The Enzyme Database

Displaying entries 1-50 of 245.

<< Previous | Next >>    printer_iconPrintable version

EC 6.1.1.1     
Accepted name: tyrosine—tRNA ligase
Reaction: ATP + L-tyrosine + tRNATyr = AMP + diphosphate + L-tyrosyl-tRNATyr
Systematic name: L-tyrosine:tRNATyr ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-45-4
References:
1.  Allen, E.H., Glassman, E. and Schweet, R.S. Incorporation of amino acids into ribonucleic acid. I. The role of activating enzymes. J. Biol. Chem. 235 (1960) 1061–1067. [PMID: 13792726]
2.  Cowles, J.R. and Key, J.L. Demonstration of two tyrosyl-tRNA synthetases of pea roots. Biochim. Biophys. Acta 281 (1972) 33–44. [DOI] [PMID: 4563531]
3.  Holley, R.W., Brunngraber, E.F., Saad, F. and Williams, H.H. Partial purification of the threonine- and tyrosine-activating enzymes from rat liver, and the effect of potassium ions on the activity of the tyrosine enzyme. J. Biol. Chem. 236 (1961) 197–199. [PMID: 13715350]
4.  Schweet, R.S. and Allen, E.H. Purification and properties of tyrosine-activating enzyme of hog pancreas. J. Biol. Chem. 233 (1958) 1104–1108. [PMID: 13598741]
5.  Brick, P., Bhat, T.N. and Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208 (1989) 83–98. [DOI] [PMID: 2504923]
[EC 6.1.1.1 created 1961, modified 2002]
 
 
EC 6.1.1.2     
Accepted name: tryptophan—tRNA ligase
Reaction: ATP + L-tryptophan + tRNATrp = AMP + diphosphate + L-tryptophyl-tRNATrp
Other name(s): tryptophanyl-tRNA synthetase; L-tryptophan-tRNATrp ligase (AMP-forming); tryptophanyl-transfer ribonucleate synthetase; tryptophanyl-transfer ribonucleic acid synthetase; tryptophanyl-transfer RNA synthetase; tryptophanyl ribonucleic synthetase; tryptophanyl-transfer ribonucleic synthetase; tryptophanyl-tRNA synthase; tryptophan translase; TrpRS
Systematic name: L-tryptophan:tRNATrp ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-44-3
References:
1.  Davie, E.W., Koningsberger, V.V. and Lipmann, F. The isolation of a tryptophan-activating enzyme from pancreas. Arch. Biochem. Biophys. 65 (1956) 21–28. [DOI] [PMID: 13373404]
2.  Preddie, E.C. Tryptophanyl transfer ribonucleic acid synthetase from bovine pancreas. II. The chemically different subunits. J. Biol. Chem. 244 (1969) 3958–3968. [PMID: 5805407]
3.  Wong, K.K., Meister, A. and Moldave, K. Enzymic formation of ribonucleic acid-amino acid from synthetic aminoacyladenylate and ribonucleic acid. Biochim. Biophys. Acta 36 (1959) 531–533. [DOI] [PMID: 13845797]
[EC 6.1.1.2 created 1961, modified 2002]
 
 
EC 6.1.1.3     
Accepted name: threonine—tRNA ligase
Reaction: ATP + L-threonine + tRNAThr = AMP + diphosphate + L-threonyl-tRNAThr
Other name(s): threonyl-tRNA synthetase; threonyl-transfer ribonucleate synthetase; threonyl-transfer RNA synthetase; threonyl-transfer ribonucleic acid synthetase; threonyl ribonucleic synthetase; threonine-transfer ribonucleate synthetase; threonine translase; threonyl-tRNA synthetase; TRS
Systematic name: L-threonine:tRNAThr ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-46-5
References:
1.  Allen, E.H., Glassman, E. and Schweet, R.S. Incorporation of amino acids into ribonucleic acid. I. The role of activating enzymes. J. Biol. Chem. 235 (1960) 1061–1067. [PMID: 13792726]
2.  Holley, R.W., Brunngraber, E.F., Saad, F. and Williams, H.H. Partial purification of the threonine- and tyrosine-activating enzymes from rat liver, and the effect of potassium ions on the activity of the tyrosine enzyme. J. Biol. Chem. 236 (1961) 197–199. [PMID: 13715350]
[EC 6.1.1.3 created 1961]
 
