
pathogenic protozoan Trypanosoma brucei introduces the new double bond at position 13, indicating
that the new double bond is introduced three carbons from the existing cis double bond, towards the
methyl-end of the fatty acid. Requires cytochrome b5 as the electron donor [2993].

References: [352, 2292, 3899, 2993]

[EC 1.14.19.6 created 2008, modified 2015]
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[1.14.19.7 Transferred entry. (S)-2-hydroxypropylphosphonic acid epoxidase. Now EC 1.11.1.23, (S)-2-hydroxypropylphosphonic
acid epoxidase.]

[EC 1.14.19.7 created 2011, deleted 2014]

EC 1.14.19.8
Accepted name: pentalenolactone synthase

Reaction: pentalenolactone F + O2 + 2 reduced ferredoxin + 2 H+ = pentalenolactone + 2 oxidized ferredoxin +
2 H2O

Other name(s): penM (gene name); pntM (gene name)
Systematic name: pentalenolactone-reduced-ferredoxin:oxygen oxidoreductase (pentalenolactone forming)

Comments: A heme-thiolate protein (P-450). Isolated from the bacteria Streptomyces exfoliatus and Streptomyces
arenae.

References: [4477]

[EC 1.14.19.8 created 2012 as EC 1.3.7.10, transferred 2013 to EC 1.14.19.8]

EC 1.14.19.9
Accepted name: tryptophan 7-halogenase

Reaction: tryptophan + FADH2 + chloride + O2 + H+ = 7-chloro-L-tryptophan + FAD + 2 H2O
Other name(s): prnA (gene name); rebH (gene name); ktzQ (gene name)

Systematic name: L-tryptophan:FADH2 oxidoreductase (7-halogenating)
Comments: A flavin-dependent halogenase. The enzyme from the bacterium Lechevalieria aerocolonigenes catal-

yses the initial step in the biosynthesis of rebeccamycin [4356]. It utilizes molecular oxygen to oxi-
dize the FADH2 cofactor, giving C4a-hydroperoxyflavin, which then reacts with chloride to produce
a hypochlorite ion. The latter reacts with an active site lysine to generate a chloramine, which chlo-
rinates the substrate. Also acts on bromide ion. cf. EC 1.14.19.58, tryptophan 5-halogenase, and EC
1.14.19.59, tryptophan 6-halogenase.

References: [854, 4356, 303, 1454]

[EC 1.14.19.9 created 2009 as EC 1.14.14.7, transferred 2014 to EC 1.14.19.9, modified 2018]

EC 1.14.19.10
Accepted name: icosanoyl-CoA 5-desaturase

Reaction: icosanoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (Z)-icos-5-enoyl-CoA + 2 ferricytochrome b5
+ 2 H2O

Other name(s): acyl-CoA ∆5-desaturase (ambiguous)
Systematic name: icosanoyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (5,6 cis-dehydrogenating)

Comments: The enzyme, characterized from the plant Limnanthes douglasii (meadowfoam), is involved in the
biosynthesis of (5Z)-icos-5-enoate, an unusual monounsaturated fatty acid that makes up to 60% of
the total fatty acids in Limnanthes sp. seed oil. The enzyme only acts on saturated fatty acids.

References: [471]

[EC 1.14.19.10 created 2015]

EC 1.14.19.11
Accepted name: acyl-[acyl-carrier-protein] 4-desaturase

Reaction: palmitoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = (4Z)-
hexadec-4-enoyl-[acyl-carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): ∆4-palmitoyl-[acyl carrier protein] desaturase
Systematic name: palmitoyl-[acyl-carrier protein],reduced acceptor:oxygen oxidoreductase (4,5 cis-dehydrogenating)
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Comments: The enzymes from the plants Coriandrum sativum (coriander) and Hedera helix (English ivy)
are involved in biosynthesis of petroselinate [(6Z)-octadec-6-enoate], which is formed by elonga-
tion of (4Z)-hexadec-4-enoate. The ivy enzyme can also act on oleoyl-[acyl-carrier protein] and
palmitoleoyl-[acyl-carrier protein], generating the corresponding 4,9-diene.

References: [474, 472, 4200]

[EC 1.14.19.11 created 2015]

EC 1.14.19.12
Accepted name: acyl-lipid ω-(9-4) desaturase

Reaction: (1) linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = pinolenoyl-[glycerolipid] + 2 ferri-
cytochrome b5 + 2 H2O
(2) α-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = coniferonoyl-[glycerolipid] + 2
ferricytochrome b5 + 2 H2O

Other name(s): acyl-lipid ω-13 desaturase; acyl-lipid 7-desaturase (ambiguous)
Systematic name: acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase [ω(9-4),ω(9-5) cis-dehydrogenating]

Comments: The enzyme, characterized from the green alga Chlamydomonas reinhardtii, is a front-end desaturase
that introduces a cis double bond in ω9 unsaturated C18 or C20 fatty acids incorporated into lipids,
at a position 4 carbon atoms from the existing ω9 bond, towards the carboxy end of the fatty acid (at
the ω13 position). When acting on 20:2∆(11,14) and 20:3∆(11,14,17) substrates it introduces the new
double bond between carbons 7 and 8. The enzyme contains a cytochrome b5 domain that acts as the
direct electron donor for the active site of the desaturase.

References: [1802]

[EC 1.14.19.12 created 2015]

EC 1.14.19.13
Accepted name: acyl-CoA 15-desaturase

Reaction: (9Z,12Z)-hexadeca-9,12-dienoyl-CoA + reduced acceptor + O2 = (9Z,12Z,15Z)-hexadeca-9,12,15-
trienoyl-CoA + acceptor + 2 H2O

Other name(s): DES3 (gene name)
Systematic name: acyl-CoA,reduced acceptor:oxygen oxidoreductase (15,16 cis-dehydrogenating)

Comments: The enzyme, characterized from the the plant Sorghum bicolor, is involved in the biosynthesis of sor-
goleone, an allelopathic compound produced in root hair cells. The enzyme inserts a cis double bond
at carbon 15. When acting on its natural substrate, (9Z,12Z)-hexadeca-9,12-dienoyl-CoA, it produces
a product with a terminal double bond.

References: [2930]

[EC 1.14.19.13 created 2015]

EC 1.14.19.14
Accepted name: linoleoyl-lipid ∆9 conjugase

Reaction: a linoleoyl-[glycerolipid] + reduced acceptor + O2 = an (8E,10E,12Z)-octadeca-8,10,12-trienoyl-
[glycerolipid] + acceptor + 2 H2O

Systematic name: linoleoyl-lipid,reduced acceptor:oxygen 8,11-allylic oxidase (8E,10E-forming)
Comments: The enzyme, characterized from the plant Calendula officinalis, converts a single cis double bond at

position 9 of fatty acids incorporated into glycerolipids into two conjugated trans double bonds at
positions 8 and 10.

References: [3084, 473]

[EC 1.14.19.14 created 2015]
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EC 1.14.19.15
Accepted name: (11Z)-hexadec-11-enoyl-CoA conjugase

Reaction: (11Z)-hexadec-11-enoyl-CoA + reduced acceptor + O2 = (10E,12Z)-hexadeca-10,12-dienoyl-CoA +
acceptor + 2 H2O

Other name(s): Bmpgdesat1 (gene name)
Systematic name: (11Z)-hexadec-11-enoyl-CoA,reduced acceptor:oxygen 10,13-allylic oxidase (10E,12E-forming)

Comments: The enzyme, characterized from the silk moth Bombyx mori, catalyses a step in the pathway for the
biosynthesis of bombykol, a sex pheromone produced by the moth. The enzyme converts a single
cis double bond at position 11 of (11Z)-hexadec-11-enoyl-CoA into conjugated 10 trans and 12 cis
double bonds. Prior to catalysing this reaction, the enzyme catalyses the introduction of the cis bond
in position 11 (cf. EC 1.14.19.5, acyl-CoA 11-desaturase).

References: [2640]

[EC 1.14.19.15 created 2015]

EC 1.14.19.16
Accepted name: linoleoyl-lipid ∆12 conjugase (11E,13Z-forming)

Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,11E,13Z)-octadeca-9,11,13-
trienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O

Other name(s): Fac (gene name)
Systematic name: linoleoyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13Z-forming)

Comments: The enzyme, characterized from the plants Punica granatum (pomegranate) and Trichosanthes kir-
ilowii (Mongolian snake-gourd), converts a single cis double bond at position 12 of linoleate incorpo-
rated into phosphatidylcholine into conjugated 11-trans and 13-cis double bonds. cf. EC 1.14.19.33,
∆12 acyl-lipid conjugase (11E,13E-forming).

References: [1574, 1691]

[EC 1.14.19.16 created 2015]

EC 1.14.19.17
Accepted name: sphingolipid 4-desaturase

Reaction: a dihydroceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 ferri-
cytochrome b5 + 2 H2O

Other name(s): dehydroceramide desaturase
Systematic name: dihydroceramide,ferrocytochrome b5:oxygen oxidoreductase (4,5-dehydrogenating)

Comments: The enzyme, which has been characterized from plants, fungi, and mammals, generates a trans double
bond at position 4 of sphinganine bases in sphingolipids [3653]. The preferred substrate is dihydro-
ceramide, but the enzyme is also active with dihydroglucosylceramide [2526]. Unlike EC 1.14.19.29,
sphingolipid 8-desaturase, this enzyme does not contain an integral cytochrome b5 domain [3849] and
requires an external cytochrome b5 [522]. The product serves as an important signalling molecules in
mammals and is required for spermatide differentiation [2523].

References: [3653, 2526, 522, 3849, 2523]

[EC 1.14.19.17 created 2015]

EC 1.14.19.18
Accepted name: sphingolipid 8-(E)-desaturase

Reaction: a (4E)-sphing-4-enine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E,8E)-sphing-4,8-dienine
ceramide + 2 ferricytochrome b5 + 2 H2O

Other name(s): 8-sphingolipid desaturase (ambiguous); 8 fatty acid desaturase (ambiguous); DELTA8-sphingolipid
desaturase (ambiguous)

Systematic name: (4E)-sphing-4-enine ceramide,ferrocytochrome b5:oxygen oxidoreductase (8,9-trans dehydrogenat-
ing)
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Comments: The enzyme, characterized from the yeasts Kluyveromyces lactis and Candida albicans [3785] and
from the diatom Thalassiosira pseudonana [3911], introduces a trans double bond at the 8-position
of sphingoid bases in sphingolipids. The enzyme determines the position of the double bond by its
distance from the alcohol end of the sphingoid base, and contains a cytochrome b5 domain that acts
as the direct electron donor to the active site of the desaturase [2919]. The homologous enzymes
from higher plants, EC 1.14.19.29, sphingolipid 8-(E/Z)-desaturase, act on phytosphinganine (4-
hydroxysphinganine) and produces a mixture of trans and cis isomers.

References: [3785, 3911, 2919]

[EC 1.14.19.18 created 2015]

EC 1.14.19.19
Accepted name: sphingolipid 10-desaturase

Reaction: a (4E,8E)-sphinga-4,8-dienine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4E,8E,10E)-
sphinga-4,8,10-trienine ceramide + 2 ferricytochrome b5 + 2 H2O

Other name(s): desA (gene name)
Systematic name: a (4E,8E)-sphinga-4,8-dienine ceramide,ferrocytochrome b5:oxygen oxidoreductase (10,11 trans-

dehydrogenating)
Comments: The enzyme, characterized from the marine diatom Thalassiosira pseudonana, produces an all-trans

product. Similar triunsaturated sphingoid bases are found in some marine invertebrates. The enzyme
determines the position of the double bond by its distance from the alcohol end of the sphingoid base,
and contains a cytochrome b5 domain that acts as the direct electron donor to the active site of the
desaturase.

References: [2522]

[EC 1.14.19.19 created 2015]

EC 1.14.19.20
Accepted name: ∆7-sterol 5(6)-desaturase

Reaction: a ∆7-sterol + 2 ferrocytochrome b5 + O2 + 2 H+ = a ∆5,7-sterol + 2 ferricytochrome b5 + 2 H2O
Other name(s): lathosterol oxidase; ∆7-sterol ∆5-dehydrogenase; ∆7-sterol 5-desaturase; ∆7-sterol-C5(6)-desaturase;

5-DES; SC5DL (gene name); ERG3 (gene name)
Systematic name: ∆7-sterol,ferrocytochrome b5:oxygen oxidoreductase 5,6-dehydrogenating

Comments: This enzyme, found in eukaryotic organisms, catalyses the introduction of a double bond between the
C5 and C6 carbons of the B ring of ∆7-sterols, to yield the corresponding ∆5,7-sterols. The enzymes
from yeast, plants and vertebrates act on avenasterol, episterol, and lathosterol, respectively. The en-
zyme is located at the endoplasmic reticulum and is membrane bound.

References: [791, 1554, 125, 3824, 2797, 3823, 3029]

[EC 1.14.19.20 created 1972 as EC 1.3.3.2, transferred 2005 to EC 1.14.21.6, transferred 2015 to EC 1.14.19.20]

EC 1.14.19.21
Accepted name: cholesterol 7-desaturase

Reaction: cholesterol + O2 + NAD(P)H + H+ = cholesta-5,7-dien-3β-ol + NAD(P)+ + 2 H2O
Other name(s): nvd (gene name); daf-36 (gene name)

Systematic name: cholesterol,NAD(P)H:oxygen oxidoreductase (7,8 dehydrogenating)
Comments: The enzyme, characterized from several organisms including the worm Caenorhabditis elegans, the

fly Drosophila melanogaster, and the ciliate Tetrahymena thermophila, is a Rieske oxygenase. In in-
sects it participates in the the biosythesis of ecdysteroid hormones. The electrons are transferred from
NAD(P)H via an electron transfer chain likely to include ferredoxin reductase and ferredoxin. The
enzyme differs from regular desaturases, such as EC 1.14.19.20, 7-sterol 5(6)-desaturase, which are
cytochrome b5-dependent and contain the three His-boxes that are typical to most desaturases.

References: [4387, 4243, 2698, 207]
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[EC 1.14.19.21 created 2015]

EC 1.14.19.22
Accepted name: acyl-lipid ω-6 desaturase (cytochrome b5)

Reaction: an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a linoleoyl-[glycerolipid] + 2 ferricy-
tochrome b5 + 2 H2O

Other name(s): oleate desaturase (ambiguous); linoleate synthase (ambiguous); oleoyl-CoA desaturase (incorrect);
oleoylphosphatidylcholine desaturase (ambiguous); phosphatidylcholine desaturase (ambiguous); n-6
desaturase (ambiguous); FAD2 (gene name)

Systematic name: 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine,ferrocytochrome-b5:oxygen oxidoreductase (12,13 cis-
dehydrogenating)

Comments: This microsomal enzyme introduces a cis double bond in fatty acids attached to lipid molecules at
a location 6 carbons away from the methyl end of the fatty acid. The distance from the carboxylic
acid end of the molecule does not affect the location of the new double bond. The most common sub-
strates are oleoyl groups attached to either the sn-1 or sn-2 position of the glycerol backbone in phos-
phatidylcholine. cf. EC 1.14.19.23, acyl-lipid ω-6 desaturase (ferredoxin).

References: [3073, 3549, 3697, 3559, 1865, 2553]

[EC 1.14.19.22 created 1984 as EC 1.3.1.35, transferred 2015 to EC 1.14.19.22]

EC 1.14.19.23
Accepted name: acyl-lipid (n+3)-(Z)-desaturase (ferredoxin)

Reaction: an oleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a linoleoyl-
[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): acyl-lipid ω6-desaturase (ferredoxin); oleate desaturase (ambiguous); linoleate synthase (ambigu-
ous); oleoyl-CoA desaturase (ambiguous); oleoylphosphatidylcholine desaturase (ambiguous); phos-
phatidylcholine desaturase (ambiguous); FAD6 (gene name)

Systematic name: oleoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13 cis-dehydrogenating)
Comments: This plastidial enzyme is able to insert a cis double bond in monounsaturated fatty acids incorporated

into glycerolipids. The enzyme introduces the new bond at a position 3 carbons away from the ex-
isting double bond, towards the methyl end of the fatty acid. The native substrates are oleoyl (18:1
∆9) and (Z)-hexadec-7-enoyl (16:1 ∆7) groups attached to either position of the glycerol backbone in
glycerolipids, resulting in the introduction of the second double bond at positions 12 and 10, respec-
tively This prompted the suggestion that this is an ω6 desaturase. However, when acting on palmi-
toleoyl groups(16:1 ∆9), the enzyme introduces the second double bond at position 12 (ω4), indicating
it is an (n+3) desaturase [1522]. cf. EC 1.14.19.34, acyl-lipid (9+3)-(E)-desaturase.

References: [3374, 3375, 1522, 979, 3373]

[EC 1.14.19.23 created 2015]

EC 1.14.19.24
Accepted name: acyl-CoA 11-(E)-desaturase

Reaction: an acyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = an (11E)-enoyl-CoA + 2 ferricytochrome b5 + 2
H2O

Systematic name: acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (11,12 trans-dehydrogenating)
Comments: Involved in sex pheromone synthesis in the Lepidoptera (moths). The enzyme from the moth

Spodoptera littoralis prefers 13:0 and 14:0 substrates. The product is formed by the stereospecific re-
moval of the pro-R H at C-11 and the pro-S H at C-12. cf. EC 1.14.19.5, acyl-CoA 11-(Z)-desaturase.

References: [1041, 2420, 2748, 3013]

[EC 1.14.19.24 created 2000 as EC 1.14.99.31, transferred 2015 to EC 1.14.19.24]

EC 1.14.19.25

444

http://www.enzyme-database.org/query.php?ec=1.14.19.22
http://www.enzyme-database.org/query.php?ec=1.14.19.23
http://www.enzyme-database.org/query.php?ec=1.14.19.24
http://www.enzyme-database.org/query.php?ec=1.14.19.25


Accepted name: acyl-lipid ω-3 desaturase (cytochrome b5)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-linolenoyl-[glycerolipid] +

ferricytochrome b5 + 2 H2O
Other name(s): FAD3

Systematic name: (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (15,16 cis-
dehydrogenating)

Comments: This microsomal enzyme introduces a cis double bond three carbons away from the methyl end of a
fatty acid incorporated into a glycerolipid. The distance from the carboxylic acid end of the molecule
does not have an effect. The plant enzyme acts on carbon 15 of linoleoyl groups incorporated into
both the sn-1 and sn-2 positions of the glycerol backbone of phosphatidylcholine and other phospho-
lipids, converting them into α-linolenoyl groups. The enzyme from the fungus Mortierella alpina
acts on γ-linolenoyl and arachidonoyl groups, converting them into stearidonoyl and icosapentaenoyl
groups, respectively [3297]. cf. EC 1.14.19.35, acyl-lipid ω-3 desaturase (ferredoxin).

References: [420, 123, 3297]

[EC 1.14.19.25 created 2015]

EC 1.14.19.26
Accepted name: acyl-[acyl-carrier-protein] 6-desaturase

Reaction: palmitoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = (6Z)-
hexadec-6-enoyl-[acyl-carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): DELTA6 palmitoyl-ACP desaturase; DELTA6 16:0-ACP desaturase
Systematic name: palmitoyl-[acyl-carrier protein],reduced ferredoxin:oxygen oxidoreductase (6,7 cis-dehydrogenating)

Comments: The enzyme, characterized from the endosperm of the plant Thunbergia alata (black-eyed Susan
vine), introduces a cis double bond at carbon 6 of several saturated acyl-[acp]s. It is most active with
palmitoyl-[acp] (16:0), but can also act on myristoyl-[acp] (14:0) and stearoyl-[acp] (18:0). The posi-
tion of the double bond is determined by its distance from the carboxyl end of the fatty acid.

References: [468, 470]

[EC 1.14.19.26 created 2015]

EC 1.14.19.27
Accepted name: sn-2 palmitoyl-lipid 9-desaturase

Reaction: a 1-acyl-2-palmitoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-
acyl-2-palmitoleoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): DesC2
Systematic name: 1-acyl-2-palmitoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (9,10 cis-dehydrogenating)

Comments: The enzyme, characterized from the cyanobacterium Nostoc sp. 36, introduces a cis double bond at
carbon 9 of palmitoyl groups (16:0) attached to the sn-2 position of glycerolipids.

References: [594]

[EC 1.14.19.27 created 2015]

EC 1.14.19.28
Accepted name: sn-1 stearoyl-lipid 9-desaturase

Reaction: a 1-stearoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-
oleoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): desC (gene name)
Systematic name: 1-stearoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (9,10 cis-dehydrogenating)

Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 9 of stearoyl
groups (18:0) attached to the sn-1 position of glycerolipids. The enzyme is nonspecific with respect to
the polar head group of the glycerolipid.

References: [4074, 1494, 3294]
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[EC 1.14.19.28 created 2015]

EC 1.14.19.29
Accepted name: sphingolipid 8-(E/Z)-desaturase

Reaction: (1) a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8E)-4-
hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O
(2) a (4R)-4-hydroxysphinganine ceramide + 2 ferrocytochrome b5 + O2 + 2 H+ = a (4R,8Z)-4-
hydroxysphing-8-enine ceramide + 2 ferricytochrome b5 + 2 H2O

Other name(s): 8-sphingolipid desaturase (ambiguous); 8 fatty acid desaturase (ambiguous); DELTA8-sphingolipid
desaturase (ambiguous)

Systematic name: (4R)-4-hydroxysphinganine ceramide,ferrocytochrome b5:oxygen oxidoreductase (8,9 cis/trans-
dehydrogenating)

Comments: The enzymes from higher plants convert sphinganine, 4E-sphing-4-enine and phytosphinganine into
E/Z-mixtures of ∆8-desaturated products displaying different proportions of geometrical isomers de-
pending on plant species. The nature of the actual desaturase substrate has not yet been studied exper-
imentally. The enzymes contain an N-terminal cytochrome b5 domain that acts as the direct electron
donor to the active site of the desaturase [3601]. The homologous enzymes from some yeasts and di-
atoms, EC 1.14.19.18, sphingolipid 8-(E)-desaturase, act on sphing-4-enine ceramides and produce
only the trans isomer.

References: [3601, 3597, 3599, 238, 3268, 573]

[EC 1.14.19.29 created 2015]

EC 1.14.19.30
Accepted name: acyl-lipid (8-3)-desaturase

Reaction: (1) an (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a
(5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-tetraenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) an (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2
H+ = a (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2
H2O

Other name(s): acyl-lipid 5-desaturase; ∆5-fatty-acid desaturase; DES5 (gene name); D5des (gene name); FADS1
Systematic name: ∆8 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (5,6 cis-dehydrogenating)

Comments: The enzyme, which has been characterized from multiple organisms including the moss
Physcomitrella patens, the marine microalga Rebecca salina, and the filamentous fungus Mortierella
alpina, introduces a cis double bond at the 5-position in 20-carbon polyunsaturated fatty acids incor-
porated in a glycerolipid that contain a ∆8 double bond. The enzyme contains a cytochrome b5 do-
main that acts as the direct electron donor to the active site of the desaturase, and does not require an
external cytochrome.

References: [2521, 1794, 4475]

[EC 1.14.19.30 created 2015]

EC 1.14.19.31
Accepted name: acyl-lipid (7-3)-desaturase

Reaction: (1) a (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl-[glycerolipid] + 2 ferrocytochrome
b5 + O2 + 2 H+ = a (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl-[glycerolipid] + 2
ferricytochrome b5 + 2 H2O
(2) a (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2
H+ = a (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyl-[glycerolipid] + 2 ferricytochrome b5 +
2 H2O

Other name(s): D4Des (gene name); des1 (gene name); Cr∆4FAD (gene name); acyl-lipid 4-desaturase
Systematic name: ∆7 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (4,5 cis-dehydrogenating)
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Comments: The enzymes from several algae introduce a cis double bond at the 4-position in 22-carbon polyun-
saturated fatty acids that contain a ∆7 double bond. The enzyme from the fresh water alga Chlamy-
domonas reinhardtii acts on the 16 carbon fatty acid (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate [4427].
The enzyme contains an N-terminal cytochrome b5 domain that acts as the direct electron donor to the
active site of the desaturase, and does not require an external cytochrome.

References: [3083, 3909, 2517, 4475, 4427]

[EC 1.14.19.31 created 2015]

EC 1.14.19.32
Accepted name: palmitoyl-CoA 14-(E/Z)-desaturase

Reaction: (1) palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14E)-hexadec-14-enoyl-CoA + 2 ferricy-
tochrome b5 + 2 H2O
(2) palmitoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = (14Z)-hexadec-14-enoyl-CoA + 2 ferricy-
tochrome b5 + 2 H2O

Systematic name: palmitoyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (14,15 cis/trans-dehydrogenating)
Comments: The enzyme, found in the moth Ostrinia furnacalis (Asian corn borer), produces a mixture of (E)- and

(Z)- isomers. The products are subsequently truncated by partial β-oxidation to a blend of 12(E/Z)-
tetradec-12-enoyl-CoA, which are converted to the species-specific sex pheromones (E)- and (Z)-
tetradec-12-enoyl acetates.

References: [3216, 4288, 3290]

[EC 1.14.19.32 created 2015]

EC 1.14.19.33
Accepted name: ∆12 acyl-lipid conjugase (11E,13E-forming)

Reaction: (1) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-eleostearoyl-[glycerolipid]
+ 2 ferricytochrome b5 + 2 H2O
(2) a γ-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-parinaroyl-[glycerolipid]
+ 2 ferricytochrome b5 + 2 H2O

Other name(s): fatty acid ∆12-conjugase (ambiguous); FADX (gene name)
Systematic name: ∆12 acyl-lipid,ferrocytochrome-b5:oxygen 11,14 allylic oxidase (11E,13E-forming)

Comments: The enzyme, characterized from the plants Impatiens balsamina, Momordica charantia (bitter gourd)
and Vernicia fordii (tung tree), converts a single cis double bond at carbon 12 to two conjugated trans
bonds at positions 11 and 13. The enzyme from Vernicia fordii can also act as a 12(E) desaturase
when acting on the monounsaturated fatty acids oleate and palmitoleate. cf. EC 1.14.19.16, linoleoyl-
lipid ∆12 conjugase (11E,13Z-forming).

References: [467, 898]

[EC 1.14.19.33 created 2015]

EC 1.14.19.34
Accepted name: acyl-lipid (9+3)-(E)-desaturase

Reaction: (1) an oleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-octadeca-9,12-dienoyl-
[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a palmitoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12E)-hexadeca-9,12-
dienoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O

Other name(s): acyl-lipid 12-(E)-desaturase; DsFAD2-1; FADX
Systematic name: ∆9 acyl-lipid,ferrocytochrome b5:oxygen oxidoreductase (12,13 trans-dehydrogenating)

Comments: The enzymes from the plants Dimorphotheca sinuata (African daisy) and Vernicia fordii (tung oil
tree) insert a trans double bond in position C-12 of oleate and palmitoleate incorporated into glyc-
erolipids. The enzyme introduces the new double bond at a position three carbons away from an exist-
ing double bond at position 9, towards the methyl end of the fatty acid. The enzyme from tung oil tree
also possesses the activity of EC 1.14.19.33, ∆12 acyl-lipid conjugase.
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References: [898, 469]

[EC 1.14.19.34 created 2015]

EC 1.14.19.35
Accepted name: sn-2 acyl-lipid ω-3 desaturase (ferredoxin)

Reaction: (1) a (7Z,10Z)-hexadeca-7,10-dienoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster +
O2 + 2 H+ = a (7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-
sulfur] cluster + 2 H2O
(2) a linoleoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = an α-
linolenoyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): FAD7; FAD8
Systematic name: (7Z,10Z)-hexadeca-7,10-dienoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (13,14 cis-

dehydrogenating)
Comments: This plastidial enzyme desaturates 16:2 fatty acids attached to the sn-2 position of glycerolipids to

16:3 fatty acids, and converts18:2 to 18:3 in both the sn-1 and sn-2 positions. It acts on all 16:2- or
18:2-containing chloroplast membrane lipids, including phosphatidylglycerol, monogalactosyldia-
cylglycerol, digalactosyldiaclyglycerol, and sulfoquinovosyldiacylglycerol. The enzyme introduces a
cis double bond at a location 3 carbons away from the methyl end of the fatty acid. The distance from
the carboxylic acid end of the molecule does not affect the location of the new double bond. cf. EC
1.14.19.25, acyl-lipid ω-3 desaturase (cytochrome b5) and EC 1.14.19.36, sn-1 acyl-lipid ω-3 desat-
urase (ferredoxin).

References: [1622, 2478, 4030]

[EC 1.14.19.35 created 2015]

EC 1.14.19.36
Accepted name: sn-1 acyl-lipid ω-3 desaturase (ferredoxin)

Reaction: (1) a 1-γ-linolenoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a
1-stearidonoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O
(2) a 1-linoleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a
1-α-linolenoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): desB (gene name)
Systematic name: 1-γ-linolenoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (15,16 cis-dehydrogenating)

Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 15 of linoleoyl
and γ-linolenoyl groups attached to the sn-1 position of glycerolipids. The enzyme is an ω desaturase,
and determines the location of the double bond by counting three carbons from the methyl end of the
fatty acid. It is nonspecific with respect to the polar head group of the glycerolipid. cf. EC 1.14.19.35,
sn-2 acyl-lipid ω-3 desaturase (ferredoxin).

References: [3293]

[EC 1.14.19.36 created 2015]

EC 1.14.19.37
Accepted name: acyl-CoA 5-desaturase

Reaction: (1) (11Z,14Z)-icosa-11,14-dienoyl-CoA + reduced acceptor + O2 = (5Z,11Z,14Z)-icosa-5,11,14-
trienoyl-CoA + acceptor + 2 H2O
(2) (11Z,14Z,17Z)-icosa-11,14,17-trienoyl-CoA + reduced acceptor + O2 = (5Z,11Z,14Z,17Z)-icosa-
5,11,14,17-tetraenoyl-CoA + acceptor + 2 H2O

Other name(s): acyl-CoA 5-desaturase (non-methylene-interrupted)
Systematic name: acyl-CoA,acceptor:oxygen oxidoreductase (5,6 cis-dehydrogenating)
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Comments: The enzyme, characterized from the plant Anemone leveillei, introduces a cis double bond at car-
bon 5 of acyl-CoAs that do not contain a double bond at position 8. In vivo it forms non-methylene-
interrupted polyunsaturated fatty acids such as sciadonate and juniperonate. When expressed in Ara-
bidopsis thaliana the enzyme could also act on unsaturated substrates such as palmitoyl-CoA. cf. EC
1.14.19.44, acyl-CoA (8-3)-desaturase.

References: [3336]

[EC 1.14.19.37 created 2015]

EC 1.14.19.38
Accepted name: acyl-lipid ∆6-acetylenase

Reaction: (1) a γ-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12Z)-octadeca-9,12-
dien-6-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a stearidonoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a (9Z,12Z,15Z)-octadeca-
9,12,15-trien-6-ynoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O

Systematic name: ∆6 acyl-lipid,ferrocytochrome-b5:oxygen oxidoreductase (6,7-dehydrogenating)
Comments: The enzyme, characterized from the moss Ceratodon purpureus, converts the double bond at position

6 of γ-linolenate and stearidonate into a triple bond. The product of the latter, dicranin, is the main
fatty acid found in C. purpureus. The enzyme contains a cytochrome b5 domain that acts as the direct
electron donor to the desaturase active site. The enzyme also has the activity of EC 1.14.19.47, acyl-
lipid (9-3)-desaturase.

References: [3598]

[EC 1.14.19.38 created 2015]

EC 1.14.19.39
Accepted name: acyl-lipid ∆12-acetylenase

Reaction: linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = crepenynyl-[glycerolipid] + 2 ferricy-
tochrome b5 + 2 H2O

Systematic name: ∆12 acyl-lipid,ferrocytochrome-b5:oxygen oxidoreductase (12,13-dehydrogenating)
Comments: The enzyme, characterized from the plant Crepis alpina, converts the double bond at position 12 of

linoleate into a triple bond. The product is the main fatty acid found in triacylglycerols in the seed oil
of Crepis alpina.

References: [187, 2172, 2725]

[EC 1.14.19.39 created 2000 as EC 1.14.99.33, transferred 2015 to EC 1.14.19.39]

EC 1.14.19.40
Accepted name: hex-5-enoyl-[acyl-carrier protein] acetylenase

Reaction: hex-5-enoyl-[acyl-carrier protein] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = hex-5-
ynoyl-[acyl-carrier protein] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): jamB (gene name)
Systematic name: hex-5-enoyl-[acyl-carrier protein],reduced ferredoxin:oxygen oxidoreductase (5,6-dehydrogenating)

Comments: The enzyme, characterized from the marine cyanobacterium Moorea producens, is involved in pro-
duction of the ion channel blocker jamaicamide A. It is specific for hexanoate or hex-5-enoate loaded
onto a dedicated acyl-carrier protein (JamC), which is encoded by a gene in the same operon.

References: [4483]

[EC 1.14.19.40 created 2015]

EC 1.14.19.41
Accepted name: sterol 22-desaturase

Reaction: ergosta-5,7,24(28)-trien-3β-ol + NADPH + H+ + O2 = ergosta-5,7,22,24(28)-tetraen-3-β-ol +
NADP+ + 2 H2O
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Other name(s): ERG5 (gene name); CYP710A (gene name)
Systematic name: ergosta-5,7,24(28)-trien-3β-ol,NADPH:oxygen oxidoreductase (22,23-dehydrogenating)

Comments: A heme-thiolate protein (P-450). The enzyme, found in yeast and plants, catalyses the introduction
of a double bond between the C-22 and C-23 carbons of certain sterols. In yeast the enzyme acts on
ergosta-5,7,24(28)-trien-3β-ol, a step in the biosynthesis of ergosterol. The enzyme from the plant
Arabidopsis thaliana acts on sitosterol and 24-epi-campesterol, producing stigmasterol and brassicast-
erol, respectively.

References: [1878, 3547, 2622]

[EC 1.14.19.41 created 2015]

EC 1.14.19.42
Accepted name: palmitoyl-[glycerolipid] 7-desaturase

Reaction: a 1-acyl-2-palmitoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-
acyl-2-[(7Z)-hexadec-7-enoyl]-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): FAD5
Systematic name: 1-acyl-2-palmitoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (7,8-cis-dehydrogenating)

Comments: The enzyme introduces a cis double bond at carbon 7 of a palmitoyl group attached to the sn-2 po-
sition of glycerolipids. The enzyme from the plant Arabidopsis thaliana is specific for palmitate in
monogalactosyldiacylglycerol.

References: [2083, 1461]

[EC 1.14.19.42 created 2015]

EC 1.14.19.43
Accepted name: palmitoyl-[glycerolipid] 3-(E)-desaturase

Reaction: a 1-acyl-2-palmitoyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-
acyl-2-[(3E)-hexadec-3-enoyl]-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): FAD4
Systematic name: 1-acyl-2-palmitoyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (3,4-trans -dehydrogenating)

Comments: The enzyme introduces an unusual trans double bond at carbon 3 of a palmitoyl group attached to
the sn-2 position of glycerolipids. The enzyme from the plant Arabidopsis thaliana is specific for
palmitate in phosphatidylglycerol. The enzyme from tobacco can also accept oleate and α-linolenate
if present at the sn-2 position of phosphatidylglycerol [1079].

References: [1079, 1152]

[EC 1.14.19.43 created 2015]

EC 1.14.19.44
Accepted name: acyl-CoA (8-3)-desaturase

Reaction: (1) (8Z,11Z,14Z)-icosa-8,11,14-trienoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ = arachidonoyl-
CoA + 2 ferricytochrome b5 + 2 H2O
(2) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl-CoA + 2 ferrocytochrome b5 + O2 + 2 H+ =
(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl-CoA + 2 ferricytochrome b5 + 2 H2O

Other name(s): FADS1 (gene name); acyl-CoA 5-desaturase (methylene-interrupted)
Systematic name: ∆8-acyl-CoA,ferrocytochrome b5:oxygen oxidoreductase (5,6-cis-dehydrogenating)

Comments: The enzyme introduces a cis double bond at carbon 5 of acyl-CoAs that contain a double bond at po-
sition 8. The enzymes from algae, mosses, mammals and the protozoan Leishmania major catalyse
the desaturation of dihomo-γ-linoleate [(8Z,11Z,14Z)-icosa-8,11,14-trienoate] and (8Z,11Z,14Z,17Z)-
icosa-8,11,14,17-tetraenoate to generate arachidonate and (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-
pentaenoate, respectively. The enzyme contains a cytochrome b5 domain that acts as the direct
electron donor to the desaturase active site and does not require an external cytochrome. cf. EC
1.14.19.37, acyl-CoA 5-desaturase.

References: [601, 2200, 3929, 3829]
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[EC 1.14.19.44 created 2015]

EC 1.14.19.45
Accepted name: sn-1 oleoyl-lipid 12-desaturase

Reaction: a 1-oleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-
linoleoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): desA (gene name)
Systematic name: 1-oleoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (12,13-cis-dehydrogenating)

Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 12 of oleoyl
groups (18:1) attached to the sn-1 position of glycerolipids. The enzyme is a methyl-end desaturase,
introducing the new double bond between a pre-existing double bond and the methyl-end of the fatty
acid. It is nonspecific with respect to the polar head group of the glycerolipid.

References: [4073, 1494, 77]

[EC 1.14.19.45 created 2015]

EC 1.14.19.46
Accepted name: sn-1 linoleoyl-lipid 6-desaturase

Reaction: a 1-linoleoyl-2-acyl-[glycerolipid] + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = a 1-γ-
linolenoyl-2-acyl-[glycerolipid] + 2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): desD (gene name)
Systematic name: 1-linoleoyl-2-acyl-[glycerolipid],ferredoxin:oxygen oxidoreductase (6,7-cis-dehydrogenating)

Comments: The enzyme, characterized from cyanobacteria, introduces a cis double bond at carbon 6 of linoleoyl
groups (18:2) attached to the sn-1 position of glycerolipids. The enzyme is a front-end desaturase, in-
troducing the new double bond between a pre-existing double bond and the carboxyl-end of the fatty
acid. It is nonspecific with respect to the polar head group of the glycerolipid.

References: [1494, 3145, 2088]

[EC 1.14.19.46 created 2015]

EC 1.14.19.47
Accepted name: acyl-lipid (9-3)-desaturase

Reaction: (1) an α-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a stearidonoyl-
[glycerolipid] + ferricytochrome b5 + 2 H2O
(2) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a γ-linolenoyl-[glycerolipid] +
ferricytochrome b5 + 2 H2O

Other name(s): acyl-lipid 6-desaturase; ∆6-desaturase; DES6 (gene name)
Systematic name: ∆9 acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (6,7-cis-dehydrogenating)

Comments: The enzyme, characterized from the moss Physcomitrella patens and the plant Borago officinalis (bor-
age), introduces a cis double bond at carbon 6 of several acyl-lipids that contain an existing ∆9 cis
double bond. The enzyme contains a cytochrome b5 domain that acts as the electron donor for the
active site of the desaturase.

References: [3337, 1208]

[EC 1.14.19.47 created 2015]

EC 1.14.19.48
Accepted name: tert-amyl alcohol desaturase

Reaction: tert-amyl alcohol + NADPH + H+ + O2 = isoprenyl alcohol + NADP+ + 2 H2O
Other name(s): mdpJK (gene names)

Systematic name: tert-amyl alcohol,NADPH:oxygen oxidoreductase (1,2-dehydrogenating)
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Comments: The enzyme, characterized from the bacterium Aquincola tertiaricarbonis, is a Rieske nonheme
mononuclear iron oxygenase. It can also act, with lower efficiency, on butan-2-ol, converting it to
but-1-en-3-ol. Depending on the substrate, the enzyme also catalyses EC 1.14.13.229, tert-butanol
monooxygenase.

References: [3348, 3406]

[EC 1.14.19.48 created 2016]

EC 1.14.19.49
Accepted name: tetracycline 7-halogenase

Reaction: tetracycline + FADH2 + chloride + O2 + H+ = 7-chlorotetracycline + FAD + 2 H2O
Other name(s): ctcP (gene name)

Systematic name: tetracycline:FADH2 oxidoreductase (7-halogenating)
Comments: The enzyme, characterized from the bacterium Streptomyces aureofaciens, is a member of the flavin-

dependent halogenase family. The enzyme forms a lysine chloramine intermediate on an internal ly-
sine residue before transferring the chlorine to the substrate. It is stereo-selective for the 4S (natural)
isomer of tetracycline. FADH2 is provided by a dedicated EC 1.5.1.36, flavin reductase (NADH).

References: [731, 4481]

[EC 1.14.19.49 created 2016]

EC 1.14.19.50
Accepted name: noroxomaritidine synthase

Reaction: (1) 4′-O-methylnorbelladine + [reduced NADPH—hemoprotein reductase] + O2 = (4aR,10bS)-
noroxomaritidine + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(2) 4′-O-methylnorbelladine + [reduced NADPH—hemoprotein reductase] + O2 = (4aS,10bR)-
noroxomaritidine + [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP96T1 (gene name)
Systematic name: 4′-O-methylnorbelladine,NADPH—hemoprotein reductase:oxygen oxidoreductase

(noroxomaritidine-forming)
Comments: A P-450 (heme-thiolate) enzyme. The enzyme, characterized from Narcissus pseudonarcissus (daf-

fodil), forms the two enantiomers of the Amaryllidacea alkaloid noroxomaritidine by catalysing in-
tramolecular oxidative para-para′ phenol coupling. The oxidation involves molecular oxygen without
its incorporation into the product.

References: [1904]

[EC 1.14.19.50 created 2016]

EC 1.14.19.51
Accepted name: (S)-corytuberine synthase

Reaction: (S)-reticuline + [reduced NADPH—hemoprotein reductase] + O2 = (S)-corytuberine + [oxidized
NADPH—hemoprotein reductase] + 2 H2O.

Other name(s): CYP80G2
Systematic name: (S)-reticuline,NADPH:oxygen oxidoreductase (C-C phenol-coupling; (S)-corytuberine-forming)

Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme is involved in the biosynthesis of the qua-
ternary benzylisoquinoline alkaloid magnoflorine in the plant Coptis japonica. It is specific for (S)-
reticuline.

References: [1638]

[EC 1.14.19.51 created 2017]

EC 1.14.19.52
Accepted name: camalexin synthase
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Reaction: 2-(L-cystein-S-yl)-2-(1H-indol-3-yl)acetonitrile + 2 [reduced NADPH—hemoprotein reductase] + 2
O2 = camalexin + hydrogen cyanide + CO2 + 2 [oxidized NADPH—hemoprotein reductase] + 4 H2O
(overall reaction)
(1a) 2-(L-cystein-S-yl)-2-(1H-indol-3-yl)acetonitrile + [reduced NADPH—hemoprotein reductase] +
O2 = (R)-dihydrocamalexate + hydrogen cyanide + [oxidized NADPH—hemoprotein reductase] + 2
H2O
(1b) (R)-dihydrocamalexate + [reduced NADPH—hemoprotein reductase] + O2 = camalexin + CO2 +
[oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP71B15 (gene name); bifunctional dihydrocamalexate synthase/camalexin synthase
Systematic name: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile, [reduced NADPH—hemoprotein reductase]:oxygen

oxidoreductase (camalexin-forming)
Comments: This cytochrome P-450 (heme thiolate) enzyme, which has been characterized from the plant Ara-

bidopsis thaliana, catalyses the last two steps in the biosynthesis of camalexin, the main phytoalexin
in that plant. The enzyme catalyses two successive oxidation events. During the first oxidation the en-
zyme introduces a C-N double bond, liberating hydrogen cyanide, and during the second oxidation it
catalyses a decarboxylation.

References: [3396, 364]

[EC 1.14.19.52 created 2017]

EC 1.14.19.53
Accepted name: all-trans-retinol 3,4-desaturase

Reaction: all-trans-retinol + 2 reduced adrenodoxin + 2 H+ + O2 = all-trans-3,4-didehydroretinol + 2 oxidized
adrenodoxin + 2 H2O

Other name(s): CYP27C1 (gene name)
Systematic name: all-trans-retinol,reduced adrenodoxin:oxygen 3,4-oxidoreductase

Comments: A cytochrome P-450 (heme thiolate) enzyme found in vertebrates. The enzyme is also active with
retinal and retinoic acid.

References: [955, 2054]

[EC 1.14.19.53 created 2018]

EC 1.14.19.54
Accepted name: 1,2-dehydroreticuline synthase

Reaction: (S)-reticuline + [reduced NADPH—hemoprotein reductase] + O2 = 1,2-dehydroreticuline + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): STORR; CYP82Y2 (gene name); DRS (gene name)
Systematic name: (S)-reticuline,[reduced NADPH—hemoprotein reductase]:oxygen 1,2-oxidoreductase

Comments: A P-450 (heme-thiolate) cytochrome. The enzyme from Papaver rhoeas (field poppy) is specific
for (S)-reticuline and does not act on the (R)-form. The enzyme from Papaver somniferum (opium
poppy), which is involved in the biosynthesis of morphine and related alkaloids, forms a fusion pro-
tein with EC 1.5.1.27, 1,2-dehydroreticulinium reductase (NADPH), which catalyses the reduction of
1,2-dehydroreticuline to (R)-reticuline, thus forming an epimerase system that converts (S)-reticuline
to (R)-reticuline.