 
EC 6.1.1.4     
Accepted name: leucine—tRNA ligase
Reaction: ATP + L-leucine + tRNALeu = AMP + diphosphate + L-leucyl-tRNALeu
Other name(s): leucyl-tRNA synthetase; leucyl-transfer ribonucleate synthetase; leucyl-transfer RNA synthetase; leucyl-transfer ribonucleic acid synthetase; leucine-tRNA synthetase; leucine translase
Systematic name: L-leucine:tRNALeu ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-15-6
References:
1.  Allen, E.H., Glassman, E. and Schweet, R.S. Incorporation of amino acids into ribonucleic acid. I. The role of activating enzymes. J. Biol. Chem. 235 (1960) 1061–1067. [PMID: 13792726]
2.  Berg, P., Bergmann, F.H., Ofengand, E.J. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. I. The mechanism of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid formation. J. Biol. Chem. 236 (1961) 1726–1734.
3.  Bergmann, F.H., Berg, P. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. II. The preparation of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid synthetases from Escherichia coli. J. Biol. Chem. 236 (1961) 1735–1740.
[EC 6.1.1.4 created 1961]
 
 
EC 6.1.1.5     
Accepted name: isoleucine—tRNA ligase
Reaction: ATP + L-isoleucine + tRNAIle = AMP + diphosphate + L-isoleucyl-tRNAIle
Other name(s): isoleucyl-tRNA synthetase; isoleucyl-transfer ribonucleate synthetase; isoleucyl-transfer RNA synthetase; isoleucine-transfer RNA ligase; isoleucine-tRNA synthetase; isoleucine translase
Systematic name: L-isoleucine:tRNAIle ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-96-0
References:
1.  Allen, E.H., Glassman, E. and Schweet, R.S. Incorporation of amino acids into ribonucleic acid. I. The role of activating enzymes. J. Biol. Chem. 235 (1960) 1061–1067. [PMID: 13792726]
2.  Berg, P., Bergmann, F.H., Ofengand, E.J. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. I. The mechanism of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid formation. J. Biol. Chem. 236 (1961) 1726–1734.
3.  Bergmann, F.H., Berg, P. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. II. The preparation of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid synthetases from Escherichia coli. J. Biol. Chem. 236 (1961) 1735–1740.
[EC 6.1.1.5 created 1961]
 
 
EC 6.1.1.6     
Accepted name: lysine—tRNA ligase
Reaction: ATP + L-lysine + tRNALys = AMP + diphosphate + L-lysyl-tRNALys
Other name(s): lysyl-tRNA synthetase; lysyl-transfer ribonucleate synthetase; lysyl-transfer RNA synthetase; L-lysine-transfer RNA ligase; lysine-tRNA synthetase; lysine translase
Systematic name: L-lysine:tRNALys ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-26-9
References:
1.  Allen, E.H., Glassman, E. and Schweet, R.S. Incorporation of amino acids into ribonucleic acid. I. The role of activating enzymes. J. Biol. Chem. 235 (1960) 1061–1067. [PMID: 13792726]
2.  Chiumecka, V., von Tigerstrom, M., D'Obrenan, P. and Smith, C.J. Purification and properties of lysyl transfer ribonucleic acid synthetase from bakers' yeast. J. Biol. Chem. 244 (1969) 5481–5488. [PMID: 4310598]
3.  Lagerkvist, U., Rymo, L., Lindqvist, O. and Andersson, E. Some properties of crystals of lysine transfer ribonucleic acid ligase from yeast. J. Biol. Chem. 247 (1972) 3897–3899. [PMID: 4555953]
4.  Stern, R. and Mehler, A.H. Lysyl-sRNA synthetase from Escherichia coli. Biochem. Z. 342 (1965) 400–409. [PMID: 4284804]
[EC 6.1.1.6 created 1961]
 
 
EC 6.1.1.7     
Accepted name: alanine—tRNA ligase
Reaction: ATP + L-alanine + tRNAAla = AMP + diphosphate + L-alanyl-tRNAAla
Other name(s): alanyl-tRNA synthetase; alanyl-transfer ribonucleate synthetase; alanyl-transfer RNA synthetase; alanyl-transfer ribonucleic acid synthetase; alanine-transfer RNA ligase; alanine transfer RNA synthetase; alanine tRNA synthetase; alanine translase; alanyl-transfer ribonucleate synthase; AlaRS; Ala-tRNA synthetase
Systematic name: L-alanine:tRNAAla ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-71-4
References:
1.  Holley, R.W. and Goldstein, J. An alanine-dependent, ribonuclease-inhibited conversion of adenosine 5′-phosphate to adenosine triphosphate. J. Biol. Chem. 234 (1959) 1765–1768. [PMID: 13672960]
2.  Webster, G.C. Isolation of an alanine-activating enzyme from pig liver. Biochim. Biophys. Acta 49 (1961) 141–152. [DOI] [PMID: 13783653]
[EC 6.1.1.7 created 1961]
 
 
EC 6.1.1.9     
Accepted name: valine—tRNA ligase
Reaction: ATP + L-valine + tRNAVal = AMP + diphosphate + L-valyl-tRNAVal
Other name(s): valyl-tRNA synthetase; valyl-transfer ribonucleate synthetase; valyl-transfer RNA synthetase; valyl-transfer ribonucleic acid synthetase; valine transfer ribonucleate ligase; valine translase
Systematic name: L-valine:tRNAVal ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9023-47-6
References:
1.  Berg, P., Bergmann, F.H., Ofengand, E.J. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. I. The mechanism of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid formation. J. Biol. Chem. 236 (1961) 1726–1734.
2.  Bergmann, F.H., Berg, P. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. II. The preparation of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid synthetases from Escherichia coli. J. Biol. Chem. 236 (1961) 1735–1740.
[EC 6.1.1.9 created 1961]
 
 
EC 6.1.1.10     
Accepted name: methionine—tRNA ligase
Reaction: ATP + L-methionine + tRNAMet = AMP + diphosphate + L-methionyl-tRNAMet
Other name(s): methionyl-tRNA synthetase; methionyl-transfer ribonucleic acid synthetase; methionyl-transfer ribonucleate synthetase; methionyl-transfer RNA synthetase; methionine translase; MetRS
Systematic name: L-methionine:tRNAMet ligase (AMP-forming)
Comments: In those organisms producing N-formylmethionyl-tRNAfMet for translation initiation, this enzyme also recognizes the initiator tRNAfMet and catalyses the formation of L-methionyl-tRNAfMet, the substrate for EC 2.1.2.9, methionyl-tRNA formyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9033-22-1
References:
1.  Bergmann, F.H., Berg, P. and Dieckmann, M. The enzymic synthesis of amino acyl derivatives of ribonucleic acid. II. The preparation of leucyl-, valyl-, isoleucyl- and methionyl ribonucleic acid synthetases from Escherichia coli. J. Biol. Chem. 236 (1961) 1735–1740.
2.  Lee, C.P., Dyson, M.R., Mandal, N., Varshney, U., Bahramian, B. and RajBhandary, U.L. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase. Proc. Natl. Acad. Sci. USA 89 (1992) 9262–9266. [DOI] [PMID: 1409632]
[EC 6.1.1.10 created 1961, modified 2002]
 