References: [1517, 4227, 991]

[EC 1.14.19.54 created 2018]

EC 1.14.19.55
Accepted name: 4-hydroxybenzoate brominase (decarboxylating)

Reaction: (1) 4-hydroxybenzoate + 2 NADPH + 2 bromide + 2 O2 + 2 H+ = 2,4-dibromophenol + 2 NADP+ +
CO2 + 4 H2O (overall reaction)
(1a) 4-hydroxybenzoate + NADPH + bromide + O2 + H+ = 3-bromo-4-hydroxybenzoate + NADP+ +
2 H2O
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(1b) 3-bromo-4-hydroxybenzoate + NADPH + bromide + O2 + H+ = 2,4-dibromophenol + NADP+ +
CO2 + 2 H2O
(2) 3,4-dihydroxybenzoate + 2 NADPH + 2 bromide + 2 O2 + 2 H+ = 3,5-dibromobenzene-1,2-diol +
2 NADP+ + CO2 + 4 H2O (overall reaction)
(2a) 3,4-dihydroxybenzoate + NADPH + bromide + O2 + H+ = 3-bromo-4,5-dihydroxybenzoate +
NADP+ + 2 H2O
(2b) 3-bromo-4,5-dihydroxybenzoate + NADPH + bromide + O2 + H+ = 3,5-dibromobenzene-1,2-diol
+ NADP+ + CO2 + 2 H2O

Other name(s): bmp5 (gene name)
Systematic name: 4-hydroxybenzoate:NADPH oxidoreductase (brominating, decarboxylating)

Comments: Contains FAD. The enzyme, described from epiphytic marine bacteria of the genera Pseudoal-
teromonas and Marinomonas, is an unusual single-component FAD-dependent halogenase that con-
tains a distinct NAD(P)H binding domain and does not require an additional flavin reductase for activ-
ity. The enzyme catalyses a bromination of its substrate, followed by a second bromination concurrent
with decarboxylation.

References: [30, 31]

[EC 1.14.19.55 created 2018]

EC 1.14.19.56
Accepted name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] chlorinase

Reaction: 1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + 2 FADH2 + 2 chloride + 2 O2 = 4,5-dichloro-
1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + 2 FAD + 4 H2O (overall reaction)
(1a) 1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FADH2 + chloride + O2 = 5-chloro-1H-
pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FAD + 2 H2O
(1b) 5-chloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FADH2 + chloride + O2 = 4,5-
dichloro-1H-pyrrole-2-carbonyl-[PltL peptidyl-carrier protein] + FAD + H2O

Other name(s): pltA (gene name)
Systematic name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein]:FADH2 oxidoreductase (chlorinating)

Comments: The enzyme, characterized from the bacterium Pseudomonas protegens Pf-5, is a flavin-dependent
chlorinase that participates in the biosynthesis of the antibacterial and antifungal compound pyolute-
orin.

References: [2823, 859, 2932]

[EC 1.14.19.56 created 2018]

EC 1.14.19.57
Accepted name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] brominase

Reaction: 1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + 3 FADH2 + 3 bromide + 3 O2 = 3,4,5-
tribromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + 3 FAD + 6 H2O (overall reaction)
(1a) 1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 = 5-bromo-1H-
pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O
(1b) 5-bromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 = 4,5-
dibromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O
(1c) 4,5-dibromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FADH2 + bromide + O2 =
3,4,5-tribromo-1H-pyrrole-2-carbonyl-[Bmp1 peptidyl-carrier protein] + FAD + 2 H2O

Other name(s): bmp2 (gene name)
Systematic name: 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein]:FADH2 oxidoreductase (brominating)
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Comments: The enzyme, characterized from marine bacteria of the Pseudoalteromonas genus, belongs to a family
of FAD-dependent halogenases that act on acyl-carrier protein-tethered substrates. It catalyses three
successive rounds of bromination. While the order has not been verified, it is believed to resemble that
of EC 1.14.19.56, S-(1H-pyrrole-2-carbonyl)-[peptidyl-carrier protein] chlorinase, due to significant
sequence homology. Reduced FAD is provided in situ by a dedicated reductase and diffuses into the
active site, where it reacts with the oxygen and bromide ion, resulting in formation of a bromoamine
intermediate on a catalytic lysine side chain, and the eventual transfer of the bromide to the substrate.
The enzyme from Pseudoalteromonas luteoviolacea 2ta16 is specific for bromide and does not accept
chloride.

References: [30]

[EC 1.14.19.57 created 2018]

EC 1.14.19.58
Accepted name: tryptophan 5-halogenase

Reaction: L-tryptophan + FADH2 + chloride + O2 + H+ = 5-chloro-L-tryptophan + FAD + 2 H2O
Other name(s): pyrH (gene name)

Systematic name: L-tryptophan:FADH2 oxidoreductase (5-halogenating)
Comments: A flavin-dependent halogenase. The enzyme from the bacterium Streptomyces rugosporus cataly-

ses halogenation of the C-5 position of tryptophan during the biosynthesis of the antibiotic com-
pound pyrroindomycin B. It utilizes molecular oxygen to oxidize the FADH2 cofactor, giving C4a-
hydroperoxyflavin, which then reacts with chloride to produce a hypochlorite ion. The latter reacts
with an active site lysine to generate a chloramine, which chlorinates the substrate. cf. EC 1.14.19.59,
tryptophan 6-halogenase and EC 1.14.19.9, tryptophan 7-halogenase.

References: [4430, 4482]

[EC 1.14.19.58 created 2018]

EC 1.14.19.59
Accepted name: tryptophan 6-halogenase

Reaction: (1) L-tryptophan + FADH2 + chloride + O2 + H+ = 6-chloro-L-tryptophan + FAD + 2 H2O
(2) D-tryptophan + FADH2 + chloride + O2 + H+ = 6-chloro-D-tryptophan + FAD + 2 H2O

Other name(s): sttH (gene name); thdH (gene name)
Systematic name: L-tryptophan:FADH2 oxidoreductase (6-halogenating)

Comments: The enzyme is a flavin-dependent halogenase that has been described from several bacterial species.
It utilizes molecular oxygen to oxidize the FADH2 cofactor, giving C4a-hydroperoxyflavin, which
then reacts with chloride to produce a hypochlorite ion. The latter reacts with an active site lysine to
generate a chloramine, which chlorinates the substrate. cf. EC 1.14.19.58, tryptophan 5-halogenase,
and EC 1.14.19.9, tryptophan 7-halogenase.

References: [4434, 2539, 3478]

[EC 1.14.19.59 created 2018]

EC 1.14.19.60
Accepted name: 7-chloro-L-tryptophan 6-halogenase

Reaction: 7-chloro-L-tryptophan + FADH2 + chloride + O2 + H+ = 6,7-dichloro-L-tryptophan + FAD + 2 H2O
Other name(s): ktzR (gene name)

Systematic name: 7-chloro-L-tryptophan:FADH2 oxidoreductase (6-halogenating)
Comments: An FAD-dependent halogenase. The enzyme, characterized from the bacterium Kutzneria sp. 744,

works in tandem with EC 1.14.19.9, tryptophan 7-halogenase, (ktzQ) to generate 6,7-dichloro-L-
tryptophan, which is incorporated as a pyrroloindoline in the kutznerides family of natural products. It
has a 120-fold preference for 7-chloro-L-tryptophan over L-tryptophan as substrate.

References: [1454]
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[EC 1.14.19.60 created 2018]

EC 1.14.19.61
Accepted name: dihydrorhizobitoxine desaturase

Reaction: dihydrorhizobitoxine + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = rhizobitoxine + 2
oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): rtxC (gene name)
Systematic name: dihydrorhizobitoxine,ferredoxin:oxygen oxidoreductase (3,4 trans-dehydrogenating)

Comments: The enzyme, characterized from the bacterium Bradyrhizobium elkanii, catalyses the final step in the
biosynthesis of the nodulation enhancer compound rhizobitoxine.

References: [4352, 2866]

[EC 1.14.19.61 created 2018]

EC 1.14.19.62
Accepted name: secologanin synthase

Reaction: loganin + [reduced NADPH—hemoprotein reductase] + O2 = secologanin + [oxidized NADPH—
hemoprotein reductase] + 2 H2O

Systematic name: loganin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (ring-cleaving)
Comments: A cytochrome P-450 (heme-thiolate) protein. Secologanin is the precursor of the monoterpenoid in-

dole alkaloids and ipecac alkaloids.
References: [4313, 4312, 1661]

[EC 1.14.19.62 created 2002 as EC 1.3.3.9, transferred 2018 to EC 1.14.19.62]

EC 1.14.19.63
Accepted name: pseudobaptigenin synthase

Reaction: (1) calycosin + [reduced NADPH—hemoprotein reductase] + O2 = pseudobaptigenin + [oxidized
NADPH—hemoprotein reductase] + 2 H2O
(2) pratensein + [reduced NADPH-hemoprotein reductase] + O2 = 5-hydroxypseudobaptigenin + [oxi-
dized NADPH—hemoprotein reductase] + 2 H2O

Systematic name: calycosin,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (methylenedioxy-
bridge-forming)

Comments: A cytochrome P-450 (heme-thiolate) enzyme catalysing an oxidative reaction that does not incorpo-
rate oxygen into the product. Catalyses a step in the biosynthesis of (–)-maackiain, the main ptero-
carpan phytoalexin in chickpea (Cicer arietinum).

References: [3270]

[EC 1.14.19.63 created 2011 as EC 1.14.21.8, transferred 2018 to EC 1.14.19.63]

EC 1.14.19.64
Accepted name: (S)-stylopine synthase

Reaction: (S)-cheilanthifoline + [reduced NADPH—hemoprotein reductase] + O2 = (S)-stylopine + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): (S)-cheilanthifoline oxidase (methylenedioxy-bridge-forming)
Systematic name: (S)-cheilanthifoline,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(methylenedioxy-bridge-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein catalysing an oxidative reaction that does not incorpo-

rate oxygen into the product. Forms the second methylenedioxy bridge of the protoberberine alkaloid
stylopine from oxidative ring closure of adjacent phenolic and methoxy groups of cheilanthifoline.

References: [220]

[EC 1.14.19.64 created 1999 as EC 1.1.3.32, transferred 2002 to EC 1.14.21.1, transferred 2018 to EC 1.14.19.64]
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EC 1.14.19.65
Accepted name: (S)-cheilanthifoline synthase

Reaction: (S)-scoulerine + [reduced NADPH—hemoprotein reductase] + O2 = (S)-cheilanthifoline + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP719A14 (gene name); (S)-scoulerine oxidase (methylenedioxy-bridge-forming) (ambiguous)
Systematic name: (S)-scoulerine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase [(S)-

cheilanthifoline-forming]
Comments: A cytochrome P-450 (heme-thiolate) protein catalysing an oxidative reaction that does not incorporate

oxygen into the product. Forms the methylenedioxy bridge of the protoberberine alkaloid cheilanthi-
foline by the oxidative ring closure of adjacent phenolic and methoxy groups of scoulerine. cf. EC
1.14.19.73, (S)-nandinine synthase, which catalyses a similar reaction at the other side of the (S)-
scoulerine molecule, forming (S)-nandinine.

References: [220, 560]

[EC 1.14.19.65 created 1999 as EC 1.1.3.33, transferred 2002 to EC 1.14.21.2, modified 2016, transferred 2018 to EC 1.14.19.65]

EC 1.14.19.66
Accepted name: berbamunine synthase

Reaction: (S)-N-methylcoclaurine + (R)-N-methylcoclaurine + [reduced NADPH—hemoprotein reductase] +
O2 = berbamunine + [oxidized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): (S)-N-methylcoclaurine oxidase (C-O phenol-coupling)
Systematic name: (S)-N-methylcoclaurine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (C-O

phenol-coupling)
Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. Forms the bisbenzylisoquinoline alka-

loid berbamunine by phenol oxidation of N-methylcoclaurine without the incorporation of oxygen
into the product. Reaction of two molecules of (R)-N-methylcoclaurine gives the dimer guattagaumer-
ine.

References: [3613]

[EC 1.14.19.66 created 1999 as EC 1.1.3.34, transferred 2002 to EC 1.14.21.3, transferred 2018 to EC 1.14.19.66]

EC 1.14.19.67
Accepted name: salutaridine synthase

Reaction: (R)-reticuline + [reduced NADPH—hemoprotein reductase] + O2 = salutaridine + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): (R)-reticuline oxidase (C-C phenol-coupling)
Systematic name: (R)-reticuline,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (C-C phenol-

coupling)
Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. Forms the morphinan alkaloid salutari-

dine by intramolecular phenol oxidation of reticuline without the incorporation of oxygen into the
product.

References: [1181]

[EC 1.14.19.67 created 1999 as EC 1.1.3.35, transferred 2002 to EC 1.14.21.4, transferred 2018 to EC 1.14.19.67]

EC 1.14.19.68
Accepted name: (S)-canadine synthase

Reaction: (S)-tetrahydrocolumbamine + [reduced NADPH—hemoprotein reductase] + O2 = (S)-canadine + [ox-
idized NADPH—hemoprotein reductase] + 2 H2O

Other name(s): (S)-tetrahydroberberine synthase; (S)-tetrahydrocolumbamine oxidase (methylenedioxy-bridge-
forming); CYP719A (gene name)

Systematic name: (S)-tetrahydrocolumbamine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase
(methylenedioxy-bridge-forming)
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Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The enzyme catalyses an oxidative reac-
tion that does not incorporate oxygen into the product. Oxidation of the methoxyphenol group of the
alkaloid tetrahydrocolumbamine results in the formation of the methylenedioxy bridge of canadine.

References: [3255, 1639, 738]

[EC 1.14.19.68 created 1999 as EC 1.1.3.36, transferred 2002 to EC 1.14.21.5, transferred 2018 to EC 1.14.19.68]

EC 1.14.19.69
Accepted name: biflaviolin synthase

Reaction: (1) 2 flaviolin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 3,3′-biflaviolin + 2 oxidized
ferredoxin [iron-sulfur] cluster + 2 H2O
(2) 2 flaviolin + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = 3,8′-biflaviolin + 2 oxidized
ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): CYP158A2 (gene name); cytochrome P450 158A2
Systematic name: flaviolin,reduced ferredoxin:oxygen oxidoreductase

Comments: This cytochrome-P-450 (heme-thiolate) enzyme, from the soil-dwelling bacterium Streptomyces
coelicolor A3(2), catalyses a phenol oxidation C-C coupling reaction, which results in the polymer-
ization of flaviolin to form biflaviolin or triflaviolin without the incorporation of oxygen into the prod-
uct [4454, 4456]. The products are highly conjugated pigments that protect the bacterium from the
deleterious effects of UV irradiation [4454].

References: [4454, 4455, 4456]

[EC 1.14.19.69 created 2008 as EC 1.14.21.7, transferred 2018 to EC 1.14.19.69]

EC 1.14.19.70
Accepted name: mycocyclosin synthase

Reaction: cyclo(L-tyrosyl-L-tyrosyl) + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2 = mycocyclosin +
2 oxidized ferredoxin [iron-sulfur] cluster + 2 H2O

Other name(s): CYP121; rv2276 (locus name)
Systematic name: cyclo(L-tyrosyl-L-tyrosyl),reduced ferredoxin:oxygen oxidoreductase (diarylbridge-forming)

Comments: A cytochrome P-450 (heme-thiolate) protein from the bacterium Mycobacterium tuberculosis
catalysing an oxidative reaction that does not incorporate oxygen into the product.

References: [251]

[EC 1.14.19.70 created 2013 as EC 1.14.21.9, transferred 2018 to EC 1.14.19.70]

EC 1.14.19.71
Accepted name: fumitremorgin C synthase

Reaction: tryprostatin A + [reduced NADPH—hemoprotein reductase] + O2 = fumitremorgin C + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): ftmE (gene name)
Systematic name: tryprostatin A,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

Comments: A cytochrome P-450 (heme-thiolate) protein. The protein from the fungus Aspergillus fumigatus also
has activity with tryprostatin B forming demethoxyfumitremorgin C. Involved in the biosynthetic
pathways of several indole alkaloids such as fumitremorgins and verruculogen.

References: [1838]

[EC 1.14.19.71 created 2013 as EC 1.14.21.10, transferred 2018 to EC 1.14.19.71]

EC 1.14.19.72
Accepted name: (–)-pluviatolide synthase

Reaction: (–)-matairesinol + [reduced NADPH—hemoprotein reductase] + O2 = (–)-pluviatolide + [oxidized
NADPH—hemoprotein reductase] + 2 H2O
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Other name(s): CYP719A23 (gene name)
Systematic name: (–)-matairesinol,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase

(methylenedioxy-bridge-forming)
Comments: A cytochrome P-450 (heme-thiolate) protein. The enzyme from the plants Sinopodophyllum hexan-

drum and Podophyllum peltatum catalyses the formation of a methylenedioxy-bridge. It is involved
in the biosynthesis of podophyllotoxin, a non-alkaloid toxin lignan whose derivatives are important
anticancer drugs.

References: [2404]

[EC 1.14.19.72 created 2016 as EC 1.14.21.11, transferred 2018 to EC 1.14.19.72]

EC 1.14.19.73
Accepted name: (S)-nandinine synthase

Reaction: (S)-scoulerine + [reduced NADPH—hemoprotein reductase] + O2 = (S)-nandinine + [oxidized
NADPH—hemoprotein reductase] + 2 H2O

Other name(s): CYP719A3
Systematic name: (S)-scoulerine,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase [(S)-nandinine-

forming]
Comments: A cytochrome P-450 (heme-thiolate) enzyme found in plants. The enzyme catalyses an oxidative re-

action that does not incorporate oxygen into the product. Forms the methylenedioxy bridge of the
protoberberine alkaloid (S)-nandinine by the oxidative ring closure of adjacent phenolic and methoxy
groups of (S)-scoulerine. cf. EC 1.14.19.65, (S)-cheilanthifoline synthase, which catalyses a similar
reaction at the other side of the (S)-scoulerine molecule, forming (S)-cheilanthifoline.

References: [1637, 560]

[EC 1.14.19.73 created 2016 as EC 1.14.21.12, transferred 2018 to EC 1.14.19.73]

EC 1.14.19.74
Accepted name: (+)-piperitol/(+)-sesamin synthase

Reaction: (1) (+)-pinoresinol + [reduced NADPH-hemoprotein reductase]l + O2 = (+)-piperitol + [oxidized
NADPH-hemoprotein reductase] + 2 H2O
(2) (+)-piperitol + [reduced NADPH-hemoprotein reductase] + O2 = (+)-sesamin + [oxidized NADPH-
hemoprotein reductase] + 2 H2O

Other name(s): CYP81Q1; CYP81Q2; PS; PSS; SS; piperitol synthase; sesamin synthase
Systematic name: (+)-pinoresinol,[reduced NADPH-hemoprotein reductase]:oxygen oxidoreductase (cyclizing)

Comments: A cytochrome P-450 (heme-thiolate) protein. Isolated from Sesamum indicum (sesame) and S. radia-
tum (black sesame).

References: [2889]

[EC 1.14.19.74 created 2018]

EC 1.14.19.75
Accepted name: very-long-chain acyl-lipid ω-9 desaturase

Reaction: (1) 1-hexacosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(17Z)-
hexacos-17-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) 1-tetracosanoyl-2-acyl-[phosphoglycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = 1-[(15Z)-
tetracos-15-enoyl]-2-acyl-[phosphoglycerolipid] + 2 ferricytochrome b5 + 2 H2O

Other name(s): ADS2 (gene name)
Systematic name: very-long-chain acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (ω9,ω8-cis-

dehydrogenating)
Comments: The enzyme, characterized from the plant Arabidopsis thaliana, acts on both 24:0 and 26:0 fatty

acids, introducing a cis double bond at a position 9 carbons from the methyl end. These very-long-
chain fatty acids are found as a minor component of seed lipids, but also in the membrane phos-
phatidylethanolamine and phosphatidylserine, in sphingolipids, as precursors and components of cu-
ticular and epicuticular waxes, and in suberin.
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References: [1103, 3560]

[EC 1.14.19.75 created 2018]

EC 1.14.19.76
Accepted name: flavone synthase II

Reaction: a flavanone + [reduced NADPH—hemoprotein reductase] + O2 = a flavone + [oxidized NADPH—
hemoprotein reductase] + 2 H2O

Other name(s): CYP93B16 (gene name); CYP93G1 (gene name); FNS II
Systematic name: flavanone,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (flavone-forming)

Comments: A cytochrome P-450 (heme-thiolate) protein found in plants. The rice enzyme channels flavanones to
the biosynthesis of tricin O-linked conjugates. cf. EC 1.14.20.5, flavone synthase I.

References: [2408, 1025, 2117]

[EC 1.14.19.76 created 2018]

EC 1.14.20 With 2-oxoglutarate as one donor, and the other dehydrogenated

EC 1.14.20.1
Accepted name: deacetoxycephalosporin-C synthase

Reaction: penicillin N + 2-oxoglutarate + O2 = deacetoxycephalosporin C + succinate + CO2 + H2O
Other name(s): DAOCS; penicillin N expandase; DAOC synthase

Systematic name: penicillin-N,2-oxoglutarate:oxygen oxidoreductase (ring-expanding)
Comments: Forms part of the penicillin biosynthesis pathway (for pathway, click here).
References: [494, 2168, 4357, 3986, 863]

[EC 1.14.20.1 created 2002]

[1.14.20.2 Transferred entry. 2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase. Now EC 1.14.11.59, 2,4-dihydroxy-
1,4-benzoxazin-3-one-glucoside dioxygenase]

[EC 1.14.20.2 created 2012, deleted 2018]

EC 1.14.20.3
Accepted name: (5R)-carbapenem-3-carboxylate synthase

Reaction: (3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + O2 = (5R)-carbapen-2-em-3-carboxylate + suc-
cinate + CO2 + H2O

Other name(s): carC (gene name)
Systematic name: (3S,5S)-carbapenam-3-carboxylate,2-oxoglutarate:oxygen oxidoreductase (dehydrating)

Comments: Requires Fe2+. The enzyme is involved in the biosynthesis of the carbapenem β-lactam antibiotic
(5R)-carbapen-2-em-3-carboxylate in the bacterium Pectobacterium carotovorum. It catalyses a
stereoinversion at C-5 and introduces a double bond between C-2 and C-3.

References: [633, 3622, 3551]

[EC 1.14.20.3 created 2013]

EC 1.14.20.4
Accepted name: anthocyanidin synthase

Reaction: a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = an anthocyanidin + succinate + CO2 + 2
H2O (overall reaction)
(1a) a (2R,3S,4S)-leucoanthocyanidin + 2-oxoglutarate + O2 = a (4S)- 2,3-dehydroflavan-3,4-diol +
succinate + CO2 + H2O
(1b) a (4S)- 2,3-dehydroflavan-3,4-diol = an anthocyanidin + H2O
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Other name(s): leucocyanidin oxygenase; leucocyanidin,2-oxoglutarate:oxygen oxidoreductase; ANS (gene name)
Systematic name: (2R,3S,4S)-leucoanthocyanidin,2-oxoglutarate:oxygen oxidoreductase

Comments: The enzyme requires Fe(II) and ascorbate. It is involved in the pathway by which many flowering
plants make anthocyanin flower pigments (glycosylated anthocyandins). The enzyme hydroxylates
the C-3 carbon, followed by a trans diaxial elimination, forming a C-2,C-3 enol. The product loses a
second water molecule to form anthocyanidins. When assayed in vitro, non-enzymic epimerization
of the product can lead to formation of dihydroflavanols. Thus when the substrate is leucocyanidin,
a mixture of (+)-taxifolin and (+)-epitaxifolin are formed. The enzyme can also oxidize the formed
(+)-taxifolin to quercetin (cf. EC 1.14.20.6, flavonol synthase) [3948, 4225].

References: [3282, 3948, 4225, 3946, 4170]

[EC 1.14.20.4 created 2001 as EC 1.14.11.19, transferred 2018 to EC 1.14.20.4]

EC 1.14.20.5
Accepted name: flavone synthase I

Reaction: a flavanone + 2-oxoglutarate + O2 = a flavone + succinate + CO2 + H2O
Other name(s): FNSI (gene name)

Systematic name: flavanone,2-oxoglutarate:oxygen oxidoreductase (dehydrating)
Comments: The enzyme, which has been found in rice and in members of the Apiaceae (a plant family), is a

member of the 2-oxoglutarate-dependent dioxygenases, and requires ascorbate and Fe2+ for full ac-
tivity.

References: [2410, 2315, 2409]

[EC 1.14.20.5 created 2004 as EC 1.14.11.22, transferred 2018 to EC 1.14.20.5]

EC 1.14.20.6
Accepted name: flavonol synthase

Reaction: a dihydroflavonol + 2-oxoglutarate + O2 = a flavonol + succinate + CO2 + H2O
Other name(s): FLS (gene name)

Systematic name: dihydroflavonol,2-oxoglutarate:oxygen oxidoreductase
Comments: In addition to the desaturation of (2R,3R)-dihydroflavonols to flavonols, the enzyme from Citrus un-

shiu (satsuma mandarin) also has a non-specific activity that trans-hydroxylates the flavanones (2S)-
naringenin and the unnatural (2R)-naringenin at C-3 to kaempferol and (2R,3R)-dihydrokaempferol,
respectively [2316]. Requires Fe2+.

References: [4171, 2316, 2409, 3947]

[EC 1.14.20.6 created 2004 as EC 1.14.11.23, transferred 2018 to EC 1.14.20.6]

EC 1.14.20.7
Accepted name: 2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming)

Reaction: L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + guanidine + (S)-1-pyrroline-5-carboxylate +
H2O (overall reaction)
(1a) L-arginine + 2-oxoglutarate + O2 = succinate + CO2 + 5-hydroxy-L-arginine
(1b) 5-hydroxy-L-arginine = guanidine + (S)-1-pyrroline-5-carboxylate + H2O

Other name(s): ethene-forming enzyme; ethylene-forming enzyme; EFE
Systematic name: L-arginine,2-oxoglutarate:oxygen oxidoreductase (succinate-forming)

Comments: This is one of two simultaneous reactions catalysed by the enzyme, which is responsible for ethylene
production in bacteria of the Pseudomonas syringae group. In the other reaction [EC 1.13.12.19, 2-
oxoglutarate dioxygenase (ethene-forming)] the enzyme catalyses the dioxygenation of 2-oxoglutarate
forming ethene and three molecules of carbon dioxide.The enzyme catalyses two cycles of the ethene-
forming reaction for each cycle of the succinate-forming reaction, so that the stoichiometry of the
products ethene and succinate is 2:1.

References: [2679, 1107, 1106, 2419]
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[EC 1.14.20.7 created 2011 as EC 1.14.11.34, transferred 2018 to EC 1.14.20.7]

EC 1.14.20.8
Accepted name: (–)-deoxypodophyllotoxin synthase

Reaction: (–)-yatein + 2-oxoglutarate + O2 = (–)-deoxypodophyllotoxin + succinate + CO2 + H2O
Other name(s): 2-ODD (gene name)

Systematic name: (–)-yatein,2-oxoglutarate:oxygen oxidoreductase (ring-forming)
Comments: The enzyme, characterized from the plant Sinopodophyllum hexandrum (mayapple), is involved in the

biosynthetic pathway of podophyllotoxin, a non-alkaloid toxin lignan whose derivatives are important
anticancer drugs. It catalyses the closure of the central six-membered ring in the aryltetralin scaffold.

References: [2151]

[EC 1.14.20.8 created 2016 as EC 1.14.11.50, transferred 2018 to EC 1.14.20.8]

EC 1.14.20.9
Accepted name: L-tyrosine isonitrile desaturase

Reaction: (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate + 2-oxoglutarate + O2 = (2E)-3-(4-hydroxyphenyl)-
2-isocyanoprop-2-enoate + succinate + CO2 + H2O

Other name(s): pvcB (gene name)
Systematic name: (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate,2-oxoglutarate:oxygen oxidoreductase

Comments: The enzyme is a member of the Fe2+, 2-oxoglutarate-dependent oxygenases and requires Fe2+. It has
been characterized from bacteria that form the isonitrile-functionalized compound paerucumarin. cf.
EC 1.14.20.10, L-tyrosine isonitrile desaturase/decarboxylase.

References: [629, 869, 4479]

[EC 1.14.20.9 created 2018]

EC 1.14.20.10
Accepted name: L-tyrosine isonitrile desaturase/decarboxylase

Reaction: (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate + 2-oxoglutarate + O2 = 4-[(E)-2-
isocyanoethenyl]phenol + succinate + 2 CO2 + H2O

Other name(s): pvcB (gene name)
Systematic name: (2S)-3-(4-hydroxyphenyl)-2-isocyanopropanoate,2-oxoglutarate:oxygen oxidoreductase (decarboxy-

lating)
Comments: The enzyme, characterized from the bacterium Xenorhabdus nematophila, is involved in rhabdus-

cin biosynthesis. The enzyme is a member of the Fe2+, 2-oxoglutarate-dependent oxygenases. It is
similar to EC 1.14.20.9, L-tyrosine isonitrile desaturase. However, the latter does not catalyse a decar-
boxylation of the substrate.

References: [693, 4479]

[EC 1.14.20.10 created 2018]

EC 1.14.20.11
Accepted name: 3-[(Z)-2-isocyanoethenyl]-1H-indole synthase

Reaction: (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + 2-oxoglutarate + O2 = 3-[(Z)-2-isocyanoethenyl]-1H-
indole + succinate + 2 CO2 + H2O

Other name(s): ambI3 (gene name); famH3 (gene name)
Systematic name: (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate,2-oxoglutarate:oxygen oxidoreductase (decarboxylat-

ing, 3-[(Z)-2-isocyanoethenyl]-1H-indole-forming)
Comments: The enzyme, characterized from the cyanobacterium Fischerella ambigua UTEX 1903, participates

in the biosynthesis of hapalindole-type alkaloids. The enzyme catalyses an Fe2+, 2-oxoglutarate-
dependent monooxygenation at C-3, which is followed by decarboxylation and dehydration, result-
ing in the generation of a cis C-C double bond. cf. EC 1.14.20.12, L-tryptophan isonitrile desat-
urase/decarboxylase (3-[(E)-2-isocyanoethenyl]-1H-indole-forming).
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References: [1507, 544]

[EC 1.14.20.11 created 2018]

EC 1.14.20.12
Accepted name: 3-[(E)-2-isocyanoethenyl]-1H-indole synthase

Reaction: (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + 2-oxoglutarate + O2 = 3-[(E)-2-isocyanoethenyl]-1H-
indole + succinate + 2 CO2 + H2O

Other name(s): isnB (gene name)
Systematic name: (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate,2-oxoglutarate:oxygen oxidoreductase (decarboxylat-

ing, 3-[(E)-2-isocyanoethenyl]-1H-indole-forming)
Comments: The enzyme has been characterized from an unidentified soil bacterium. It catalyses an Fe2+, 2-

oxoglutarate-dependent monooxygenation at C-3, which is followed by decarboxylation and dehydra-
tion, resulting in the generation of a trans C-C double bond. cf. EC 1.14.20.11, L-tryptophan isonitrile
desaturase/decarboxylase (3-[(Z)-2-isocyanoethenyl]-1H-indole-forming).

References: [382, 544]

[EC 1.14.20.12 created 2018]

EC 1.14.20.13
Accepted name: 6β-hydroxyhyoscyamine epoxidase

Reaction: (6S)-6β-hydroxyhyoscyamine + 2-oxoglutarate + O2 = scopolamine + succinate + CO2 + H2O
Other name(s): hydroxyhyoscyamine dioxygenase; (6S)-6-hydroxyhyoscyamine,2-oxoglutarate oxidoreductase

(epoxide-forming)
Systematic name: (6S)-6β-hydroxyhyoscyamine,2-oxoglutarate:oxygen oxidoreductase (epoxide-forming)

Comments: Requires Fe2+ and ascorbate.
References: [1410]

[EC 1.14.20.13 created 1992 as EC 1.14.11.14, transferred 2018 to EC 1.14.20.13]

EC 1.14.20.14
Accepted name: hapalindole-type alkaloid chlorinase

Reaction: (1) hapalindole U + 2-oxoglutarate + O2 + chloride = hapalindole G + succinate + CO2 + H2O
(2)12-epi-fischerindole U + 2-oxoglutarate + O2 + chloride = 12-epi-fischerindole G + succinate + CO2
+ H2O

Other name(s): ambO5 (gene name); welO5 (gene name)
Systematic name: 12-epi-fischerindole U,2-oxoglutarate:oxygen oxidoreductase (13-halogenating)

Comments: The enzyme, characterized from hapalindole-type alkaloids-producing cyanobacteria, is a specialized
iron(II)/2-oxoglutarate-dependent oxygenase that catalyses the chlorination of its substrates in a reac-
tion that requires oxygen, chloride ions, iron(II) and 2-oxoglutarate.

References: [1505, 4480, 1506]

[EC 1.14.20.14 created 2018]

EC 1.14.20.15
Accepted name: L-threonyl-[L-threonyl-carrier protein] 4-chlorinase

Reaction: an L-threonyl-[L-threonyl-carrier protein] + 2-oxoglutarate + O2 + Cl− = a 4-chloro-L-threonyl-[L-
threonyl-carrier protein] + succinate + CO2 + H2O

Other name(s): syrB2 (gene name)
Systematic name: L-threonyl-[L-threonyl-carrier protein],2-oxoglutarate:oxygen oxidoreductase (4-halogenating)

Comments: The enzyme, characterized from the bacterium Pseudomonas syringae, participates in syringomycin E
biosynthesis. The enzyme is a specialized iron(II)/2-oxoglutarate-dependent oxygenase that catalyses
the chlorination of its substrate in a reaction that requires oxygen, chloride ions, ferrous iron and 2-
oxoglutarate.
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References: [3984]

[EC 1.14.20.15 created 2018]

EC 1.14.21 With NADH or NADPH as one donor, and the other dehydrogenated

[1.14.21.1 Transferred entry. (S)-stylopine synthase. Now EC 1.14.19.64, (S)-stylopine synthase]

[EC 1.14.21.1 created 2002, deleted 2018]

[1.14.21.2 Transferred entry. (S)-cheilanthifoline synthase. Now EC 1.14.19.65, (S)-cheilanthifoline synthase]

[EC 1.14.21.2 created 2002, modified 2016, deleted 2018]

[1.14.21.3 Transferred entry. berbamunine synthase. Now EC 1.14.19.66, berbamunine synthase]

[EC 1.14.21.3 created 2002, deleted 2018]

[1.14.21.4 Transferred entry. salutaridine synthase. Now EC 1.14.19.67, salutaridine synthase]

[EC 1.14.21.4 created 2002, deleted 2018]

[1.14.21.5 Transferred entry. (S)-canadine synthase. Now EC 1.14.19.68, (S)-canadine synthase]

[EC 1.14.21.5 created 2002, deleted 2018]

[1.14.21.6 Transferred entry. lathosterol oxidase. Now EC 1.14.19.20, ∆7-sterol 5(6)-desaturase]

[EC 1.14.21.6 created 1972 as EC 1.3.3.2, transferred 2005 to EC 1.14.21.6, deleted 2015]

[1.14.21.7 Transferred entry. biflaviolin synthase. Now EC 1.14.19.69, biflaviolin synthase]

[EC 1.14.21.7 created 2008, deleted 2018]

[1.14.21.8 Transferred entry. pseudobaptigenin synthase. Now EC 1.14.19.63, pseudobaptigenin synthase.]

[EC 1.14.21.8 created 2011, deleted 2018]

[1.14.21.9 Transferred entry. mycocyclosin synthase. Now EC 1.14.19.70, mycocyclosin synthase]

[EC 1.14.21.9 created 2013, deleted 2018]

[1.14.21.10 Transferred entry. fumitremorgin C synthase. Now EC 1.14.19.71, fumitremorgin C synthase]

[EC 1.14.21.10 created 2013, deleted 2018]

[1.14.21.11 Transferred entry. (–)-pluviatolide synthase. Now EC 1.14.19.72, (–)-pluviatolide synthase]

[EC 1.14.21.11 created 2016, deleted 2018]

[1.14.21.12 Transferred entry. (S)-nandinine synthase. Now EC 1.14.19.73, (S)-nandinine synthase]

[EC 1.14.21.12 created 2016, deleted 2018]

EC 1.14.99 Miscellaneous

EC 1.14.99.1
Accepted name: prostaglandin-endoperoxide synthase

Reaction: arachidonate + reduced acceptor + 2 O2 = prostaglandin H2 + acceptor + H2O
Other name(s): prostaglandin synthase; prostaglandin G/H synthase; (PG)H synthase; PG synthetase; prostaglandin

synthetase; fatty acid cyclooxygenase; prostaglandin endoperoxide synthetase
Systematic name: (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate,hydrogen-donor:oxygen oxidoreductase

Comments: This enzyme acts both as a dioxygenase and as a peroxidase.
References: [809, 2848] 464
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[EC 1.14.99.1 created 1972, modified 1990]

EC 1.14.99.2
Accepted name: kynurenine 7,8-hydroxylase

Reaction: kynurenate + reduced acceptor + O2 = 7,8-dihydro-7,8-dihydroxykynurenate + acceptor
Other name(s): kynurenic acid hydroxylase; kynurenic hydroxylase; kynurenate 7,8-hydroxylase

Systematic name: kynurenate,hydrogen-donor:oxygen oxidoreductase (hydroxylating)
References: [3816]

[EC 1.14.99.2 created 1965 as EC 1.14.1.4, transferred 1972 to EC 1.14.99.2]

[1.14.99.3 Transferred entry. heme oxygenase (biliverdin-producing). Now EC 1.14.14.18, heme oxygenase (biliverdin-
producing)]

[EC 1.14.99.3 created 1972, modified 2006, deleted 2015]

EC 1.14.99.4
Accepted name: progesterone monooxygenase

Reaction: progesterone + reduced acceptor + O2 = testosterone acetate + acceptor + H2O
Other name(s): progesterone hydroxylase

Systematic name: progesterone,hydrogen-donor:oxygen oxidoreductase (hydroxylating)
Comments: Has a wide specificity. A single enzyme from ascomycete the Neonectria radicicola (EC 1.14.13.54

ketosteroid monooxygenase) catalyses both this reaction and that catalysed by EC 1.14.99.12 androst-
4-ene-3,17-dione monooxygenase.

References: [3104]

[EC 1.14.99.4 created 1972, modified 1999]

[1.14.99.5 Transferred entry. stearoyl-CoA desaturase. Now EC 1.14.19.1, stearoyl-CoA 9-desaturase]

[EC 1.14.99.5 created 1972, modified 1986, modified 2000, deleted 2000]

[1.14.99.6 Transferred entry. acyl-[acyl-carrier-protein] desaturase. Now EC 1.14.19.2, acyl-[acyl-carrier-protein] desat-
urase]

[EC 1.14.99.6 created 1972, modified 2000, deleted 2000]

[1.14.99.7 Transferred entry. squalene monooxygenase. Transferred to EC 1.14.13.132, squalene monooxygenase.]

[EC 1.14.99.7 created 1961 as EC 1.99.1.13, transferred 1965 to EC 1.14.1.3, part transferred 1972 to EC 1.14.99.7 rest to EC 5.4.99.7,
deleted 2011]

[1.14.99.8 Deleted entry. arene monooxygenase (epoxidizing). Now included with EC 1.14.14.1 unspecific monooxygenase]

[EC 1.14.99.8 created 1972, deleted 1984]

[1.14.99.9 Transferred entry. steroid 17α-monooxygenase, now classified as EC 1.14.14.19, steroid 17α-monooxygenase]

[EC 1.14.99.9 created 1961 as EC 1.99.1.9, transferred 1965 to EC 1.14.1.7, transferred 1972 to EC 1.14.99.9, modified 2013, deleted 2015]

[1.14.99.10 Transferred entry. steroid 21-monooxygenase. Now EC 1.14.14.16, steroid 21-monooxygenase]

[EC 1.14.99.10 created 1961 as EC 1.99.1.11, transferred 1965 to EC 1.14.1.8, transferred 1972 to EC 1.14.99.10, modified 2013, deleted
2015]

EC 1.14.99.11
Accepted name: estradiol 6β-monooxygenase

Reaction: estradiol-17β + reduced acceptor + O2 = 6β-hydroxyestradiol-17β + acceptor + H2O
Other name(s): estradiol 6β-hydroxylase

Systematic name: estradiol-17β,hydrogen-donor:oxygen oxidoreductase (6β-hydroxylating)
References: [1344, 2645] 465
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[EC 1.14.99.11 created 1965 as EC 1.14.1.10, transferred 1972 to EC 1.14.99.11]

EC 1.14.99.12
Accepted name: androst-4-ene-3,17-dione monooxygenase

Reaction: androstenedione + reduced acceptor + O2 = testololactone + acceptor + H2O
Other name(s): androstene-3,17-dione hydroxylase; androst-4-ene-3,17-dione 17-oxidoreductase; androst-4-ene-3,17-

dione hydroxylase; androstenedione monooxygenase; 4-androstene-3,17-dione monooxygenase
Systematic name: androst-4-ene-3,17-dione-hydrogen-donor:oxygen oxidoreductase (13-hydroxylating, lactonizing)

Comments: Has a wide specificity. A single enzyme from the ascomycete Neonectria radicicola (EC 1.14.13.54,
ketosteroid monooxygenase) catalyses both this reaction and that catalysed by EC 1.14.99.4, proges-
terone monooxygenase.

References: [3052]

[EC 1.14.99.12 created 1972, modified 1999]

[1.14.99.13 Transferred entry. 3-hydroxybenzoate 4-monooxygenase. Now EC 1.14.13.23, 3-hydroxybenzoate 4-monooxygenase]

[EC 1.14.99.13 created 1972, deleted 1984]

EC 1.14.99.14
Accepted name: progesterone 11α-monooxygenase

Reaction: progesterone + reduced acceptor + O2 = 11α-hydroxyprogesterone + acceptor + H2O
Other name(s): progesterone 11α-hydroxylase

Systematic name: progesterone,hydrogen-donor:oxygen oxidoreductase (11α-hydroxylating)
References: [3482]

[EC 1.14.99.14 created 1972]

EC 1.14.99.15
Accepted name: 4-methoxybenzoate monooxygenase (O-demethylating)

Reaction: 4-methoxybenzoate + reduced acceptor + O2 = 4-hydroxybenzoate + formaldehyde + acceptor + H2O
Other name(s): 4-methoxybenzoate 4-monooxygenase (O-demethylating); 4-methoxybenzoate O-demethylase; p-

anisic O-demethylase; piperonylate-4-O-demethylase
Systematic name: 4-methoxybenzoate,hydrogen-donor:oxygen oxidoreductase (O-demethylating)

Comments: The bacterial enzyme consists of a ferredoxin-type protein and an iron-sulfur flavoprotein (FMN).
Also acts on 4-ethoxybenzoate, N-methyl-4-aminobenzoate and toluate. The fungal enzyme acts best
on veratrate.

References: [273, 2952, 3953]

[EC 1.14.99.15 created 1972]

[1.14.99.16 Transferred entry. methylsterol monooxygenase. Now EC 1.14.13.72, methylsterol monooxygenase]

[EC 1.14.99.16 created 1972, deleted 2002]

[1.14.99.17 Transferred entry. glyceryl-ether monooxygenase. Now EC 1.14.16.5, glyceryl-ether monooxygenase]

[EC 1.14.99.17 created 1972, deleted 1976]

[1.14.99.18 Deleted entry. CMP-N-acetylneuraminate monooxygenase]

[EC 1.14.99.18 created 1976, modified 1999, deleted 2003]

EC 1.14.99.19
Accepted name: plasmanylethanolamine desaturase

Reaction: O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine + reduced acceptor + O2 = O-1-alk-1-enyl-2-
acyl-sn-glycero-3-phosphoethanolamine + acceptor + 2 H2O
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Other name(s): alkylacylglycerophosphoethanolamine desaturase; alkylacylglycero-phosphorylethanolamine dehy-
drogenase; dehydrogenase, alkyl-acylglycerophosphorylethanolamine; 1-O-alkyl-2-acyl-sn-glycero-
3-phosphorylethanolamine desaturase; 1-O-alkyl 2-acyl-sn-glycero-3-phosphorylethanolamine desat-
urase

Systematic name: O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine,hydrogen-donor:oxygen oxidoreductase
Comments: Requires NADPH or NADH. May involve cytochrome b5. Requires Mg2+ and ATP.
References: [2928, 4272]

[EC 1.14.99.19 created 1976]

EC 1.14.99.20
Accepted name: phylloquinone monooxygenase (2,3-epoxidizing)

Reaction: phylloquinone + reduced acceptor + O2 = 2,3-epoxyphylloquinone + acceptor + H2O
Other name(s): phylloquinone epoxidase; vitamin K 2,3-epoxidase; vitamin K epoxidase; vitamin K1 epoxidase

Systematic name: phylloquinone,hydrogen-donor:oxygen oxidoreductase (2,3-epoxidizing)
References: [4224]

[EC 1.14.99.20 created 1976]

EC 1.14.99.21
Accepted name: Latia-luciferin monooxygenase (demethylating)

Reaction: Latia luciferin + reduced acceptor + 2 O2 = oxidized Latia luciferin + CO2 + formate + acceptor +
H2O + hν

Other name(s): luciferase (Latia luciferin); Latia luciferin monooxygenase (demethylating)
Systematic name: Latia-luciferin,hydrogen-donor:oxygen oxidoreductase (demethylating)

Comments: A flavoprotein. Latia is a bioluminescent mollusc. The reaction possibly involves two enzymes, an
oxygenase followed by a monooxygenase for the actual light-emitting step.

References: [3504, 3506]

[EC 1.14.99.21 created 1976, modified 1982]

EC 1.14.99.22
Accepted name: ecdysone 20-monooxygenase

Reaction: ecdysone + reduced acceptor + O2 = 20-hydroxyecdysone + acceptor + H2O
Other name(s): α-ecdysone C-20 hydroxylase; ecdysone 20-hydroxylase

Systematic name: Ecdysone,hydrogen-donor:oxygen oxidoreductase (20-hydroxylating)
Comments: An enzyme from insect fat body or malpighian tubules involving a heme-thiolate protein (P-450).

NADPH can act as ultimate hydrogen donor.
References: [1761, 2789, 3564]

[EC 1.14.99.22 created 1978]

EC 1.14.99.23
Accepted name: 3-hydroxybenzoate 2-monooxygenase

Reaction: 3-hydroxybenzoate + reduced acceptor + O2 = 2,3-dihydroxybenzoate + acceptor + H2O
Other name(s): 3-hydroxybenzoate 2-hydroxylase; 3-HBA-2-hydroxylase

Systematic name: 3-hydroxybenzoate,hydrogen-donor:oxygen oxidoreductase (2-hydroxylating)
References: [751]

[EC 1.14.99.23 created 1984]

EC 1.14.99.24
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Accepted name: steroid 9α-monooxygenase
Reaction: pregna-4,9(11)-diene-3,20-dione + reduced acceptor + O2 = 9,11α-epoxypregn-4-ene-3,20-dione +

acceptor + H2O
Other name(s): steroid 9α-hydroxylase

Systematic name: steroid,hydrogen-donor:oxygen oxidoreductase (9-epoxidizing)
Comments: An enzyme system involving a flavoprotein (FMN) and two iron-sulfur proteins.
References: [3682]

[EC 1.14.99.24 created 1986]

[1.14.99.25 Transferred entry. linoleoyl-CoA desaturase. Now EC 1.14.19.3, linoleoyl-CoA desaturase]

[EC 1.14.99.25 created 1986, deleted 2000]

EC 1.14.99.26
Accepted name: 2-hydroxypyridine 5-monooxygenase

Reaction: 2-hydroxypyridine + reduced acceptor + O2 = 2,5-dihydroxypyridine + acceptor + H2O
Other name(s): 2-hydroxypyridine oxygenase

Systematic name: 2-hydroxypyridine,hydrogen-donor:oxygen oxidoreductase (5-hydroxylating)
Comments: Also oxidizes 2,5-dihydroxypyridine, but does not act on 3-hydroxypyridine, 4-hydroxypyridine or

2,6-dihydroxypyridine.
References: [3463]

[EC 1.14.99.26 created 1989]

[1.14.99.27 Transferred entry. juglone 3-monooxygenase, now classified as EC 1.17.3.4, juglone 3-monooxygenase]

[EC 1.14.99.27 created 1989, deleted 2016]

[1.14.99.28 Transferred entry. linalool 8-monooxygenase. Now EC 1.14.14.84, linalool 8-monooxygenase]

[EC 1.14.99.28 created 1989, deleted 2012]

EC 1.14.99.29
Accepted name: deoxyhypusine monooxygenase

Reaction: [eIF5A]-deoxyhypusine + reduced acceptor + O2 = [eIF5A]-hypusine + acceptor + H2O
Other name(s): deoxyhypusine hydroxylase; deoxyhypusine dioxygenase

Systematic name: deoxyhypusine,hydrogen-donor:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme catalyses the final step in the formation of the amino acid hypusine in the eukaryotic ini-

tiation factor 5A.
References: [1]

[EC 1.14.99.29 created 1989]

[1.14.99.30 Transferred entry. carotene 7,8-desaturase. Now EC 1.3.5.6, 9,9′-dicis-ζ-carotene desaturase.]

[EC 1.14.99.30 created 1999, deleted 2011]

[1.14.99.31 Transferred entry. myristoyl-CoA 11-(E) desaturase. Now classified as EC 1.14.19.24, myristoyl-CoA 11-(E)
desaturase]

[EC 1.14.99.31 created 2000, deleted 2015]

[1.14.99.32 Transferred entry. myristoyl-CoA 11-(Z) desaturase. Now classified as EC 1.14.19.5, acyl-CoA 11-(Z)-desaturase.]

[EC 1.14.99.32 created 2000, deleted 2015]

[1.14.99.33 Transferred entry. ∆12-fatty acid dehydrogenase. Now EC 1.14.19.39, acyl-lipid ∆12-acetylenase]

[EC 1.14.99.33 created 2000, deleted 2015]
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EC 1.14.99.34
Accepted name: monoprenyl isoflavone epoxidase

Reaction: 7-O-methylluteone + NADPH + H+ + O2 = dihydrofurano derivatives + NADP+ + H2O
Other name(s): monoprenyl isoflavone monooxygenase; 7-O-methylluteone:O2 oxidoreductase; 7-O-

methylluteone,NADPH:O2 oxidoreductase
Systematic name: 7-O-methylluteone,NADPH:oxygen oxidoreductase

Comments: A flavoprotein (FAD) with high specificity for monoprenyl isoflavone. The product of the prenyl
epoxidation reaction contains an oxygen atom derived from O2, but not from H2O. It is slowly and
non-enzymically converted into the corresponding dihydrofurano derivative. The enzyme in the fun-
gus Botrytis cinerea is induced by the substrate analogue, 6-prenylnaringenin.

References: [3803]

[EC 1.14.99.34 created 2000]

EC 1.14.99.35
Accepted name: thiophene-2-carbonyl-CoA monooxygenase

Reaction: thiophene-2-carbonyl-CoA + reduced acceptor + O2 = 5-hydroxythiophene-2-carbonyl-CoA + accep-
tor + H2O

Other name(s): thiophene-2-carboxyl-CoA dehydrogenase; thiophene-2-carboxyl-CoA hydroxylase; thiophene-2-
carboxyl-CoA monooxygenase

Systematic name: thiophene-2-carbonyl-CoA, hydrogen-donor:oxygen oxidoreductase
Comments: A molybdenum enzyme. Highly specific for thiophene-2-carbonyl-CoA. Tetrazolium salts can act as

electron acceptors.
References: [184]

[EC 1.14.99.35 created 2000]

[1.14.99.36 Transferred entry. β-carotene 15,15-monooxygenase. Now classified as EC 1.13.11.63, β-carotene 15,15′-
dioxygenase.]

[EC 1.14.99.36 created 1972 as EC 1.13.11.21, transferred 2001 to EC 1.14.99.36, deleted 2015]

EC 1.14.99.37
Accepted name: taxadiene 5α-hydroxylase

Reaction: taxa-4,11-diene + reduced acceptor + O2 = taxa-4(20),11-dien-5α-ol + acceptor + H2O
Systematic name: taxa-4,11-diene,hydrogen-donor:oxygen oxidoreductase (5α-hydroxylating)

Comments: This microsomal cytochrome-P-450-dependent enzyme is involved in the biosynthesis of the diter-
penoid antineoplastic drug Taxol (paclitaxel). The reaction includes rearrangement of the 4(5)-double
bond to a 4(20)-double bond, possibly through allylic oxidation.

References: [1455]

[EC 1.14.99.37 created 2002]

EC 1.14.99.38
Accepted name: cholesterol 25-hydroxylase

Reaction: cholesterol + reduced acceptor + O2 = 25-hydroxycholesterol + acceptor + H2O
Other name(s): cholesterol 25-monooxygenase

Systematic name: cholesterol,hydrogen-donor:oxygen oxidoreductase (25-hydroxylating)
Comments: Unlike most other sterol hydroxylases, this enzyme is not a cytochrome P-450. Instead, it uses diiron

cofactors to catalyse the hydroxylation of hydrophobic substrates [2319]. The diiron cofactor can be
either Fe-O-Fe or Fe-OH-Fe and is bound to the enzyme through interactions with clustered histidine
or glutamate residues [1042, 3263]. In cell cultures, this enzyme down-regulates cholesterol synthesis
and the processing of sterol regulatory element binding proteins (SREBPs).

References: [2319, 570, 2317, 1042, 3263]
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[EC 1.14.99.38 created 2005]

EC 1.14.99.39
Accepted name: ammonia monooxygenase

Reaction: NH3 + a reduced acceptor + O2 = NH2OH + an acceptor + H2O
Other name(s): AMO

Systematic name: ammonia,donor:oxygen oxidoreductase (hydroxylamine-producing)
Comments: The enzyme catalyses the first reaction in the pathway of ammonia oxidation to nitrite. It contains

copper [957], iron [4420] and possibly zinc [1204]. The enzyme requires two electrons, which are
derived indirectly from the quinone pool via a membrane-bound donor.

References: [957, 1617, 267, 1546, 4420, 2591, 4197, 124, 1204]

[EC 1.14.99.39 created 2010]

[1.14.99.40 Transferred entry. 5,6-dimethylbenzimidazole synthase. Now EC 1.13.11.79, 5,6-dimethylbenzimidazole syn-
thase]

[EC 1.14.99.40 created 2010, deleted 2014]

[1.14.99.41 Transferred entry. all-trans-8′-apo-β-carotenal 15,15′-oxygenase. Now EC 1.13.11.75, all-trans-8′-apo-β-
carotenal 15,15′-oxygenase]

[EC 1.14.99.41 created 2010, deleted 2013]

[1.14.99.42 Transferred entry. zeaxanthin 7,8-dioxygenase. Now EC 1.13.11.84, crocetin dialdehyde synthase]

[EC 1.14.99.42 created 2011, modified 2014, deleted 2017]

[1.14.99.43 Transferred entry. β-amyrin 24-hydroxylase. Now EC 1.14.14.134, β-amyrin 24-hydroxylase]

[EC 1.14.99.43 created 2011, deleted 2018]

EC 1.14.99.44
Accepted name: diapolycopene oxygenase

Reaction: 4,4′-diapolycopene + 4 reduced acceptor + 4 O2 = 4,4′-diapolycopenedial + 4 acceptor + 6 H2O
Other name(s): crtP (ambiguous)

Systematic name: 4,4′-diapolycopene,AH2:oxygen oxidoreductase (4,4′-hydroxylating)
Comments: Little activity with neurosporene or lycopene. Involved in the biosynthesis of C30 carotenoids such as

staphyloxanthin. The enzyme oxidizes each methyl group to the hydroxymethyl and then a dihydrox-
ymethyl group, followed by the spontaneous loss of water to give an aldehyde group.

References: [2536, 3821]

[EC 1.14.99.44 created 2011]

[1.14.99.45 Transferred entry. carotene ε-monooxygenase. Now EC 1.14.14.158, carotene ε-monooxygenase]

[EC 1.14.99.45 created 2011, deleted 2018]

EC 1.14.99.46
Accepted name: pyrimidine oxygenase

Reaction: (1) uracil + FMNH2 + O2 = (Z)-3-ureidoacrylate peracid + FMN
(2) thymine + FMNH2 + O2 = (Z)-2-methylureidoacrylate peracid + FMN

Other name(s): RutA
Systematic name: uracil,FMNH2:oxygen oxidoreductase (uracil hydroxylating, ring-opening)

Comments: In vitro the product (Z)-3-ureidoacrylate peracid is spontaneously reduced to ureidoacrylate [2648,
1915]. Part of the Rut pyrimidine catabolic pathway.

References: [2648, 1915]

470

http://www.enzyme-database.org/query.php?ec=1.14.99.39
http://www.enzyme-database.org/query.php?ec=1.14.99.44
http://www.enzyme-database.org/query.php?ec=1.14.99.46


[EC 1.14.99.46 created 2012]

EC 1.14.99.47
Accepted name: (+)-larreatricin hydroxylase

Reaction: (+)-larreatricin + reduced acceptor + O2 = (+)-3′-hydroxylarreatricin + acceptor + H2O
Systematic name: (+)-larreatricin:oxygen 3′-hydroxylase

Comments: Isolated from the plant Larrea tridentata (creosote bush). The enzyme has a strong preference for the
3′ position of (+)-larreatricin.

References: [603]

[EC 1.14.99.47 created 2012]

EC 1.14.99.48
Accepted name: heme oxygenase (staphylobilin-producing)

Reaction: (1) protoheme + 5 reduced acceptor + 4 O2 = β-staphylobilin + Fe2+ + formaldehyde + 5 acceptor + 4
H2O
(2) protoheme + 5 reduced acceptor + 4 O2 = δ-staphylobilin + Fe2+ + formaldehyde + 5 acceptor + 4
H2O

Other name(s): haem oxygenase (ambiguous); heme oxygenase (decyclizing) (ambiguous); heme oxidase (ambigu-
ous); haem oxidase (ambiguous); heme oxygenase (ambiguous); isdG (gene name); isdI (gene name)

Systematic name: protoheme,hydrogen-donor:oxygen oxidoreductase (δ/β-methene-oxidizing, hydroxylating)
Comments: This enzyme, which is found in some pathogenic bacteria, is involved in an iron acquisition system

that catabolizes the host’s hemoglobin. The two enzymes from the bacterium Staphylococcus aureus,
encoded by the isdG and isdI genes, produce 67.5 % and 56.2 % δ-staphylobilin, respectively.

References: [3169, 2445, 3676]

[EC 1.14.99.48 created 2013]

[1.14.99.49 Transferred entry. 2-hydroxy-5-methyl-1-naphthoate 7-hydroxylase. Now EC 1.14.15.31, 2-hydroxy-5-methyl-
1-naphthoate 7-hydroxylase]

[EC 1.14.99.49 created 2014, deleted 2018]

EC 1.14.99.50
Accepted name: γ-glutamyl hercynylcysteine S-oxide synthase

Reaction: hercynine + γ-L-glutamyl-L-cysteine + O2 = γ-L-glutamyl-S-(hercyn-2-yl)-L-cysteine S-oxide + H2O
Other name(s): EgtB

Systematic name: hercynine,γ-L-glutamyl-L-cysteine:oxygen oxidoreductase [γ-L-glutamyl-S-(hercyn-2-yl)-L-cysteine
S-oxide-forming]

Comments: Requires Fe2+ for activity. The enzyme, found in bacteria, is specific for both hercynine and γ-L-
glutamyl-L-cysteine. It is part of the biosynthesis pathway of ergothioneine.

References: [3421, 3023]

[EC 1.14.99.50 created 2015]

EC 1.14.99.51
Accepted name: hercynylcysteine S-oxide synthase

Reaction: hercynine + L-cysteine + O2 = S-(hercyn-2-yl)-L-cysteine S-oxide + H2O
Other name(s): Egt1; Egt-1

Systematic name: hercynine,L-cysteine:oxygen [S-(hercyn-2-yl)-L-cysteine S-oxide-forming]
Comments: Requires Fe2+ for activity. The enzyme, found in fungal species, is part of a fusion protein that also

has the the activity of EC 2.1.1.44, L-histidine Nα-methyltransferase. It is part of the biosynthesis
pathway of ergothioneine. The enzyme can also use L-selenocysteine to produce hercynylselenocys-
teine, which can be converted to selenoneine.
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References: [3023]

[EC 1.14.99.51 created 2015]

EC 1.14.99.52
Accepted name: L-cysteinyl-L-histidinylsulfoxide synthase

Reaction: L-histidine + L-cysteine + O2 = S-(L-histidin-5-yl)-L-cysteine S-oxide + H2O
Other name(s): OvoA

Systematic name: L-histidine,L-cysteine:oxygen [S-(L-histidin-5-yl)-L-cysteine S-oxide-forming]
Comments: Requires Fe2+ for activity. The enzyme participates in ovothiol biosynthesis. It also has some activity

as EC 1.13.11.20, cysteine dioxygenase, and can perform the reaction of EC 1.14.99.50, γ-glutamyl
hercynylcysteine sulfoxide synthase, albeit with low activity [3579].

References: [388, 3580, 2427, 3579]

[EC 1.14.99.52 created 2015]

EC 1.14.99.53
Accepted name: lytic chitin monooxygenase

Reaction: [(1→4)-N-acetyl-β-D-glucosaminyl](m+n) + reduced acceptor + O2 = [(1→4)-N-acetyl-β-D-
glucosaminyl](m-1)-(1→4)-2-(acetylamino)-2-deoxy-D-glucono-1,5-lactone + [(1→4)-N-acetyl-β-
D-glucosaminyl]n + acceptor + H2O

Other name(s): LPMO (ambiguous); CBP21; chitin oxidohydrolase
Systematic name: chitin, hydrogen-donor:oxygen oxidoreductase (N-acetyl-β-D-glucosaminyl C1-hydroxylating/C4-

dehdyrogenating)
Comments: The enzyme cleaves chitin in an oxidative manner, releasing fragments of chitin with an N-

acetylamino-D-glucono-1,5-lactone at the reducing end. The initially formed lactone at the reducing
end of the shortened chitin chain quickly hydrolyses spontaneously to the aldonic acid. In vitro ascor-
bate can serve as reducing agent. The enzyme contains copper at the active site.

References: [3981, 3980, 1307, 4438]

[EC 1.14.99.53 created 2017]

EC 1.14.99.54
Accepted name: lytic cellulose monooxygenase (C1-hydroxylating)

Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = [(1→4)-β-D-glucosyl]m−1-(1→4)-D-glucono-
1,5-lactone + [(1→4)-β-D-glucosyl]n + acceptor + H2O

Other name(s): lytic polysaccharide monooxygenase (ambiguous); LPMO (ambiguous); LPMO9A
Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl C1-hydroxylating)

Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner.
The cellulose fragments that are formed contain a D-glucono-1,5-lactone residue at the reducing end,
which hydrolyses quickly and spontaneously to the aldonic acid. The electrons are provided in vivo
by the cytochrome b domain of EC 1.1.99.18, cellobiose dehydrogenase (acceptor) [3000]. Ascorbate
can serve as the electron donor in vitro.

References: [3000, 242, 2235, 288, 1081, 2954, 677]

[EC 1.14.99.54 created 2017]

EC 1.14.99.55
Accepted name: lytic starch monooxygenase

Reaction: starch + reduced acceptor + O2 = D-glucono-1,5-lactone-terminated malto-oligosaccharides + short-
chain malto-oligosaccharides + acceptor + H2O

Other name(s): LPMO (ambiguous)
Systematic name: starch, hydrogen-donor:oxygen oxidoreductase (D-glucosyl C1-hydroxylating)
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Comments: The enzyme cleaves starch in an oxidative manner. It releases fragments of starch with a D-glucono-
1,5-lactone at the reducing end. The initially formed α-D-glucono-1,5-lactone at the reducing end of
the shortend amylose chain quickly hydrolyses spontaneously to the aldonic acid. In vitro ascorbate
has been found to be able to serve as reducing agent. The enzyme contains copper at the active site.

References: [4071, 1307, 2185]

[EC 1.14.99.55 created 2017]

EC 1.14.99.56
Accepted name: lytic cellulose monooxygenase (C4-dehydrogenating)

Reaction: [(1→4)-β-D-glucosyl]n+m + reduced acceptor + O2 = 4-dehydro-β-D-glucosyl-[(1→4)-β-D-
glucosyl]n−1 + [(1→4)-β-D-glucosyl]m + acceptor + H2O

Systematic name: cellulose, hydrogen-donor:oxygen oxidoreductase (D-glucosyl 4-dehydrogenating)
Comments: This copper-containing enzyme, found in fungi and bacteria, cleaves cellulose in an oxidative manner.

The cellulose fragments that are formed contain a 4-dehydro-D-glucose residue at the non-reducing
end. Some enzymes also oxidize cellulose at the C-1 position of the reducing end forming a D-
glucono-1,5-lactone residue [cf. EC 1.14.99.54, lytic cellulose monooxygenase (C1-hydroxylating)].

References: [242, 2235, 1038, 353, 2954]

[EC 1.14.99.56 created 2017]

EC 1.14.99.57
Accepted name: heme oxygenase (mycobilin-producing)

Reaction: (1) protoheme + 3 reduced acceptor + 3 O2 = mycobilin a + Fe2+ + 3 acceptor + 3 H2O
(2) protoheme + 3 reduced acceptor + 3 O2 = mycobilin b + Fe2+ + 3 acceptor + 3 H2O

Other name(s): mhuD (gene name)
Systematic name: protoheme,donor:oxygen oxidoreductase (mycobilin-producing)

Comments: The enzyme, characterized from the bacterium Mycobacterium tuberculosis, is involved in heme
degradation and iron utilization. The enzyme binds two stacked protoheme molecules per monomer.
Unlike the canonical heme oxygenases, the enzyme does not release carbon monoxide or formalde-
hyde. Instead, it forms unique products, named mycobilins, that retain the α-meso-carbon at the ring
cleavage site as an aldehyde group. EC 1.6.2.4, NADPH-hemoprotein reductase, can act as electron
donor in vitro.

References: [592, 2730, 1263]

[EC 1.14.99.57 created 2017]

EC 1.14.99.58
Accepted name: heme oxygenase (biliverdin-IX-β and δ-forming)

Reaction: (1) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-δ + CO + Fe2+ + 3 acceptor + 3 H2O
(2) protoheme + 3 reduced acceptor + 3 O2 = biliverdin-IX-β + CO + Fe2+ + 3 acceptor + 3 H2O

Other name(s): pigA (gene name)
Systematic name: protoheme,donor:oxygen oxidoreductase (biliverdin-IX-β and δ-forming)

Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, differs from EC 1.14.15.20,
heme oxygenase (biliverdin-producing, ferredoxin), in that the heme substrate is rotated by approxi-
mately 110 degrees within the active site, resulting in cleavage at a different part of the ring. It forms
a mixture of about 70% biliverdin-IX-δ and 30% biliverdin-IX-β.

References: [3131, 476, 1069]

[EC 1.14.99.58 created 2017]

EC 1.14.99.59
Accepted name: tryptamine 4-monooxygenase
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Reaction: tryptamine + reduced acceptor + O2 = 4-hydroxytryptamine + acceptor + H2O
Other name(s): PsiH

Systematic name: tryptamine,hydrogen-donor:oxygen oxidoreductase (4-hydroxylating)
Comments: A cytochrome P-450 (heme-thiolate) protein isolated from the fungus Psilocybe cubensis. Involved in

the biosynthesis of the psychoactive compound psilocybin.
References: [1067]

[EC 1.14.99.59 created 2017]

EC 1.14.99.60
Accepted name: 3-demethoxyubiquinol 3-hydroxylase

Reaction: 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol + a reduced acceptor + O2 = 3-
demethylubiquinol + acceptor + H2O

Other name(s): 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol 5-hydroxylase; COQ7 (gene name);
clk-1 (gene name); ubiF (gene name)

Systematic name: 6-methoxy-3-methyl-2-(all-trans-polyprenyl)-1,4-benzoquinol,acceptor:oxygen oxidoreductase (5-
hydroxylating)

Comments: The enzyme catalyses the last hydroxylation reaction during the biosynthesis of ubiquinone.
References: [2392, 3985, 2107, 3639, 3922]

[EC 1.14.99.60 created 2018]

EC 1.14.99.61
Accepted name: cyclooctat-9-en-7-ol 5-monooxygenase

Reaction: cyclooctat-9-en-7-ol + reduced acceptor + O2 = cyclooctat-9-ene-5,7-diol + acceptor + H2O
Other name(s): CotB3

Systematic name: cyclooctat-9-en-7-ol,hydrogen-donor:oxygen oxidoreductase (5-hydroxylating)
Comments: Isolated from the bacterium Streptomyces melanosporofaciens M1614-43f2. Involved in the biosyn-

thesis of cyclooctatin.
References: [1921, 1246]

[EC 1.14.99.61 created 2018]

EC 1.14.99.62
Accepted name: cyclooctatin synthase

Reaction: cyclooctat-9-ene-5,7-diol + reduced acceptor + O2 = cyclooctatin + acceptor + H2O
Other name(s): CotB4

Systematic name: cyclooctat-9-ene-5,7-diol,hydrogen-donor:oxygen oxidoreductase (18-hydroxylating)
Comments: Isolated from the bacterium Streptomyces melanosporofaciens M1614-43f2.
References: [1921, 1246]

[EC 1.14.99.62 created 2018]

EC 1.14.99.63
Accepted name: β-carotene 4-ketolase

Reaction: (1) β-carotene + 2 reduced acceptor + 2 O2 = echinenone + 2 acceptor + 3 H2O
(2) echinenone + 2 reduced acceptor + 2 O2 = canthaxanthin + 2 acceptor + 3 H2O

Other name(s): BKT (ambiguous); β-C-4 oxygenase; β-carotene ketolase; crtS (gene name); crtW (gene name)
Systematic name: β-carotene,donor:oxygen oxidoreductase (echinenone-forming)

Comments: The enzyme, studied from algae, plants, fungi, and bacteria, adds an oxo group at position 4 of a
carotenoid β ring. It is involved in the biosynthesis of carotenoids such as astaxanthin and flexixan-
thin. The enzyme does not act on β rings that are hydroxylated at position 3, such as in zeaxanthin (cf.
EC 1.14.99.64, zeaxanthin 4-ketolase). The enzyme from the yeast Xanthophyllomyces dendrorhous
is bifuntional and also catalyses the activity of EC 1.14.15.24, β-carotene 3-hydroxylase.
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References: [2300, 395, 3634, 2856, 3822, 1834]

[EC 1.14.99.63 created 2018]

EC 1.14.99.64
Accepted name: zeaxanthin 4-ketolase

Reaction: (1) zeaxanthin + 2 reduced acceptor + 2 O2 = adonixanthin + 2 acceptor + 3 H2O
(2) adonixanthin + 2 reduced acceptor + 2 O2 = (3S,3′S)-astaxanthin + 2 acceptor + 3 H2O

Other name(s): BKT (ambiguous); crtW148 (gene name)
Systematic name: zeaxanthin,donor:oxygen oxidoreductase (adonixanthin-forming)

Comments: The enzyme has a similar activity to that of EC 1.14.99.63, β-carotene 4-ketolase, but unlike that en-
zyme is able to also act on zeaxanthin.

References: [4469, 1595]

[EC 1.14.99.64 created 2018]

EC 1.15 Acting on superoxide as acceptor
This subclass contains enzymes that act on superoxide as acceptor in a single sub-subclass (EC 1.15.1).

EC 1.15.1 Acting on superoxide as acceptor (only sub-subclass identified to date)

EC 1.15.1.1
Accepted name: superoxide dismutase

Reaction: 2 superoxide + 2 H+ = O2 + H2O2
Other name(s): superoxidase dismutase; copper-zinc superoxide dismutase; Cu-Zn superoxide dismutase; ferrisu-

peroxide dismutase; superoxide dismutase I; superoxide dismutase II; SOD; Cu,Zn-SOD; Mn-SOD;
Fe-SOD; SODF; SODS; SOD-1; SOD-2; SOD-3; SOD-4; hemocuprein; erythrocuprein; cytocuprein;
cuprein; hepatocuprein

Systematic name: superoxide:superoxide oxidoreductase
Comments: A metalloprotein; also known as erythrocuprein, hemocuprein or cytocuprein. Enzymes from most

eukaryotes contain both copper and zinc; those from mitochondria and most prokaryotes contain man-
ganese or iron.

References: [1868, 3335, 4014]

[EC 1.15.1.1 created 1972]

EC 1.15.1.2
Accepted name: superoxide reductase

Reaction: superoxide + reduced rubredoxin + 2 H+ = H2O2 + oxidized rubredoxin
Other name(s): neelaredoxin; desulfoferrodoxin

Systematic name: rubredoxin:superoxide oxidoreductase
Comments: The enzyme contains non-heme iron.
References: [1733, 4355, 2293, 6]

[EC 1.15.1.2 created 2001 as EC 1.18.96.1, transferred 2001 to EC 1.15.1.2]
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EC 1.16 Oxidizing metal ions
This subclass contains enzymes that oxidize metal ions (donors) to a higher valency state. Sub-subclasses are based on the
acceptor: NAD+ or NADP+ (EC 1.16.1), oxygen (EC 1.16.3) and flavin (EC 1.16.8).

EC 1.16.1 With NAD+ or NADP+ as acceptor

EC 1.16.1.1
Accepted name: mercury(II) reductase

Reaction: Hg + NADP+ + H+ = Hg2+ + NADPH
Other name(s): mercuric reductase; mercurate(II) reductase; mercuric ion reductase; mercury reductase; reduced

NADP:mercuric ion oxidoreductase; mer A
Systematic name: Hg:NADP+ oxidoreductase

Comments: A dithiol enzyme.
References: [1043, 1044]

[EC 1.16.1.1 created 1984]

EC 1.16.1.2
Accepted name: diferric-transferrin reductase

Reaction: transferrin[Fe(II)]2 + NAD+ + H+ = transferrin[Fe(III)]2 + NADH
Other name(s): diferric transferrin reductase; NADH diferric transferrin reductase; transferrin reductase

Systematic name: transferrin[Fe(II)]2:NAD+ oxidoreductase
References: [2304]

[EC 1.16.1.2 created 1989]

EC 1.16.1.3
Accepted name: aquacobalamin reductase

Reaction: 2 cob(II)alamin + NAD+ + 2 H2O = 2 aquacob(III)alamin + NADH + H+

Other name(s): aquocobalamin reductase; vitamin B12a reductase; NADH-linked aquacobalamin reductase; B12a re-
ductase; NADH2:cob(III)alamin oxidoreductase

Systematic name: cob(II)alamin:NAD+ oxidoreductase
Comments: A flavoprotein.
References: [4088]

[EC 1.16.1.3 created 1972 as EC 1.6.99.8, transferred 2002 to EC 1.16.1.3]

EC 1.16.1.4
Accepted name: cob(II)alamin reductase

Reaction: 2 cob(I)alamin + NAD+ = 2 cob(II)alamin + NADH + H+

Other name(s): vitamin B12r reductase; B12r reductase; NADH2:cob(II)alamin oxidoreductase
Systematic name: cob(I)alamin:NAD+ oxidoreductase

Comments: A flavoprotein.
References: [4088]

[EC 1.16.1.4 created 1972 as EC 1.6.99.9, transferred 2002 to EC 1.16.1.4]

EC 1.16.1.5
Accepted name: aquacobalamin reductase (NADPH)

Reaction: 2 cob(II)alamin + NADP+ + 2 H2O = 2 aquacob(III)alamin + NADPH + H+
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Other name(s): aquacobalamin (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADPH-linked
aquacobalamin reductase; NADPH2:aquacob(III)alamin oxidoreductase

Systematic name: cob(II)alamin:NADP+ oxidoreductase
Comments: A flavoprotein. Acts on aquacob(III)alamin and hydroxycobalamin, but not on cyanocobalamin.
References: [4138, 4140]

[EC 1.16.1.5 created 1989 as EC 1.6.99.11, transferred 2002 to EC 1.16.1.5]

EC 1.16.1.6
Accepted name: cyanocobalamin reductase (cyanide-eliminating)

Reaction: 2 cob(II)alamin-[cyanocobalamin reductase] + 2 hydrogen cyanide + NADP+ = 2
cyanocob(III)alamin + 2 [cyanocobalamin reductase] + NADPH + H+

Other name(s): MMACHC (gene name); CblC; cyanocobalamin reductase; cyanocobalamin reductase
(NADPH, cyanide-eliminating); cyanocobalamin reductase (NADPH, CN-eliminating);
NADPH:cyanocob(III)alamin oxidoreductase (cyanide-eliminating); cob(I)alamin, cyanide:NADP+

oxidoreductase
Systematic name: cob(II)alamin, hydrogen cyanide:NADP+ oxidoreductase

Comments: The mammalian enzyme, which is cytosolic, can bind internalized cyanocobalamin and process it to
cob(II)alamin by removing the upper axial ligand. The product remains bound to the protein, which,
together with its interacting partner MMADHC, transfers it directly to downstream enzymes involved
in adenosylcobalamin and methylcobalamin biosynthesis. In addition to its decyanase function, the
mammalian enzyme also catalyses an entirely different chemical reaction with alkylcobalamins, using
the thiolate of glutathione for nucleophilic displacement, generating cob(I)alamin and the correspond-
ing glutathione thioether (cf. EC 2.5.1.151, alkylcobalamin dealkylase).

References: [4139, 1909, 2045, 2365]

[EC 1.16.1.6 created 1989 as EC 1.6.99.12, transferred 2002 to EC 1.16.1.6, modified 2018]

EC 1.16.1.7
Accepted name: ferric-chelate reductase (NADH)

Reaction: 2 Fe(II)-siderophore + NAD+ + H+ = 2 Fe(III)-siderophore + NADH
Other name(s): ferric chelate reductase (ambiguous); iron chelate reductase (ambiguous); NADH:Fe3+-EDTA reduc-

tase; NADH2:Fe3+ oxidoreductase; ferB (gene name); Fe(II):NAD+ oxidoreductase
Systematic name: Fe(II)-siderophore:NAD+ oxidoreductase

Comments: Contains FAD. The enzyme catalyses the reduction of bound ferric iron in a variety of iron chelators
(siderophores), resulting in the release of ferrous iron. The plant enzyme is involved in the transport
of iron across plant plasma membranes. The enzyme from the bacterium Paracoccus denitrificans can
also reduce chromate. cf. EC 1.16.1.9, ferric-chelate reductase (NADPH) and EC 1.16.1.10, ferric-
chelate reductase [NAD(P)H].

References: [132, 423, 424, 440, 3305, 2475]

[EC 1.16.1.7 created 1992 as EC 1.6.99.13, transferred 2002 to EC 1.16.1.7, modified 2011, modified 2014]

EC 1.16.1.8
Accepted name: [methionine synthase] reductase

Reaction: 2 [methionine synthase]-methylcob(I)alamin + 2 S-adenosylhomocysteine + NADP+ = 2 [methionine
synthase]-cob(II)alamin + NADPH + H+ + 2 S-adenosyl-L-methionine

Other name(s): methionine synthase cob(II)alamin reductase (methylating); methionine synthase reductase; [methion-
ine synthase]-cobalamin methyltransferase (cob(II)alamin reducing)

Systematic name: [methionine synthase]-methylcob(I)alamin,S-adenosylhomocysteine:NADP+ oxidoreductase
Comments: In humans, the enzyme is a flavoprotein containing FAD and FMN. The substrate of the enzyme is

the inactivated [Co(II)] form of EC 2.1.1.13, methionine synthase. Electrons are transferred from
NADPH to FAD to FMN. Defects in this enzyme lead to hereditary hyperhomocysteinemia.

References: [2161, 2881, 2882]

477

http://www.enzyme-database.org/query.php?ec=1.16.1.6
http://www.enzyme-database.org/query.php?ec=1.16.1.7
http://www.enzyme-database.org/query.php?ec=1.16.1.8


[EC 1.16.1.8 created 1999 as EC 2.1.1.135, transferred 2003 to EC 1.16.1.8]

EC 1.16.1.9
Accepted name: ferric-chelate reductase (NADPH)

Reaction: 2 Fe(II)-siderophore + NADP+ + H+ = 2 Fe(III)-siderophore + NADPH
Other name(s): ferric chelate reductase (ambiguous); iron chelate reductase (ambiguous); NADPH:Fe3+-EDTA re-

ductase; NADPH-dependent ferric reductase; yqjH (gene name); Fe(II):NADP+ oxidoreductase
Systematic name: Fe(II)-siderophore:NADP+ oxidoreductase

Comments: Contains FAD. The enzyme, which is widespread among bacteria, catalyses the reduction of ferric
iron bound to a variety of iron chelators (siderophores), including ferric triscatecholates and ferric dic-
itrate, resulting in the release of ferrous iron. The enzyme from the bacterium Escherichia coli has the
highest efficiency with the hydrolysed ferric enterobactin complex ferric N-(2,3-dihydroxybenzoyl)-
L-serine [2530]. cf. EC 1.16.1.7, ferric-chelate reductase (NADH) and EC 1.16.1.10, ferric-chelate
reductase [NAD(P)H].

References: [185, 4121, 2530]

[EC 1.16.1.9 created 1992 as EC 1.6.99.13, transferred 2002 to EC 1.16.1.7, transferred 2011 to EC 1.16.1.9, modified 2012, modified 2014]

EC 1.16.1.10
Accepted name: ferric-chelate reductase [NAD(P)H]

Reaction: 2 Fe(II)-siderophore + NAD(P)+ + H+ = 2 Fe(III)-siderophore + NAD(P)H
Other name(s): ferric reductase (ambiguous)

Systematic name: Fe(II)-siderophore:NAD(P)+ oxidoreductase
Comments: A flavoprotein. The enzyme catalyses the reduction of bound ferric iron in a variety of iron chelators

(siderophores), resulting in the release of ferrous iron. The enzyme from the hyperthermophilic ar-
chaeon Archaeoglobus fulgidus is not active with uncomplexed Fe(III). cf. EC 1.16.1.7, ferric-chelate
reductase (NADH) and EC 1.16.1.9, ferric-chelate reductase (NADPH).

References: [3983, 599]

[EC 1.16.1.10 created 2014]

EC 1.16.3 With oxygen as acceptor

EC 1.16.3.1
Accepted name: ferroxidase

Reaction: 4 Fe(II) + 4 H+ + O2 = 4 Fe(III) + 2 H2O
Other name(s): ceruloplasmin; caeruloplasmin; ferroxidase I; iron oxidase; iron(II):oxygen oxidoreductase; ferro:O2

oxidoreductase; iron II:oxygen oxidoreductase; hephaestin; HEPH
Systematic name: Fe(II):oxygen oxidoreductase

Comments: The enzyme in blood plasma (ceruloplasmin) belongs to the family of multicopper oxidases. In hu-
mans it accounts for 95% of plasma copper. It oxidizes Fe(II) to Fe(III), which allows the subsequent
incorporation of the latter into proteins such as apotransferrin and lactoferrin. An enzyme from iron
oxidizing bacterium strain TI-1 contains heme a.

References: [2897, 2898, 2263, 3784, 568]

[EC 1.16.3.1 created 1972, modified 2011]

EC 1.16.3.2
Accepted name: bacterial non-heme ferritin

Reaction: 4 Fe(II) + O2 + 6 H2O = 4 [FeO(OH)] + 8 H+ (overall reaction)
(1a) 2 Fe(II) + O2 + 4 H2O = 2 [FeO(OH)] + 4 H+ + H2O2
(1b) 2 Fe(II) + H2O2 + 2 H2O = 2 [FeO(OH)] + 4 H+
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Other name(s): FtnA; HuHF
Systematic name: Fe(II):oxygen oxidoreductase ([FeO(OH)]core-producing)

Comments: Ferritins are intracellular iron-storage and detoxification proteins found in all kingdoms of life. They
are formed from two subunits that co-assemble in various ratios to form a spherical protein shell.
Thousands of mineralized iron atoms are stored within the core of the structure. The product of dioxy-
gen reduction by the bacterial non-heme ferritin is hydrogen peroxide, which is consumed in a subse-
quent reaction.

References: [1602, 3650, 366]

[EC 1.16.3.2 created 2014]

EC 1.16.3.3
Accepted name: manganese oxidase

Reaction: 4 Mn2+ + 2 O2 + 4 H2O = 4 MnIVO2 + 8 H+ (overall reaction)
(1a) 4 Mn2+ + O2 + 4 H+ = 4 Mn3+ + 2 H2O
(1b) 4 Mn3+ + O2 + 6 H2O = 4 MnIVO2 + 12 H+

Other name(s): mnxG (gene name); mofA (gene name); moxA (gene name); cotA (gene name)
Systematic name: manganese(II):oxygen oxidoreductase

Comments: The enzyme, which belongs to the multicopper oxidase family, is found in many bacterial strains. It
oxidizes soluble manganese(II) to insoluble manganese(IV) oxides. Since the enzyme is localized to
the outer surface of the cell, its activity usually results in encrustation of the cells by the oxides. The
physiological function of bacterial manganese(II) oxidation remains unclear.

References: [666, 1051, 3185, 1190, 3700]

[EC 1.16.3.3 created 2017]

EC 1.16.5 With a quinone or similar compound as acceptor

[1.16.5.1 Transferred entry. ascorbate ferrireductase (transmembrane). Now EC 7.2.1.3, ascorbate ferrireductase (trans-
membrane)]

[EC 1.16.5.1 created 2011, deleted 2018]

EC 1.16.8 With a flavin as acceptor

EC 1.16.8.1
Accepted name: cob(II)yrinic acid a,c-diamide reductase

Reaction: 2 cob(I)yrinic acid a,c-diamide + FMN + 2 H+ = 2 cob(II)yrinic acid a,c-diamide + FMNH2
Other name(s): cob(II)yrinic acid-a,c-diamide:FMN oxidoreductase (incorrect)

Systematic name: cob(I)yrinic acid-a,c-diamide:FMN oxidoreductase
Comments: This enzyme also catalyses the reduction of cob(II)yric acid, cob(II)inamide, cob(II)inamide phos-

phate, GDP-cob(II)inamide and cob(II)alamin although cob(II)yrinic acid a,c-diamide is thought to be
the physiological substrate [317]. Also uses FAD and NADH but not NADPH.

References: [317, 4137]

[EC 1.16.8.1 created 2004]

EC 1.16.9 With a copper protein as acceptor

EC 1.16.9.1
Accepted name: iron:rusticyanin reductase
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Reaction: Fe(II) + rusticyanin = Fe(III) + reduced rusticyanin
Other name(s): Cyc2

Systematic name: Fe(II):rusticyanin oxidoreductase
Comments: Contains c-type heme. The enzyme in Acidithiobacillus ferrooxidans is a component of an electron

transfer chain from Fe(II), comprising this enzyme, the copper protein rusticyanin, cytochrome c4,
and cytochrome c oxidase (EC 1.9.3.1).

References: [312, 106, 4349, 4348, 3776, 519, 3089]

[EC 1.16.9.1 created 2011 as EC 1.16.98.1, transferred 2011 to EC 1.16.9.1]

EC 1.16.98 With other, known, physiological acceptors

[1.16.98.1 Transferred entry. Now EC 1.16.9.1 iron:rusticyanin reductase]

[EC 1.16.98.1 created 2011, deleted 2011]

EC 1.17 Acting on CH or CH2 groups
This subclass contains enzymes that oxidize the -CH2- group of donors to -CHOH- (or -CH- to -COH-) and the oxidative cleavage
of HC- bonds (as in formate); in the reverse direction, those acting on sugars are involved in the formation of deoxysugars. Sub-
subclasses are based on the acceptor: NAD+ or NADP+ (EC 1.17.1), oxygen (EC 1.17.3), a cytochrome (EC 1.17.2), a disulfide
(EC 1.17.4), a quinone or similar compound (EC 1.17.5), another, known, physiological acceptors (EC 1.17.98) or an unknown,
physiological acceptor (EC 1.17.99).

EC 1.17.1 With NAD+ or NADP+ as acceptor

EC 1.17.1.1
Accepted name: CDP-4-dehydro-6-deoxyglucose reductase

Reaction: CDP-4-dehydro-3,6-dideoxy-D-glucose + NAD(P)+ + H2O = CDP-4-dehydro-6-deoxy-D-glucose +
NAD(P)H + H+

Other name(s): CDP-4-keto-6-deoxyglucose reductase; cytidine diphospho-4-keto-6-deoxy-D-glucose reductase; cyti-
dine diphosphate 4-keto-6-deoxy-D-glucose-3-dehydrogenase; CDP-4-keto-deoxy-glucose reductase;
CDP-4-keto-6-deoxy-D-glucose-3-dehydrogenase system; NAD(P)H:CDP-4-keto-6-deoxy-D-glucose
oxidoreductase

Systematic name: CDP-4-dehydro-3,6-dideoxy-D-glucose:NAD(P)+ 3-oxidoreductase
Comments: The enzyme consists of two proteins. One forms an enzyme-bound adduct of the CDP-4-dehydro-6-

deoxyglucose with pyridoxamine phosphate, in which the 3-hydroxy group has been removed. The
second catalyses the reduction of this adduct by NAD(P)H and release of the CDP-4-dehydro-3,6-
dideoxy-D-glucose and pyridoxamine phosphate.

References: [2935, 3248, 2279]

[EC 1.17.1.1 created 1972, modified 2005]

[1.17.1.2 Transferred entry. 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, now classified as EC 1.17.7.4, 4-hydroxy-
3-methylbut-2-enyl diphosphate reductase.]

[EC 1.17.1.2 created 2003, modified 2009, deleted 2016]

EC 1.17.1.3
Accepted name: leucoanthocyanidin reductase

Reaction: (2R,3S)-catechin + NADP+ + H2O = 2,3-trans-3,4-cis-leucocyanidin + NADPH + H+

Other name(s): leucocyanidin reductase
Systematic name: (2R,3S)-catechin:NADP+ 4-oxidoreductase
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Comments: The enzyme catalyses the synthesis of catechin, catechin-4β-ol (leucocyanidin) and the related flavan-
3-ols afzelechin and gallocatechin, which are initiating monomers in the synthesis of plant poly-
meric proanthocyanidins or condensed tannins. While 2,3-trans-3,4-cis-leucocyanidin is the preferred
flavan-3,4-diol substrate, 2,3-trans-3,4-cis-leucodelphinidin and 2,3-trans-3,4-cis-leucopelargonidin
can also act as substrates, but more slowly. NADH can replace NADPH but is oxidized more slowly.

References: [3818, 3817]

[EC 1.17.1.3 created 2003]

EC 1.17.1.4
Accepted name: xanthine dehydrogenase

Reaction: xanthine + NAD+ + H2O = urate + NADH + H+

Other name(s): NAD+-xanthine dehydrogenase; xanthine-NAD+ oxidoreductase; xanthine/NAD+ oxidoreductase;
xanthine oxidoreductase

Systematic name: xanthine:NAD+ oxidoreductase
Comments: Acts on a variety of purines and aldehydes, including hypoxanthine. The mammalian enzyme can

also convert all-trans retinol to all-trans-retinoate, while the substrate is bound to a retinoid-binding
protein [3778]. The enzyme from eukaryotes contains [2Fe-2S], FAD and a molybdenum centre.
The mammalian enzyme predominantly exists as the NAD-dependent dehydrogenase (EC 1.17.1.4).
During purification the enzyme is largely converted to an O2-dependent form, xanthine oxidase (EC
1.17.3.2). The conversion can be triggered by several mechanisms, including the oxidation of cysteine
thiols to form disulfide bonds [2,6,8,15] [which can be catalysed by EC 1.8.4.7, enzyme-thiol tran-
shydrogenase (glutathione-disulfide) in the presence of glutathione disulfide] or limited proteolysis,
which results in irreversible conversion. The conversion can also occur in vivo [2,7,15].

References: [213, 667, 2950, 3111, 3565, 1636, 950, 3286, 2947, 1625, 956, 3933, 1502, 3778, 2798]

[EC 1.17.1.4 created 1972 as EC 1.2.1.37, transferred 1984 to EC 1.1.1.204, modified 1989, transferred 2004 to EC 1.17.1.4, modified 2011]

EC 1.17.1.5
Accepted name: nicotinate dehydrogenase

Reaction: nicotinate + H2O + NADP+ = 6-hydroxynicotinate + NADPH + H+

Other name(s): nicotinic acid hydroxylase; nicotinate hydroxylase
Systematic name: nicotinate:NADP+ 6-oxidoreductase (hydroxylating)

Comments: A flavoprotein containing non-heme iron. The enzyme is capable of acting on a variety of nicoti-
nate analogues to varying degrees, including pyrazine-2-carboxylate, pyrazine 2,3-dicarboxylate,
trigonelline and 6-methylnicotinate. The enzyme from Clostridium barkeri also possesses a catalyt-
ically essential, labile selenium that can be removed by reaction with cyanide.

References: [1537, 1214, 1213, 828, 827, 2690]

[EC 1.17.1.5 created 1972 as EC 1.5.1.13, transferred 2004 to EC 1.17.1.5]

[1.17.1.6 Transferred entry. bile-acid 7α-dehydroxylase. Now EC 1.17.99.5, bile-acid 7α-dehydroxylase. It is now known
that FAD is the acceptor and not NAD+ as was thought previously]

[EC 1.17.1.6 created 2005, deleted 2006]

[1.17.1.7 Transferred entry. 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase. Now EC 1.2.1.91, 3-oxo-5,6-
dehydrosuberyl-CoA semialdehyde dehydrogenase]

[EC 1.17.1.7 created 2011, deleted 2014]

EC 1.17.1.8
Accepted name: 4-hydroxy-tetrahydrodipicolinate reductase

Reaction: (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate + NAD(P)+ + H2O = (2S,4S)-4-hydroxy-2,3,4,5-
tetrahydrodipicolinate + NAD(P)H + H+
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Other name(s): dihydrodipicolinate reductase (incorrect); dihydrodipicolinic acid reductase (incorrect); 2,3,4,5-
tetrahydrodipicolinate:NAD(P)+ oxidoreductase (incorrect); dapB (gene name)

Systematic name: (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate:NAD(P)+ 4-oxidoreductase
Comments: Studies [803] of the enzyme from the bacterium Escherichia coli have shown that the enzyme accepts

(2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate and not (S)-2,3-dihydrodipicolinate as originally
thought [987].

References: [987, 803]

[EC 1.17.1.8 created 1976 as EC 1.3.1.26, transferred 2013 to EC 1.17.1.8]

EC 1.17.1.9
Accepted name: formate dehydrogenase

Reaction: formate + NAD+ = CO2 + NADH
Other name(s): formate-NAD+ oxidoreductase; FDH I; FDH II; N-FDH; formic hydrogen-lyase; formate hydro-

genlyase; hydrogenlyase; NAD+-linked formate dehydrogenase; NAD+-dependent formate dehy-
drogenase; formate dehydrogenase (NAD+); NAD+-formate dehydrogenase; formate benzyl-viologen
oxidoreductase; formic acid dehydrogenase

Systematic name: formate:NAD+ oxidoreductase
Comments: The enzyme from most aerobic organisms is devoid of redox-active centres but that from the pro-

teobacterium Methylosinus trichosporium contains iron-sulfur centres, flavin and a molybdenum cen-
tre [1767]. Together with EC 1.12.1.2 hydrogen dehydrogenase, forms a system previously known as
formate hydrogenlyase.

References: [756, 3090, 1767]

[EC 1.17.1.9 created 1961 as EC 1.2.1.2, transferred 2017 to EC 1.17.1.9]

EC 1.17.1.10
Accepted name: formate dehydrogenase (NADP+)

Reaction: formate + NADP+ = CO2 + NADPH
Other name(s): NADP+-dependent formate dehydrogenase

Systematic name: formate:NADP+ oxidoreductase
Comments: A tungsten-selenium-iron protein characterized from the bacterium Moorella thermoacetica. It is ex-

tremely sensitive to oxygen.
References: [87, 4316]

[EC 1.17.1.10 created 1978 as EC 1.2.1.43, transferred 2017 to EC 1.17.1.10]

EC 1.17.1.11
Accepted name: formate dehydrogenase (NAD+, ferredoxin)

Reaction: 2 formate + NAD+ + 2 oxidized ferredoxin [iron-sulfur] cluster = 2 CO2 + NADH + H+ + 2 reduced
ferredoxin [iron-sulfur] cluster

Other name(s): electron-bifurcating formate dehydrogenase
Systematic name: formate:NAD+, ferredoxin oxidoreductase

Comments: The enzyme complex, isolated from the bacterium Gottschalkia acidurici, couples the reduction of
NAD+ and the reduction of ferredoxin with formate via flavin-based electron bifurcation.

References: [4118]

[EC 1.17.1.11 created 2015 as EC 1.2.1.93, transferred 2017 to EC 1.17.1.11]

EC 1.17.2 With a cytochrome as acceptor
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EC 1.17.2.1
Accepted name: nicotinate dehydrogenase (cytochrome)

Reaction: nicotinate + a ferricytochrome + H2O = 6-hydroxynicotinate + a ferrocytochrome + 2 H+

Other name(s): nicotinic acid hydroxylase; nicotinate hydroxylase
Systematic name: nicotinate:cytochrome 6-oxidoreductase (hydroxylating)

Comments: This two-component enzyme from Pseudomonas belongs to the family of xanthine dehydrogenases,
but differs from most other members of this family. While most members contain an FAD cofactor,
the large subunit of this enzyme contains three c-type cytochromes, enabling it to interact with the
electron transfer chain, probably by delivering the electrons to a cytochrome oxidase. The small sub-
unit contains a typical molybdopterin cytosine dinucleotide(MCD) cofactor and two [2Fe-2S] clusters
[1743].

References: [1743, 4340]

[EC 1.17.2.1 created 2010]

EC 1.17.2.2
Accepted name: lupanine 17-hydroxylase (cytochrome c)

Reaction: lupanine + 2 ferricytochrome c + H2O = 17-hydroxylupanine + 2 ferrocytochrome c + 2 H+

Other name(s): lupanine dehydrogenase (cytochrome c)
Systematic name: lupanine:cytochrome c-oxidoreductase (17-hydroxylating)

Comments: The enzyme isolated from Pseudomonas putida contains heme c and requires pyrroloquinoline
quinone (PQQ) for activity

References: [1564, 1563]

[EC 1.17.2.2 created 2012]

EC 1.17.2.3
Accepted name: formate dehydrogenase (cytochrome-c-553)

Reaction: formate + 2 ferricytochrome c-553 = CO2 + 2 ferrocytochrome c-553 + H+

Systematic name: formate:ferricytochrome-c-553 oxidoreductase
Comments: The enzyme has been characterized from the bacterium Desulfovibrio vulgaris. In vitro, yeast cy-

tochrome c, ferricyanide and phenazine methosulfate can act as acceptors.
References: [4297, 4298]

[EC 1.17.2.3 created 1981 as EC 1.2.2.3, transferred 2017 to EC 1.17.2.3]

EC 1.17.3 With oxygen as acceptor

EC 1.17.3.1
Accepted name: pteridine oxidase

Reaction: 2-amino-4-hydroxypteridine + O2 = 2-amino-4,7-dihydroxypteridine + (?)
Systematic name: 2-amino-4-hydroxypteridine:oxygen oxidoreductase (7-hydroxylating)

Comments: Different from EC 1.17.3.2 xanthine oxidase; does not act on hypoxanthine.
References: [4370]

[EC 1.17.3.1 created 1983]

EC 1.17.3.2
Accepted name: xanthine oxidase

Reaction: xanthine + H2O + O2 = urate + H2O2
Other name(s): hypoxanthine oxidase; hypoxanthine:oxygen oxidoreductase; Schardinger enzyme; xanthine oxidore-

ductase; hypoxanthine-xanthine oxidase; xanthine:O2 oxidoreductase; xanthine:xanthine oxidase
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Systematic name: xanthine:oxygen oxidoreductase
Comments: An iron-molybdenum flavoprotein (FAD) containing [2Fe-2S] centres. Also oxidizes hypoxanthine,

some other purines and pterins, and aldehydes, but is distinct from EC 1.2.3.1, aldehyde oxidase. Un-
der some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH
+ 2 O2

.− + 2 H+. The mammalian enzyme predominantly exists as an NAD-dependent dehydroge-
nase (EC 1.17.1.4, xanthine dehydrogenase). During purification the enzyme is largely converted to
the O2-dependent xanthine oxidase form (EC 1.17.3.2). The conversion can be triggered by several
mechanisms, including the oxidation of cysteine thiols to form disulfide bonds [4,5,7,10] [which can
be catalysed by EC 1.8.4.7, enzyme-thiol transhydrogenase (glutathione-disulfide) in the presence of
glutathione disulfide] or limited proteolysis, which results in irreversible conversion. The conversion
can also occur in vivo [4,6,10].

References: [146, 213, 389, 667, 1636, 950, 3286, 510, 924, 2798]

[EC 1.17.3.2 created 1961 as EC 1.2.3.2, transferred 1984 to EC 1.1.3.22, modified 1989, transferred 2004 to EC 1.17.3.2, modified 2011]

EC 1.17.3.3
Accepted name: 6-hydroxynicotinate dehydrogenase

Reaction: 6-hydroxynicotinate + H2O + O2 = 2,6-dihydroxynicotinate + H2O2
Other name(s): 6-hydroxynicotinic acid hydroxylase; 6-hydroxynicotinic acid dehydrogenase; 6-hydroxynicotinate

hydroxylase; 6-hydroxynicotinate:O2 oxidoreductase
Systematic name: 6-hydroxynicotinate:oxygen oxidoreductase

Comments: Contains [2Fe-2S] iron-sulfur centres, FAD and molybdenum. It also has a catalytically essential,
labile selenium that can be removed by reaction with cyanide. In Bacillus niacini, this enzyme is re-
quired for growth on nicotinic acid.

References: [2689, 2690]

[EC 1.17.3.3 created 2004]

EC 1.17.3.4
Accepted name: juglone 3-hydroxylase

Reaction: 2 juglone + O2 = 2 3,5-dihydroxy-1,4-naphthoquinone (overall reaction)
(1a) 2 juglone + 2 H2O = 2 naphthalene-1,2,4,8-tetrol
(1b) 2 naphthalene-1,2,4,8-tetrol + O2 = 2 3,5-dihydroxy-1,4-naphthoquinone + 2 H2O

Other name(s): juglone hydroxylase; naphthoquinone hydroxylase; naphthoquinone-hydroxylase
Systematic name: 5-hydroxy-1,4-naphthoquinone,water:oxygen oxidoreductase (3-hydroxylating)

Comments: Even though oxygen is consumed, molecular oxygen is not incorporated into the product. Catalysis
starts by incorporation of an oxygen atom from a water molecule into the substrate. The naphthalene-
1,2,4,8-tetrol intermediate is then oxidized by molecular oxygen, which is reduced to water. Also acts
on 1,4-naphthoquinone, naphthazarin and 2-chloro-1,4-naphthoquinone.

References: [3173]

[EC 1.17.3.4 created 1989 as EC 1.14.99.27, transferred 2016 to EC 1.17.3.4]

EC 1.17.4 With a disulfide as acceptor

EC 1.17.4.1
Accepted name: ribonucleoside-diphosphate reductase

Reaction: 2′-deoxyribonucleoside 5′-diphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-
diphosphate + thioredoxin

Other name(s): ribonucleotide reductase (ambiguous); CDP reductase; ribonucleoside diphosphate reductase; UDP
reductase; ADP reductase; nucleoside diphosphate reductase; ribonucleoside 5′-diphosphate reduc-
tase; ribonucleotide diphosphate reductase; 2′-deoxyribonucleoside-diphosphate:oxidized-thioredoxin
2′-oxidoreductase; RR; nrdB (gene name); nrdF (gene name); nrdJ (gene name)
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Systematic name: 2′-deoxyribonucleoside-5′-diphosphate:thioredoxin-disulfide 2′-oxidoreductase
Comments: This enzyme is responsible for the de novo conversion of ribonucleoside diphosphates into deoxyri-

bonucleoside diphosphates, which are essential for DNA synthesis and repair. There are three types
of this enzyme differing in their cofactors. Class Ia enzymes contain a diiron(III)-tyrosyl radical,
class Ib enzymes contain a dimanganese-tyrosyl radical, and class II enzymes contain adenosylcobal-
amin. In all cases the cofactors are involved in generation of a transient thiyl (sulfanyl) radical on a
cysteine residue, which attacks the substrate, forming a ribonucleotide 3′-radical, followed by water
loss to form a ketyl (α-oxoalkyl) radical. The ketyl radical is reduced to 3′-keto-deoxynucleotide con-
comitant with formation of a disulfide anion radical between two cysteine residues. A proton-coupled
electron-transfer from the disulfide radical to the substrate generates a 3′-deoxynucleotide radical, and
the final product is formed when the hydrogen atom that was initially removed from the 3′-position
of the nucleotide by the thiyl radical is returned to the same position. The disulfide bridge is reduced
by the action of thioredoxin. cf. EC 1.1.98.6, ribonucleoside-triphosphate reductase (formate) and EC
1.17.4.2, ribonucleoside-triphosphate reductase (thioredoxin).

References: [2143, 2144, 2605, 2142, 2122, 3693, 2196, 2154, 3082]

[EC 1.17.4.1 created 1972, modified 2017]

EC 1.17.4.2
Accepted name: ribonucleoside-triphosphate reductase (thioredoxin)

Reaction: 2′-deoxyribonucleoside 5′-triphosphate + thioredoxin disulfide + H2O = ribonucleoside 5′-
triphosphate + thioredoxin

Other name(s): ribonucleotide reductase (ambiguous); 2′-deoxyribonucleoside-triphosphate:oxidized-thioredoxin 2′-
oxidoreductase

Systematic name: 2′-deoxyribonucleoside-5′-triphosphate:thioredoxin-disulfide 2′-oxidoreductase
Comments: The enzyme, characterized from the bacterium Lactobacillus leichmannii, is similar to class II

ribonucleoside-diphosphate reductase (cf. EC 1.17.4.1). However, it is specific for the triphosphate
versions of its substrates. The enzyme contains an adenosylcobalamin cofactor that is involved in gen-
eration of a transient thiyl (sulfanyl) radical on a cysteine residue. This radical attacks the substrate,
forming a ribonucleotide 3′-radical, followed by water loss to form a ketyl (α-oxoalkyl) radical. The
ketyl radical is reduced to 3′-keto-deoxynucleotide concomitant with formation of a disulfide anion
radical between two cysteine residues. A proton-coupled electron-transfer from the disulfide radi-
cal to the substrate generates a 3′-deoxynucleotide radical, and the final product is formed when the
hydrogen atom that was initially removed from the 3′-position of the nucleotide by the thiyl radical
is returned to the same position. The disulfide bridge is reduced by the action of thioredoxin. cf. EC
1.1.98.6, ribonucleoside-triphosphate reductase (formate).

References: [314, 1253, 3692, 130, 2156, 2245]

[EC 1.17.4.2 created 1972, modified 2017]

[1.17.4.3 Transferred entry. 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase. As ferredoxin and not protein-disulfide
is now known to take part in the reaction, the enzyme has been transferred to EC 1.17.7.1, (E)-4-hydroxy-3-methylbut-2-enyl-
diphosphate synthase.]

[EC 1.17.4.3 created 2003, deleted 2009]

EC 1.17.4.4
Accepted name: vitamin-K-epoxide reductase (warfarin-sensitive)

Reaction: (1) phylloquinone + a protein with a disulfide bond + H2O = 2,3-epoxyphylloquinone + a protein with
reduced L-cysteine residues
(2) phylloquinol + a protein with a disulfide bond = phylloquinone + a protein with reduced L-cysteine
residues

Other name(s): VKORC1 (gene name); VKORC1L1 (gene name)
Systematic name: phylloquinone:disulfide oxidoreductase
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Comments: The enzyme catalyses the reduction of vitamin K 2,3-epoxide, which is formed by the activity of EC
4.1.1.90, peptidyl-glutamate 4-carboxylase, back to its phylloquinol active form. The enzyme forms
a tight complex with EC 5.3.4.1, protein disulfide-isomerase, which transfers the required electrons
from newly-synthesized proteins by catalysing the formation of disulfide bridges. The enzyme acts
on the epoxide forms of both phylloquinone (vitamin K1) and menaquinone (vitamin K2). Inhibited
strongly by (S)-warfarin and ferulenol.

References: [4196, 2171, 2647, 2233, 4081, 3606, 3398]

[EC 1.17.4.4 created 1989 as EC 1.1.4.1, transferred 2014 to EC 1.17.4.4, modified 2018]

EC 1.17.4.5
Accepted name: vitamin-K-epoxide reductase (warfarin-insensitive)

Reaction: 3-hydroxy-2-methyl-3-phytyl-2,3-dihydro-1,4-naphthoquinone + oxidized dithiothreitol = 2,3-epoxy-
2-methyl-3-phytyl-2,3-dihydro-1,4-naphthoquinone + 1,4-dithiothreitol

Systematic name: 3-hydroxy-2-methyl-3-phytyl-2,3-dihydronaphthoquinone:oxidized-dithiothreitol oxidoreductase
Comments: Vitamin K 2,3-epoxide is reduced to 3-hydroxy- (and 2-hydroxy-) vitamin K by 1,4-dithiothreitol,

which is oxidized to a disulfide. Not inhibited by warfarin [cf. EC 1.17.4.4, vitamin-K-epoxide reduc-
tase (warfarin-sensitive)].

References: [2647]

[EC 1.17.4.5 created 1989 as EC 1.1.4.2, transferred 2014 to EC 1.17.4.5]

EC 1.17.5 With a quinone or similar compound as acceptor

EC 1.17.5.1
Accepted name: phenylacetyl-CoA dehydrogenase

Reaction: phenylacetyl-CoA + H2O + 2 quinone = phenylglyoxylyl-CoA + 2 quinol
Other name(s): phenylacetyl-CoA:acceptor oxidoreductase

Systematic name: phenylacetyl-CoA:quinone oxidoreductase
Comments: The enzyme from Thauera aromatica is a membrane-bound molybdenum—iron—sulfur protein.

The enzyme is specific for phenylacetyl-CoA as substrate. Phenylacetate, acetyl-CoA, benzoyl-CoA,
propanoyl-CoA, crotonyl-CoA, succinyl-CoA and 3-hydroxybenzoyl-CoA cannot act as substrates.
The oxygen atom introduced into the product, phenylglyoxylyl-CoA, is derived from water and not
molecular oxygen. Duroquinone, menaquinone and 2,6-dichlorophenolindophenol (DCPIP) can act as
acceptor, but the likely physiological acceptor is ubiquinone [3175]. A second enzyme, EC 3.1.2.25,
phenylacetyl-CoA hydrolase, converts the phenylglyoxylyl-CoA formed into phenylglyoxylate.

References: [3175, 3384]

[EC 1.17.5.1 created 2004]

EC 1.17.5.2
Accepted name: caffeine dehydrogenase

Reaction: caffeine + ubiquinone + H2O = 1,3,7-trimethylurate + ubiquinol
Systematic name: caffeine:ubiquinone oxidoreductase

Comments: This enzyme, characterized from the soil bacterium Pseudomonas sp. CBB1, catalyses the incorpora-
tion of an oxygen atom originating from a water molecule into position C-8 of caffeine. The enzyme
utilizes short-tail ubiquinones as the preferred electron acceptor.

References: [4399]

[EC 1.17.5.2 created 2010]

EC 1.17.5.3
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Accepted name: formate dehydrogenase-N
Reaction: formate + a quinone = CO2 + a quinol

Other name(s): Fdh-N; FdnGHI; nitrate-inducible formate dehydrogenase; formate dehydrogenase N; FDH-N; nitrate
inducible Fdn; nitrate inducible formate dehydrogenase

Systematic name: formate:quinone oxidoreductase
Comments: The enzyme contains molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters and two heme b

groups. Formate dehydrogenase-N oxidizes formate in the periplasm, transferring electrons via the
menaquinone pool in the cytoplasmic membrane to a dissimilatory nitrate reductase (EC 1.7.5.1),
which transfers electrons to nitrate in the cytoplasm. The system generates proton motive force un-
der anaerobic conditions [1775].

References: [954, 1776, 1775]

[EC 1.17.5.3 created 2010 as EC 1.1.5.6, transferred 2017 to EC 1.17.5.3]

EC 1.17.7 With an iron-sulfur protein as acceptor

EC 1.17.7.1
Accepted name: (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ferredoxin)

Reaction: (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate + H2O + 2 oxidized ferredoxin = 2-C-methyl-D-
erythritol 2,4-cyclodiphosphate + 2 reduced ferredoxin

Other name(s): 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (ambiguous); (E)-4-hydroxy-3-methylbut-
2-en-1-yl-diphosphate:protein-disulfide oxidoreductase (hydrating) (incorrect); (E)-4-hydroxy-3-
methylbut-2-enyl diphosphate synthase (ambiguous); gcpE (gene name); ISPG (gene name); (E)-4-
hydroxy-3-methylbut-2-enyl-diphosphate synthase

Systematic name: (E)-4-hydroxy-3-methylbut-2-en-1-yl-diphosphate:oxidized ferredoxin oxidoreductase
Comments: An iron-sulfur protein found in plant chloroplasts and cyanobacteria that contains a [4Fe-4S] clus-

ter [2858]. Forms part of an alternative non-mevalonate pathway for isoprenoid biosynthesis. Bacte-
ria have a similar enzyme that uses flavodoxin rather than ferredoxin (cf. EC 1.17.7.3). The enzyme
from the plant Arabidopsis thaliana is active with photoreduced 5-deazaflavin but not with flavodoxin
[2858].

References: [2858, 3428, 3427, 3426]

[EC 1.17.7.1 created 2003 as EC 1.17.4.3, transferred 2009 to EC 1.17.7.1, modified 2014]

EC 1.17.7.2
Accepted name: 7-hydroxymethyl chlorophyll a reductase

Reaction: chlorophyll a + H2O + 2 oxidized ferredoxin = 71-hydroxychlorophyll a + 2 reduced ferredoxin + 2
H+

Other name(s): HCAR; 71-hydroxychlorophyll-a:ferredoxin oxidoreductase
Systematic name: chlorophyll-a:ferredoxin oxidoreductase

Comments: Contains FAD and an iron-sulfur center. This enzyme, which is present in plant chloroplasts, carries
out the second step in the conversion of chlorophyll b to chlorophyll a. It similarly reduces chloro-
phyllide a.

References: [2496]

[EC 1.17.7.2 created 2011]

EC 1.17.7.3
Accepted name: (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (flavodoxin)

Reaction: (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate + H2O + oxidized flavodoxin = 2-C-methyl-D-
erythritol 2,4-cyclodiphosphate + reduced flavodoxin

Other name(s): 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (ambiguous); (E)-4-hydroxy-3-methylbut-
2-en-1-yl-diphosphate:protein-disulfide oxidoreductase (hydrating) (incorrect); (E)-4-hydroxy-3-
methylbut-2-enyl diphosphate synthase (ambiguous); ispG (gene name)
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Systematic name: (E)-4-hydroxy-3-methylbut-2-en-1-yl-diphosphate:oxidized flavodoxin oxidoreductase
Comments: A bacterial iron-sulfur protein that contains a [4Fe-4S] cluster. Forms part of an alternative non-

mevalonate pathway for isoprenoid biosynthesis that is found in most bacteria [4435]. Plants and
cyanobacteria have a similar enzyme that utilizes ferredoxin rather than flavodoxin (cf. EC 1.17.7.1).

References: [1449, 4435, 3072]

[EC 1.17.7.3 created 2014]

EC 1.17.7.4
Accepted name: 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase

Reaction: (1) isopentenyl diphosphate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O = (E)-4-hydroxy-3-
methylbut-2-en-1-yl diphosphate + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

(2) dimethylallyl diphosphate + 2 oxidized ferredoxin [iron-sulfur] cluster + H2O = (E)-4-hydroxy-3-
methylbut-2-en-1-yl diphosphate + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+

Other name(s): isopentenyl-diphosphate:NADP+ oxidoreductase; LytB; (E)-4-hydroxy-3-methylbut-2-en-1-yl
diphosphate reductase; HMBPP reductase; IspH; LytB/IspH

Systematic name: isopentenyl-diphosphate:ferredoxin oxidoreductase
Comments: An iron-sulfur protein that contains either a [3Fe-4S] [1264] or a [4Fe-4S] [4241] cluster. This en-

zyme forms a system with a ferredoxin or a flavodoxin and an NAD(P)H-dependent reductase. This
is the last enzyme in the non-mevalonate pathway for isoprenoid biosynthesis. This pathway, also
known as the 1-deoxy-D-xylulose 5-phosphate (DOXP) or as the 2-C-methyl-D-erythritol-4-phosphate
(MEP) pathway, is found in most bacteria and in plant chloroplasts. The enzyme acts in the reverse
direction, producing a 5:1 mixture of isopentenyl diphosphate and dimethylallyl diphosphate.

References: [3219, 1512, 550, 3220, 4241, 1264]

[EC 1.17.7.4 created 2003 as EC 1.17.1.2, modified 2009, transferred 2016 to EC 1.17.7.4]

EC 1.17.8 With a flavin as acceptor

EC 1.17.8.1
Accepted name: hydroxysqualene dehydroxylase

Reaction: squalene + FAD + H2O = hydroxysqualene + FADH2
Other name(s): hpnE (gene name)

Systematic name: squalene:FAD oxidoreductase (hydroxylating)
Comments: This enzyme, isolated from the bacteria Rhodopseudomonas palustris and Zymomonas mobilis, partic-

ipates, along with EC 2.5.1.103, presqualene diphosphate synthase, and EC 4.2.3.156, hydroxysqua-
lene synthase, in the conversion of all-trans-farnesyl diphosphate to squalene. Eukaryotes achieve the
same goal in a single step, catalysed by EC 2.5.1.21, squalene synthase.

References: [2929]

[EC 1.17.8.1 created 2016]

EC 1.17.9 With a flavin as acceptor

EC 1.17.9.1
Accepted name: 4-methylphenol dehydrogenase (hydroxylating)

Reaction: 4-methylphenol + 4 oxidized azurin + H2O = 4-hydroxybenzaldehyde + 4 reduced azurin + 4 H+

(overall reaction)
(1a) 4-methylphenol + 2 oxidized azurin + H2O = 4-hydroxybenzyl alcohol + 2 reduced azurin + 2 H+

(1b) 4-hydroxybenzyl alcohol + 2 oxidized azurin = 4-hydroxybenzaldehyde + 2 reduced azurin + 2
H+
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Other name(s): pchCF (gene names); p-cresol-(acceptor) oxidoreductase (hydroxylating); p-cresol methylhydroxy-
lase; 4-cresol dehydrogenase (hydroxylating)

Systematic name: 4-methylphenol:oxidized azurin oxidoreductase (methyl-hydroxylating)
Comments: This bacterial enzyme contains a flavin (FAD) subunit and a cytochrome c subunit. The flavin subunit

abstracts two hydrogen atoms from the substrate, forming a quinone methide intermediate, then hy-
drates the latter at the benzylic carbon with a hydroxyl group derived from water. The protons are lost
to the bulk solvent, while the electrons are passed to the heme on the cytochrome subunit, and from
there to azurin, a small copper-binding protein that is co-localized with the enzyme in the periplasm.
The first hydroxylation forms 4-hydroxybenzyl alcohol; a second hydroxylation converts this into 4-
hydroxybenzaldehyde.

References: [1565, 2486, 1562, 362, 3153, 2985, 1750]

[EC 1.17.9.1 created 1983 as EC 1.17.99.1, modified 2001, modified 2011, modified 2015, transferred 2018 to EC 1.17.9.1]

EC 1.17.98 With other, known, physiological acceptors

[1.17.98.1 Deleted entry. bile-acid 7α-dehydroxylase. Now known to be catalyzed by multiple enzymes.]

[EC 1.17.98.1 created 2005 as EC 1.17.1.6, transferred 2006 to EC 1.17.99.5, transferred 2014 to EC 1.17.98.1, deleted 2016]

EC 1.17.98.2
Accepted name: bacteriochlorophyllide c C-71-hydroxylase

Reaction: 2 S-adenosyl-L-methionine + a bacteriochlorophyllide c + H2O = a bacteriochlorophyllide e + 2 5′-
deoxyadenosine + 2 L-methionine (overall reaction)
(1a) S-adenosyl-L-methionine + a bacteriochlorophyllide c + H2O = a 7-
(hydroxymethyl)bacteriochlorophyllide c + 5′-deoxyadenosine + L-methionine
(1b) S-adenosyl-L-methionine + a 7-(hydroxymethyl)bacteriochlorophyllide c + H2O = a 7-
(dihydroxymethyl)bacteriochlorophyllide c + 5′-deoxyadenosine + L-methionine
(1c) a 7-(dihydroxymethyl)bacteriochlorophyllide c = a bacteriochlorophyllide e + H2O (spontaneous)

Other name(s): bciD (gene name)
Systematic name: bacteriochlorophyllide-c:S-adenosyl-L-methionine oxidoreductase (C-71-hydroxylating)

Comments: The enzyme, found in green sulfur bacteria (Chlorobiaceae), is a radical S-adenosyl-L-methionine
(AdoMet) enzyme and contains a [4Fe-4S] cluster. It catalyses two consecutive hydroxylation reac-
tions of the C-7 methyl group of bacteriochlorophyllide c to form a geminal diol intermediate that
spontaneously dehydrates to produce the formyl group of bacteriochlorophyllide e.

References: [1389, 3883]

[EC 1.17.98.2 created 2016, modified 2017]

EC 1.17.98.3
Accepted name: formate dehydrogenase (coenzyme F420)

Reaction: formate + oxidized coenzyme F420 = CO2 + reduced coenzyme F420
Other name(s): coenzyme F420 reducing formate dehydrogenase; coenzyme F420-dependent formate dehydrogenase

Systematic name: formate:coenzyme-F420 oxidoreductase
Comments: The enzyme, characterized from methanogenic archaea, is involved in formate-dependent H2 produc-

tion. It contains noncovalently bound FAD [3351].
References: [3351, 3352, 2323]

[EC 1.17.98.3 created 2014 as EC 1.2.99.9, transferred 2017 to EC 1.17.98.3]
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EC 1.17.99 With unknown physiological acceptors

[1.17.99.1 Transferred entry. 4-methylphenol dehydrogenase (hydroxylating). Now EC 1.17.9.1, 4-methylphenol dehydro-
genase (hydroxylating)]

[EC 1.17.99.1 created 1983, modified 2001, modified 2011, modified 2015, deleted 2018]

EC 1.17.99.2
Accepted name: ethylbenzene hydroxylase

Reaction: ethylbenzene + H2O + acceptor = (S)-1-phenylethanol + reduced acceptor
Other name(s): ethylbenzene dehydrogenase; ethylbenzene:(acceptor) oxidoreductase

Systematic name: ethylbenzene:acceptor oxidoreductase
Comments: Involved in the anaerobic catabolism of ethylbenzene by denitrifying bacteria. Ethylbenzene is the

preferred substrate; the enzyme from some strains oxidizes propylbenzene, 1-ethyl-4-fluorobenzene,
3-methylpent-2-ene and ethylidenecyclohexane. Toluene is not oxidized. p-Benzoquinone or ferroce-
nium can act as electron acceptor. Contains molybdopterin, [4Fe-4S] clusters and heme b.

References: [1974, 1757]

[EC 1.17.99.2 created 2001]

EC 1.17.99.3
Accepted name: 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA 24-hydroxylase

Reaction: (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oyl-CoA + H2O + acceptor = (24R,25R)-
3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oyl-CoA + reduced acceptor

Other name(s): trihydroxycoprostanoyl-CoA oxidase; THC-CoA oxidase; THCA-CoA oxidase; 3α,7α,12α-
trihydroxy-5β-cholestanoyl-CoA oxidase; 3α,7α,12α-trihydroxy-5β-cholestan-26-oate 24-
hydroxylase

Systematic name: (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oyl-CoA:acceptor 24-oxidoreductase (24R-
hydroxylating)

Comments: Requires ATP. The reaction in mammals possibly involves dehydrogenation to give a 24(25)-double
bond followed by hydration [1323]. However, in amphibians such as the Oriental fire-bellied toad
(Bombina orientalis), it is probable that the product is formed via direct hydroxylation of the saturated
side chain of (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oate and not via hydration of a 24(25)
double bond [2973]. In microsomes, the free acid is preferred to the coenzyme A ester, whereas in
mitochondria, the coenzyme A ester is preferred to the free-acid form of the substrate [1323].

References: [1323, 3359, 823, 824, 2973, 3263]

[EC 1.17.99.3 created 2005]

EC 1.17.99.4
Accepted name: uracil/thymine dehydrogenase

Reaction: (1) uracil + H2O + acceptor = barbiturate + reduced acceptor
(2) thymine + H2O + acceptor = 5-methylbarbiturate + reduced acceptor

Other name(s): uracil oxidase; uracil-thymine oxidase; uracil dehydrogenase
Systematic name: uracil:acceptor oxidoreductase

Comments: Forms part of the oxidative pyrimidine-degrading pathway in some microorganisms, along with EC
3.5.2.1 (barbiturase) and EC 3.5.1.95 (N-malonylurea hydrolase). Mammals, plants and other mi-
croorganisms utilize the reductive pathway, comprising EC 1.3.1.1 [dihydrouracil dehydrogenase
(NAD+)] or EC 1.3.1.2 [dihydropyrimidine dehydrogenase (NADP+)], EC 3.5.2.2 (dihydropyrimidi-
nase) and EC 3.5.1.6 (β-ureidopropionase), with the ultimate degradation products being an L-amino
acid, NH3 and CO2 [3586].

References: [1432, 4122, 4123, 2135, 3586]

[EC 1.17.99.4 created 1961 as EC 1.2.99.1, transferred 1984 to EC 1.1.99.19, transferred 2006 to EC 1.17.99.4]
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[1.17.99.5 Transferred entry. bile-acid 7α-dehydroxylase. Now classified as EC 1.17.98.1, bile-acid 7α-dehydroxylase.]

[EC 1.17.99.5 created 2005 as EC 1.17.1.6, transferred 2006 to EC 1.17.99.5, deleted 2014]

EC 1.17.99.6
Accepted name: epoxyqueuosine reductase

Reaction: queuosine34 in tRNA + acceptor + H2O = epoxyqueuosine34 in tRNA + reduced acceptor
Other name(s): oQ reductase; queG (gene name); queH (gene name)

Systematic name: queuosine34 in tRNA:acceptor oxidoreductase
Comments: This enzyme catalyses the last step in the bacterial biosynthetic pathway to queuosine, the modified

guanosine base in the wobble position in tRNAs specific for Tyr, His, Asp or Asn.
References: [2541, 4422]

[EC 1.17.99.6 created 2014]

EC 1.17.99.7
Accepted name: formate dehydrogenase (acceptor)

Reaction: formate + acceptor = CO2 + reduced acceptor
Other name(s): FDHH; FDH-H; FDH-O; formate dehydrogenase H; formate dehydrogenase O

Systematic name: formate:acceptor oxidoreductase
Comments: Formate dehydrogenase H is a cytoplasmic enzyme that oxidizes formate without oxygen transfer,

transferring electrons to a hydrogenase. The two enzymes form the formate-hydrogen lyase complex
[149]. The enzyme contains an [4Fe-4S] cluster, a selenocysteine residue and a molybdopterin cofac-
tor [149].

References: [149, 1212, 1895]

[EC 1.17.99.7 created 2010 as EC 1.1.99.33, transferred 2017 to EC 1.17.99.7]

EC 1.18 Acting on iron-sulfur proteins as donors
This subclass contains enzymes that act on iron-sulfur proteins as donors. Sub-subclasses are based on the acceptor: NAD+ or
NADP+ (EC 1.18.1) and dinitrogen (EC 1.18.6).

EC 1.18.1 With NAD+ or NADP+ as acceptor

EC 1.18.1.1
Accepted name: rubredoxin—NAD+ reductase

Reaction: 2 reduced rubredoxin + NAD+ + H+ = 2 oxidized rubredoxin + NADH
Other name(s): rubredoxin reductase; rubredoxin-nicotinamide adenine dinucleotide reductase; dihydronicotinamide

adenine dinucleotide-rubredoxin reductase; reduced nicotinamide adenine dinucleotide-rubredoxin
reductase; NADH-rubredoxin reductase; rubredoxin-NAD reductase; NADH: rubredoxin oxidoreduc-
tase; DPNH-rubredoxin reductase; NADH-rubredoxin oxidoreductase

Systematic name: rubredoxin:NAD+ oxidoreductase
Comments: Requires FAD. The enzyme from Clostridium acetobutylicum reduces rubredoxin, ferricyanide

and dichlorophenolindophenol, but not ferredoxin or flavodoxin. The reaction does not occur when
NADPH is substituted for NADH. Contains iron at the redox centre.

References: [2988, 3960, 3961, 2992]

[EC 1.18.1.1 created 1972 as EC 1.6.7.2, transferred 1978 to EC 1.18.1.1, modified 2001]

EC 1.18.1.2
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Accepted name: ferredoxin—NADP+ reductase
Reaction: 2 reduced ferredoxin + NADP+ + H+ = 2 oxidized ferredoxin + NADPH

Other name(s): ferredoxin-nicotinamide adenine dinucleotide phosphate reductase; ferredoxin-NADP+ reductase;
TPNH-ferredoxin reductase; ferredoxin-NADP+ oxidoreductase; NADP+:ferredoxin oxidoreductase;
ferredoxin-TPN reductase; ferredoxin-NADP+-oxidoreductase; NADPH:ferredoxin oxidoreductase;
ferredoxin-nicotinamide-adenine dinucleotide phosphate (oxidized) reductase

Systematic name: ferredoxin:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). In chloroplasts and cyanobacteria the enzyme acts on plant-type [2Fe-2S] ferre-

doxins, but in other bacteria it can also reduce bacterial [4Fe-4S] ferredoxins and flavodoxin.
References: [3509, 1970, 1818, 2610]

[EC 1.18.1.2 created 1965 as EC 1.6.99.4, transferred 1972 as EC 1.6.7.1, transferred 1978 to EC 1.18.1.2, part transferred 2012 to EC
1.18.1.6, modified 2012]

EC 1.18.1.3
Accepted name: ferredoxin—NAD+ reductase

Reaction: (1) 2 reduced [2Fe-2S] ferredoxin + NAD+ + H+ = 2 oxidized [2Fe-2S] ferredoxin + NADH
(2) reduced 2[4Fe-4S] ferredoxin + NAD+ + H+ = oxidized 2[4Fe-4S] ferredoxin + NADH

Other name(s): ferredoxin-nicotinamide adenine dinucleotide reductase; ferredoxin reductase (ambiguous); NAD+-
ferredoxin reductase; NADH-ferredoxin oxidoreductase; reductase, reduced nicotinamide ade-
nine dinucleotide-ferredoxin; ferredoxin-NAD+ reductase; NADH-ferredoxin reductase; NADH2-
ferredoxin oxidoreductase; NADH flavodoxin oxidoreductase; NADH-ferredoxin NAP reductase
(component of naphthalene dioxygenase multicomponent enzyme system); ferredoxin-linked NAD+

reductase; NADH-ferredoxin TOL reductase (component of toluene dioxygenase); ferredoxin—NAD
reductase

Systematic name: ferredoxin:NAD+ oxidoreductase
Comments: Contains FAD. Reaction (1) is written for a [2Fe-2S] ferredoxin, which is characteristic of some

mono- and dioxygenase systems. The alternative reaction (2) is written for a 2[4Fe-4S] ferredoxin,
which transfers two electrons, and occurs in metabolism of anaerobic bacteria.

References: [1785, 1342, 3115, 3467]

[EC 1.18.1.3 created 1976 as EC 1.6.7.3, transferred 1978 to EC 1.18.1.3, modified 2011]

EC 1.18.1.4
Accepted name: rubredoxin—NAD(P)+ reductase

Reaction: 2 reduced rubredoxin + NAD(P)+ + H+ = 2 oxidized rubredoxin + NAD(P)H
Other name(s): rubredoxin-nicotinamide adenine dinucleotide (phosphate) reductase; rubredoxin-nicotinamide ade-

nine; dinucleotide phosphate reductase; NAD(P)+-rubredoxin oxidoreductase; NAD(P)H-rubredoxin
oxidoreductase

Systematic name: rubredoxin:NAD(P)+ oxidoreductase
Comments: The enzyme from Pyrococcus furiosus requires FAD. It reduces a number of electron carriers, in-

cluding benzyl viologen, menadione and 2,6-dichloroindophenol, but rubredoxin is the most efficient.
Ferredoxin is not utilized.

References: [2991, 2329]

[EC 1.18.1.4 created 1984, modified 2001, modified 2011]

EC 1.18.1.5
Accepted name: putidaredoxin—NAD+ reductase

Reaction: reduced putidaredoxin + NAD+ = oxidized putidaredoxin + NADH + H+

Other name(s): putidaredoxin reductase; camA (gene name)
Systematic name: putidaredoxin:NAD+ oxidoreductase

Comments: Requires FAD. The enzyme from Pseudomonas putida reduces putidaredoxin. It contains a [2Fe-
2S] cluster. Involved in the camphor monooxygenase system (see EC 1.14.15.1, camphor 5-
monooxygenase).
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References: [3229, 1998, 2989, 3454, 3451, 3452, 3563]

[EC 1.18.1.5 created 2012]

EC 1.18.1.6
Accepted name: adrenodoxin-NADP+ reductase

Reaction: 2 reduced adrenodoxin + NADP+ + H+ = 2 oxidized adrenodoxin + NADPH
Other name(s): adrenodoxin reductase; nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase; AdR;

NADPH:adrenal ferredoxin oxidoreductase; NADPH-adrenodoxin reductase
Systematic name: reduced adrenodoxin:NADP+ oxidoreductase

Comments: A flavoprotein (FAD). The enzyme, which transfers electrons from NADPH to adrenodoxin
molecules, is the first component of the mitochondrial cytochrome P-450 electron transfer systems,
and is involved in the biosynthesis of all steroid hormones.

References: [2884, 620, 3718, 1381, 1380, 1379, 4487]

[EC 1.18.1.6 created 1965 as EC 1.6.99.4, transferred 1972 as EC 1.6.7.1, transferred 1978 to EC 1.18.1.2, part transferred 2012 to EC
1.18.1.6, modified 2016]

EC 1.18.1.7
Accepted name: ferredoxin—NAD(P)+ reductase (naphthalene dioxygenase ferredoxin-specific)

Reaction: 2 reduced [2Fe-2S] ferredoxin + NAD(P)+ + H+ = 2 oxidized [2Fe-2S] ferredoxin + NAD(P)H
Other name(s): NADH-ferredoxin(NAP) reductase

Systematic name: ferredoxin:NAD(P)+ oxidoreductase
Comments: The enzyme from the aerobic bacterium Ralstonia sp. U2 donates electrons to both EC 1.14.12.12,

naphthalene 1,2-dioxygenase and EC 1.14.13.172, salicylate 5-hydroxylase [4472]. The enzyme from
Pseudomonas NCIB 9816 is specific for the ferredoxin associated with naphthalene dioxygenase; it
contains FAD and a [2Fe-2S] cluster.

References: [4472, 1342]

[EC 1.18.1.7 created 2013]

[1.18.1.8 Transferred entry. ferredoxin-NAD+ oxidoreductase (Na+-transporting). Now EC 7.2.1.2, ferredoxin—NAD+

oxidoreductase (Na+-transporting)]

[EC 1.18.1.8 created 2015, deleted 2018]

EC 1.18.2 With dinitrogen as acceptor (deleted sub-subclass)

[1.18.2.1 Transferred entry. now EC 1.18.6.1, nitrogenase]

[EC 1.18.2.1 created 1978, deleted 1984]

EC 1.18.3 With H+ as acceptor (deleted sub-subclass)

[1.18.3.1 Transferred entry. hydrogenase. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.18.3.1 created 1978, deleted 1984]

EC 1.18.6 With dinitrogen as acceptor

EC 1.18.6.1
Accepted name: nitrogenase
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Reaction: 8 reduced ferredoxin + 8 H+ + N2 + 16 ATP + 16 H2O = 8 oxidized ferredoxin + H2 + 2 NH3 + 16
ADP + 16 phosphate

Other name(s): reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing)
Systematic name: ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing, molybdenum-dependent)

Comments: Requires Mg2+. The enzyme is a complex of two components (namely dinitrogen reductase and
dinitrogenase). Dinitrogen reductase is a [4Fe-4S] protein, which, in the presence of two molecules
of ATP, transfers an electron from ferredoxin to the dinitrogenase component. Dinitrogenase is a
molybdenum-iron protein that reduces dinitrogen to two molecules of ammonia in three successive
two-electron reductions via diazene and hydrazine. The reduction is initiated by formation of hy-
drogen in stoichiometric amounts [2241]. Acetylene is reduced to ethylene (but only very slowly
to ethane), azide to nitrogen and ammonia, and cyanide to methane and ammonia. In the absence
of a suitable substrate, hydrogen is slowly formed. Ferredoxin may be replaced by flavodoxin [see
EC 1.19.6.1 nitrogenase (flavodoxin)]. The enzyme does not reduce CO (cf. EC 1.18.6.2, vanadium-
dependent nitrogenase).

References: [4499, 2241, 735, 536]

[EC 1.18.6.1 created 1978 as EC 1.18.2.1, transferred 1984 to EC 1.18.6.1, modified 2005, modified 2018]

EC 1.18.6.2
Accepted name: vanadium-dependent nitrogenase

Reaction: 12 reduced ferredoxin + 12 H+ + N2 + 40 ATP + 40 H2O = 12 oxidized ferredoxin + 3 H2 + 2 NH3 +
40 ADP + 40 phosphate

Other name(s): vnfD (gene name); vnfG (gene name); vnfK (gene name)
Systematic name: ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing, vanadium-dependent)

Comments: Requires Mg2+. This enzyme, originally isolated from the bacterium Azotobacter vinelandii, is a
complex of two components (namely dinitrogen reductase and dinitrogenase). Dinitrogen reductase is
a [4Fe-4S] protein, which, in the presence of ATP, transfers an electron from ferredoxin to the dinitro-
genase component. Dinitrogenase is a vanadium-iron protein that reduces dinitrogen to two molecules
of ammonia in three successive two-electron reductions via diazine and hydrazine. Compared with
molybdenum-depedent nitrogenase (EC 1.18.6.1), this enzyme produces more dihydrogen and con-
sumes more ATP per dinitrogen molecule being reduced. Unlike EC 1.18.6.1, this enzyme can also
use CO as substrate, producing ethene, ethane and propane [2165, 3540].

References: [905, 2547, 3878, 829, 830, 900, 2165, 2166, 3540]

[EC 1.18.6.2 created 2018]

EC 1.18.96 With other, known, acceptors (deleted sub-subclass)

[1.18.96.1 Transferred entry. superoxide reductase. Now EC 1.15.1.2, superoxide reductase]

[EC 1.18.96.1 created 2001, deleted 2001]

EC 1.18.99 With H+ as acceptor (deleted sub-subclass)

[1.18.99.1 Transferred entry. hydrogenase. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.18.99.1 created 1961 as EC 1.98.1.1, transferred 1965 to EC 1.12.1.1, transferred 1972 to EC 1.12.7.1, transferred 1978 to EC 1.18.3.1,
transferred 1984 to EC 1.18.99.1, deleted 2002]

EC 1.19 Acting on reduced flavodoxin as donor
This subclass contains enzymes that act on reduced flavodoxin as donors. Sub-subclasses are based on the acceptor: NAD+ or
NADP+ (EC 1.19.1) and dinitrogen (EC 1.19.6).

494

http://www.enzyme-database.org/query.php?ec=1.18.6.2


EC 1.19.1 With NAD+ or NADP+ as acceptor

EC 1.19.1.1
Accepted name: flavodoxin—NADP+ reductase

Reaction: reduced flavodoxin + NADP+ = oxidized flavodoxin + NADPH + H+

Other name(s): FPR
Systematic name: flavodoxin:NADP+ oxidoreductase

Comments: A flavoprotein (FAD). This activity occurs in some prokaryotes and algae that possess flavodoxin, and
provides low-potential electrons for a variety of reactions such as nitrogen fixation, sulfur assimilation
and amino acid biosynthesis. In photosynthetic organisms it is involved in the photosynthetic electron
transport chain. The enzyme also catalyses EC 1.18.1.2, ferredoxin—NADP+ reductase.

References: [2487, 2160, 4101, 357, 358, 3548]

[EC 1.19.1.1 created 2016]

EC 1.19.6 With dinitrogen as acceptor

EC 1.19.6.1
Accepted name: nitrogenase (flavodoxin)

Reaction: 4 reduced flavodoxin + N2 + 16 ATP + 16 H2O = 4 oxidized flavodoxin + H2 + 2 NH3 + 16 ADP + 16
phosphate

Systematic name: reduced flavodoxin:dinitrogen oxidoreductase (ATP-hydrolysing)
Comments: Requires Mg2+. It is composed of two components, dinitrogen reductase and dinitrogenase, that can

be separated but are both required for nitrogenase activity. Dinitrogen reductase is a [4Fe-4S] pro-
tein, which, at the expense of ATP, transfers electrons from a dedicated flavodoxin to dinitrogenase.
Dinitrogenase is a protein complex that contains either a molybdenum-iron cofactor, a vanadium-iron
cofactor, or an iron-iron cofactor, that reduces dinitrogen in three succesive two-electron reductions
from nitrogen to diimine to hydrazine to two molecules of ammonia. The reduction is initiated by
formation of hydrogen. The enzyme can also reduce acetylene to ethylene (but only very slowly to
ethane), azide to nitrogen and ammonia, and cyanide to methane and ammonia. In the absence of a
suitable substrate, hydrogen is slowly formed. Some enzymes utilize ferredoxin rather than flavodoxin
as the electron donor (see EC 1.18.6.1, nitrogenase).

References: [4498, 906, 778]

[EC 1.19.6.1 created 1984, modified 2014]

EC 1.20 Acting on phosphorus or arsenic in donors
This subclass contains enzymes that act on phosphorus or arsenic in donors. Sub-subclasses are based on the acceptor: NAD+

or NADP+ (EC 1.20.1), disulfide (EC 1.20.4), other, known, acceptors (EC 1.20.98), or some other acceptor (EC 1.20.99).

EC 1.20.1 With NAD+ or NADP+ as acceptor

EC 1.20.1.1
Accepted name: phosphonate dehydrogenase

Reaction: phosphonate + NAD+ + H2O = phosphate + NADH + H+

Other name(s): NAD:phosphite oxidoreductase; phosphite dehydrogenase
Systematic name: phosphonate:NAD+ oxidoreductase

Comments: NADP+ is a poor substitute for NAD+ in the enzyme from Pseudomonas stutzeri WM88.
References: [672, 4070]
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[EC 1.20.1.1 created 2001]

EC 1.20.2 With a cytochrome as acceptor

EC 1.20.2.1
Accepted name: arsenate reductase (cytochrome c)

Reaction: arsenite + H2O + 2 oxidized cytochrome c = arsenate + 2 reduced cytochrome c + 2 H+

Other name(s): arsenite oxidase (ambiguous)
Systematic name: arsenite:cytochrome c oxidoreductase

Comments: A molybdoprotein containing iron-sulfur clusters. Isolated from α-proteobacteria. Unlike EC
1.20.9.1, arsenate reductase (azurin), it does not use azurin as acceptor.

References: [4017, 3310, 384, 2251]

[EC 1.20.2.1 created 2011]

EC 1.20.4 With disulfide as acceptor

EC 1.20.4.1
Accepted name: arsenate reductase (glutaredoxin)

Reaction: arsenate + glutaredoxin = arsenite + glutaredoxin disulfide + H2O
Other name(s): ArsC (ambiguous)

Systematic name: arsenate:glutaredoxin oxidoreductase
Comments: A molybdoenzyme. The enzyme is part of a system for detoxifying arsenate. Although the arsenite

formed is more toxic than arsenate, it can be extruded from some bacteria by EC 3.6.3.16, arsenite-
transporting ATPase; in other organisms, arsenite can be methylated by EC 2.1.1.137, arsenite methyl-
transferase, in a pathway that produces non-toxic organoarsenical compounds. cf. EC 1.20.4.4, arsen-
ate reductase (thioredoxin).

References: [1215, 1216, 1549, 2052, 2413, 3099, 3320, 3481]

[EC 1.20.4.1 created 2000 as EC 1.97.1.5, transferred 2001 to EC 1.20.4.1, modified 2015]

EC 1.20.4.2
Accepted name: methylarsonate reductase

Reaction: methylarsonate + 2 glutathione = methylarsonite + glutathione disulfide + H2O
Other name(s): MMA(V) reductase

Systematic name: methylarsonate:glutathione oxidoreductase
Comments: The product, methylarsonite, is biologically methylated by EC 2.1.1.137, arsenite methyltransferase,

to form cacodylic acid.
References: [4421]

[EC 1.20.4.2 created 2000 as EC 1.97.1.7, transferred 2001 to EC 1.20.4.2, modified 2003]

EC 1.20.4.3
Accepted name: mycoredoxin

Reaction: arseno-mycothiol + mycoredoxin = arsenite + mycothiol-mycoredoxin disulfide
Other name(s): Mrx1; MrxI

Systematic name: arseno-mycothiol:mycoredoxin oxidoreductase
Comments: Reduction of arsenate is part of a defense mechanism of the cell against toxic arsenate. The substrate

arseno-mycothiol is formed by EC 2.8.4.2 (arsenate:mycothiol transferase). A second mycothiol recy-
cles mycoredoxin and forms mycothione.

References: [2894]
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[EC 1.20.4.3 created 2010]

EC 1.20.4.4
Accepted name: arsenate reductase (thioredoxin)

Reaction: arsenate + thioredoxin = arsenite + thioredoxin disulfide + H2O
Other name(s): ArsC (ambiguous)

Systematic name: arsenate:thioredoxin oxidoreductase
Comments: The enzyme, characterized in bacteria of the Firmicutes phylum, is specific for thioredoxin [1738]. It

has no activity with glutaredoxin [cf. EC 1.20.4.1, arsenate reductase (glutaredoxin)]. Although the
arsenite formed is more toxic than arsenate, it can be extruded from some bacteria by EC 3.6.3.16,
arsenite-transporting ATPase; in other organisms, arsenite can be methylated by EC 2.1.1.137, arsen-
ite methyltransferase, in a pathway that produces non-toxic organoarsenical compounds. The enzyme
also has the activity of EC 3.1.3.48, protein-tyrosine-phosphatase [4429].

References: [1738, 2509, 4429, 2510]

[EC 1.20.4.4 created 2015]

EC 1.20.9 With a copper protein as acceptor

EC 1.20.9.1
Accepted name: arsenate reductase (azurin)

Reaction: arsenite + H2O + 2 oxidized azurin = arsenate + 2 reduced azurin + 2 H+

Other name(s): arsenite oxidase (ambiguous)
Systematic name: arsenite:azurin oxidoreductase

Comments: Contains a molybdopterin centre comprising two molybdopterin guanosine dinucleotide cofac-
tors bound to molybdenum, a [3Fe-4S] cluster and a Rieske-type [2Fe-2S] cluster. Isolated from β-
proteobacteria. Also uses a c-type cytochrome or O2 as acceptors.

References: [83, 941]

[EC 1.20.9.1 created 2001 as EC 1.20.98.1, transferred 2011 to EC 1.20.9.1]

EC 1.20.98 With other, known, physiological acceptors

[1.20.98.1 Transferred entry. arsenate reductase (azurin). Now EC 1.20.9.1, arsenate reductase (azurin)]

[EC 1.20.98.1 created 2001, deleted 2011]

EC 1.20.99 With unknown physiological acceptors

EC 1.20.99.1
Accepted name: arsenate reductase (donor)

Reaction: arsenite + acceptor = arsenate + reduced acceptor
Other name(s): arsenate:(acceptor) oxidoreductase

Systematic name: arsenate:acceptor oxidoreductase
Comments: Benzyl viologen can act as an acceptor. Unlike EC 1.20.4.1, arsenate reductase (glutaredoxin), re-

duced glutaredoxin cannot serve as a reductant.
References: [2052, 3099]

[EC 1.20.99.1 created 2000 as EC 1.97.1.6, transferred 2001 to EC 1.20.99.1]
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EC 1.21 Catalysing the reaction X-H + Y-H = X-Y
This subclass contains enzymes that catalyse the reaction X-H + Y-H = X-Y, forming or breaking an X-Y bond. Sub-subclasses
are based on the acceptor: oxygen (EC 1.21.3), a disulfide (EC 1.21.4), or some other unidentified acceptor (EC 1.21.99).

EC 1.21.1 Catalysing the reaction X-H + Y-H = X-Y

EC 1.21.1.1
Accepted name: iodotyrosine deiodinase

Reaction: L-tyrosine + 2 NADP+ + 2 iodide = 3,5-diiodo-L-tyrosine + 2 NADPH + 2 H+ (overall reaction)
(1a) L-tyrosine + NADP+ + iodide = 3-iodo-L-tyrosine + NADPH + H+

(1b) 3-iodo-L-tyrosine + NADP+ + iodide = 3,5-diiodo-L-tyrosine + NADPH + H+

Other name(s): iodotyrosine dehalogenase 1; DEHAL1
Systematic name: L-tyrosine,iodide:NADP+ oxidoreductase (iodinating)

Comments: The enzyme activity has only been demonstrated in the direction of 3-deiodination. Present in a trans-
membrane flavoprotein. Requires FMN.

References: [3234, 1227, 1070, 3869]

[EC 1.21.1.1 created 2010 as EC 1.22.1.1 transfered 2015 to EC 1.21.1.1]

EC 1.21.1.2
Accepted name: 2,4-dichlorobenzoyl-CoA reductase

Reaction: 4-chlorobenzoyl-CoA + NADP+ + chloride = 2,4-dichlorobenzoyl-CoA + NADPH + H+

Systematic name: 4-chlorobenzoyl-CoA:NADP+ oxidoreductase (halogenating)
Comments: The enzyme, characterized from Corynebacterium strains able to grow on 2,4-dichlorobenzoate,

forms part of the 2,4-dichlorobenzoate degradation pathway.
References: [3226]

[EC 1.21.1.2 created 2000 as EC 1.3.1.63, modified 2011, transferred 2015 to EC 1.21.1.2]

EC 1.21.3 With oxygen as acceptor

EC 1.21.3.1
Accepted name: isopenicillin-N synthase

Reaction: N-[(5S)-5-amino-5-carboxypentanoyl]-L-cysteinyl-D-valine + O2 = isopenicillin N + 2 H2O
Other name(s): isopenicillin N synthetase

Systematic name: N-[(5S)-5-amino-5-carboxypentanoyl]-L-cysteinyl-D-valine:oxygen oxidoreductase (cyclizing)
Comments: Forms part of the penicillin biosynthesis pathway (for pathway, click here).
References: [1603, 3199]

[EC 1.21.3.1 created 2002]

EC 1.21.3.2
Accepted name: columbamine oxidase

Reaction: 2 columbamine + O2 = 2 berberine + 2 H2O
Other name(s): berberine synthase

Systematic name: columbamine:oxygen oxidoreductase (cyclizing)
Comments: An iron protein. Oxidation of the O-methoxyphenol structure forms the methylenedioxy group of

berberine.
References: [3253]
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[EC 1.21.3.2 created 1989 as EC 1.1.3.26, transferred 2002 to EC 1.21.3.2]

EC 1.21.3.3
Accepted name: reticuline oxidase

Reaction: (S)-reticuline + O2 = (S)-scoulerine + H2O2
Other name(s): BBE; berberine bridge enzyme; berberine-bridge-forming enzyme; tetrahydroprotoberberine synthase

Systematic name: (S)-reticuline:oxygen oxidoreductase (methylene-bridge-forming)
Comments: Contains FAD. The enzyme from the plant Eschscholtzia californica binds the cofactor covalently

[2099]. Acts on (S)-reticuline and related compounds, converting the N-methyl group into the methy-
lene bridge (’berberine bridge’) of (S)-tetrahydroprotoberberines. The product of the reaction, (S)-
scoulerine, is a precursor of protopine, protoberberine and benzophenanthridine alkaloid biosynthesis
in plants.

References: [3631, 833, 2099]

[EC 1.21.3.3 created 1989 as EC 1.5.3.9, transferred 2002 to EC 1.21.3.3]

EC 1.21.3.4
Accepted name: sulochrin oxidase [(+)-bisdechlorogeodin-forming]

Reaction: 2 sulochrin + O2 = 2 (+)-bisdechlorogeodin + 2 H2O
Other name(s): sulochrin oxidase

Systematic name: sulochrin:oxygen oxidoreductase (cyclizing, (+)-specific)
Comments: Also acts on several diphenols and phenylenediamines, but has low affinity for these substrates. In-

volved in the biosynthesis of mould metabolites related to the antibiotic griseofulvin.
References: [2818]

[EC 1.21.3.4 created 1986 as EC 1.10.3.7, transferred 2002 to EC 1.21.3.4]

EC 1.21.3.5
Accepted name: sulochrin oxidase [(-)-bisdechlorogeodin-forming]

Reaction: 2 sulochrin + O2 = 2 (-)-bisdechlorogeodin + 2 H2O
Other name(s): sulochrin oxidase

Systematic name: sulochrin:oxygen oxidoreductase (cyclizing, (-)-specific)
Comments: Also acts on several diphenols and phenylenediamines, but has low affinity for these substrates. In-

volved in the biosynthesis of mould metabolites related to the antibiotic griseofulvin.
References: [2818]

[EC 1.21.3.5 created 1986 as EC 1.10.3.8, transferred 2002 to EC 1.21.3.5]

EC 1.21.3.6
Accepted name: aureusidin synthase

Reaction: (1) 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside + O2 = aureusidin 6-O-β-D-glucoside + H2O
(2) 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside + 1

2 O2 = aureusidin 6-O-β-D-glucoside +
H2O
(3) 2′,3,4,4′,6′-pentahydroxychalcone 4′-O-β-D-glucoside + O2 = bracteatin 6-O-β-D-glucoside + H2O

Other name(s): AmAS1
Systematic name: 2′,4,4′,6′-tetrahydroxychalcone 4′-O-β-D-glucoside:oxygen oxidoreductase

Comments: A copper-containing glycoprotein that plays a key role in the yellow coloration of flowers such as
Antirrhinum majus (snapdragon). The enzyme is a homologue of plant polyphenol oxidase [2723] and
catalyses two separate chemical transformations, i.e. 3-hydroxylation and oxidative cyclization (2′,-
dehydrogenation). H2O2 activates reaction (1) but inhibits reaction (2). Originally considered to act
on the phenol but now thought to act mainly on the 4′-O-β-D-glucoside in vivo [2888].

References: [2723, 2722, 3321, 2888]
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[EC 1.21.3.6 created 2003, modified 2012]

EC 1.21.3.7
Accepted name: tetrahydrocannabinolic acid synthase

Reaction: cannabigerolate + O2 = ∆9-tetrahydrocannabinolate + H2O2
Other name(s): THCA synthase; ∆1-tetrahydrocannabinolic acid synthase

Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, ∆9-tetrahydrocannabinolate-forming)
Comments: A flavoprotein (FAD). The cofactor is covalently bound. Part of the cannabinoids biosynthetic path-

way in the plant Cannabis sativa. The enzyme can also convert cannabinerolate (the (Z)-isomer of
cannabigerolate) to ∆9-THCA with lower efficiency. Whereas the product was originally called ∆1-
tetrahydrocannabinolate, the recommended name according to systematic peripheral numbering is
∆9-tetrahydrocannabinolate.

References: [3826, 3542, 3521, 3522]

[EC 1.21.3.7 created 2012]

EC 1.21.3.8
Accepted name: cannabidiolic acid synthase

Reaction: cannabigerolate + O2 = cannabidiolate + H2O2
Other name(s): CBDA synthase

Systematic name: cannabigerolate:oxygen oxidoreductase (cyclizing, cannabidiolate-forming)
Comments: Binds FAD covalently. Part of the cannabinoids biosynthetic pathway of the plant Cannabis sativa.

The enzyme can also convert cannabinerolate to cannabidiolate with lower efficiency.
References: [3825, 3827]

[EC 1.21.3.8 created 2012]

[1.21.3.9 Transferred entry. dichlorochromopyrrolate synthase, now classified as EC 1.21.98.2, dichlorochromopyrrolate
synthase]

[EC 1.21.3.9 created 2010 as EC 4.3.1.26, transferred 2013 to EC 1.21.3.9, deleted 2016]

EC 1.21.4 With a disulfide as acceptor

EC 1.21.4.1
Accepted name: D-proline reductase

Reaction: 5-aminopentanoate + a [PrdC protein with a selenide-sulfide bridge] = D-proline + a [PrdC protein
with thiol/selenol residues]

Other name(s): prdAB (gene names); D-proline reductase (dithiol)
Systematic name: 5-aminopentanoate:[PrdC protein] oxidoreductase (cyclizing)

Comments: A pyruvoyl- and L-selenocysteine-containing enzyme found in a number of Clostridial species. The
pyruvoyl group, located on the PrdA subunit, binds the substrate, while the selenocysteine residue, lo-
cated on the PrdB subunit, attacks the α-C-atom of D-proline, leading to a reductive cleavage of the
C-N-bond of the pyrrolidine ring and formation of a selenoether. The selenoether is cleaved by a cys-
teine residue of PrdB, resulting in a mixed selenide-sulfide bridge, which is restored to its reduced
state by another selenocysteine protein, PrdC. 5-aminopentanoate is released from PrdA by hydroly-
sis, regenerating the pyruvoyl moiety. The resulting mixed selenide-sulfide bridge in PrdC is reduced
by NADH.

References: [3616, 1530, 1790, 240, 1027]

[EC 1.21.4.1 created 1972 as EC 1.4.4.1, modified 1982 (EC 1.4.1.6 created 1961, incorporated 1982), transferred 2003 to EC 1.21.4.1,
modified 2018]
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EC 1.21.4.2
Accepted name: glycine reductase

Reaction: acetyl phosphate + NH3 + thioredoxin disulfide + H2O = glycine + phosphate + thioredoxin
Systematic name: acetyl-phosphate ammonia:thioredoxin disulfide oxidoreductase (glycine-forming)

Comments: The reaction is observed only in the direction of glycine reduction. The enzyme from Eubacterium
acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl
group, and is responsible for glycine binding and ammonia release. Subunit A, which also contains
selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into
a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distin-
guishes this enzyme from EC 1.21.4.3 (sarcosine reductase) and EC 1.21.4.4 (betaine reductase).

References: [4079, 240]

[EC 1.21.4.2 created 2003]

EC 1.21.4.3
Accepted name: sarcosine reductase

Reaction: acetyl phosphate + methylamine + thioredoxin disulfide + H2O = N-methylglycine + phosphate +
thioredoxin

Systematic name: acetyl-phosphate methylamine:thioredoxin disulfide oxidoreductase (N-methylglycine-forming)
Comments: The reaction is observed only in the direction of sarcosine reduction. The enzyme from Eubacterium

acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl
group, and is responsible for sarcosine binding and methylamine release. Subunit A, which also con-
tains selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into
a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distin-
guishes this enzyme from EC 1.21.4.2 (glycine reductase) and EC 1.21.4.4 (betaine reductase).

References: [4079, 1572]

[EC 1.21.4.3 created 2003]

EC 1.21.4.4
Accepted name: betaine reductase

Reaction: acetyl phosphate + trimethylamine + thioredoxin disulfide + H2O = betaine + phosphate + thioredoxin
Other name(s): acetyl-phosphate trimethylamine:thioredoxin disulfide oxidoreductase (N,N,N-trimethylglycine-

forming)
Systematic name: acetyl-phosphate trimethylamine:thioredoxin disulfide oxidoreductase (betaine-forming)

Comments: The reaction is observed only in the direction of betaine reduction. The enzyme from Eubacterium
acidaminophilum consists of subunits A, B and C. Subunit B contains selenocysteine and a pyruvoyl
group, and is responsible for betaine binding and trimethylamine release. Subunit A, which also con-
tains selenocysteine, is reduced by thioredoxin, and is needed to convert the carboxymethyl group into
a ketene equivalent, in turn used by subunit C to produce acetyl phosphate. Only subunit B distin-
guishes this enzyme from EC 1.21.4.2 (glycine reductase) and EC 1.21.4.3 (sarcosine reductase).

References: [4079, 240]

[EC 1.21.4.4 created 2003, modified 2010]

EC 1.21.4.5
Accepted name: tetrachlorohydroquinone reductive dehalogenase

Reaction: (1) 2,6-dichlorohydroquinone + Cl− + glutathione disulfide = 2,3,6-trichlorohydroquinone + 2 glu-
tathione
(2) 2,3,6-trichlorohydroquinone + Cl− + glutathione disulfide = 2,3,5,6-tetrachlorohydroquinone + 2
glutathione

Other name(s): pcpC (gene name)
Systematic name: glutathione disulfide:2,6-dichlorohydroquinone (chlorinating)
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Comments: The enzyme, characterized from the bacterium Sphingobium chlorophenolicum, converts tetrachloro-
hydroquinone to 2,6-dichlorohydroquinone in two steps, via 2,3,6-trichlorohydroquinone, using glu-
tathione as the reducing agent. The enzyme is sensitive to oxidation - when an internal L-cysteine
residue is oxidized, the enzyme produces 2,3,5-trichloro-6-(glutathion-S-yl)-hydroquinone and 2,6-
dichloro-3-(glutathion-S-yl)-hydroquinone instead of its normal products.

References: [4294, 2477]

[EC 1.21.4.5 created 2018]

EC 1.21.98 With other, known, physiological acceptors

EC 1.21.98.1
Accepted name: cyclic dehypoxanthinyl futalosine synthase

Reaction: dehypoxanthine futalosine + S-adenosyl-L-methionine = cyclic dehypoxanthinyl futalosine + 5′-
deoxyadenosine + L-methionine

Other name(s): MqnC; dehypoxanthinyl futalosine cyclase
Systematic name: dehypoxanthine futalosine:S-adenosyl-L-methionine oxidoreductase (cyclizing)

Comments: This enzyme is a member of the ‘AdoMet radical’ (radical SAM) family. The enzyme, found in sev-
eral bacterial species, is part of the futalosine pathway for menaquinone biosynthesis.

References: [1519, 654]

[EC 1.21.98.1 created 2014 as EC 1.21.99.2, transferred 2014 to EC 1.21.98.1]

EC 1.21.98.2
Accepted name: dichlorochromopyrrolate synthase

Reaction: 2 3-(7-chloroindol-3-yl)-2-iminopropanoate + H2O2 = dichlorochromopyrrolate + NH3 + 2 H2O
Other name(s): RebD; chromopyrrolic acid synthase; chromopyrrolate synthase

Systematic name: 3-(7-chloroindol-3-yl)-2-iminopropanoate ammonia-lyase (dichlorochromopyrrolate-forming)
Comments: This enzyme catalyses a step in the biosynthesis of rebeccamycin, an indolocarbazole alkaloid pro-

duced by the bacterium Lechevalieria aerocolonigenes. The enzyme is a dimeric heme-protein
oxidase that catalyses the oxidative dimerization of two L-tryptophan-derived molecules to form
dichlorochromopyrrolic acid, the precursor for the fused six-ring indolocarbazole scaffold of rebec-
camycin [2802]. Contains one molecule of heme b per monomer, as well as non-heme iron that is
not part of an iron-sulfur center [1585]. In vivo the enzyme uses hydrogen peroxide, formed by the
enzyme upstream in the biosynthetic pathway (EC 1.4.3.23, 7-chloro-L-tryptophan oxidase) as the
electron acceptor. However, the enzyme is also able to catalyse the reaction using molecular oxygen
[3607].

References: [2802, 1585, 3607]

[EC 1.21.98.2 created 2010 as EC 4.3.1.26, transferred 2013 to EC 1.21.3.9, transferred 2016 to EC 1.21.98.2]

EC 1.21.98.3
Accepted name: anaerobic magnesium-protoporphyrin IX monomethyl ester cyclase

Reaction: magnesium-protoporphyrin IX 13-monomethyl ester + 3 S-adenosyl-L-methionine + H2O = 3,8-
divinyl protochlorophyllide a + 3 5′-deoxyadenosine + 3 L-methionine (overall reaction)
(1a) magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine + H2O = 131-
hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + 5′-deoxyadenosine + L-methionine
(1b) 131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine =
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + 5′-deoxyadenosine + L-methionine
(1c) 131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + S-adenosyl-L-methionine = 3,8-
divinyl protochlorophyllide a + 5′-deoxyadenosine + L-methionine

Other name(s): bchE (gene name); MPE cyclase (ambiguous)
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Systematic name: magnesium-protoporphyrin-IX 13-monomethyl ester,S-adenosyl-L-methionine:H2O oxidoreductase
(hydroxylating)

Comments: This radical AdoMet enzyme participates in the biosynthesis of chlorophyllide a in anaerobic bac-
teria, catalysing the formation of an isocyclic ring. Contains a [4Fe-4S] cluster and a cobalamin
cofactor. The same transformation is achieved in aerobic organisms by the oxygen-dependent EC
1.14.13.81, magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase. Some facultative
phototrophic bacteria, such as Rubrivivax gelatinosus, possess both enzymes.

References: [4346, 1251, 2916, 350]

[EC 1.21.98.3 created 2016]

EC 1.21.98.4
Accepted name: PqqA peptide cyclase

Reaction: a PqqA peptide + S-adenosyl-L-methionine = a PqqA peptide with linked Glu-Tyr residues + 5′-
deoxyadenosine + L-methionine

Other name(s): pqqE (gene name)
Systematic name: PqqA peptide:S-adenosyl-L-methionine oxidoreductase (cyclizing)

Comments: This bacterial enzyme, which is a member of the radical SAM protein family, catalyses the formation
of a C-C bond between C-4 of glutamate and C-3 of tyrosine residues of the PqqA protein (which
are separated by three amino acid residues). This is the first enzymic step in the biosynthesis of the
bacterial enzyme cofactor pyrroloquinoline quinone (PQQ). The reaction is dependent on the presence
of a reductant (flavodoxin) and the accessory protein PqqD.

References: [4154, 2146, 204]

[EC 1.21.98.4 created 2018]

EC 1.21.99 With unknown physiological acceptors

EC 1.21.99.1
Accepted name: β-cyclopiazonate dehydrogenase

Reaction: β-cyclopiazonate + acceptor = α-cyclopiazonate + reduced acceptor
Other name(s): β-cyclopiazonate oxidocyclase; β-cyclopiazonic oxidocyclase; β-cyclopiazonate:(acceptor) oxidore-

ductase (cyclizing)
Systematic name: β-cyclopiazonate:acceptor oxidoreductase (cyclizing)

Comments: A flavoprotein (FAD). Cytochrome c and various dyes can act as acceptor. Cyclopiazonate is a micro-
bial toxin.

References: [920, 3341]

[EC 1.21.99.1 created 1976 as EC 1.3.99.9, transferred 2002 to EC 1.21.99.1]

[1.21.99.2 Transferred entry. EC 1.21.99.2, cyclic dehypoxanthinyl futalosine synthase. Now classified as EC 1.21.98.1,
cyclic dehypoxanthinyl futalosine synthase.]

[EC 1.21.99.2 created 2014, deleted 2014]

EC 1.21.99.3
Accepted name: thyroxine 5-deiodinase

Reaction: 3,3′,5′-triiodo-L-thyronine + iodide + acceptor + H+ = L-thyroxine + reduced acceptor
Other name(s): diiodothyronine 5′-deiodinase (ambiguous); iodothyronine 5-deiodinase; iodothyronine inner ring

monodeiodinase; type III iodothyronine deiodinase
Systematic name: 3,3′,5′-triiodo-L-thyronine,iodide:acceptor oxidoreductase (iodinating)

Comments: The enzyme activity has only been demonstrated in the direction of 5-deiodination. This removal of
the 5-iodine, i.e. from the inner ring, largely inactivates the hormone thyroxine.

References: [613, 2032]
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[EC 1.21.99.3 created 2003 as EC 1.97.1.11, transferred 2015 to EC 1.21.99.3]

EC 1.21.99.4
Accepted name: thyroxine 5′-deiodinase

Reaction: 3,3′,5-triiodo-L-thyronine + iodide + acceptor + H+ = L-thyroxine + reduced acceptor
Other name(s): diiodothyronine 5′-deiodinase [ambiguous]; iodothyronine 5′-deiodinase; iodothyronine outer ring

monodeiodinase; type I iodothyronine deiodinase; type II iodothyronine deiodinase; thyroxine 5-
deiodinase [misleading]; L-thyroxine iodohydrolase (reducing)

Systematic name: 3,3′,5-triiodo-L-thyronine,iodide:acceptor oxidoreductase (iodinating)
Comments: The enzyme activity has only been demonstrated in the direction of 5′-deiodination, which renders

the thyroid hormone more active. The enzyme consists of type I and type II enzymes, both containing
selenocysteine, but with different kinetics. For the type I enzyme the first reaction is a reductive deio-
dination converting the -Se-H group of the enzyme into an -Se-I group; the reductant then reconverts
this into -Se-H, releasing iodide.

References: [613, 1248, 3554, 2032]

[EC 1.21.99.4 created 1984 as EC 3.8.1.4, transferred 2003 to EC 1.97.1.10, transferred 2015 to EC 1.21.99.4]

EC 1.21.99.5
Accepted name: tetrachloroethene reductive dehalogenase

Reaction: trichloroethene + chloride + acceptor = tetrachloroethene + reduced acceptor
Other name(s): tetrachloroethene reductase

Systematic name: acceptor:trichloroethene oxidoreductase (chlorinating)
Comments: This enzyme allows the common pollutant tetrachloroethene to support bacterial growth and is re-

sponsible for disposal of a number of chlorinated hydrocarbons. The reaction occurs in the reverse
direction. The enzyme also reduces trichloroethene to dichloroethene. Although the physiological
reductant is unknown, the supply of reductant in some organisms involves menaquinol, which is re-
duced by molecular hydrogen via the action of EC 1.12.5.1, hydrogen:quinone oxidoreductase. The
enzyme contains a corrinoid and two iron-sulfur clusters. Methylviologen can act as electron donor in
vitro.

References: [1543, 1224, 2769, 3404, 3403]

[EC 1.21.99.5 created 2001 as EC 1.97.1.8, transferred 2017 to EC 1.21.99.5]

EC 1.22 Acting on halogen in donors

EC 1.22.1 With NAD+ or NADP+ as acceptor

[1.22.1.1 Transferred entry. iodotyrosine deiodinase. Now EC 1.21.1.1, iodotyrosine deiodinase]

[EC 1.22.1.1 created 2010, deleted 2015]

EC 1.23 Reducing C-O-C group as acceptor

EC 1.23.1 With NADH or NADPH as donor

EC 1.23.1.1
Accepted name: (+)-pinoresinol reductase

Reaction: (+)-lariciresinol + NADP+ = (+)-pinoresinol + NADPH + H+
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Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (+)-pinoresinol/(+)-
lariciresinol; (+)-pinoresinol-(+)-lariciresinol reductase; PLR

Systematic name: (+)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme

that further reduces the product to the lignan (–)-secoisolariciresinol [EC 1.23.1.2, (+)-lariciresinol re-
ductase]. Isolated from the plants Forsythia intermedia [619, 832], Thuja plicata (western red cedar)
[1098], Linum perenne (perennial flax) [1474] and Linum corymbulosum [224]. The 4-pro-R hydro-
gen of NADH is transferred to the 7-pro-R position of lariciresinol [619].

References: [619, 832, 1098, 2551, 1474, 224]

[EC 1.23.1.1 created 2013]

EC 1.23.1.2
Accepted name: (+)-lariciresinol reductase

Reaction: (–)-secoisolariciresinol + NADP+ = (+)-lariciresinol + NADPH + H+

Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (+)-pinoresinol/(+)-
lariciresinol; (+)-pinoresinol-(+)-lariciresinol reductase; PLR

Systematic name: (–)-secoisolariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme

that also reduces (+)-pinoresinol [EC 1.23.1.1, (+)-pinoresinol reductase]. Isolated from the plants
Forsythia intermedia [619, 832], Thuja plicata (western red cedar) [1098], Linum perenne (perennial
flax) [1474] and Linum corymbulosum [224].

References: [619, 832, 1098, 2551, 1474, 224]

[EC 1.23.1.2 created 2013]

EC 1.23.1.3
Accepted name: (–)-pinoresinol reductase

Reaction: (–)-lariciresinol + NADP+ = (–)-pinoresinol + NADPH + H+

Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-
lariciresinol reductase; PLR

Systematic name: (–)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme

that usually further reduces the product to (+)-secoisolariciresinol [EC 1.23.1.4, (–)-lariciresinol re-
ductase]. Isolated from the plants Thuja plicata (western red cedar) [1098], Linum perenne (perennial
flax) [1474] and Arabidopsis thaliana (thale cress) [2719].

References: [1098, 1474, 2719]

[EC 1.23.1.3 created 2013]

EC 1.23.1.4
Accepted name: (–)-lariciresinol reductase

Reaction: (+)-secoisolariciresinol + NADP+ = (–)-lariciresinol + NADPH + H+

Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-
lariciresinol reductase; PLR

Systematic name: (+)-secoisolariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme

that also reduces (–)-pinoresinol [EC 1.23.1.3, (–)-pinoresinol reductase]. Isolated from the plants
Thuja plicata (western red cedar) [1098] and Linum corymbulosum [1474].

References: [1098, 1474]

[EC 1.23.1.4 created 2013]
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EC 1.23.5 With a quinone or similar compound as acceptor

EC 1.23.5.1
Accepted name: violaxanthin de-epoxidase

Reaction: violaxanthin + 2 L-ascorbate = zeaxanthin + 2 L-dehydroascorbate + 2 H2O (overall reaction)
(1a) violaxanthin + L-ascorbate = antheraxanthin + L-dehydroascorbate + H2O
(1b) antheraxanthin + L-ascorbate = zeaxanthin + L-dehydroascorbate + H2O

Other name(s): VDE
Systematic name: violaxanthin:ascorbate oxidoreductase

Comments: Along with EC 1.14.15.21, zeaxanthin epoxidase, this enzyme forms part of the xanthophyll (or vi-
olaxanthin) cycle for controlling the concentration of zeaxanthin in chloroplasts. It is activated by a
low pH of the thylakoid lumen (produced by high light intensity). Zeaxanthin induces the dissipa-
tion of excitation energy in the chlorophyll of the light-harvesting protein complex of photosystem
II. In higher plants the enzyme reacts with all-trans-diepoxides, such as violaxanthin, and all-trans-
monoepoxides, but in the alga Mantoniella squamata, only the diepoxides are good substrates.

References: [4315, 3208, 443, 2103, 2148, 1247, 2147]

[EC 1.23.5.1 created 2005 as EC 1.10.99.3, transfered 2015 to EC 1.23.5.1]

EC 1.97 Other oxidoreductases
This subclass contains a single sub-subclass (EC 1.97.1) and is reserved for oxidoreductases not included in the previous cate-
gories.

EC 1.97.1 Sole sub-subclass for oxidoreductases that do not belong in the other subclasses

EC 1.97.1.1
Accepted name: chlorate reductase

Reaction: reduced acceptor + chlorate = acceptor + H2O + chlorite
Other name(s): chlorate reductase C

Systematic name: chlorite:acceptor oxidoreductase
Comments: Flavins or benzylviologen can act as acceptor.
References: [153]

[EC 1.97.1.1 created 1978]

EC 1.97.1.2
Accepted name: pyrogallol hydroxytransferase

Reaction: 1,2,3,5-tetrahydroxybenzene + 1,2,3-trihydroxybenzene = 1,3,5-trihydroxybenzene + 1,2,3,5-
tetrahydroxybenzene

Other name(s): 1,2,3,5-tetrahydroxybenzene hydroxyltransferase; 1,2,3,5-tetrahydroxybenzene:pyrogallol transhy-
droxylase; 1,2,3,5-tetrahydroxybenzene-pyrogallol hydroxyltransferase (transhydroxylase); pyrogallol
hydroxyltransferase; 1,2,3,5-tetrahydroxybenzene:1,2,3-trihydroxybenzene hydroxyltransferase

Systematic name: 1,2,3,5-tetrahydroxybenzene:1,2,3-trihydroxybenzene hydroxytransferase
Comments: 1,2,3,5-Tetrahydroxybenzene acts as a co-substrate for the conversion of pyrogallol into phlorogluci-

nol, and for a number of similar isomerizations. The enzyme is provisionally listed here, but might be
considered as the basis for a new class in the transferases, analogous to the aminotransferases.

References: [428]

[EC 1.97.1.2 created 1992]
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[1.97.1.3 Transferred entry. sulfur reductase. Now EC 1.12.98.4, sulfhydrogenase, since hydrogen is known to be the electron
donor.]

[EC 1.97.1.3 created 1992, deleted 2013]

EC 1.97.1.4
Accepted name: [formate-C-acetyltransferase]-activating enzyme

Reaction: S-adenosyl-L-methionine + dihydroflavodoxin + [formate C-acetyltransferase]-glycine = 5′-
deoxyadenosine + L-methionine + flavodoxin semiquinone + [formate C-acetyltransferase]-glycin-
2-yl radical

Other name(s): PFL activase; PFL-glycine:S-adenosyl-L-methionine H transferase (flavodoxin-oxidizing, S-adenosyl-
L-methionine-cleaving); formate acetyltransferase activating enzyme; formate acetyltransferase-
glycine dihydroflavodoxin:S-adenosyl-L-methionine oxidoreductase (S-adenosyl-L-methionine cleav-
ing); pyruvate formate-lyase activating enzyme; pyruvate formate-lyase 1 activating enzyme

Systematic name: [formate C-acetyltransferase]-glycine dihydroflavodoxin:S-adenosyl-L-methionine oxidoreductase
(S-adenosyl-L-methionine cleaving)

Comments: An iron-sulfur protein. A single glycine residue in EC 2.3.1.54, formate C-acetyltransferase, is oxi-
dized to the corresponding radical by transfer of H from its CH2 to AdoMet with concomitant cleav-
age of the latter. The reaction requires Fe2+. The first stage is reduction of the AdoMet to give me-
thionine and the 5′-deoxyadenosin-5′-yl radical, which then abstracts a hydrogen radical from the
glycine residue.

References: [1064, 4078, 1066]

[EC 1.97.1.4 created 1999, modified 2004]

[1.97.1.5 Transferred entry. arsenate reductase (glutaredoxin). Now EC 1.20.4.1, arsenate reductase (glutaredoxin)]

[EC 1.97.1.5 created 2000 deleted 2001]

[1.97.1.6 Transferred entry. arsenate reductase (donor). Now EC 1.20.99.1, arsenate reductase (donor)]

[EC 1.97.1.6 created 2000 deleted 2001]

[1.97.1.7 Transferred entry. methylarsonate reductase. Now EC 1.20.4.2, methylarsonate reductase]

[EC 1.97.1.7 created 2000, deleted 2001]

[1.97.1.8 Transferred entry. tetrachloroethene reductive dehalogenase. Now EC 1.21.99.5, tetrachloroethene reductive de-
halogenase]

[EC 1.97.1.8 created 2001, deleted 2017]

EC 1.97.1.9
Accepted name: selenate reductase

Reaction: selenite + H2O + acceptor = selenate + reduced acceptor
Systematic name: selenite:reduced acceptor oxidoreductase

Comments: The periplasmic enzyme from Thauera selenatis is a complex comprising three heterologous subunits
(α, β and γ) that contains molybdenum, iron, acid-labile sulfide and heme b as cofactor constituents.
Nitrate, nitrite, chlorate and sulfate are not substrates. A number of compounds, including acetate,
lactate, pyruvate, and certain sugars, amino acids, fatty acids, di- and tricarboxylic acids, and benzoate
can serve as electron donors.

References: [3393, 2351, 2051, 3663]

[EC 1.97.1.9 created 2003]

[1.97.1.10 Transferred entry. thyroxine 5′-deiodinase. Now EC 1.21.99.4 thyroxine 5′-deiodinase]

[EC 1.97.1.10 created 1984 as EC 3.8.1.4, transferred 2003 to EC 1.97.1.10, deleted 2015]
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[1.97.1.11 Transferred entry. thyroxine 5-deiodinase. Now EC 1.21.99.3 thyroxine 5-deiodinase.]

[EC 1.97.1.11 created 2003, deleted 2015]

EC 1.97.1.12
Accepted name: photosystem I

Reaction: reduced plastocyanin + oxidized ferredoxin + hν = oxidized plastocyanin + reduced ferredoxin
Systematic name: plastocyanin:ferredoxin oxidoreductase (light-dependent)

Comments: Contains chlorophyll, phylloquinones, carotenoids and [4Fe-4S] clusters. Cytochrome c6 can act as
an alternative electron donor, and flavodoxin as an alternative acceptor in some species.

References: [3779, 4013, 598, 78]

[EC 1.97.1.12 created 2011]

EC 1.98 Enzymes using H2 as reductant (deleted subclass)

EC 1.98.1 Enzymes using H2 as reductant (deleted subclass)

[1.98.1.1 Transferred entry. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.98.1.1 created 1961, deleted 1965]

EC 1.99 Other enzymes using O2 as oxidant (deleted subclass)

EC 1.99.1 Hydroxylases (now covered by EC 1.14)

[1.99.1.1 Transferred entry. Now EC 1.12.7.2, ferredoxin hydrogenase]

[EC 1.99.1.1 created 1961, deleted 1965]

[1.99.1.2 Transferred entry. Now EC 1.14.16.1, phenylalanine 4-monooxygenase]

[EC 1.99.1.2 created 1961, deleted 1965]

[1.99.1.3 Deleted entry. nicotinate 6-hydroxylase]

[EC 1.99.1.3 created 1961, deleted 1965]

[1.99.1.4 Deleted entry. tryptophan 5-hydroxylase]

[EC 1.99.1.4 created 1961, deleted 1965]

[1.99.1.5 Transferred entry. Now EC 1.14.13.9, kynurenine 3-monooxygenase]

[EC 1.99.1.5 created 1961, deleted 1965]

[1.99.1.6 Deleted entry. steroid 11α-hydroxylase]

[EC 1.99.1.6 created 1961, deleted 1965]

[1.99.1.7 Transferred entry. Now EC 1.14.15.4, steroid 11β-monooxygenase]

[EC 1.99.1.7 created 1961, deleted 1965]

[1.99.1.8 Deleted entry. steroid 6β-hydroxylase]

[EC 1.99.1.8 created 1961, deleted 1965]
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[1.99.1.9 Transferred entry. Now EC 1.14.99.9, steroid 17α-monooxygenase]

[EC 1.99.1.9 created 1961, deleted 1965]

[1.99.1.10 Deleted entry. steroid 19-hydroxylase]

[EC 1.99.1.10 created 1961, deleted 1965]

[1.99.1.11 Transferred entry. Now EC 1.14.99.10, steroid 21-monooxygenase]

[EC 1.99.1.11 created 1961, deleted 1965]

[1.99.1.12 Deleted entry. alkoxyaryl hydroxylase]

[EC 1.99.1.12 created 1961, deleted 1965]

[1.99.1.13 Deleted entry. squalene cyclohydroxylase, covered by EC 1.14.99.7 (squalene monooxygenase) and by EC
5.4.99.7 (lanosterol synthase)]

[EC 1.99.1.13 created 1961, deleted 1965]

[1.99.1.14 Transferred entry. Now EC 1.13.11.27, 4-hydroxyphenylpyruvate dioxygenase]

[EC 1.99.1.14 created 1961, deleted 1965]

EC 1.99.2 Oxygenases (now covered by EC 1.13)

[1.99.2.1 Transferred entry. Now EC 1.13.11.12, lipoxygenase]

[EC 1.99.2.1 created 1961, deleted 1965]

[1.99.2.2 Transferred entry. Now EC 1.13.11.1, catechol 1,2-dioxygenase]

[EC 1.99.2.2 created 1961, deleted 1965]

[1.99.2.3 Transferred entry. Now EC 1.13.11.3, protocatechuate 3,4-dioxygenase]

[EC 1.99.2.3 created 1961, deleted 1965]

[1.99.2.4 Transferred entry. Now EC 1.13.11.4, gentisate 1,2-dioxygenase]

[EC 1.99.2.4 created 1961, deleted 1965]

[1.99.2.5 Transferred entry. Now EC 1.13.11.5, homogentisate 1,2-dioxygenase]

[EC 1.99.2.5 created 1961, deleted 1965]

[1.99.2.6 Transferred entry. Now EC 1.13.99.1, inositol oxygenase]

[EC 1.99.2.6 created 1961, deleted 1965]
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[2367] H.R. Mahler, G. Hübscher, and H. Baum. Studies on uricase. I. Preparation, purification, and properties of a cuproprotein.
J. Biol. Chem., 216:625–641, 1955.

631



[2368] H.R. Mahler, B. Mackler, D.E. Green, and R.M. Bock. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybd-
oflavoprotein. J. Biol. Chem., 210:465–480, 1954.

[2369] H.R. Mahler, I. Raw, R. Molinari, and D.F. do Amaral. Studies of electron transport enzymes. II. Isolation and some
properties of a cytochrome-specific reduced diphosphopyridine nucleotide dehydrogenase from pig liver. J. Biol. Chem.,
233:230–239, 1958.

[2370] S.S. Mahmoud and R.B. Croteau. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a down-
stream monoterpene reductase. Proc. Natl. Acad. Sci. USA, 100:14481–14486, 2003.

[2371] P.C. Mahon, K. Hirota, and G.L. Semenza. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate
repression of HIF-1 transcriptional activity. Genes Dev., 15:2675–2686, 2001.

[2372] D.E. Mahony, C.E. Meier, I.A. Macdonald, and L.V. Holdeman. Bile salt degradation by nonfermentative clostridia.
Appl. Environ. Microbiol., 34:419–423, 1977.

[2373] X. Mai and M.W. Adams. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic
archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol., 178:5890–5896, 1996.

[2374] X.H. Mai and M.W.W. Adams. Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyro-
coccus furiosus - a new enzyme involved in peptide fermentation. J. Biol. Chem., 269:16726–16732, 1994.

[2375] M.D. Maines, N.G. Ibrahim, and K. Kappas. Solubilization and partial purification of heme oxygenase from rat liver. J.
Biol. Chem., 252:5900–5903, 1977.

[2376] P.J. Mak, M.C. Gregory, I.G. Denisov, S.G. Sligar, and J.R. Kincaid. Unveiling the crucial intermediates in androgen
production. Proc. Natl. Acad. Sci. USA, 112:15856–15861, 2015.
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The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals:
detoxication of the lipid peroxide-derived reactive aldehydes. Plant Cell Physiol., 43:1445–1455, 2002.

[2385] K.M. Manoj. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction compo-
nents play multiple roles in the overall process. Biochim. Biophys. Acta, 1764:1325–1339, 2006.

[2386] K.M. Manoj and L.P. Hager. Chloroperoxidase, a janus enzyme. Biochemistry, 47:2997–3003, 2008.

632



[2387] D.J. Mansell, H.S. Toogood, J. Waller, J.M.X. Hughes, C.W. Levy, J.M. Gardiner, , and N.S. Biocatalytic asymmetric
alkene reduction: crystal structure and characterization of a double bond reductase from Nicotiana tabacum. ACS Catal.,
3:370–379, 2013.

[2388] R.L. Mansell, G.R. Babbel, and M.H. Zenk. Multiple forms and specificity of coniferyl alcohol dehydrogenase from
cambial regions of higher plants. Phytochemistry, 15:1849–1853, 1976.

[2389] H. Mao, J. Liu, F. Ren, R.J. Peters, and Q. Wang. Characterization of CYP71Z18 indicates a role in maize zealexin
biosynthesis. Phytochemistry, 121:4–10, 2016.

[2390] L.W. Mapson and E. Breslow. Properties of partially purified L-galactono-γ-lactone dehydrogenase. Biochem. J., 65:29–
29, 1957.

[2391] L.W. Mapson, F.A. Isherwood, and Y.T. Chen. Biological synthesis of L-ascorbic acid: the conversion of L-galactono-γ-
lactone into L-ascorbic acid by plant mitochondria. Biochem. J., 56:21–28, 1954.

[2392] B.N. Marbois and C.F. Clarke. The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone
biosynthesis. J. Biol. Chem., 271:2995–3004, 1996.

[2393] M. Marcia, J.D. Langer, D. Parcej, V. Vogel, G. Peng, and H. Michel. Characterizing a monotopic membrane enzyme.
Biochemical, enzymatic and crystallization studies on Aquifex aeolicus sulfide:quinone oxidoreductase. Biochim. Bio-
phys. Acta, 1798:2114–2123, 2010.

[2394] J. Marcinkeviciene, L.M. Tinney, K.H. Wang, M.J. Rogers, and R.A. Copeland. Dihydroorotate dehydrogenase B of
Enterococcus faecalis. Characterization and insights into chemical mechanism. Biochemistry, 38:13129–13137, 1999.

[2395] P.I. Marcus and P. Talalay. Induction and purification of α- and β-hydroxysteroid dehydrogenases. J. Biol. Chem.,
218:661–674, 1956.

[2396] M. Maremonti, G. Greco, and R. Wichmann. Characterisation of 2,5-diketo-D-gluconic acid reductase from Corynebac-
terium sp. Biotechnology Letters, 18:845–850, 1996.

[2397] B. Maresca, E. Jacobson, G. Medoff, and G. Kobayashi. Cystine reductase in the dimorphic fungus Histoplasma capsu-
latum. J. Bacteriol., 135:987–992, 1978.

[2398] Z. Marijanovic, D. Laubner, G. Moller, C. Gege, B. Husen, J. Adamski, and R. Breitling. Closing the gap: identification
of human 3-ketosteroid reductase, the last unknown enzyme of mammalian cholesterol biosynthesis. Mol. Endocrinol.,
17:1715–1725, 2003.

[2399] F. Märki and C. Martius. Vitamin K-Reductase, Darsellung und Eigenschaften. Biochem. Z., 333:111–135, 1960.

[2400] A. Markovitz. Biosynthesis of guanosine diphosphate D-rhamnose and guanosine diphosphate D-talomethylose from
guanosine diphosphate α-D-mannose. J. Biol. Chem., 239:2091–2098, 1964.

[2401] P.J. Markovitz, D.T. Chuang, and R.P. Cox. Familial hyperlysinemias. Purification and characterization of the bifunctional
aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J.
Biol. Chem., 259:11643–11646, 1984.

[2402] A. Markus, D. Krekel, and F. Lingens. Purification and some properties of component A of the 4-chlorophenylacetate
3,4-dioxygenase from Pseudomonas species strain CBS. J. Biol. Chem., 261:12883–12888, 1986.

[2403] J. Marmur and R.D. Hotchkiss. Mannitol metabolism, a transferable property of pneumococcus. J. Biol. Chem., 214:383–
396, 1955.

[2404] J.V. Marques, K.W. Kim, C. Lee, M.A. Costa, G.D. May, J.A. Crow, L.B. Davin, and N.G. Lewis. Next generation
sequencing in predicting gene function in podophyllotoxin biosynthesis. J. Biol. Chem., 288:466–479, 2013.

[2405] H. Marrakchi, G. Laneelle, and A. Quemard. InhA, a target of the antituberculous drug isoniazid, is involved in a
mycobacterial fatty acid elongation system, FAS-II. Microbiology, 146:289–296, 2000.

[2406] L. Marrone, S. Siemann, M. Beecroft, and T. Viswanatha. Specificity of lysine:N-6-hydroxylase: A hypothesis for a
reactive substrate intermediate in the catalytic mechanism. Bioorg. Chem., 24:401–406, 1996.

633



[2407] I.R. Marsh and M. Bradley. Substrate specificity of trypanothione reductase. Eur. J. Biochem., 243:690–694, 1977.

[2408] S. Martens and G. Forkmann. Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J., 20:611–618,
1999.

[2409] S. Martens, G. Forkmann, L. Britsch, F. Wellmann, U. Matern, and R. Lukačin. Divergent evolution of flavonoid 2-
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[2903] U. Oster, R. Tanaka, A. Tanaka, and W. Rüdiger. Cloning and functional expression of the gene encoding the key enzyme
for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J., 21:305–310, 2000.

[2904] J. Østergaard, G. Persiau, M.W. Davey, G. Bauw, and M. Van Montagu. Isolation of a cDNA coding for L-galactono-γ-
lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization,
cDNA cloning, and expression in yeast. J. Biol. Chem., 272:30009–30016, 1997.

[2905] M.C. Ostrowski and W.S. Kistler. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion.
Biochemistry, 19:2639–2645, 1980.

[2906] J. O’Sullivan, M. Unzeta, J. Healy, M.I. O’Sullivan, G. Davey, and K.F. Tipton. Semicarbazide-sensitive amine oxidases:
enzymes with quite a lot to do. Neurotoxicology, 25:303–315, 2004.

[2907] T. Osumi, T. Hashimoto, and N. Ui. Purification and properties of acyl-CoA oxidase from rat liver. J. Biochem. (Tokyo),
87:1735–1746, 1980.

[2908] K. Otani, T. Takahashi, T. Furuya, and S. Ayabe. Licodione synthase, a cytochrome P450 monooxygenase catalyzing
2-hydroxylation of 5-deoxyflavanone, in cultured Glycyrrhiza echinata L. cells. Plant Physiol., 105:1427–1432, 1994.

[2909] Y. Otha and D.W. Ribbons. Crystallization of orchinol hydroxylase from Pseudomonas putida. FEBS Lett., 11:189–192,
1970.

[2910] K. Otsuka. Triphosphopyridine nucleotide-allyl and -ethyl alcohol dehydrogenases from Escherichia coli. J. Gen. Appl.
Microbiol., 4:211–215, 1958.

[2911] L.A.B.M. Otten, D. Vreugdenhil, and R.A. Schilperoort. Properties of D(+)-lysopine dehydrogenase from crown gall
tumour tissue. Biochim. Biophys. Acta, 485:268–277, 1977.

659



[2912] K. Otto, K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. Biochemical characterization of StyAB from
Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol., 186:5292–5302,
2004.

[2913] G. Ottolina, S. Bianchi, B. Belloni, G. Carrea, and B. Danieli. First asymmetric oxidation of tertiary amines by cyclo-
hexanone monooxygenase. Tetrahedron Lett., 40:8483–8486, 1999.

[2914] A. Oubrie and B.W. Dijkstra. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions. Pro-
tein Sci., 9:1265–1273, 2000.

[2915] A. Oubrie, H.J. Rozeboom, K.H. Kalk, E.G. Huizinga, and B.W. Dijkstra. Crystal structure of quinohemoprotein alcohol
dehydrogenase from Comamonas testosteroni: structural basis for substrate oxidation and electron transfer. J. Biol.
Chem., 277:3727–3732, 2002.

[2916] S. Ouchane, A.S. Steunou, M. Picaud, and C. Astier. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester
cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J. Biol. Chem., 279:6385–
6394, 2004.

[2917] H. Ouellet, S. Guan, J.B. Johnston, E.D. Chow, P.M. Kells, A.L. Burlingame, J.S. Cox, L.M. Podust, and P.R. de Mon-
tellano. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated
cholest-4-en-3-one. Mol. Microbiol., 77:730–742, 2010.

[2918] H.J. Ougham, D.G. Taylor, and P.W. Trudgill. Camphor revisited: involvement of a unique monooxygenase in
metabolism of 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida. J. Bacteriol., 153:140–152,
1983.

[2919] T. Oura and S. Kajiwara. Disruption of the sphingolipid ∆8-desaturase gene causes a delay in morphological changes in
Candida albicans. Microbiology, 154:3795–3803, 2008.

[2920] J. Owaki, K. Uzura, Z. Minami, and K. Kusai. Partial-purification and characterization of dihydrouracil oxidase, a
flavoprotein from Rhodotorula glutinis. J. Ferment. Technol., 64:205–210, 1986.

[2921] K.S. Oyedotun and B.D. Lemire. The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase.
Homology modeling, cofactor docking, and molecular dynamics simulation studies. J. Biol. Chem., 279:9424–9431,
2004.

[2922] E. Pahlich and K.W. Joy. Glutamate dehydrogenase from pea roots: purification and properties of the enzyme. Can. J.
Biochem., 49:127–138, 1971.

[2923] E.F. Pai, R.H. Schirmer, and G.E. Schulz. Structural studies on crystalline glutathione reductase from human erythrocytes.
In T.P. Singer and R.N. Ondarza, editors, Mechanisms of Oxidizing Enzymes, pages 17–22. Mechanisms of Oxidizing
Enzymes, New York, 1978.

[2924] Y.K. Paik, J.M. Trzaskos, A. Shafice, and J.L. Gaylor. Microsomal enzymes of cholesterol biosynthesis from lanosterol.
Characterization, solubilization, and partial purification of NADPH-dependent ∆8,14-steroid 14-reductase. J. Biol. Chem.,
259:13413–13423, 1984.

[2925] A.H. Palamakumbura and P.C. Trackman. A fluorometric assay for detection of lysyl oxidase enzyme activity in biolog-
ical samples. Anal. Biochem., 300:245–251, 2002.

[2926] N.J. Palleroni and M. Doudoroff. Metabolism of carbohydrates by Pseudomonas saccharophilla. III. Oxidation of D-
arabinose. J. Bacteriol., 74:180–185, 1957.

[2927] N.R. Palosaari and P. Rogers. Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydroge-
nase from Clostridium acetobutylicum. J. Bacteriol., 170:2971–2976, 1988.

[2928] F. Paltauf and A. Holasek. Enzymatic synthesis of plasmalogens. Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-
phosphorylethanolamine desaturase from mucosa of hamster small intestine. J. Biol. Chem., 248:1609–1615, 1973.

[2929] J.J. Pan, J.O. Solbiati, G. Ramamoorthy, B.S. Hillerich, R.D. Seidel, J.E. Cronan, S.C. Almo, and C.D. Poulter. Biosyn-
thesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent. Sci., 1:77–82,
2015.

660



[2930] Z. Pan, A.M. Rimando, S.R. Baerson, M. Fishbein, and S.O. Duke. Functional characterization of desaturases involved
in the formation of the terminal double bond of an unusual 16:3∆(9,12,15) fatty acid isolated from Sorghum bicolor root
hairs. J. Biol. Chem., 282:4326–4335, 2007.

[2931] A. Paneque, F.F. Del Campo, J.M. Ramirez, and M. Losada. Flavin nucleotide nitrate reductase from spinach. Biochim.
Biophys. Acta, 109:79–85, 1965.

[2932] A.H. Pang, S. Garneau-Tsodikova, and O.V. Tsodikov. Crystal structure of halogenase PltA from the pyoluteorin biosyn-
thetic pathway. J. Struct. Biol., 192:349–357, 2015.

[2933] Y. Pang, I.S. Abeysinghe, J. He, X. He, D. Huhman, K.M. Mewan, L.W. Sumner, J. Yun, and R.A. Dixon. Functional
characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant
Physiol., 161:1103–1116, 2013.

[2934] K. Pant, A.M. Bilwes, S. Adak, D.J. Stuehr, and B.R. Crane. Structure of a nitric oxide synthase heme protein from
Bacillus subtilis. Biochemistry, 41:11071–11079, 2002.

[2935] H. Pape and J.L. Strominger. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. V. Partial purification of
the two protein components required for introduction of the 3-deoxy group. J. Biol. Chem., 244:3598–3604, 1969.

[2936] J.V. Parales, R.E. Parales, S.M. Resnick, and D.T. Gibson. Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from
Pseudomonas sp. strain JS42 is determined by the C-terminal region of the α subunit of the oxygenase component. J.
Bacteriol., 180:1194–1199, 1998.

[2937] R.E. Parales, K. Lee, S.M. Resnick, H. Jiang, D.J. Lessner, and D.T. Gibson. Substrate specificity of naphthalene
dioxygenase: effect of specific amino acids at the active site of the enzyme. J. Bacteriol., 182:1641–1649, 2000.

[2938] R. Parham and C.A. Rebeiz. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide
a-specific, NADPH-dependent enzyme. Biochemistry, 31:8460–8464, 1992.

[2939] R. Parham and C.A. Rebeiz. Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chloro-
phyllide a as an exogenous substrate. Anal. Biochem., 231:164–169, 1995.

[2940] H. Park, H. Lee, Y.T. Ro, and Y.M. Kim. Identification and functional characterization of a gene for the methanol : N,N′-
dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). Microbiology, 156:463–471,
2010.

[2941] Y.J. Park, C.B. Yoo, S.Y. Choi, and H.B. Lee. Purifications and characterizations of a ferredoxin and its related 2-
oxoacid:ferredoxin oxidoreductase from the hyperthermophilic archaeon, Sulfolobus solfataricus P1. J. Biochem. Mol.
Biol., 39:46–54, 2006.

[2942] J.B. Parker and C.T. Walsh. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide
antibiotic bacilysin. Biochemistry, 52:889–901, 2013.

[2943] T. Parkkinen, H. Boer, J. Janis, M. Andberg, M. Penttila, A. Koivula, and J. Rouvinen. Crystal structure of uronate
dehydrogenase from Agrobacterium tumefaciens. J. Biol. Chem., 286:27294–27300, 2011.

[2944] R.J. Parry and W. Li. An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens.
Cloning, analysis, and overexpression. J. Biol. Chem., 272:23303–23311, 1997.

[2945] R.J. Parry and W. Li. Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer
Streptomyces viridifaciens MG456-hF10. Arch. Biochem. Biophys., 339:47–54, 1997.

[2946] R.J. Parry, W. Li, and H.N. Cooper. Cloning, analysis, and overexpression of the gene encoding isobutylamine N-
hydroxylase from the valanimycin producer, Streptomyces viridifaciens. J. Bacteriol., 179:409–416, 1997.

[2947] K. Parschat, C. Canne, J. Hüttermann, R. Kappl, and S. Fetzner. Xanthine dehydrogenase from Pseudomonas putida 86:
specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim. Biophys.
Acta, 1544:151–165, 2001.

[2948] J.F. Parsons, B.T. Greenhagen, K. Shi, K. Calabrese, H. Robinson, and J.E. Ladner. Structural and functional analysis of
the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry, 46:1821–1828, 2007.

661



[2949] S.J. Parsons and R.O. Burns. Purification and properties of β-isopropylmalate dehydrogenase. J. Biol. Chem., 244:996–
1003, 1969.

[2950] S.D. Parzen and A.S. Fox. Purification of xanthine dehydrogenase from Drosophila melanogaster. Biochim. Biophys.
Acta, 92:465–471, 1964.

[2951] S. Pascal, M. Taton, and A. Rahier. Plant sterol biosynthesis. Identification and characterization of two distinct microso-
mal oxidative enzymatic systems involved in sterol C4-demethylation. J. Biol. Chem., 268:11639–11654, 1993.

[2952] A. Paszcynski and J. Trojanowski. An affinity-column procedure for the purification of veratrate O-demethylase from
fungi. Microbios, 18:111–121, 1977.

[2953] A. Paszczynski, V.-B. Huynh, and R. Crawford. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus
Phanerochaete chrysosporium. Arch. Biochem. Biophys., 244:750–765, 1986.

[2954] I. Patel, D. Kracher, S. Ma, S. Garajova, M. Haon, C.B. Faulds, J.G. Berrin, R. Ludwig, and E. Record. Salt-responsive
lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels, 9:108–
108, 2016.

[2955] M.P. Patel and J.S. Blanchard. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione
reductase. Biochemistry, 38:11827–11833, 1999.

[2956] M.P. Patel and J.S. Blanchard. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic param-
eters and kinetic isotope effects. Biochemistry, 40:5119–5126, 2001.

[2957] R.N. Patel, C.T. Hou, P. Derelanko, and A. Felix. Purification and properties of a heme-containing aldehyde dehydroge-
nase from Methylosinus trichosporium. Arch. Biochem. Biophys., 203:654–662, 1980.

[2958] T.R. Patel and E.A. Barnsley. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-
dihydroxynaphthalene oxygenase. J. Bacteriol., 143:668–673, 1980.

[2959] T.R. Patel and D.T. Gibson. Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseu-
domonas putida. J. Bacteriol., 119:879–888, 1974.

[2960] J.A. Pateman, B.M. Rever, and D.J. Cove. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans.
Biochem. J., 104:103–111, 1967.

[2961] S.S. Patil and M. Zucker. Potato phenolases. Purification and properties. J. Biol. Chem., 240:3938–3943, 1965.

[2962] R.N. Patkar, P.I. Benke, Z. Qu, Y.Y. Chen, F. Yang, S. Swarup, and N.I. Naqvi. A fungal monooxygenase-derived
jasmonate attenuates host innate immunity. Nat. Chem. Biol., 11:733–740, 2015.

[2963] W.R. Patterson and T.L. Poulos. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry,
34:4331–4341, 1995.

[2964] K.G. Paul. Peroxidases. In P.D. Boyer, H. Lardy, and K. Myrbäck, editors, The Enzymes, volume 8, pages 227–274.
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participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell, 19:369–387, 2007.
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[3419] P. Scriba and H. Holzer. Gewinnung von αHydroxyäthyl-2-thiaminpyrophosphat mit Pyruvatoxydase aus Schweineherz-
muskel. Biochem. Z., 334:473–486, 1961.

[3420] N.S. Scrutton and M.J. Sutcliffe. Trimethylamine dehydrogenase and electron transferring flavoprotein. Subcell.
Biochem., 35:145–181, 2000.

[3421] F.P. Seebeck. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc., 132:6632–6633,
2010.

685



[3422] H. Seedorf, A. Dreisbach, R. Hedderich, S. Shima, and R.K. Thauer. F420H2 oxidase (FprA) from Methanobrevibacter
arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch. Microbiol., 182:126–137, 2004.

[3423] H. Seedorf, C.H. Hagemeier, S. Shima, R.K. Thauer, E. Warkentin, and U. Ermler. Structure of coenzyme F420H2
oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J.,
274:1588–1599, 2007.

[3424] H. Seedorf, J. Kahnt, A.J. Pierik, and R.K. Thauer. Si-face stereospecificity at C5 of coenzyme F420 for F420H2 oxidase
from methanogenic Archaea as determined by mass spectrometry. FEBS J., 272:5337–5342, 2005.

[3425] J.E. Seegmiller. Triphosphopyridine nucleotide-linked aldehyde dehydrogenase from yeast. J. Biol. Chem., 201:629–637,
1953.

[3426] M. Seemann, B. Tse Sum Bui, M. Wolff, M. Miginiac-Maslow, and M. Rohmer. Isoprenoid biosynthesis in plant
chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett.,
580:1547–1552, 2006.

[3427] M. Seemann, B. Tse Sum Bui, M. Wolff, D. Tritsch, N. Campos, A. Boronat, A. Marquet, and M. Rohmer. Isoprenoid
biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate syn-
thase (GcpE) is a [4Fe-4S] protein. Angew. Chem. Int. Ed. Engl., 41:4337–4339, 2002.

[3428] M. Seemann, P. Wegner, V. Schünemann, B. Tse Sum Bui, M. Wolff, A. Marquet, A.X. Trautwein, and M. Rohmer.
Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-
enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J. Biol. Inorg. Chem., 10:131–137,
2005.

[3429] B. Seibold, M. Matthes, M.H. Eppink, F. Lingens, W.J. Van Berkel, and R. Muller. 4-Hydroxybenzoate hydroxylase
from Pseudomonas sp. CBS3. Purification, characterization, gene cloning, sequence analysis and assignment of structural
features determining the coenzyme specificity. Eur. J. Biochem., 239:469–478, 1996.

[3430] J. Seidel, G. Schmitt, M. Hoffmann, D. Jendrossek, and O. Einsle. Structure of the processive rubber oxygenase RoxA
from Xanthomonas sp. Proc. Natl Acad. Sci. USA, 110:13833–13838, 2013.

[3431] M.M. Seidman, A. Toms, and J.M. Wood. Influence of side-chain substituents on the position of cleavage of the benzene
ring by Pseudomonas fluorescens. J. Bacteriol., 97:1192–1197, 1969.

[3432] H.U. Seitz and D.E. Gaertner. Enzymes in cardenolide-accumulating shoot cultures of Digitalis purpurea. Plant Cell,
38:337–344, 1994.

[3433] H. Seki, K. Ohyama, S. Sawai, M. Mizutani, T. Ohnishi, H. Sudo, T. Akashi, T. Aoki, K. Saito, and T. Muranaka. Licorice
β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc.
Natl. Acad. Sci. USA, 105:14204–14209, 2008.

[3434] H. Seki, S. Sawai, K. Ohyama, M. Mizutani, T. Ohnishi, H. Sudo, E.O. Fukushima, T. Akashi, T. Aoki, K. Saito, and
T. Muranaka. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis
of glycyrrhizin. Plant Cell, 23:4112–4123, 2011.

[3435] Y. Seki, N. Sogawa, and M. Ishimoto. Siroheme as an active catalyst in sulfite reduction. J. Biochem., 90:1487–1492,
1981.

[3436] H. Sekimoto, M. Seo, N. Kawakami, T. Komano, S. Desloire, S. Liotenberg, A. Marion-Poll, M. Caboche, Y. Kamiya, and
T. Koshiba. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol.,
39:433–442, 1998.

[3437] Y. Sekiwa-Iijima, Y. Aizawa, and K. Kubota. Geraniol dehydrogenase activity related to aroma formation in ginger
(Zingiber officinale Roscoe). J. Agric. Food Chem., 49:5902–5906, 2001.

[3438] S.A. Selifonov. Microbial oxidation of adamantanone by Pseudomonas putida carrying the camphor catabolic plasmid.
Biochem. Biophys. Res. Commun., 186:1429–1436, 1992.

[3439] O.Z. Sellinger and O.N. Miller. The metabolism of acetol phosphate. II. 1,2-Propanediol-1-phosphate dehydrogenase. J.
Biol. Chem., 234:1641–1646, 1959.

686



[3440] M. Seo, S. Akaba, T. Oritani, M. Delarue, C. Bellini, M. Caboche, and T. Koshiba. Higher activity of an aldehyde oxidase
in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol., 116:687–693, 1998.

[3441] M. Seo, H. Koiwai, S. Akaba, T. Komano, T. Oritani, Y. Kamiya, and T. Koshiba. Abscisic aldehyde oxidase in leaves of
Arabidopsis thaliana. Plant J., 23:481–488, 2000.

[3442] M. Seo, A.J. Peeters, H. Koiwai, T. Oritani, A. Marion-Poll, J.A. Zeevaart, M. Koornneef, Y. Kamiya, and T. Koshiba.
The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves.
Proc. Natl. Acad. Sci. USA, 97:12908–12913, 2000.

[3443] M.J. Seo, D. Zhu, S. Endo, H. Ikeda, and D.E. Cane. Genome mining in Streptomyces. Elucidation of the role of Baeyer-
Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis
of pentalenolactone and neopentalenolactone. Biochemistry, 50:1739–1754, 2011.

[3444] M.S. Seo, S.W. Kang, K. Kim, I.C. Baines, T.H. Lee, and S.G. Rhee. Identification of a new type of mammalian
peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem., 275:20346–20354, 2000.

[3445] B. Setlow and P. Setlow. Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide
linkage to protein in dormant and germinated spores and growing and sporulating cells of Bacillus megaterium. J.
Bacteriol., 132:444–452, 1977.

[3446] A. Setya, M. Murillo, and T. Leustek. Sulfate reduction in higher plants: Molecular evidence for a novel 5-
adenylylphosphosulfate (APS) reductase. Proc. Natl. Acad. Sci. USA, 93:13383–13388, 1996.

[3447] S. Setyahadi, T. Ueyama, T. Arimoto, N. Mori, and Y. Kitamoto. Purification and properties of a new enzyme, D-carnitine
dehydrogenase, from Agrobacterium sp. 525a. Biosci. Biotechnol. Biochem., 61:1055–1058, 1997.

[3448] E. Setzke, R. Hedderich, S. Heiden, and R.K. Thauer. H2: heterodisulfide oxidoreductase complex from Methanobac-
terium thermoautotrophicum. Composition and properties. Eur. J. Biochem., 220:139–148, 1994.

[3449] W. Seubert, I. Lamberts, R. Kramer, and B. Ohly. On the mechanism of malonyl-CoA-independent fatty acid synthesis.
I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim. Biophys. Acta, 164:498–517, 1968.

[3450] C.S. Sevier, J.W. Cuozzo, A. Vala, F. Aslund, and C.A. Kaiser. A flavoprotein oxidase defines a new endoplasmic
reticulum pathway for biosynthetic disulphide bond formation. Nat. Cell Biol., 3:874–882, 2001.

[3451] I.F. Sevrioukova, C. Garcia, H. Li, B. Bhaskar, and T.L. Poulos. Crystal structure of putidaredoxin, the [2Fe-2S] compo-
nent of the P450cam monooxygenase system from Pseudomonas putida. J. Mol. Biol., 333:377–392, 2003.

[3452] I.F. Sevrioukova, H. Li, and T.L. Poulos. Crystal structure of putidaredoxin reductase from Pseudomonas putida, the
final structural component of the cytochrome P450cam monooxygenase. J. Mol. Biol., 336:889–902, 2004.

[3453] I.F. Sevrioukova and J.A. Peterson. NADPH-P-450 reductase: Structural and functional comparisons of the eukaryotic
and prokaryotic isoforms. Biochimie, 77:562–572, 1995.

[3454] I.F. Sevrioukova and T.L. Poulos. Putidaredoxin reductase, a new function for an old protein. J. Biol. Chem., 277:25831–
25839, 2002.

[3455] T. Seyama, T. Kasama, T. Yamakawa, A. Kawaguchi, K. Saito, and S. Okuda. Origin of hydrogen atoms in the fatty acids
synthesized with yeast fatty acid synthetase. J. Biochem. (Tokyo), 82:1325–1329, 1977.

[3456] A. Shafiee and C.R. Hutchinson. Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-
deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochemistry, 26:6204–
6210, 1987.

[3457] S. Shak and I.M. Goldstein. Leukotriene B4 ω-hydroxylase in human polymorphonuclear leukocytes. Partial purification
and identification as a cytochrome P-450. J. Clin. Invest., 76:1218–1228, 1985.

[3458] S.L. Shames, A.H. Fairlamb, A. Cerami, and C.T. Walsh. Purification and characterization of trypanothione reductase
from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases.
Biochemistry, 25:3519–3526, 1986.

687



[3459] J. Shanklin and C. Somerville. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the
animal and fungal homologs. Proc. Natl. Acad. Sci. USA, 88:2510–2514, 1991.

[3460] H. Shao, R.A. Dixon, and X. Wang. Crystal structure of vestitone reductase from alfalfa (Medicago sativa L.). J. Mol.
Biol., 369:265–276, 2007.

[3461] M.A. Sharaf and F. Sweet. Dual activity at an enzyme active site: 3β,20α-hydroxysteroid oxidoreductase from fetal
blood. Biochemistry, 21:4615–4620, 1982.

[3462] H.K. Sharma and C.S. Vaidyanathan. A new mode of ring cleavage of 2,3-dihydroxybenzoic acid in Tecoma stans (L.).
Partial purification and properties of 2,3-dihydroxybenzoate 2,3-oxygenase. Eur. J. Biochem., 56:163–171, 1975.

[3463] M.L. Sharma, S.M. Kaul, and O.P. Shukla. Metabolism of 2-hydroxypyridine by Bacillus brevis (INA). Biol. Membr.,
9:43–52, 1984.

[3464] J.O. Sharp, C.M. Sales, J.C. LeBlanc, J. Liu, T.K. Wood, L.D. Eltis, W.W. Mohn, and L. Alvarez-Cohen. An inducible
propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl.
Environ. Microbiol., 73:6930–6938, 2007.

[3465] K.H. Sharp, P.C. Moody, K.A. Brown, and E.L. Raven. Crystal structure of the ascorbate peroxidase-salicylhydroxamic
acid complex. Biochemistry, 43:8644–8651, 2004.

[3466] D.R.D. Shaw. Polyol dehydrogenases. 3. Galactitol dehydrogenase and D-iditol dehydrogenase. Biochem. J., 64:394–
405, 1956.

[3467] J.P. Shaw and S. Harayama. Purification and characterisation of the NADH:acceptor reductase component of xylene
monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2. Eur. J. Biochem., 209:51–61, 1992.

[3468] L. Shaw and P.C. Engel. The purification and properties of ox liver short-chain acyl-CoA dehydrogenase. Biochem. J.,
218:511–520, 1984.

[3469] L. Shaw and R. Schauer. The biosynthesis of N-glycoloylneuraminic acid occurs by hydroxylation of the CMP-glycoside
of N-acetylneuraminic acid. Biol. Chem. Hoppe-Seyler, 369:477–486, 1988.

[3470] P.D. Shaw. Biosynthesis of nitro compounds. III. The enzymatic reduction of β-nitroacrylic acid to β-nitropropionic acid.
Biochemistry, 6:2253–2260, 1967.

[3471] S. Shefer, S. Hauser, and E.H. Mosbach. Studies on the biosynthesis of 5α-cholestan-3β-ol. I. Cholestenone 5α-reductase
of rat liver. J. Biol. Chem., 241:946–952, 1966.

[3472] B. Shen and C.R. Hutchinson. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naph-
thacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry, 32:6656–6663,
1993.

[3473] B. Shen and C.R. Hutchinson. Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces
glaucescens. Overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2
oxygenase. J. Biol. Chem., 269:30726–30733, 1994.

[3474] G. Shen, Y. Pang, W. Wu, Z. Deng, L. Zhao, Y. Cao, X. Sun, and K. Tang. Cloning and characterization of a flavanone
3-hydroxylase gene from Ginkgo biloba. Biosci Rep, 26:19–29, 2006.

[3475] W. Shen, W. Liu, J. Zhang, J. Tao, H. Deng, H. Cao, and Z. Cui. Cloning and characterization of a gene cluster involved
in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4. Bioresour. Technol., 101:7516–7522, 2010.

[3476] W. Shen, Y. Wei, M. Dauk, Z. Zheng, and J. Zou. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase
from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett., 536:92–96,
2003.

[3477] D. Sheng, D.P. Ballou, and V. Massey. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of
intermediates involved in catalysis. Biochemistry, 40:11156–11167, 2001.

[3478] S.A. Shepherd, B.R. Menon, H. Fisk, A.W. Struck, C. Levy, D. Leys, and J. Micklefield. A structure-guided switch in
the regioselectivity of a tryptophan halogenase. Chembiochem, 17:821–824, 2016.

688



[3479] C.A. Sheppard, E.E. Trimmer, and R.G. Matthews. Purification and properties of NADH-dependent 5,10-
methylenetetrahydrofolate reductase (MetF) from Escherichia coli. J. Bacteriol., 181:718–725, 1999.

[3480] D.H. Sherman, S. Li, L.V. Yermalitskaya, Y. Kim, J.A. Smith, M.R. Waterman, and L.M. Podust. The structural basis for
substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol.
Chem., 281:26289–26297, 2006.

[3481] J. Shi, V. Vlamis-Gardikas, F. Aslund, A. Holmgren, and B.P. Rosen. Reactivity of glutaredoxins 1, 2, and 3 from
Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J. Biol.
Chem., 274:36039–36042, 1999.

[3482] M. Shibahara, J.A. Moody, and L.L. Smith. Microbial hydroxylations. V. 11α-Hydroxylation of progesterone by cell-free
preparations of Aspergillus ochraceus. Biochim. Biophys. Acta, 202:172–179, 1970.

[3483] T. Shibasaki, H. Mori, S. Chiba, and A. Ozaki. Microbial proline 4-hydroxylase screening and gene cloning. Appl.
Environ. Microbiol., 65:4028–4031, 1999.

[3484] D. Shibata, J. Steczko, F.E. Dixon, M. Hermodson, R. Yasdanparast, and B. Axelrod. Primary structure of soybean
lipoxygenase-1. J. Biol. Chem., 262:10080–10085, 1987.

[3485] M. Shibuya, M. Hoshino, Y. Katsube, H. Hayashi, T. Kushiro, and Y. Ebizuka. Identification of β-amyrin and sophoradiol
24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J., 273:948–959, 2006.

[3486] A.K. Shiemke, S.A. Cook, T. Miley, and P. Singleton. Detergent solubilization of membrane-bound methane monooxy-
genase requires plastoquinol analogs as electron donors. Arch. Biochem. Biophys., 321:421–428, 1995.

[3487] S. Shigeoka, Y. Nakano, and S. Kitaoka. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid
peroxidase. Biochem. J., 186:377–380, 1980.

[3488] S. Shigeoka, Y. Nakano, and S. Kitaoka. Purification and some properties of L-ascorbic-acid-specific peroxidase in
Euglena gracilis. Z. Arch. Biochem. Biophys., 201:121–127, 1980.

[3489] J.C. Shih and K. Chen. Regulation of MAO-A and MAO-B gene expression. Curr. Med. Chem., 11:1995–2005, 2004.

[3490] I. Shiio and H. Ozaki. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase
from Brevibacterium flavum, a glutamate-producing bacterium. J. Biochem. (Tokyo), 68:633–647, 1970.

[3491] M. Shikita, H. Inano, and B. Tamaoki. Further studies on 20α-hydroxysteroid dehydrogenase of rat testes. Biochemistry,
6:1760–1764, 1967.

[3492] N. Shikura, J. Yamamura, and T. Nihira. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial
signaling molecule eliciting antibiotic production in Streptomyces species. J. Bacteriol., 184:5151–5157, 2002.

[3493] Y. Shima, M. Shiina, T. Shinozawa, Y. Ito, H. Nakajima, Y. Adachi, and K. Yabe. Participation in aflatoxin biosynthesis
by a reductase enzyme encoded by vrdA gene outside the aflatoxin gene cluster. Fungal Genet. Biol., 46:221–231, 2009.

[3494] M. Shimada and E.E. Conn. The enzymatic conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile.
Arch. Biochem. Biophys., 180:199–207, 1977.

[3495] Y. Shimada, R. Nakano-Shimada, M. Ohbayashi, Y. Okinaka, S. Kiyokawa, and Y. Kikuchi. Expression of chimeric
P450 genes encoding flavonoid-3′, 5′-hydroxylase in transgenic tobacco and petunia plants1. FEBS Lett., 461:241–245,
1999.

[3496] T. Shimakata and P.K. Stumpf. Purification and characterizations of β-ketoacyl-[acyl-carrier-protein] reductase, β-
hydroxyacyl-[acylcarrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves.
Arch. Biochem. Biophys., 218:77–91, 1982.

[3497] M. Shimao, K. Ninomiya, O. Kuno, N. Kato, and C. Sakazawa. Existence of a novel enzyme, pyrroloquinoline quinone-
dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strain VM15C. Appl. Environ.
Microbiol., 51:268–268, 1986.

[3498] M. Shimao, Y. Nishimura, N. Kato, and C. Sakazawa. Localization of polyvinyl alcohol oxidase produced by a bacterial
symbiont Pseudomonas sp strain VM 15C. Appl. Environ. Microbiol., 49:8–10, 1985.

689



[3499] M. Shimao, S. Onishi, N. Kato, and C. Sakazawa. Pyrroloquinoline quinone-dependent cytochrome reduction in
polyvinyl alcohol-degrading Pseudomonas sp strain VM15C. Appl. Environ. Microbiol., 55:275–278, 1989.

[3500] M. Shimizu, T. Yamamoto, N. Okabe, K. Sakai, E. Koide, Y. Miyachi, M. Kurimoto, M. Mochizuki, S. Yoshino-Yasuda,
S. Mitsui, A. Ito, H. Murano, N. Takaya, and M. Kato. Novel 4-methyl-2-oxopentanoate reductase involved in synthesis
of the Japanese sake flavor, ethyl leucate. Appl. Microbiol. Biotechnol., 2015.
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S.T. Cole, G. Riccardi, K. Mikušová, and K. Johnsson. Benzothiazinones are suicide inhibitors of mycobacterial
decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 134:912–915, 2012.

[3926] L.R. Treiber, R.A. Reamer, C.S. Rooney, and H.G. Ramjit. Origin of monacolin L from Aspergillus terreus cultures. J.
Antibiot. (Tokyo), 42:30–36, 1989.

[3927] C. Tricot, C. Vander Wauven, R. Wattiez, P. Falmagne, and V. Stalon. Purification and properties of a succinyltransferase
from Pseudomonas aeruginosa specific for both arginine and ornithine. Eur. J. Biochem., 224:853–861, 1994.

[3928] B.C. Tripathy and C.A. Rebeiz. Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl
protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol., 87:89–94, 1988.

[3929] K.E. Tripodi, L.V. Buttigliero, S.G. Altabe, and A.D. Uttaro. Functional characterization of front-end desaturases from
trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J.,
273:271–280, 2006.

[3930] S. Trippett, S. Dagley, and D.A. Stopher. The bacterial oxidation of nicotinic acid. Biochem. J., 76:9–9, 1960.

[3931] M.G. Tromp, G. Olafsson, B.E. Krenn, and R. Wever. Some structural aspects of vanadium bromoperoxidase from
Ascophyllum nodosum. Biochim. Biophys. Acta, 1040:192–198, 1990.

[3932] M.K. Trower, R.M. Buckland, R. Higgins, and M. Griffin. Isolation and characterization of a cyclohexane-metabolizing
Xanthobacter sp. Appl. Environ. Microbiol., 49:1282–1289, 1985.

[3933] J.J. Truglio, K. Theis, S. Leimkuhler, R. Rappa, K.V. Rajagopalan, and C. Kisker. Crystal structures of the active and
alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure, 10:115–125, 2002.

[3934] W.R. Tschantz, J.A. Digits, H.J. Pyun, R.M. Coates, and P.J. Casey. Lysosomal prenylcysteine lyase is a FAD-dependent
thioether oxidase. J. Biol. Chem., 276:2321–2324, 2001.

[3935] B. Tshisuaka, R. Kappl, J. Huttermann, and F. Lingens. Quinoline oxidoreductase from Pseudomonas putida 86: an
improved purification procedure and electron paramagnetic resonance spectroscopy. Biochemistry, 32:12928–12934,
1993.

[3936] A. Tsuchii and K. Takeda. Rubber-degrading enzyme from a bacterial culture. Appl. Environ. Microbiol., 56:269–274,
1990.

711



[3937] Y. Tsuda and H.C. Friedmann. Ornithine metabolism by Clostridium sticklandii. Oxidation of ornithine to 2-amino-4-
ketopentanoic acid via 2,4-diaminopentanoic acid; participation of B12 coenzyme, pyridoxal phosphate, and pyridine
nucleotide. J. Biol. Chem., 245:5914–5926, 1970.

[3938] F.I. Tsuji, R.V. Lynch, and C.L. Stevens. Some properties of luciferase from the bioluminescent crustacean, Cypridina
hilgendorfii. Biochemistry, 13:5204–5209, 1974.

[3939] H. Tsuji, T. Ogawa, N. Bando, and K. Sasaoka. Purification and properties of 4-aminobenzoate hydroxylase, a new
monooxygenase from Agaricus bisporus. J. Biol. Chem., 261:13203–13209, 1986.

[3940] K. Tsukada. D-Amino acid dehydrogenases of Pseudomonas fluorescens. J. Biol. Chem., 241:4522–4528, 1966.

[3941] Y. Tsukada, J. Fang, H. Erdjument-Bromage, M.E. Warren, C.H. Borchers, P. Tempst, and Y. Zhang. Histone demethy-
lation by a family of JmjC domain-containing proteins. Nature, 439:811–816, 2006.

[3942] Y. Tsukatani, J. Harada, J. Nomata, H. Yamamoto, Y. Fujita, T. Mizoguchi, and H. Tamiaki. Rhodobacter sphaeroides
mutants overexpressing chlorophyllide a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late
bacteriochlorophyll biosynthetic pathways. Sci Rep, 5:9741–9741, 2015.

[3943] Y. Tsukatani, H. Yamamoto, J. Harada, T. Yoshitomi, J. Nomata, M. Kasahara, T. Mizoguchi, Y. Fujita, and H. Tamiaki.
An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci
Rep, 3:1217–1217, 2013.

[3944] P.K. Tubbs and G.D. Greville. Dehydrogenation of D-lactate by a soluble enzyme from kidney mitochondria. Biochim.
Biophys. Acta, 34:290–291, 1959.

[3945] P.K. Tubbs and G.D. Greville. The oxidation of D-α-hydroxy acids in animal tissues. Biochem. J., 81:104–114, 1961.

[3946] J.J. Turnbull, M.J. Nagle, J.F. Seibel, R.W. Welford, G.H. Grant, and C.J. Schofield. The C-4 stereochemistry of leu-
cocyanidin substrates for anthocyanidin synthase affects product selectivity. Bioorg. Med. Chem. Lett., 13:3853–3857,
2003.

[3947] J.J. Turnbull, J. Nakajima, R.W. Welford, M. Yamazaki, K. Saito, and C.J. Schofield. Mechanistic studies on three 2-
oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone
3β-hydroxylase. J. Biol. Chem., 279:1206–1216, 2004.

[3948] J.J. Turnbull, W.J. Sobey, R.T. Aplin, A. Hassan, J.L. Firmin, C.J. Schofield, and A.G. Prescott. Are anthocyanidins the
immediate products of anthocyanidin synthase? Chem. Commun., pages 2473–2474, 2000.

[3949] J.F. Turner and J.E. King. Inosine 5-phosphate dehydrogenase of pea seeds. Biochem. J., 79:147–147, 1961.

[3950] J.M. Turner. Microbial metabolism of amino ketones. Aminoacetone formation from 1-aminopropan-2-ol by a dehydr-
genase in Escherichia coli. Biochem. J., 99:427–433, 1966.

[3951] J.M. Turner. Microbial metabolism of amino ketones. L-1-Aminopropan-2-ol dehydrogenase and L-threonine dehydro-
genase in Escherichia coli. Biochem. J., 104:112–121, 1967.

[3952] A. Tuynman, J.L. Spelberg, I.M. Kooter, H.E. Schoemaker, and R. Wever. Enantioselective epoxidation and carbon-
carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase. J. Biol. Chem., 275:3025–3030,
2000.

[3953] H. Twilfer, F.-H. Bernhardt, and K. Gersonde. An electron-spin-resonance study on the redox-active centers of the
4-methoxybenzoate monooxygenase from Pseudomonas putida. Eur. J. Biochem., 119:595–602, 1981.

[3954] C.A. Tyson, J.D. Lipscomb, and I.C. Gunsalus. The role of putidaredoxin and P450cam in methylene hydroxylation. J.
Biol. Chem., 247:5777–5784, 1972.

[3955] H. Uchida, D. Kondo, A. Yamashita, Y. Nagaosa, T. Sakurai, Y. Fujii, K. Fujishiro, K. Aisaka, and T. Uwajima. Purifi-
cation and characterization of an aldehyde oxidase from Pseudomonas sp. KY 4690. FEMS Microbiol. Lett., 229:31–36,
2003.

712



[3956] K. Uchida, T. Shimizu, R. Makino, K. Sakaguchi, T. Iizuka, Y. Ishimura, T. Nozawa, and M. Hatano. Magnetic and
natural circular dichroism of L-tryptophan 2,3-dioxygenases and indoleamine 2,3-dioxygenase. I. Spectra of ferric and
ferrous high spin forms. J. Biol. Chem., 258:2519–2525, 1983.

[3957] S. Udaka and B. Vennesland. Properties of triphosphopyridine nucleotide-linked dihydroorotic dehydrogenase. J. Biol.
Chem., 237:2018–2024, 1962.

[3958] S. Udenfriend and J.R. Cooper. The enzymic conversion of phenylalanine to tyrosine. J. Biol. Chem., 194:503–511,
1952.

[3959] D.W. Udwary, L. K. Casillas, and C.A. Townsend. Synthesis of 11-hydroxyl O-methylsterigmatocystin and the role of a
cytochrome P-450 in the final step of aflatoxin biosynthesis. J. Am. Chem. Soc., 124:5294–5303, 2002.

[3960] T. Ueda, E.T. Lode, and M.J. Coon. Enzymatic ω-oxidation. VI. Isolation of homogeneous reduced diphosphopyridine
nucleotide-rubredoxin reductase. J. Biol. Chem., 247:2109–2116, 1972.

[3961] T. Ueda, E.T. Lode, and M.J. Coon. Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin re-
ductase: properties and function as an electron carrier in hydroxylation. J. Biol. Chem., 247:5010–5016, 1972.

[3962] K. Uehara and S. Hosomi. D-Erythrulose reductase from beef liver. Methods Enzymol., 89:232–237, 1982.

[3963] K. Uehara and M. Takeda. L-Xylose dehydrogenase in bakers’ yeast. J. Biochem. (Tokyo), 52:461–463, 1962.

[3964] K. Uehara, T. Tanimoto, and H. Sato. Studies on D-tetrose metabolism. IV. Purification and some properties of D-
erythrulose reductase from beef liver. J. Biochem. (Tokyo), 75:333–345, 1974.

[3965] K. Uehara, J. Watanabe, Y. Mogi, and Y. Tsukioka. Identification and characterization of an enzyme involved in the
biosynthesis of the 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone in yeast. J. Biosci. Bioeng., 123:333–341,
2017.

[3966] T. Uetz, R. Schneider, M. Snozzi, and T. Egli. Purification and characterization of a two-component monooxygenase that
hydroxylates nitrilotriacetate from ”Chelatobacter” strain ATCC 29600. J. Bacteriol., 174:1179–1188, 1992.

[3967] S. Ui, Y. Okajima, A. Mimura, H. Kanai, T. Kobayashi, , and T. Sequence analysis of the gene for and characterization
of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. J.
Ferment. Bioeng., 83:32–37, 1997.

[3968] A.J. Ullah, R.I. Murray, P.K. Bhattacharyya, G.C. Wagner, and I.C. Gunsalus. Protein components of a cytochrome
P-450 linalool 8-methyl hydroxylase. J. Biol. Chem., 265:1345–1351, 1990.

[3969] R. Ullrich, C. Dolge, M. Kluge, and M. Hofrichter. Pyridine as novel substrate for regioselective oxygenation with
aromatic peroxygenase from Agrocybe aegerita. FEBS Lett., 582:4100–4106, 2008.

[3970] R. Ullrich and M. Hofrichter. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and
naphthalene. FEBS Lett., 579:6247–6250, 2005.

[3971] R. Ullrich, J. Nuske, K. Scheibner, J. Spantzel, and M. Hofrichter. Novel haloperoxidase from the agaric basidiomycete
Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol., 70:4575–4581, 2004.

[3972] Y. Umena, K. Yorita, T. Matsuoka, A. Kita, K. Fukui, and Y. Morimoto. The crystal structure of L-lactate oxidase from
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abieta-7,13-diene hydroxylase, 414
abscisic-aldehyde oxidase, 143
trans-acenaphthene-1,2-diol dehydrogenase, 274
acetaldehyde dehydrogenase (acetylating), 121
acetoacetyl-CoA reductase, 12
acetone monooxygenase (methyl acetate-forming), 369
N-acetyl-γ-glutamyl-phosphate reductase, 127
acetylacetone-cleaving enzyme, 301
N-acetylhexosamine 1-dehydrogenase, 54
acetylindoxyl oxidase, 252
N1-acetylpolyamine oxidase, 227
N8-acetylspermidine oxidase (propane-1,3-diamine-forming), 228
acireductone dioxygenase [iron(II)-requiring], 302
acireductone dioxygenase (Ni2+-requiring), 302
aclacinomycin-A oxidase, 180
aclacinomycin-N oxidase, 105
acrylyl-CoA reductase (NADH), 170
acrylyl-CoA reductase (NADPH), 168
acyl-[acyl-carrier-protein] 4-desaturase, 440
acyl-[acyl-carrier-protein] 6-desaturase, 445
acyl-CoA 11-(E)-desaturase, 444
acyl-CoA 11-(Z)-desaturase, 439
acyl-CoA 15-desaturase, 441
acyl-CoA 5-desaturase, 448
acyl-CoA 6-desaturase, 438
acyl-CoA (8-3)-desaturase, 450
acyl-CoA (9+3)-desaturase, 439
acyl-CoA dehydrogenase (NADP+), 153
acyl-CoA oxidase, 178
acyl-lipid ∆12-acetylenase, 449
acyl-lipid ∆6-acetylenase, 449
acyl-lipid ω-3 desaturase (cytochrome b5), 445
acyl-lipid ω-6 desaturase (cytochrome b5), 444
acyl-lipid ω-(9-4) desaturase, 441
acyl-lipid (11-3)-desaturase, 438
acyl-lipid (7-3)-desaturase, 446
acyl-lipid (8-3)-desaturase, 446
acyl-lipid (9+3)-(E)-desaturase, 447
acyl-lipid (9-3)-desaturase, 451
acyl-lipid (n+3)-(Z)-desaturase (ferredoxin), 444
acylglycerone-phosphate reductase, 26
N-acylhexosamine oxidase, 102
N-acylmannosamine 1-dehydrogenase, 52
adenylyl-sulfate reductase, 272
adenylyl-sulfate reductase (glutathione), 264
adenylyl-sulfate reductase (thioredoxin), 265

adrenodoxin-NADP+ reductase, 493
aerobic carbon monoxide dehydrogenase, 146
aflatoxin B synthase, 407
agroclavine dehydrogenase, 223
aklaviketone reductase, 82
aklavinone 12-hydroxylase, 362
alanine dehydrogenase, 199
β-alanopine dehydrogenase, 218
alanopine dehydrogenase, 216
albendazole monooxygenase, 342
albendazole monooxygenase (hydroxylating), 395
albendazole monooxygenase (sulfoxide-forming), 395
albonoursin synthase, 179
alcohol dehydrogenase, 5
alcohol dehydrogenase (azurin), 109
alcohol dehydrogenase (cytochrome c), 96
alcohol dehydrogenase (NADP+), 5
alcohol dehydrogenase [NAD(P)+], 20
alcohol dehydrogenase (nicotinoprotein), 118
alcohol dehydrogenase (quinone), 107
alcohol oxidase, 99
alcohol-forming fatty acyl-CoA reductase, 136
aldehyde dehydrogenase (FAD-independent), 150
aldehyde dehydrogenase (NAD+), 120
aldehyde dehydrogenase (NADP+), 120
aldehyde dehydrogenase [NAD(P)+], 120
aldehyde dehydrogenase (quinone), 145
aldehyde ferredoxin oxidoreductase, 147
aldehyde oxidase, 141
aldehyde reductase, 9
alditol oxidase, 103
aldose 1-dehydrogenase (NAD+), 30
aldose 1-dehydrogenase [NAD(P)+], 81
aldose-6-phosphate reductase (NADPH), 46
aliphatic glucosinolate S-oxygenase, 372
alkan-1-ol dehydrogenase (acceptor), 114
alkane 1-monooxygenase, 422
alkanesulfonate monooxygenase, 375
(4-alkanoyl-5-oxo-2,5-dihydrofuran-3-yl)methyl phosphate re-

ductase, 175
2-alkenal reductase (NADP+), 172
2-alkenal reductase [NAD(P)+], 165
alkene monooxygenase, 348
2-alkyl-3-oxoalkanoate reductase, 93
alkylglycerol monooxygenase, 433
N-alkylglycine oxidase, 229
2-alkyn-1-ol dehydrogenase, 38
allyl-alcohol dehydrogenase, 17
D-altritol 5-dehydrogenase, 92
D-amino acid dehydrogenase (quinone), 211
2-amino-1-hydroxyethylphosphonate dioxygenase (glycine-forming),

308
2-amino-4-deoxychorismate dehydrogenase, 195
2-amino-5-chlorophenol 1,6-dioxygenase, 308
5-amino-6-(5-phosphoribosylamino)uracil reductase, 44
L-amino-acid dehydrogenase, 200
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D-amino-acid oxidase, 205
L-amino-acid oxidase, 205
L-aminoadipate-semialdehyde dehydrogenase, 126
2-aminobenzenesulfonate 2,3-dioxygenase, 334
4-aminobenzoate 1-monooxygenase, 341
aminobutyraldehyde dehydrogenase, 123
aminocyclopropanecarboxylate oxidase, 434
2-aminoethylphosphonate dioxygenase, 328
aminomuconate-semialdehyde dehydrogenase, 126
2-aminophenol 1,6-dioxygenase, 307
o-aminophenol oxidase, 275
(R)-aminopropanol dehydrogenase, 20
5-aminosalicylate 1,2-dioxygenase, 310
ammonia monooxygenase, 470
amorpha-4,11-diene 12-monooxygenase, 406
tert-amyl alcohol desaturase, 451
β-amyrin 11-oxidase, 416
β-amyrin 16β-monooxygenase, 392
β-amyrin 24-hydroxylase, 411
β-amyrin 28-monooxygenase, 409
β-amyrin 6β-monooxygenase, 392
anaerobic carbon-monoxide dehydrogenase, 147
anaerobic magnesium-protoporphyrin IX monomethyl ester cy-

clase, 502
androst-4-ene-3,17-dione monooxygenase, 466
angelicin synthase, 415
3,6-anhydro-α-L-galactose dehydrogenase, 138
1,5-anhydro-D-fructose reductase, 58
1,5-anhydro-D-fructose reductase (1,5-anhydro-D-mannitol-forming),

65
anhydrotetracycline 6-monooxygenase, 343
anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming], 166
anthocyanidin reductase [(2S)-flavan-3-ol-forming], 175
anthocyanidin synthase, 460
anthranilate 1,2-dioxygenase (deaminating, decarboxylating),

331
anthranilate 3-monooxygenase, 433
anthranilate 3-monooxygenase (deaminating), 343
anthranilate 3-monooxygenase (FAD), 375
anthraniloyl-CoA monooxygenase, 344
apiose 1-reductase, 28
8′-apo-β-carotenoid 14′,13′-cleaving dioxygenase, 306
β-apo-4′-carotenal oxygenase, 136
8′-apo-carotenoid 13,14-cleaving dioxygenase, 309
aquacobalamin reductase, 476
aquacobalamin reductase (NADPH), 476
D-arabinitol 2-dehydrogenase, 56
L-arabinitol 2-dehydrogenase, 7
D-arabinitol 4-dehydrogenase, 7
L-arabinitol 4-dehydrogenase, 7
D-arabinitol dehydrogenase (NADP+), 64
D-arabinono-1,4-lactone oxidase, 102
L-arabinose 1-dehydrogenase, 15
D-arabinose 1-dehydrogenase (NAD+), 29
D-arabinose 1-dehydrogenase [NAD(P)+], 29
L-arabinose 1-dehydrogenase [NAD(P)+], 85

D-arabitol-phosphate dehydrogenase, 67
arachidonate 12-lipoxygenase, 297
arachidonate 15-lipoxygenase, 298
arachidonate 5-lipoxygenase, 298
arachidonate 8-lipoxygenase, 299
aralkylamine dehydrogenase (azurin), 212
arginine 2-monooxygenase, 311
D-arginine dehydrogenase, 213
L-arginine dehydrogenase, 204
L-arginine hydroxylase, 327
L-arginine oxidase, 210
arogenate dehydrogenase, 160
arogenate dehydrogenase (NADP+), 166
arogenate dehydrogenase [NAD(P)+], 167
aromatase, 377
aromatic 2-oxoacid reductase, 28
aromatic aldoxime N-monooxygenase, 387
arsenate reductase (azurin), 497
arsenate reductase (cytochrome c), 496
arsenate reductase (donor), 497
arsenate reductase (glutaredoxin), 496
arsenate reductase (thioredoxin), 497
artemisinic aldehyde ∆11(13)-reductase, 170
aryl-alcohol dehydrogenase, 23
aryl-alcohol dehydrogenase (NADP+), 24
aryl-alcohol oxidase, 97
aryl-aldehyde dehydrogenase, 125
aryl-aldehyde dehydrogenase (NADP+), 125
aryl-aldehyde oxidase, 143
L-ascorbate oxidase, 275
L-ascorbate peroxidase, 281
L-ascorbate—cytochrome-b5 reductase, 274
L-asparagine hydroxylase, 326
asparagusate reductase, 258
aspartate dehydrogenase, 203
D-aspartate oxidase, 205
L-aspartate oxidase, 208
aspartate-semialdehyde dehydrogenase, 122
asperlicin C monooxygenase, 367
assimilatory sulfite reductase (ferredoxin), 269
assimilatory sulfite reductase (NADPH), 255
aurachin B dehydrogenase, 89
aurachin C monooxygenase/isomerase, 368
aureusidin synthase, 499
averantin hydroxylase, 406
azobenzene reductase, 247

bacterial luciferase, 374
bacterial non-heme ferritin, 478
bacterial sulfide:quinone reductase, 267
bacteriochlorophyllide a dehydrogenase, 90
bacteriochlorophyllide c C-71-hydroxylase, 489
benzaldehyde dehydrogenase (NAD+), 125
benzaldehyde dehydrogenase (NADP+), 121
benzene 1,2-dioxygenase, 332
benzil reductase [(R)-benzoin forming], 72
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benzil reductase [(S)-benzoin forming], 72
benzoate 1,2-dioxygenase, 333
benzoate 4-monooxygenase, 400
p-benzoquinone reductase (NADPH), 242
benzoyl-CoA 2,3-epoxidase, 365
benzoyl-CoA 3-monooxygenase, 346
benzoyl-CoA reductase, 184
benzyl-2-methyl-hydroxybutyrate dehydrogenase, 49
(R)-benzylsuccinyl-CoA dehydrogenase, 187
berbamunine synthase, 457
berberine reductase, 219
betaine reductase, 501
betaine-aldehyde dehydrogenase, 121
biflaviolin synthase, 458
bilirubin oxidase, 178
biliverdin reductase, 156
biochanin-A reductase, 160
biphenyl 2,3-dioxygenase, 335
biphenyl-2,3-diol 1,2-dioxygenase, 299
bis-γ-glutamylcystine reductase, 258
2,3-bis-O-geranylgeranyl-sn-glycero-phospholipid reductase, 185
2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase [NAD(P)H],

172
botryococcene synthase, 171
bromide peroxidase, 283
bursehernin 5′-monooxygenase, 410
butanal dehydrogenase, 130
butane monooxygenase (soluble), 370
(R,R)-butanediol dehydrogenase, 5
(S,S)-butanediol dehydrogenase, 21
1-butanol dehydrogenase (cytochrome c), 96
1-butanol dehydrogenase (quinone), 109
butanoyl-CoA dehydrogenase (NAD+, ferredoxin), 174
tert-butyl alcohol monooxygenase, 370
γ-butyrobetaine dioxygenase, 318

C-19 steroid 1α-hydroxylase, 427
caffeate 3,4-dioxygenase, 295
caffeine dehydrogenase, 486
caffeoyl-CoA reductase, 174
calcidiol 1-monooxygenase, 426
calcium-regulated photoprotein, 316
camalexin synthase, 452
camphor 5-monooxygenase, 422
(S)-canadine synthase, 457
cannabidiolic acid synthase, 500
(5R)-carbapenem-3-carboxylate synthase, 460
carbazole 1,9a-dioxygenase, 335
carbon-monoxide dehydrogenase (cytochrome b-561), 141
carbonyl reductase (NADPH), 42
3-carboxyethylcatechol 2,3-dioxygenase, 294
N5-(carboxyethyl)ornithine synthase, 218
carboxylate reductase, 150
5-carboxymethyl-2-hydroxymuconic-semialdehyde dehydroge-

nase, 131
carboxynorspermidine synthase, 222

carlactone synthase, 306
(S)-carnitine 3-dehydrogenase, 56
carnitine 3-dehydrogenase, 27
carnitine monooxygenase, 372
carnosic acid synthase, 392
β-carotene 15,15′-dioxygenase, 304
β-carotene 3-hydroxylase, 428
β-carotene 4-ketolase, 474
carotenoid χ-ring synthase, 199
carotenoid ε hydroxylase, 418
carotenoid φ-ring synthase, 198
carotenoid isomerooxygenase, 305
carotenoid-9′,10′-cleaving dioxygenase, 306
carveol dehydrogenase, 55
carvone reductase, 195
ent-cassa-12,15-diene 11-hydroxylase, 405
ent-cassadiene hydroxylase, 393
catalase, 279
catalase-peroxidase, 284
catechol 1,2-dioxygenase, 291
catechol 2,3-dioxygenase, 291
catechol oxidase, 274
catechol oxidase (dimerizing), 99
CDP-4-dehydro-6-deoxyglucose reductase, 480
CDP-abequose synthase, 77
CDP-paratose synthase, 77
cellobiose dehydrogenase (acceptor), 114
chanoclavine-I aldehyde reductase, 171
chanoclavine-I dehydrogenase, 75
(S)-cheilanthifoline synthase, 457
chlorate reductase, 506
chlordecone reductase, 51
chloridazon-catechol dioxygenase, 298
chloride peroxidase, 280
chlorite O2-lyase, 301
7-chloro-L-tryptophan 6-halogenase, 455
7-chloro-L-tryptophan oxidase, 209
chloroacetanilide N-alkylformylase, 428
chlorobenzene dihydrodiol dehydrogenase, 177
chlorobenzene dioxygenase, 336
4-chlorophenylacetate 3,4-dioxygenase, 333
chlorophyllide a reductase, 186
chlorophyll(ide) b reductase, 65
chlorophyllide-a oxygenase, 354
cholest-4-en-3-one 26-monooxygenase [(25R)-3-oxocholest-4-

en-26-oate forming], 429
cholest-4-en-3-one 26-monooxygenase [(25S)-3-oxocholest-4-

en-26-oate forming], 430
cholest-5-ene-3β,7α-diol 3β-dehydrogenase, 41
5β-cholestane-3α,7α-diol 12α-hydroxylase, 413
cholestanetriol 26-monooxygenase, 425
cholesterol 24-hydroxylase, 380
cholesterol 25-hydroxylase, 469
cholesterol 7α-monooxygenase, 379
cholesterol 7-desaturase, 443
cholesterol monooxygenase (side-chain-cleaving), 423
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cholesterol oxidase, 97
choline dehydrogenase, 111
choline monooxygenase, 423
choline oxidase, 100
1,8-cineole 2-endo-monooxygenase, 411
1,8-cineole 2-exo-monooxygenase, 390
trans-cinnamate 2-monooxygenase, 339
trans-cinnamate 4-monooxygenase, 400
cinnamoyl-CoA reductase, 128
cinnamyl-alcohol dehydrogenase, 44
clavaminate synthase, 322
CMP-N-acetylneuraminate monooxygenase, 435
CoA-disulfide reductase, 258
CoA-glutathione reductase, 257
cobalt-precorrin-6A reductase, 173
cob(II)alamin reductase, 476
cob(II)yrinic acid a,c-diamide reductase, 479
codeine 3-O-demethylase, 325
codeinone reductase (NADPH), 55
coenzyme F420 hydrogenase, 288
coenzyme F420 oxidoreductase (ferredoxin), 231
coenzyme F420:CoB-CoM heterodisulfide,ferredoxin reductase,

270
coenzyme F420:methanophenazine dehydrogenase, 233
coenzyme F420H2 oxidase , 229
columbamine oxidase, 498
coniferyl-alcohol dehydrogenase, 44
coniferyl-aldehyde dehydrogenase, 132
coproporphyrinogen dehydrogenase, 191
coproporphyrinogen III oxidase (coproporphyrin-forming), 180
coproporphyrinogen oxidase, 178
corticosterone 18-monooxygenase, 423
(S)-corytuberine synthase, 452
costunolide synthase, 415
2-coumarate reductase, 154
crocetin dialdehyde synthase, 310
crotonobetainyl-CoA reductase, 190
crotonyl-CoA carboxylase/reductase, 168
crotonyl-CoA reductase, 168
cucurbitacin ∆23-reductase, 152
cucurbitadienol 11-hydroxylase, 394
p-cumate 2,3-dioxygenase, 336
cyanocobalamin reductase (cyanide-eliminating), 477
cyclic alcohol dehydrogenase (quinone), 108
cyclic dehypoxanthinyl futalosine synthase, 502
cyclohex-1-ene-1-carbonyl-CoA dehydrogenase, 189
cyclohexane-1,2-diol dehydrogenase, 40
cyclohexane-1-carbonyl-CoA dehydrogenase, 189
cyclohexanol dehydrogenase, 55
cyclohexanone dehydrogenase, 193
cyclohexanone monooxygenase, 340
cyclohexylamine oxidase, 207
cyclooctat-9-en-7-ol 5-monooxygenase, 474
cyclooctatin synthase, 474
cyclopentanol dehydrogenase, 38
cyclopentanone monooxygenase, 339

β-cyclopiazonate dehydrogenase, 503
p-cymene methyl-monooxygenase, 428
cypemycin cysteine dehydrogenase (decarboxylating), 198
cysteamine dioxygenase, 295
cysteine dioxygenase, 295
L-cysteinyl-L-histidinylsulfoxide synthase, 472
cystine reductase, 256
cytochrome-b5 reductase, 237
cytochrome-c oxidase, 273
cytochrome-c peroxidase, 279
cytochrome-c3 hydrogenase, 287
cytokinin dehydrogenase, 235

dammarenediol 12-hydroxylase, 408
deacetoxycephalosporin-C hydroxylase, 323
deacetoxycephalosporin-C synthase, 460
deacetoxyvindoline 4-hydroxylase, 322
3′′-deamino-3′′-oxonicotianamine reductase, 63
decaprenylphospho-β-D-erythro-pentofuranosid-2-ulose 2-reductase,

75
decaprenylphospho-β-D-ribofuranose 2-dehydrogenase, 110
13,14-dehydro-15-oxoprostaglandin 13-reductase, 161
2-dehydro-3-deoxy-D-gluconate 5-dehydrogenase, 31
2-dehydro-3-deoxy-D-gluconate 6-dehydrogenase, 31
2-dehydro-3-deoxy-L-galactonate 5-dehydrogenase, 88
2-dehydro-3-deoxy-L-rhamnonate dehydrogenase (NAD+), 91
3-dehydro-L-gulonate 2-dehydrogenase, 31
3-dehydro-bile acid ∆4,6-reductase, 175
3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+),

135
7-dehydrocholesterol reductase, 156
dehydrogluconate dehydrogenase, 112
2′-dehydrokanamycin reductase, 80
2-dehydropantoate 2-reductase, 39
(R)-dehydropantoate dehydrogenase, 126
2-dehydropantolactone reductase, 81
2-dehydropantolactone reductase (Re-specific), 39
2-dehydropantolactone reductase (Si-specific), 49
3-dehydroquinate synthase II, 204
1,2-dehydroreticuline synthase, 453
1,2-dehydroreticulinium reductase (NADPH), 219
3-dehydrosphinganine reductase, 26
3-demethoxyubiquinol 3-hydroxylase, 474
demethylphylloquinone reductase, 243
3-deoxy-α-D-manno-octulosonate 8-oxidase, 105
1-deoxy-11β-hydroxypentalenate dehydrogenase, 77
2-deoxy-scyllo-inosamine dehydrogenase, 74
2-deoxy-scyllo-inosamine dehydrogenase (AdoMet-dependent),

118
2-deoxy-D-gluconate 3-dehydrogenase, 31
1-deoxy-D-xylulose-5-phosphate reductoisomerase, 59
13-deoxydaunorubicin hydroxylase, 362
6-deoxyerythronolide B hydroxylase, 432
deoxyhypusine monooxygenase, 468
7-deoxyloganate 7-hydroxylase, 398
2′-deoxymugineic-acid 2′-dioxygenase, 323
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deoxynogalonate monooxygenase, 315
1-deoxypentalenic acid 11β-hydroxylase, 325
(–)-deoxypodophyllotoxin synthase, 462
deoxysarpagine hydroxylase, 412
diacetyl reductase [(R)-acetoin forming], 68
diacetyl reductase [(S)-acetoin forming], 68
diamine oxidase, 209
2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5′-phosphate

reductase, 68
2,4-diaminopentanoate dehydrogenase, 201
2,4-diaminopentanoate dehydrogenase (NAD+), 204
diaminopimelate dehydrogenase, 202
diapolycopene oxygenase, 470
4,4′-diapolycopenoate synthase, 151
4,4′-diapophytoene desaturase (4,4′-diapolycopene-forming), 187
dibenzothiophene dihydrodiol dehydrogenase, 163
dibenzothiophene monooxygenase, 379
dibenzothiophene sulfone monooxygenase, 379
dichloroarcyriaflavin A synthase, 314
2,4-dichlorobenzoyl-CoA reductase, 498
dichlorochromopyrrolate synthase, 502
2,4-dichlorophenol 6-monooxygenase, 340
(R)-dichlorprop dioxygenase (2-oxoglutarate), 328
(S)-dichlorprop dioxygenase (2-oxoglutarate), 327
2,5-didehydrogluconate reductase (2-dehydro-D-gluconate-forming),

61
2,5-didehydrogluconate reductase (2-dehydro-L-gulonate-forming),

78
2,4-dienoyl-CoA reductase (NADPH), 158
diethyl 2-methyl-3-oxosuccinate reductase, 52
diferric-transferrin reductase, 476
2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, 157
dihydroanticapsin dehydrogenase, 87
dihydrobenzophenanthridine oxidase, 227
15,16-dihydrobiliverdin:ferredoxin oxidoreductase, 183
dihydrobunolol dehydrogenase, 38
dihydrocarveol dehydrogenase, 66
dihydroceramide fatty acyl 2-hydroxylase, 437
dihydrochelirubine 12-monooxygenase, 402
cis-dihydroethylcatechol dehydrogenase, 164
dihydroflavonol 4-reductase, 50
dihydrofolate reductase, 214
dihydrolipoyl dehydrogenase, 256
β-dihydromenaquinone-9 ω-hydroxylase, 429
dihydromethanophenazine:CoB-CoM heterodisulfide reductase,

269
dihydromethanopterin reductase (acceptor), 235
dihydromethanopterin reductase [NAD(P)+], 223
dihydromonacolin L hydroxylase, 408
dihydromonapterin reductase, 224
7,8-dihydroneopterin oxygenase, 309
dihydroorotate dehydrogenase (fumarate), 190
dihydroorotate dehydrogenase (NAD+), 154
dihydroorotate dehydrogenase (NADP+), 154
dihydroorotate dehydrogenase (quinone), 181
dihydrophenazinedicarboxylate synthase, 277

6,7-dihydropteridine reductase, 220
dihydropyrimidine dehydrogenase (NAD+), 151
dihydropyrimidine dehydrogenase (NADP+), 151
dihydrorhizobitoxine desaturase, 456
dihydrosanguinarine 10-monooxygenase, 402
dihydrouracil oxidase, 178
1,2-dihydrovomilenine reductase, 165
2,4-dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase, 331
2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase, 163
5,6-dihydroxy-3-methyl-2-oxo-1,2,5,6-tetrahydroquinoline de-

hydrogenase, 163
1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate dehy-

drogenase, 164
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-

dioxygenase, 296
2,4′-dihydroxyacetophenone dioxygenase, 299
2,3-dihydroxybenzoate 2,3-dioxygenase, 297
2,3-dihydroxybenzoate 3,4-dioxygenase, 294
1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase,

156
2,3-dihydroxyindole 2,3-dioxygenase, 296
7,8-dihydroxykynurenate 8,8a-dioxygenase, 293
1,2-dihydroxynaphthalene dioxygenase, 303
3,4-dihydroxyphenylacetate 2,3-dioxygenase, 294
(3,5-dihydroxyphenyl)acetyl-CoA 1,2-dioxygenase, 309
3,4-dihydroxyphenylalanine oxidative deaminase, 314
3,9-dihydroxypterocarpan 6a-monooxygenase, 400
2,6-dihydroxypyridine 3-monooxygenase, 339
2,5-dihydroxypyridine 5,6-dioxygenase, 293
diiodophenylpyruvate reductase, 25
2,5-diketocamphane 1,2-monooxygenase, 404
3,6-diketocamphane 1,2-monooxygenase, 417
dimethyl sulfide:cytochrome c2 reductase, 261
8-dimethylallylnaringenin 2′-hydroxylase, 413
dimethylamine dehydrogenase, 232
dimethylamine monooxygenase, 372
4-(dimethylamino)phenylazoxybenzene reductase, 248
5,6-dimethylbenzimidazole synthase, 308
dimethylglycine dehydrogenase, 232
dimethylglycine oxidase, 226
dimethylmalate dehydrogenase, 22
dimethylnonatriene synthase, 391
dimethylsulfone monooxygenase, 383
dimethylsulfone reductase, 259
dimethylsulfoxide reductase, 267
2,4-dinitrotoluene dioxygenase, 336
dinoflagellate luciferase, 314
2,5-dioxovalerate dehydrogenase, 125
dissimilatory dimethyl sulfide monooxygenase, 355
dissimilatory sulfite reductase, 272
S-disulfanyl-L-cysteine oxidoreductase, 261
4,4′-dithiodibutanoate disulfide reductase, 260
3,8-divinyl chlorophyllide a reductase, 186
3,8-divinyl protochlorophyllide a 8-vinyl-reductase (ferredoxin),

185
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3,8-divinyl protochlorophyllide a 8-vinyl-reductase (NADPH),
165

DNA N6-methyladenine demethylase, 329
DNA oxidative demethylase, 325
docosahexaenoic acid ω-hydroxylase, 396
dolabradiene monooxygenase, 418
dopamine β-monooxygenase, 434
drimenol monooxygenase, 394
dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose 3-reductase, 87
dTDP-4-dehydro-6-deoxy-α-D-gulose 4-ketoreductase, 82
dTDP-4-dehydro-6-deoxyglucose reductase, 59
dTDP-4-dehydrorhamnose reductase, 32
dTDP-6-deoxy-L-talose 4-dehydrogenase (NAD+), 76
dTDP-6-deoxy-L-talose 4-dehydrogenase (NADP+), 32
dTDP-6-deoxy-L-talose 4-dehydrogenase [NAD(P)+], 77
dTDP-galactose 6-dehydrogenase, 42
dye decolorizing peroxidase, 283

ecdysone 20-monooxygenase, 467
ecdysone oxidase, 99
ectoine hydroxylase, 330
electron-transferring-flavoprotein dehydrogenase, 230
endo-cleaving rubber dioxygenase, 310
enduracididine β-hydroxylase, 327
2-enoate reductase, 157
enoyl-[acyl-carrier-protein] reductase (NADH), 153
enoyl-[acyl-carrier-protein] reductase (NADPH), 172
enoyl-[acyl-carrier-protein] reductase (NADPH, Re-specific), 159
enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific), 153
enzyme-thiol transhydrogenase (glutathione-disulfide), 264
ephedrine dehydrogenase, 216
5-epiaristolochene 1,3-dihydroxylase, 415
epoxyqueuosine reductase, 491
D-erythritol 1-phosphate dehydrogenase, 91
erythromycin 12-hydroxylase, 358
D-erythronate 2-dehydrogenase, 93
erythrose-4-phosphate dehydrogenase, 133
erythrulose reductase, 38
estradiol 17α-dehydrogenase, 35
17β-estradiol 17-dehydrogenase, 18
estradiol 6β-monooxygenase, 465
ethanolamine oxidase, 206
ethylbenzene hydroxylase, 490
ethylenediaminetetraacetate monooxygenase, 382
eugenol synthase, 71
eukaryotic sulfide quinone oxidoreductase, 268
eupatolide synthase, 421
L-evernosamine nitrososynthase, 363
exo-cleaving rubber dioxygenase, 310

F420H2:quinone oxidoreductase, 110
F-actin monooxygenase, 369
factor-independent urate hydroxylase, 252
FAD reductase (NADH), 221
FAD reductase [NAD(P)H], 223
FAD-dependent urate hydroxylase, 353

farnesal dehydrogenase, 138
farnesoate epoxidase, 410
farnesol dehydrogenase (NAD+), 80
farnesol dehydrogenase (NADP+), 49
farnesylcysteine lyase, 262
fatty-acid peroxidase, 278
fatty-acid peroxygenase, 286
fenbendazole monooxygenase (4′-hydroxylating), 395
ferredoxin hydrogenase, 288
ferredoxin—NAD+ reductase, 492
ferredoxin—NADP+ reductase, 492
ferredoxin—NAD(P)+ reductase (naphthalene dioxygenase ferredoxin-

specific), 493
ferredoxin—nitrate reductase, 254
ferredoxin—nitrite reductase, 254
ferredoxin:CoB-CoM heterodisulfide reductase, 269
ferredoxin:protochlorophyllide reductase (ATP-dependent), 184
ferredoxin:thioredoxin reductase, 269
ferric-chelate reductase (NADH), 477
ferric-chelate reductase (NADPH), 478
ferric-chelate reductase [NAD(P)H], 478
ferroxidase, 478
ferruginol monooxygenase, 391
ferruginol synthase, 363
festuclavine dehydrogenase, 223
firefly luciferase, 312
flavanoid 3′,5′-hydroxylase, 397
flavanone 2-hydroxylase, 419
flavanone 3-dioxygenase, 320
flavanone 4-reductase, 53
flavin reductase (NADH), 220
flavin reductase (NADPH), 219
flavin-containing monooxygenase, 338
flavodoxin—NADP+ reductase, 495
flavone synthase I, 461
flavone synthase II, 460
flavonoid 3′-monooxygenase, 397
flavonol synthase, 461
fluoren-9-ol dehydrogenase, 57
fluoroacetaldehyde dehydrogenase, 132
FMN reductase (NADH), 222
FMN reductase (NADPH), 221
FMN reductase [NAD(P)H], 221
FMN-dependent NADH-azoreductase, 249
formaldehyde dehydrogenase, 128
formaldehyde dismutase, 149
formate dehydrogenase, 482
formate dehydrogenase (acceptor), 491
formate dehydrogenase (coenzyme F420), 489
formate dehydrogenase (cytochrome), 141
formate dehydrogenase (cytochrome-c-553), 483
formate dehydrogenase (NAD+, ferredoxin), 482
formate dehydrogenase (NADP+), 482
formate dehydrogenase-N, 487
[formate-C-acetyltransferase]-activating enzyme, 507
formate:CoB-CoM heterodisulfide,ferredoxin reductase, 271
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5-formyl-3-hydroxy-2-methylpyridine 4-carboxylic acid 5-dehydrogenase,
140

4-formylbenzenesulfonate dehydrogenase, 131
2-formylbenzoate dehydrogenase, 135
formylglycine-generating enzyme, 262
formylmethanofuran dehydrogenase, 149
formyltetrahydrofolate dehydrogenase, 214
fraxetin 5-hydroxylase, 420
fructose 5-dehydrogenase, 113
fructose 5-dehydrogenase (NADP+), 30
fructuronate reductase, 17
fumarate reductase (CoM/CoB), 180
fumarate reductase (NADH), 152
fumarate reductase (quinol), 182
fumitremorgin C monooxygenase, 407
fumitremorgin C synthase, 458
2-furoyl-CoA dehydrogenase, 192

galactitol 2-dehydrogenase, 8
galactitol 2-dehydrogenase (L-tagatose-forming), 92
galactitol-1-phosphate 5-dehydrogenase, 56
L-galactonate 5-dehydrogenase, 94
L-galactonolactone dehydrogenase, 177
L-galactonolactone oxidase, 179
D-galactose 1-dehydrogenase, 15
L-galactose 1-dehydrogenase, 71
galactose 1-dehydrogenase (NADP+), 30
galactose oxidase, 98
D-galacturonate reductase, 82
gallate dioxygenase, 303
GDP-4-dehydro-6-deoxy-D-mannose reductase, 62
GDP-4-dehydro-D-rhamnose reductase, 42
GDP-6-deoxy-D-talose 4-dehydrogenase, 33
GDP-L-colitose synthase, 80
GDP-L-fucose synthase, 60
GDP-mannose 6-dehydrogenase, 32
geissoschizine dehydrogenase, 158
gentisate 1,2-dioxygenase, 292
geranial dehydrogenase, 137
geraniol 8-hydroxylase, 398
geraniol dehydrogenase (NAD+), 78
geraniol dehydrogenase (NADP+), 42
geranylgeraniol 18-hydroxylase, 414
geranylgeranyl diphosphate reductase, 167
geranylgeranyl-bacteriochlorophyllide a reductase, 174
geranylhydroquinone 3′′-hydroxylase, 354
germacrene A acid 8β-hydroxylase, 421
germacrene A hydroxylase, 401
gibberellin 2β-dioxygenase, 321
gibberellin 3β-dioxygenase, 321
gibberellin-44 dioxygenase, 321
gluconate 2-dehydrogenase, 49
gluconate 2-dehydrogenase (acceptor), 112
gluconate 5-dehydrogenase, 19
glucose 1-dehydrogenase (FAD, quinone), 108
glucose 1-dehydrogenase (NAD+), 29

glucose 1-dehydrogenase (NADP+), 29
glucose 1-dehydrogenase [NAD(P)+], 15
glucose 1-dehydrogenase (PQQ, quinone), 106
glucose oxidase, 97
glucose-6-phosphate 3-dehydrogenase, 81
glucose-6-phosphate dehydrogenase (coenzyme-F420), 110
glucose-6-phosphate dehydrogenase (NAD+), 88
glucose-6-phosphate dehydrogenase (NADP+), 16
glucose-6-phosphate dehydrogenase [NAD(P)+], 82
glucose-fructose oxidoreductase, 116
glucose/galactose 1-dehydrogenase, 81
glucoside 3-dehydrogenase, 113
glucuronate reductase, 9
glucuronolactone reductase, 9
L-glutamate γ-semialdehyde dehydrogenase, 137
glutamate dehydrogenase, 199
glutamate dehydrogenase (NADP+), 200
glutamate dehydrogenase [NAD(P)+], 200
D-glutamate oxidase, 206
L-glutamate oxidase, 207
glutamate synthase (ferredoxin), 211
glutamate synthase (NADH), 202
glutamate synthase (NADPH), 201
glutamate-5-semialdehyde dehydrogenase, 127
D-glutamate(D-aspartate) oxidase, 208
γ-glutamyl hercynylcysteine S-oxide synthase, 471
glutamyl-tRNA reductase, 133
glutarate-semialdehyde dehydrogenase, 124
glutaryl-CoA dehydrogenase (acceptor), 197
glutaryl-CoA dehydrogenase (ETF), 188
glutathione amide reductase, 259
glutathione amide-dependent peroxidase, 283
glutathione dehydrogenase (ascorbate), 266
glutathione oxidase, 262
glutathione peroxidase, 280
glutathione—CoA-glutathione transhydrogenase, 263
glutathione—cystine transhydrogenase, 263
glutathione—homocystine transhydrogenase, 263
glutathione-disulfide reductase, 257
2-glutathionyl-2-methylbut-3-en-1-ol dehydrogenase, 90
glutathionyl-hydroquinone reductase, 268
glyceollin synthase, 412
glyceraldehyde dehydrogenase (FAD-containing) , 150
D-glyceraldehyde dehydrogenase (NADP+), 137
D/L-glyceraldehyde reductase, 84
glyceraldehyde-3-phosphate dehydrogenase (ferredoxin), 147
glyceraldehyde-3-phosphate dehydrogenase (NADP+), 121
glyceraldehyde-3-phosphate dehydrogenase [NAD(P)+], 138
glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (phos-

phorylating), 130
glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phos-

phorylating), 122
glyceraldehyde-3-phosphate dehydrogenase (phosphorylating),

122
glycerate dehydrogenase, 11
glycerol 2-dehydrogenase (NADP+), 37
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glycerol dehydrogenase, 6
glycerol dehydrogenase (acceptor), 115
glycerol dehydrogenase (NADP+), 20
sn-glycerol-1-phosphate dehydrogenase, 57
glycerol-3-phosphate 1-dehydrogenase (NADP+), 41
glycerol-3-phosphate dehydrogenase, 106
glycerol-3-phosphate dehydrogenase (NAD+), 6
glycerol-3-phosphate dehydrogenase [NAD(P)+], 24
glycerol-3-phosphate oxidase, 101
glycine dehydrogenase, 201
glycine dehydrogenase (aminomethyl-transferring), 210
glycine dehydrogenase (cyanide-forming), 212
glycine dehydrogenase (cytochrome), 205
glycine oxidase, 208
glycine reductase, 501
L-glycol dehydrogenase, 42
glycolaldehyde dehydrogenase, 124
glycolate dehydrogenase, 114
glyoxylate dehydrogenase (acylating), 123
glyoxylate oxidase, 142
glyoxylate reductase, 10
glyoxylate reductase (NADP+), 21
glyphosate oxidoreductase, 230
GMP reductase, 247
grixazone synthase, 277
γ-guanidinobutyraldehyde dehydrogenase, 130
L-gulonate 3-dehydrogenase, 15
L-gulonate 5-dehydrogenase, 86
L-gulonolactone oxidase, 98

H2:CoB-CoM heterodisulfide,ferredoxin reductase, 271
2-haloacrylate reductase, 172
2-halobenzoate 1,2-dioxygenase, 333
hapalindole-type alkaloid chlorinase, 463
heme oxygenase (biliverdin-IX-β and δ-forming), 473
heme oxygenase (biliverdin-producing), 378
heme oxygenase (biliverdin-producing, ferredoxin), 427
heme oxygenase (mycobilin-producing), 473
heme oxygenase (staphylobilin-producing), 471
2-heptyl-3-hydroxy-4(1H)-quinolone synthase, 362
hercynylcysteine S-oxide synthase, 471
hex-5-enoyl-[acyl-carrier protein] acetylenase, 449
(11Z)-hexadec-11-enoyl-CoA conjugase, 442
hexadecanal dehydrogenase (acylating), 127
hexadecanol dehydrogenase, 38
2-hexadecenal reductase, 157
hexose oxidase, 97
histidinol dehydrogenase, 9
[histone-H3]-lysine-36 demethylase, 324
homogentisate 1,2-dioxygenase, 292
homoisocitrate dehydrogenase, 23
homomethionine N-monooxygenase, 385
homoserine dehydrogenase, 5
α-humulene 10-hydroxylase, 406
hydrazine dehydrogenase, 252
hydrazine synthase, 251

hydrogen dehydrogenase, 286
hydrogen dehydrogenase (NADP+), 287
hydrogen dehydrogenase [NAD(P)+], 287
hydrogen:quinone oxidoreductase, 288
hydrogenase (acceptor), 290
hydrogenase (NAD+, ferredoxin), 287
hydroperoxy fatty acid reductase, 284
hydroquinone 1,2-dioxygenase, 305
3-hydroxy acid dehydrogenase, 86
3α-hydroxy bile acid-CoA-ester 3-dehydrogenase, 89
3β-hydroxy-∆5-steroid dehydrogenase, 35
3-hydroxy-1,2-didehydro-2,3-dihydrotabersonine reductase, 119
2-hydroxy-1,4-benzoquinone reductase, 242
2-hydroxy-1,4-benzoxazin-3-one monooxygenase, 405
N-hydroxy-2-acetamidofluorene reductase, 248
1-hydroxy-2-isopentenylcarotenoid 3,4-desaturase, 198
3-hydroxy-2-methylbutyryl-CoA dehydrogenase, 41
2-hydroxy-2-methylpropanal dehydrogenase, 139
3-hydroxy-2-methylpyridine-5-carboxylate monooxygenase, 373
3-hydroxy-2-methylquinolin-4-one 2,4-dioxygenase, 301
1-hydroxy-2-naphthoate 1,2-dioxygenase, 299
1-hydroxy-2-naphthoate hydroxylase, 356
4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase, 488
7β-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase, 176
2-hydroxy-3-oxopropionate reductase, 18
4-hydroxy-3-prenylbenzoate synthase, 316
4-hydroxy-3-prenylphenylpyruvate oxygenase, 309
6-hydroxy-3-succinoylpyridine 3-monooxygenase, 359
2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehy-

drogenase, 70
3-hydroxy-4-methylanthranilyl-[aryl-carrier protein] 5-monooxygenase,

369
3-hydroxy-4-oxoquinoline 2,4-dioxygenase, 300
3β-hydroxy-5α-steroid dehydrogenase, 62
3α-hydroxy-5β-androstane-17-one 3α-dehydrogenase, 36
3β-hydroxy-5β-steroid dehydrogenase, 61
8-hydroxy-5-deazaflavin:NADPH oxidoreductase, 221
2-hydroxy-5-methyl-1-naphthoate 7-hydroxylase, 431
4-hydroxy-6-methylpretetramide 12a-monooxygenase, 371
2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate reductase, 159
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxy-

genase, 376
4-hydroxy-tetrahydrodipicolinate reductase, 481
4-hydroxyacetophenone monooxygenase, 350
hydroxyacid-oxoacid transhydrogenase, 115
3-hydroxyacyl-CoA dehydrogenase, 12
3-hydroxyanthranilate 3,4-dioxygenase, 292
3-hydroxyanthranilate oxidase, 275
5′-hydroxyaverantin dehydrogenase, 79
4-hydroxybenzaldehyde dehydrogenase (NAD+), 131
4-hydroxybenzaldehyde dehydrogenase (NADP+), 139
4-hydroxybenzoate 1-hydroxylase, 347
3-hydroxybenzoate 2-monooxygenase, 467
4-hydroxybenzoate 3-monooxygenase, 337
4-hydroxybenzoate 3-monooxygenase [NAD(P)H], 342
3-hydroxybenzoate 4-monooxygenase, 340
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3-hydroxybenzoate 6-monooxygenase, 341
4-hydroxybenzoate brominase (decarboxylating), 453
4-hydroxybenzoyl-CoA reductase, 184
3-hydroxybenzyl-alcohol dehydrogenase, 25
2-hydroxybiphenyl 3-monooxygenase, 344
3-hydroxybutyrate dehydrogenase, 11
4-hydroxybutyrate dehydrogenase, 18
3-hydroxybutyryl-CoA dehydrogenase, 37
1-hydroxycarotenoid 3,4-desaturase, 195
3β-hydroxycholanate 3-dehydrogenase (NAD+), 88
3β-hydroxycholanate 3-dehydrogenase (NADP+), 89
3α-hydroxycholanate dehydrogenase (NAD+), 16
3α-hydroxycholanate dehydrogenase (NADP+), 89
7α-hydroxycholest-4-en-3-one 12α-hydroxylase, 437
24-hydroxycholesterol 7α-hydroxylase, 380
25/26-hydroxycholesterol 7α-hydroxylase, 381
hydroxycinnamoyl-CoA reductase, 176
6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase, 83
4-hydroxycyclohexanecarboxylate dehydrogenase, 51
hydroxycyclohexanecarboxylate dehydrogenase, 39
2-hydroxycyclohexanone 2-monooxygenase, 348
3-hydroxycyclohexanone dehydrogenase, 115
2′-hydroxydaidzein reductase, 161
ω-hydroxydecanoate dehydrogenase, 19
2-hydroxyethylphosphonate dioxygenase, 307
8-hydroxygeraniol dehydrogenase, 73
3α-hydroxyglycyrrhetinate dehydrogenase, 52
6-hydroxyhexanoate dehydrogenase, 57
6β-hydroxyhyoscyamine epoxidase, 463
15-hydroxyicosatetraenoate dehydrogenase, 52
3-hydroxyindolin-2-one monooxygenase, 404
3-hydroxyisobutyrate dehydrogenase, 11
2-hydroxyisoflavanone synthase, 399
2′-hydroxyisoflavone reductase, 160
12-hydroxyjasmonoyl-L-amino acid 12-hydroxylase, 388
hydroxylamine dehydrogenase, 251
hydroxylamine oxidase (cytochrome), 253
hydroxylamine reductase, 254
hydroxylamine reductase (NADH), 248
hydroxymalonate dehydrogenase, 39
4-hydroxymandelate oxidase, 105
4-hydroxymandelate oxidase (decarboxylating), 100
4-hydroxymandelate synthase, 300
7-hydroxymethyl chlorophyll a reductase, 487
4-(hydroxymethyl)benzenesulfonate dehydrogenase, 57
5-(hydroxymethyl)furfural oxidase, 105
2-hydroxymethylglutarate dehydrogenase, 65
hydroxymethylglutaryl-CoA reductase, 23
hydroxymethylglutaryl-CoA reductase (NADPH), 12
S-(hydroxymethyl)glutathione dehydrogenase, 63
S-(hydroxymethyl)mycothiol dehydrogenase, 69
2-hydroxymuconate-6-semialdehyde dehydrogenase, 136
4-hydroxymuconic-semialdehyde dehydrogenase, 131
6′′′-hydroxyneomycin C oxidase, 104
6-hydroxynicotinate 3-monooxygenase, 353
6-hydroxynicotinate dehydrogenase, 484

6-hydroxynicotinate reductase, 182
4-hydroxyphenylacetaldehyde dehydrogenase, 129
4-hydroxyphenylacetaldehyde oxime monooxygenase, 383
4-hydroxyphenylacetate 1-monooxygenase, 339
4-hydroxyphenylacetate 3-monooxygenase, 375
3-hydroxyphenylacetate 6-hydroxylase, 347
4-hydroxyphenylpyruvate dioxygenase, 296
4-hydroxyphenylpyruvate oxidase, 143
hydroxyphenylpyruvate reductase, 53
hydroxyphytanate oxidase, 101
3-hydroxypimeloyl-CoA dehydrogenase, 57
17α-hydroxyprogesterone deacetylase, 382
hydroxyproline dehydrogenase, 231
3-hydroxypropionate dehydrogenase, 18
3-hydroxypropionate dehydrogenase (NADP+), 67
15-hydroxyprostaglandin dehydrogenase (NAD+), 34
15-hydroxyprostaglandin dehydrogenase (NADP+), 45
15-hydroxyprostaglandin-D dehydrogenase (NADP+), 45
15-hydroxyprostaglandin-I dehydrogenase (NADP+), 52
6-hydroxypseudooxynicotine dehydrogenase, 235
2-hydroxypyridine 5-monooxygenase, 468
hydroxypyruvate reductase, 22
hydroxyquinol 1,2-dioxygenase, 298
4-hydroxyquinoline 3-monooxygenase, 347
2-hydroxyquinoline 5,6-dioxygenase, 334
2-hydroxyquinoline 8-monooxygenase, 347
4-hydroxysphinganine ceramide fatty acyl 2-hydroxylase, 436
hydroxysqualene dehydroxylase, 488
3α-hydroxysteroid 3-dehydrogenase, 80
3β-hydroxysteroid 3-dehydrogenase, 60
3α-hydroxysteroid 3-dehydrogenase (Re-specific), 48
3α-hydroxysteroid 3-dehydrogenase (Si-specific), 16
11β-hydroxysteroid dehydrogenase, 35
12α-hydroxysteroid dehydrogenase, 40
12β-hydroxysteroid dehydrogenase, 54
16α-hydroxysteroid dehydrogenase, 35
20α-hydroxysteroid dehydrogenase, 36
7α-hydroxysteroid dehydrogenase, 37
21-hydroxysteroid dehydrogenase (NAD+), 36
3α(17β)-hydroxysteroid dehydrogenase (NAD+), 54
21-hydroxysteroid dehydrogenase (NADP+), 36
7β-hydroxysteroid dehydrogenase (NADP+), 46
3β-hydroxysteroid-4α-carboxylate 3-dehydrogenase (decarboxy-

lating), 39
11-hydroxysugiol 20-monooxygenase, 393
4-hydroxythreonine-4-phosphate dehydrogenase, 58
hyoscyamine (6S)-dioxygenase, 321
hyponitrite reductase, 247
hypotaurine dehydrogenase, 255
hypoxia-inducible factor-asparagine dioxygenase, 324
hypoxia-inducible factor-proline dioxygenase, 324

icosanoyl-CoA 5-desaturase, 440
D-iditol 2-dehydrogenase, 8
L-iditol 2-dehydrogenase, 7
L-idonate 5-dehydrogenase, 58
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L-idonate 5-dehydrogenase (NAD+), 83
3-(imidazol-5-yl)lactate dehydrogenase, 28
imidazoleacetate 4-monooxygenase, 337
IMP dehydrogenase, 46
indanol dehydrogenase, 28
indole 2,3-dioxygenase, 294
indole-2-monooxygenase, 416
indole-3-acetaldehyde oxidase, 142
indole-3-acetaldehyde reductase (NADH), 43
indole-3-acetaldehyde reductase (NADPH), 44
indole-3-acetate monooxygenase, 372
indole-3-carbonyl nitrile 4-hydroxylase, 420
indole-3-pyruvate monooxygenase, 360
indoleamine 2,3-dioxygenase, 302
indolepyruvate ferredoxin oxidoreductase, 148
indolin-2-one monooxygenase, 418
inositol 2-dehydrogenase, 8
scyllo-inositol 2-dehydrogenase (NAD+), 84
scyllo-inositol 2-dehydrogenase (NADP+), 84
inositol oxygenase, 316
iodide peroxidase, 280
iodotyrosine deiodinase, 498
ipsdienol dehydrogenase, 87
ipsdienol synthase, 382
iridoid synthase, 171
iron—cytochrome-c reductase, 273
iron:rusticyanin reductase, 479
isobutylamine N-monooxygenase, 381
isocitrate dehydrogenase (NAD+), 14
isocitrate dehydrogenase (NADP+), 14
isocitrate—homoisocitrate dehydrogenase, 64
isoeugenol synthase, 72
isoflavone 2′-hydroxylase, 400
isoflavone 3′-hydroxylase, 399
ent-isokaurene C2/C3-hydroxylase, 395
L-isoleucine 4-hydroxylase, 328
isoleucine N-monooxygenase, 384
isopenicillin-N synthase, 498
isopiperitenol dehydrogenase, 50
isopropanol dehydrogenase (NADP+), 21
3-isopropylmalate dehydrogenase, 22
isopyridoxal dehydrogenase (5-pyridoxate-forming), 140
isopyridoxal dehydrogenase (5-pyridoxolactone-forming), 94
isoquinoline 1-oxidoreductase, 193
isovaleryl-CoA dehydrogenase, 187
epi-isozizaene 5-monooxygenase, 352

jasmonic acid 12-hydroxylase, 370
jasmonoyl-L-amino acid 12-hydroxylase, 388
juglone 3-hydroxylase, 484

kanamycin B dioxygenase, 326
ent-kaurene monooxygenase, 398
ent-kaurenoic acid monooxygenase, 404
ketol-acid reductoisomerase (NAD+), 86
ketol-acid reductoisomerase (NADP+), 23

ketol-acid reductoisomerase [NAD(P)+], 87
3-ketosteroid 9α-monooxygenase, 430
ketosteroid monooxygenase, 346
kynurenate-7,8-dihydrodiol dehydrogenase, 155
kynurenine 3-monooxygenase, 338
kynurenine 7,8-hydroxylase, 465

laccase, 275
lactaldehyde dehydrogenase, 124
lactaldehyde reductase, 21
lactaldehyde reductase (NADPH), 17
lactate 2-monooxygenase, 311
D-lactate dehydrogenase, 10
L-lactate dehydrogenase, 10
D-lactate dehydrogenase (acceptor), 112
D-lactate dehydrogenase (cytochrome), 95
L-lactate dehydrogenase (cytochrome), 95
D-lactate dehydrogenase (cytochrome c-553), 95
lactate dehydrogenase (NAD+,ferredoxin), 174
D-lactate dehydrogenase (quinone), 109
L-lactate oxidase, 96
lactate—malate transhydrogenase, 112
(–)-lariciresinol reductase, 505
laurate 7-monooxygenase, 410
leghemoglobin reductase, 238
leucine dehydrogenase, 201
leucoanthocyanidin reductase, 480
leukotriene-B4 20-monooxygenase, 401
leukotriene-E4 20-monooxygenase, 342
lignin peroxidase, 281
lignostilbene αβ-dioxygenase, 300
limonene 1,2-monooxygenase, 352
(S)-limonene 3-monooxygenase, 402
(R)-limonene 6-monooxygenase, 389
(S)-limonene 6-monooxygenase, 389
(S)-limonene 7-monooxygenase, 389
limonene-1,2-diol dehydrogenase, 66
linalool 8-monooxygenase, 398
linoleate 10R-lipoxygenase, 304
linoleate 11-lipoxygenase, 300
linoleate 13S-lipoxygenase, 293
linoleate 8R-lipoxygenase, 304
linoleate 9S-lipoxygenase, 303
linolenate 9R-lipoxygenase, 304
linoleoyl-lipid ∆12 conjugase (11E,13Z-forming), 442
linoleoyl-lipid ∆9 conjugase, 441
lithocholate 6β-hydroxylase, 412
long-chain acyl-[acyl-carrier-protein] reductase, 135
long-chain acyl-CoA ω-monooxygenase, 410
long-chain acyl-CoA dehydrogenase, 189
long-chain acyl-protein thioester reductase, 129
long-chain alkane monooxygenase, 381
long-chain fatty acid ω-monooxygenase, 397
long-chain-3-hydroxyacyl-CoA dehydrogenase, 48
long-chain-alcohol dehydrogenase, 44
long-chain-alcohol oxidase, 100
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long-chain-aldehyde dehydrogenase, 128
Cypridina-luciferin 2-monooxygenase, 312
Oplophorus-luciferin 2-monooxygenase, 313
Watasenia-luciferin 2-monooxygenase, 313
Latia-luciferin monooxygenase (demethylating), 467
lupanine 17-hydroxylase (cytochrome c), 483
lysine 2-monooxygenase, 311
lysine 6-dehydrogenase, 203
L-lysine 6-oxidase, 209
L-lysine N6-monooxygenase (NADPH), 346
lysine dehydrogenase, 202
L-lysine oxidase, 207
D-lysopine dehydrogenase, 216
lytic cellulose monooxygenase (C1-hydroxylating), 472
lytic cellulose monooxygenase (C4-dehydrogenating), 473
lytic chitin monooxygenase, 472
lytic starch monooxygenase, 472

magnesium-protoporphyrin IX monomethyl ester (oxidative) cy-
clase, 349

malate dehydrogenase, 13
D-malate dehydrogenase (decarboxylating), 22
malate dehydrogenase (decarboxylating), 13
malate dehydrogenase (NADP+), 22
malate dehydrogenase [NAD(P)+], 67
malate dehydrogenase (oxaloacetate-decarboxylating), 13
malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+),

13
malate dehydrogenase (quinone), 107
maleylacetate reductase, 158
malonate-semialdehyde dehydrogenase, 123
malonate-semialdehyde dehydrogenase (acetylating), 123
malonyl-CoA reductase (malonate semialdehyde-forming), 134
mandelate 4-monooxygenase, 433
(R)-mandelate dehydrogenase, 86
(S)-mandelate dehydrogenase, 117
(R)-mandelonitrile oxidase, 106
manganese oxidase, 479
manganese peroxidase, 281
mannitol 2-dehydrogenase, 19
mannitol 2-dehydrogenase (NADP+), 33
mannitol dehydrogenase, 56
mannitol dehydrogenase (cytochrome), 94
D-mannitol oxidase, 103
mannitol-1-phosphate 5-dehydrogenase, 8
mannose-6-phosphate 6-reductase, 51
mannuronate reductase, 32
marmesin synthase, 393
medium-chain acyl-CoA dehydrogenase, 188
melilotate 3-monooxygenase, 337
menaquinone-9 β-reductase, 198
mercury(II) reductase, 476
meromycolic acid enoyl-[acyl-carrier-protein] reductase, 176
methane monooxygenase (particulate), 436
methane monooxygenase (soluble), 341
methanesulfonate monooxygenase (FMNH2), 383

methanesulfonate monooxygenase (NADH), 353
methanethiol oxidase, 262
methanol dehydrogenase, 55
methanol dehydrogenase (cytochrome c), 96
methanol dehydrogenase (nicotinoprotein), 118
5,10-methenyltetrahydromethanopterin hydrogenase, 288
L-methionine (R)-S-oxide reductase, 266
L-methionine (S)-S-oxide reductase, 266
[methionine synthase] reductase, 477
4-methoxybenzoate monooxygenase (O-demethylating), 466
4′-methoxyisoflavone 2′-hydroxylase, 399
methyl farnesoate epoxidase, 409
2-methyl-1,2-propanediol dehydrogenase, 91
5-methyl-1-naphthoate 3-hydroxylase, 363
2-methyl-1-pyrroline reductase, 224
3-methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-

transferring), 145
3-methyl-2-oxobutanoate dehydrogenase (ferredoxin), 148
4-methyl-5-nitrocatechol 5-monooxygenase, 366
N-methyl-L-amino-acid oxidase, 225
3-methyl-L-tyrosine peroxygenase, 286
methyl-branched lipid ω-hydroxylase, 425
2-methyl-branched-chain-enoyl-CoA reductase, 188
N6-methyl-lysine oxidase, 225
2-methylacyl-CoA dehydrogenase, 193
N-methylalanine dehydrogenase, 202
methylamine dehydrogenase (amicyanin), 211
4-methylaminobutanoate oxidase (formaldehyde-forming), 229
4-methylaminobutanoate oxidase (methylamine-forming), 229
methylarsonate reductase, 496
3-methylbutanal reductase, 59
N-methylcoclaurine 3′-monooxygenase, 403
methylecgonone reductase, 75
2-methylene-furan-3-one reductase, 173
3-methyleneoxindole reductase, 155
methylenetetrahydrofolate dehydrogenase (NAD+), 216
methylenetetrahydrofolate dehydrogenase (NADP+), 214
methylenetetrahydrofolate reductase (ferredoxin), 231
methylenetetrahydrofolate reductase [NAD(P)H], 217
methylenetetrahydromethanopterin dehydrogenase, 233
5,10-methylenetetrahydromethanopterin reductase, 233
methylglutamate dehydrogenase, 234
(methyl)glyoxal oxidase, 144
methylglyoxal reductase (NADH), 21
methylglyoxal reductase (NADPH), 63
β-methylindole-3-pyruvate reductase, 90
methylmalonate-semialdehyde dehydrogenase (CoA-acylating),

125
5-methylphenazine-1-carboxylate 1-monooxygenase, 368
4-methylphenol dehydrogenase (hydroxylating), 488
methylphosphonate synthase, 307
6-methylpretetramide 4-monooxygenase, 371
methylsterol monooxygenase, 437
(2S)-methylsuccinyl-CoA dehydrogenase, 190
(methylsulfanyl)alkanaldoxime N-monooxygenase, 386
methyltetrahydroprotoberberine 14-monooxygenase, 401
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methylxanthine N1-demethylase, 361
methylxanthine N3-demethylase, 362
7-methylxanthine demethylase, 355
mevaldate reductase, 11
mevaldate reductase (NADPH), 11
momilactone-A synthase, 66
monacolin L hydroxylase, 409
monoamine oxidase, 205
monocyclic monoterpene ketone monooxygenase, 352
monodehydroascorbate reductase (NADH), 241
monoprenyl isoflavone epoxidase, 469
morphine 6-dehydrogenase, 49
mRNA N1-methyladenine demethylase, 330
mRNA N6-methyladenine demethylase, 330
mugineic-acid 3-dioxygenase, 323
mycocyclosin synthase, 458
mycoredoxin, 496
mycothione reductase, 258
myeloperoxidase, 285

NADH dehydrogenase, 245
NADH dehydrogenase (quinone), 243
NADH oxidase (H2O2-forming), 239
NADH oxidase (H2O-forming), 239
NADH peroxidase, 278
NADH:ubiquinone reductase (non-electrogenic), 242
NAD(P)+ transhydrogenase, 237
NAD(P)+ transhydrogenase (Re/Si-specific), 236
NAD(P)+ transhydrogenase (Si-specific), 236
NAD(P)+ transhydrogenase (ferredoxin), 237
NADP-retinol dehydrogenase, 67
NADPH dehydrogenase, 244
NAD(P)H dehydrogenase (quinone), 241
NADPH dehydrogenase (quinone), 242
NAD(P)H oxidase (H2O2-forming), 238
NAD(P)H oxidase (H2O-forming), 239
NADPH peroxidase, 278
NAD(P)H sulfur oxidoreductase (CoA-dependent), 259
NADPH—cytochrome-c2 reductase, 238
NADPH—hemoprotein reductase, 238
NADPH:quinone reductase, 241
(S)-nandinine synthase, 459
naphthalene 1,2-dioxygenase, 333
neopentalenolactone D synthase, 361
nepetalactol monooxygenase, 419
nicotinate dehydrogenase, 481
nicotinate dehydrogenase (cytochrome), 483
nicotine blue oxidoreductase, 73
nicotine dehydrogenase, 234
nitrate reductase (cytochrome), 273
nitrate reductase (NADH), 246
nitrate reductase (NADPH), 246
nitrate reductase [NAD(P)H], 246
nitrate reductase (quinone), 253
nitric oxide dioxygenase, 334
nitric oxide reductase (cytochrome c), 251

nitric oxide reductase (menaquinol), 253
nitric oxide reductase [NAD(P)+, nitrous oxide-forming], 249
nitric-oxide synthase (flavodoxin), 388
nitric-oxide synthase (NADPH), 343
nitrilotriacetate monooxygenase, 376
nitrite dismutase, 254
nitrite reductase (cytochrome; ammonia-forming), 250
nitrite reductase (NADH), 249
nitrite reductase [NAD(P)H], 246
nitrite reductase (NO-forming), 250
β-nitroacrylate reductase, 155
nitroalkane oxidase, 252
nitroarene dioxygenase, 335
nitrobenzene nitroreductase, 249
4-nitrocatechol 4-monooxygenase, 360
nitrogenase, 493
nitrogenase (flavodoxin), 495
nitronate monooxygenase, 314
2-nitrophenol 2-monooxygenase, 342
4-nitrophenol 2-monooxygenase, 341
4-nitrophenol 4-monooxygenase, 360
nitroquinoline-N-oxide reductase, 247
5-nitrosalicylate dioxygenase, 305
nitrous-oxide reductase, 251
non-specific polyamine oxidase, 228
D-nopaline dehydrogenase, 217
noranthrone monooxygenase, 315
noroxomaritidine synthase, 452
norsolorinic acid ketoreductase, 79
noscapine synthase, 94
nucleoside oxidase, 101
nucleoside oxidase (H2O2-forming), 103

octanol dehydrogenase, 20
D-octopine dehydrogenase, 215
oleate 10S-lipoxygenase, 308
opine dehydrogenase, 219
orcinol 2-monooxygenase, 338
L-ornithine N5-monooxygenase (NADPH), 364
L-ornithine N5-monooxygenase [NAD(P)H], 364
ornithine lipid ester-linked acyl 2-hydroxylase, 331
oryzalexin D synthase, 408
oryzalexin E synthase, 408
oxalate oxidase, 142
oxalate oxidoreductase, 148
oxaloglycolate reductase (decarboxylating), 24
11-oxo-β-amyrin 30-oxidase, 406
3-oxo-5α-steroid 4-dehydrogenase (acceptor), 192
3-oxo-5α-steroid 4-dehydrogenase (NADP+), 156
3-oxo-5β-steroid 4-dehydrogenase, 192
3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase,

138
20-oxo-5-O-mycaminosyltylactone 23-monooxygenase, 432
2-oxo-acid reductase, 116
2-oxoacid oxidoreductase (ferredoxin), 149
3-oxoacyl-[acyl-carrier-protein] reductase, 26
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3-oxoacyl-[acyl-carrier-protein] reductase (NADH), 48
2-oxoadipate reductase, 40
2-oxoaldehyde dehydrogenase (NAD+), 124
2-oxoaldehyde dehydrogenase (NADP+), 129
3-oxocholoyl-CoA 4-desaturase, 176
6-oxocineole dehydrogenase, 345
8-oxocoformycin reductase, 53
oxoglutarate dehydrogenase (NADP+), 129
oxoglutarate dehydrogenase (succinyl-transferring), 144
2-oxoglutarate dioxygenase (ethene-forming), 315
2-oxoglutarate reductase, 90
2-oxoglutarate synthase, 146
2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-

forming), 461
6-oxohexanoate dehydrogenase, 131
2-oxoisovalerate dehydrogenase (acylating), 125
12-oxophytodienoate reductase, 160
4-oxoproline reductase, 27
2-oxopropyl-CoM reductase (carboxylating), 256
3-oxosteroid 1-dehydrogenase, 192

palmitoyl-CoA 14-(E/Z)-desaturase, 447
palmitoyl-[glycerolipid] 3-(E)-desaturase, 450
palmitoyl-[glycerolipid] 7-desaturase, 450
pantoate 4-dehydrogenase, 27
(R)-pantolactone dehydrogenase (flavin), 116
paromamine 6′-oxidase, 104
pentachlorophenol monooxygenase, 345
pentalenene oxygenase, 431
pentalenic acid synthase, 425
pentalenolactone D synthase, 360
pentalenolactone F synthase, 326
pentalenolactone synthase, 440
peptide-aspartate β-dioxygenase, 322
peptide-methionine (R)-S-oxide reductase, 265
peptide-methionine (S)-S-oxide reductase, 265
peptide-tryptophan 2,3-dioxygenase, 296
peptidylglycine monooxygenase, 434
perakine reductase, 71
perillyl-alcohol dehydrogenase, 34
peroxidase, 279
peroxiredoxin, 282
persulfide dioxygenase, 295
Methanosarcina-phenazine hydrogenase, 289
phenol 2-monooxygenase (FADH2), 379
phenol 2-monooxygenase (NADPH), 338
phenylacetaldehyde dehydrogenase, 127
phenylacetaldehyde oxime monooxygenase, 386
phenylacetate 2-hydroxylase, 390
phenylacetone monooxygenase, 350
phenylacetonitrile α-monooxygenase, 396
phenylacetyl-CoA 1,2-epoxidase, 357
phenylacetyl-CoA dehydrogenase, 486
phenylalanine 2-monooxygenase, 313
phenylalanine 3-monooxygenase , 434
phenylalanine 4-monooxygenase, 432

phenylalanine N-monooxygenase, 385
phenylalanine dehydrogenase, 203
phenylglyoxylate dehydrogenase (acylating), 130
3-phenylpropanoate dioxygenase, 335
pheophorbide a oxygenase, 426
phloroglucinol reductase, 162
phosphatidylcholine 12-monooxygenase, 436
4-phospho-D-erythronate 3-dehydrogenase, 93
4-phospho-D-threonate 3-dehydrogenase, 92
phosphoadenylyl-sulfate reductase (thioredoxin), 264
4-phosphoerythronate dehydrogenase, 65
phosphogluconate 2-dehydrogenase, 14
phosphogluconate dehydrogenase (NAD+-dependent, decarboxy-

lating), 77
phosphogluconate dehydrogenase (NADP+-dependent, decar-

boxylating), 14
phosphogluconate dehydrogenase [NAD(P)+-dependent, decar-

boxylating], 79
phosphoglycerate dehydrogenase, 25
phospholipid-hydroperoxide glutathione peroxidase, 281
phosphonate dehydrogenase, 495
phosphonoacetaldehyde reductase (NADH), 69
photosystem I, 508
photosystem II, 276
phthalate 4,5-cis-dihydrodiol dehydrogenase, 163
phthalate 4,5-dioxygenase, 332
phycocyanobilin:ferredoxin oxidoreductase, 183
phycoerythrobilin synthase, 184
phycoerythrobilin:ferredoxin oxidoreductase, 183
phylloquinone ω-hydroxylase, 396
phylloquinone monooxygenase (2,3-epoxidizing), 467
phytanoyl-CoA dioxygenase, 322
phytochromobilin:ferredoxin oxidoreductase, 183
phytoene desaturase (ζ-carotene-forming), 196
phytoene desaturase (3,4-didehydrolycopene-forming), 196
phytoene desaturase (lycopene-forming), 197
phytoene desaturase (neurosporene-forming), 196
pikromycin synthase, 431
9β-pimara-7,15-diene oxidase, 405
syn-pimaradiene 3-monooxygenase, 393
pimeloyl-[acyl-carrier protein] synthase, 387
pimeloyl-CoA dehydrogenase, 163
α-pinene monooxygenase, 358
D-pinitol dehydrogenase, 34
(–)-pinoresinol reductase, 505
L-pipecolate dehydrogenase, 234
L-pipecolate oxidase, 226
1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase

(NADPH), 217
1-piperideine-2-carboxylate/1-pyrroline-2-carboxylate reductase

[NAD(P)H], 213
plant seed peroxygenase, 285
plasmanylethanolamine desaturase, 466
(–)-pluviatolide synthase, 458
polyamine oxidase (propane-1,3-diamine-forming), 227
polyprenol reductase, 170
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2-polyprenylphenol 6-hydroxylase, 373
polyvinyl alcohol dehydrogenase (cytochrome), 95
polyvinyl-alcohol oxidase, 102
PqqA peptide cyclase, 503
precorrin-2 dehydrogenase, 166
precorrin-3B synthase, 349
precorrin-6A reductase, 162
premnaspirodiene oxygenase, 416
prenylcysteine oxidase, 262
prephenate dehydrogenase, 154
prephenate dehydrogenase (NADP+), 154
preQ1 synthase, 248
primary-amine oxidase, 209
procollagen-lysine 5-dioxygenase, 319
procollagen-proline 3-dioxygenase, 320
procollagen-proline 4-dioxygenase, 319
progesterone 11α-monooxygenase, 466
progesterone monooxygenase, 465
proline 3-hydroxylase, 324
L-proline cis-4-hydroxylase, 330
L-proline trans-4-hydroxylase, 331
D-proline dehydrogenase, 235
proline dehydrogenase, 231
D-proline reductase, 500
L-prolyl-[peptidyl-carrier protein] dehydrogenase, 190
propanal dehydrogenase (CoA-propanoylating), 137
propane 2-monooxygenase, 370
1,3-propanediol dehydrogenase, 46
propanediol-phosphate dehydrogenase, 6
prosolanapyrone-II oxidase, 104
prostaglandin-E2 9-reductase, 43
prostaglandin-endoperoxide synthase, 464
prostaglandin-F synthase, 43
prostamide/prostaglandin F2α synthase, 284
protein-disulfide reductase, 257
protein-disulfide reductase (glutathione), 263
protein-lysine 6-oxidase, 207
protoasukamycin 4-monooxygenase, 367
protocatechuate 3,4-dioxygenase, 291
protocatechuate 4,5-dioxygenase, 292
protochlorophyllide reductase, 158
protodeoxyviolaceinate monooxygenase, 367
protopanaxadiol 6-hydroxylase, 408
protopine 6-monooxygenase, 402
protoporphyrinogen IX dehydrogenase (menaquinone), 181
protoporphyrinogen oxidase, 178
pseudobaptigenin synthase, 456
pseudooxynicotine oxidase, 210
psoralen synthase, 413
pteridine oxidase, 483
pteridine reductase, 220
pulcherriminic acid synthase, 425
putidaredoxin—NAD+ reductase, 492
putrescine oxidase, 207
pyranose dehydrogenase (acceptor), 116
pyranose oxidase, 98

pyridoxal 4-dehydrogenase, 27
pyridoxal 5′-phosphate synthase, 206
pyridoxal oxidase, 143
5-pyridoxate monooxygenase, 373
4-pyridoxic acid dehydrogenase, 119
pyridoxine 4-dehydrogenase, 19
pyridoxine 4-oxidase, 99
pyridoxine 5-dehydrogenase, 113
pyrimidine oxygenase, 470
pyrimidine-deoxynucleoside 1′-dioxygenase, 321
pyrimidine-deoxynucleoside 2′-dioxygenase, 319
pyrimidodiazepine synthase, 230
pyrogallol 1,2-oxygenase, 298
pyrogallol hydroxytransferase, 506
1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] brominase, 454
1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] chlorinase, 454
pyrrole-2-carboxylate monooxygenase, 355
1-pyrroline-2-carboxylate reductase [NAD(P)H], 224
pyrroline-5-carboxylate reductase, 213
pyrroloquinoline-quinone synthase, 179
pyruvate dehydrogenase (acetyl-transferring), 144
pyruvate dehydrogenase (NADP+), 129
pyruvate dehydrogenase (quinone), 145
pyruvate oxidase, 142
pyruvate oxidase (CoA-acetylating), 142
pyruvate synthase, 146
6-pyruvoyltetrahydropterin 2′-reductase, 50

quercetin 2,3-dioxygenase, 296
questin monooxygenase, 344
quinaldate 4-oxidoreductase, 194
quinate dehydrogenase, 10
quinate dehydrogenase (quinone), 108
quinate/shikimate dehydrogenase, 62
quinine 3-monooxygenase, 390
quinoline 2-oxidoreductase, 194
quinoline-4-carboxylate 2-oxidoreductase, 194

red chlorophyll catabolite reductase, 185
renalase, 239
resorcinol 4-hydroxylase (FADH2), 380
resorcinol 4-hydroxylase (NADH), 368
resorcinol 4-hydroxylase (NADPH), 368
reticuline oxidase, 499
retinal dehydrogenase, 127
L-rhamnose 1-dehydrogenase, 40
L-rhamnose 1-dehydrogenase (NADP+), 85
L-rhamnose 1-dehydrogenase [NAD(P)+], 85
ribitol 2-dehydrogenase, 17
ribitol-5-phosphate 2-dehydrogenase, 33
ribitol-5-phosphate 2-dehydrogenase (NADP+), 92
riboflavin reductase [NAD(P)H], 222
ribonucleoside-diphosphate reductase, 484
ribonucleoside-triphosphate reductase (formate), 111
ribonucleoside-triphosphate reductase (thioredoxin), 485
ribose 1-dehydrogenase (NADP+), 29
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ribosyldihydronicotinamide dehydrogenase (quinone), 277
rifampicin monooxygenase, 366
rifamycin-B oxidase, 275
rubredoxin—NAD+ reductase, 491
rubredoxin—NAD(P)+ reductase, 492

saccharopine dehydrogenase (NAD+, L-glutamate-forming), 215
saccharopine dehydrogenase (NAD+, L-lysine-forming), 214
saccharopine dehydrogenase (NADP+, L-glutamate-forming),

215
saccharopine dehydrogenase (NADP+, L-lysine-forming), 215
L-saccharopine oxidase, 229
salicylaldehyde dehydrogenase, 132
salicylate 1-monooxygenase, 337
salicylate 5-hydroxylase, 361
salicyloyl-CoA 5-hydroxylase, 366
salutaridine reductase (NADPH), 55
salutaridine synthase, 457
salviol synthase, 392
ent-sandaracopimaradiene 3-hydroxylase, 394
sanguinarine reductase, 173
α-santonin 1,2-reductase, 161
sarcosine dehydrogenase, 232
sarcosine oxidase, 225
sarcosine reductase, 501
scopoletin 8-hydroxylase, 331
secoisolariciresinol dehydrogenase, 74
secologanin synthase, 456
secondary-alcohol dehydrogenase (coenzyme-F420), 110
secondary-alcohol oxidase, 100
selenate reductase, 507
senecionine N-oxygenase, 351
sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming),

36
sepiapterin reductase (L-threo-7,8-dihydrobiopterin forming),

73
sequoyitol dehydrogenase, 34
serine 2-dehydrogenase, 200
L-serine 3-dehydrogenase (NAD+), 87
serine 3-dehydrogenase (NADP+), 61
shikimate dehydrogenase, 10
short-chain acyl-CoA dehydrogenase, 186
soluble quinoprotein glucose dehydrogenase, 117
D-sorbitol dehydrogenase (acceptor), 115
sorbitol-6-phosphate 2-dehydrogenase, 33
L-sorbose 1-dehydrogenase, 117
sorbose 5-dehydrogenase (NADP+), 30
sorbose dehydrogenase, 113
L-sorbose oxidase, 98
sorbose reductase, 64
spermidine dehydrogenase, 234
spermine oxidase, 228
spheroidene monooxygenase, 424
sphingolipid 10-desaturase, 443
sphingolipid 4-desaturase, 442
sphingolipid 8-(E)-desaturase, 442

sphingolipid 8-(E/Z)-desaturase, 446
sphingolipid C4-monooxygenase, 436
squalene monooxygenase, 378
staphylopine dehydrogenase, 224
stearoyl-[acyl-carrier-protein] 9-desaturase, 438
stearoyl-CoA 9-desaturase, 438
steroid 11β-monooxygenase, 422
steroid 15β-monooxygenase, 424
steroid 17α-monooxygenase, 378
steroid 21-monooxygenase, 377
steroid 9α-monooxygenase, 468
sterol 14α-demethylase, 417
sterol 22-desaturase, 449
∆7-sterol 5(6)-desaturase, 443
∆14-sterol reductase, 164
∆24(241)-sterol reductase, 165
∆24-sterol reductase, 165
stizolobate synthase, 297
stizolobinate synthase, 297
strombine dehydrogenase, 217
(S)-stylopine synthase, 456
styrene monooxygenase, 376
succinate dehydrogenase, 181
succinate-semialdehyde dehydrogenase (acylating), 134
succinate-semialdehyde dehydrogenase (NAD+), 124
succinate-semialdehyde dehydrogenase (NADP+), 135
succinate-semialdehyde dehydrogenase [NAD(P)+], 123
3-succinoylsemialdehyde-pyridine dehydrogenase, 136
succinylglutamate-semialdehyde dehydrogenase, 133
sugiol synthase, 392
sulcatone reductase, 57
sulfhydrogenase, 289
sulfide dehydrogenase, 259
sulfide-cytochrome-c reductase (flavocytochrome c), 260
sulfiredoxin, 270
sulfite dehydrogenase (cytochrome), 260
sulfite dehydrogenase (quinone), 268
sulfite oxidase, 261
sulfite reductase (coenzyme F420), 270
sulfoacetaldehyde dehydrogenase, 133
sulfoacetaldehyde dehydrogenase (acylating), 136
sulfoacetaldehyde reductase, 70
4-sulfobenzoate 3,4-dioxygenase, 332
sulfolactaldehyde 3-reductase, 84
3-sulfolactaldehyde dehydrogenase, 139
(S)-sulfolactate dehydrogenase, 69
sulfopropanediol 3-dehydrogenase, 69
sulfoquinovose 1-dehydrogenase, 88
sulfur oxygenase/reductase, 302
sulochrin oxidase [(+)-bisdechlorogeodin-forming], 499
sulochrin oxidase [(-)-bisdechlorogeodin-forming], 499
superoxide dismutase, 475
superoxide reductase, 475

tabersonine 16-hydroxylase, 403
tabersonine 3-oxygenase, 389
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tagaturonate reductase, 18
meso-tartrate dehydrogenase, 152
tartrate dehydrogenase, 24
taurine dehydrogenase, 212
taurine dioxygenase, 322
taurochenodeoxycholate 6α-hydroxylase, 390
tauropine dehydrogenase, 218
taxadiene 5α-hydroxylase, 469
taxane 10β-hydroxylase, 403
taxane 13α-hydroxylase, 404
taxifolin 8-monooxygenase, 340
taxoid 14β-hydroxylase, 357
taxoid 7β-hydroxylase, 357
terephthalate 1,2-dioxygenase, 334
testosterone 17β-dehydrogenase (NADP+), 19
tetracenomycin A2 monooxygenase-dioxygenase, 365
tetracenomycin-F1 monooxygenase, 315
tetrachlorobenzoquinone reductase, 92
tetrachloroethene reductive dehalogenase, 504
tetrachlorohydroquinone reductive dehalogenase, 501
tetracycline 11a-monooxygenase, 371
tetracycline 7-halogenase, 452
tetrahydroberberine oxidase, 178
tetrahydrocannabinolic acid synthase, 500
tetrahydroxynaphthalene reductase, 56
thebaine 6-O-demethylase, 325
thiamine oxidase, 101
thiol oxidase, 261
thiomorpholine-carboxylate dehydrogenase, 218
thiophene-2-carbonyl-CoA monooxygenase, 469
thioredoxin-disulfide reductase, 257
thiosulfate dehydrogenase, 260
thiosulfate dehydrogenase (quinone), 267
thiosulfate reductase (cytochrome), 261
thiosulfate reductase (quinone), 267
D-threitol dehydrogenase (NAD+), 91
L-threonate 2-dehydrogenase, 93
L-threonate 3-dehydrogenase, 31
L-threonine 3-dehydrogenase, 26
L-threonyl-[L-threonyl-carrier protein] 4-chlorinase, 463
thymine dioxygenase, 320
thyroxine 5′-deiodinase, 504
thyroxine 5-deiodinase, 503
toluene 4-monooxygenase, 372
toluene dioxygenase, 333
toluene methyl-monooxygenase, 429
torulene dioxygenase, 303
3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA 24-hydroxylase, 490
(2,2,3-trimethyl-5-oxocyclopent-3-enyl)acetyl-CoA 1,5-monooxygenase,

359
trimethylamine dehydrogenase, 232
trimethylamine monooxygenase, 357
trimethylamine-N-oxide reductase, 250
4-trimethylammoniobutyraldehyde dehydrogenase, 128
trimethyllysine dioxygenase, 320
trimethyltridecatetraene synthase, 391

1,3,7-trimethyluric acid 5-monooxygenase, 366
tRNAPhe (7-(3-amino-3-carboxypropyl)wyosine37-C2)-hydroxylase

, 327
tRNA-dihydrouridine16/17 synthase [NAD(P)+], 169
tRNA-dihydrouridine20a/20b synthase [NAD(P)+], 169
tRNA-dihydrouridine20 synthase [NAD(P)+], 169
tRNA-dihydrouridine47 synthase [NAD(P)+], 169
tropinone reductase I, 47
tropinone reductase II, 53
trypanothione-disulfide reductase, 258
tryprostatin B 6-hydroxylase, 407
tryptamine 4-monooxygenase, 473
tryptophan α,β-oxidase, 179
tryptophan 2′-dioxygenase, 317
tryptophan 2,3-dioxygenase, 293
tryptophan 2-monooxygenase, 311
tryptophan 5-halogenase, 455
tryptophan 5-monooxygenase, 433
tryptophan 6-halogenase, 455
tryptophan 7-halogenase, 440
tryptophan N-monooxygenase, 417
tryptophan dehydrogenase, 203
Renilla-type luciferase, 312
tyrosinase, 435
tyrosine 3-monooxygenase, 432
tyrosine N-monooxygenase, 383
L-tyrosine isonitrile desaturase, 462
L-tyrosine isonitrile desaturase/decarboxylase, 462
L-tyrosine reductase, 140

ubiquinol oxidase (non-electrogenic), 276
UDP-2-acetamido-2,6-β-L-arabino-hexul-4-ose reductase, 83
UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase, 75
UDP-N-acetyl-D-mannosamine dehydrogenase, 76
UDP-N-acetylglucosamine 3-dehydrogenase, 84
UDP-N-acetylglucosamine 6-dehydrogenase, 33
UDP-N-acetylmuramate dehydrogenase, 171
UDP-glucose 6-dehydrogenase, 9
UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic

acid decarboxylating), 68
unspecific monooxygenase, 374
unspecific peroxygenase, 285
uracil/thymine dehydrogenase, 490
ureidoglycolate dehydrogenase, 37
ureidoglycolate dehydrogenase (NAD+), 79
uridine-5′-phosphate dioxygenase, 329
urocanate reductase, 197
uronate dehydrogenase, 46
(S)-usnate reductase, 45

validamycin A dioxygenase, 329
valine N-monooxygenase, 384
valine dehydrogenase (NAD+), 204
valine dehydrogenase (NADP+), 200
vanadium-dependent nitrogenase, 494
vanillate monooxygenase, 349
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vanillin dehydrogenase, 132
vanillyl-alcohol oxidase, 103
vellosimine dehydrogenase, 61
verruculogen synthase, 326
versatile peroxidase, 282
versiconal hemiacetal acetate reductase, 79
very-long-chain 3-oxoacyl-CoA reductase, 74
very-long-chain acyl-CoA dehydrogenase, 189
very-long-chain acyl-lipid ω-9 desaturase, 459
very-long-chain enoyl-CoA reductase, 170
vinorine hydroxylase, 403
violacein synthase, 369
violaxanthin de-epoxidase, 506
vitamin D 1,25-hydroxylase, 428
vitamin D 25-hydroxylase, 380
vitamin D3 24-hydroxylase, 426
vitamin-K-epoxide reductase (warfarin-insensitive), 486
vitamin-K-epoxide reductase (warfarin-sensitive), 485
vomifoliol dehydrogenase, 50
vomilenine reductase, 220

xanthine dehydrogenase, 481
xanthine dioxygenase, 329
xanthine oxidase, 483
xanthommatin reductase, 159
xanthoxin dehydrogenase, 64
D-xylose 1-dehydrogenase, 40
L-xylose 1-dehydrogenase, 28
D-xylose 1-dehydrogenase (NADP+), 41
D-xylose reductase, 69
D-xylulose reductase, 7
L-xylulose reductase, 7

zealexin A1 synthase, 419
zeatin reductase, 164
zeaxanthin 4-ketolase, 475
zeaxanthin epoxidase, 427
zerumbone synthase, 73
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