 
EC 6.1.1.11     
Accepted name: serine—tRNA ligase
Reaction: ATP + L-serine + tRNASer = AMP + diphosphate + L-seryl-tRNASer
Other name(s): seryl-tRNA synthetase; SerRS; seryl-transfer ribonucleate synthetase; seryl-transfer RNA synthetase; seryl-transfer ribonucleic acid synthetase; serine translase
Systematic name: L-serine:tRNASer ligase (AMP-forming)
Comments: This enzyme also recognizes tRNASec, the special tRNA for selenocysteine, and catalyses the formation of L-seryl-tRNASec, the substrate for EC 2.9.1.1, L-seryl-tRNASec selenium transferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-48-7
References:
1.  Katze, J.R. and Konigsberg, W. Purification and properties of seryl transfer ribonucleic acid synthetase from Escherichia coli. J. Biol. Chem. 245 (1970) 923–930. [PMID: 4906848]
2.  Makman, M.H. and Cantoni, G.L. Isolation of seryl and phenylalanyl ribonucleic acid synthetases from baker's yeast. Biochemistry 4 (1965) 1434–1442.
3.  Webster, L.T. and Davie, E.W. Purification and properties of serine-activating enzyme from beef pancreas. J. Biol. Chem. 236 (1961) 479–484. [PMID: 13783661]
4.  Ohama, T., Yang, D.C. and Hatfield, D.L. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Arch. Biochem. Biophys. 315 (1994) 293–301. [DOI] [PMID: 7986071]
[EC 6.1.1.11 created 1961, modified 2002]
 
 
EC 6.1.1.12     
Accepted name: aspartate—tRNA ligase
Reaction: ATP + L-aspartate + tRNAAsp = AMP + diphosphate + L-aspartyl-tRNAAsp
Other name(s): aspartyl-tRNA synthetase; aspartyl ribonucleic synthetase; aspartyl-transfer RNA synthetase; aspartic acid translase; aspartyl-transfer ribonucleic acid synthetase; aspartyl ribonucleate synthetase
Systematic name: L-aspartate:tRNAAsp ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-32-1
References:
1.  Gangloff, J. and Dirheimer, G. Studies on aspartyl-tRNA synthetase from baker's yeast. I. Purification and properties of the enzyme. Biochim. Biophys. Acta 294 (1973) 263–272. [PMID: 4575961]
2.  Norton, S.J., Ravel, J.M., Lee, C. and Shive, W. Purification and properties of the aspartyl ribonucleic acid synthetase of Lactobacillus arabinosus. J. Biol. Chem. 238 (1963) 269–274. [PMID: 13939000]
[EC 6.1.1.12 created 1965]
 
 
EC 6.1.1.13     
Accepted name: D-alanine—poly(phosphoribitol) ligase
Reaction: ATP + D-alanine + poly(ribitol phosphate) = AMP + diphosphate + O-D-alanyl-poly(ribitol phosphate)
Other name(s): D-alanyl-poly(phosphoribitol) synthetase; D-alanine: membrane acceptor ligase; D-alanine-D-alanyl carrier protein ligase; D-alanine-membrane acceptor ligase; D-alanine-activating enzyme
Systematic name: D-alanine:poly(phosphoribitol) ligase (AMP-forming)
Comments: A thioester bond is formed transiently between D-alanine and the sulfhydryl group of the 4′-phosphopantetheine cofactor of D-alanyl carrier protein during the activation of the alanine. Involved in the synthesis of teichoic acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-65-8
References:
1.  Baddiley, J. and Neuhaus, F.C. The enzymic activation of D-alanine. Biochem. J. 75 (1960) 579. [PMID: 13795638]
2.  Reusch, V.M. and Neuhaus, F.C. D-Alanine:membrane acceptor ligase from Lactobacillus casei. J. Biol. Chem. 246 (1971) 6136–6143. [PMID: 4399593]
3.  Perego, M., Glaser, P., Minutello, A., Strauch, M.A., Leopold, K. and Fischer, W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270 (1995) 15598–15606. [DOI] [PMID: 7797557]
4.  Heaton, M.P. and Neuhaus, F.C. Role of D-alanyl carrier protein in the biosynthesis of D-alanyl-lipoteichoic acid. J. Bacteriol. 176 (1994) 681–690. [DOI] [PMID: 8300523]
5.  Debabov, D.V., Heaton, M.P., Zhang, Q., Stewart, K.D., Lambalot, R.H. and Neuhaus, F.C. The D-alanyl carrier protein in Lactobacillus casei: cloning, sequencing and expression of dltC. J. Bacteriol. 178 (1996) 3869–3876. [DOI] [PMID: 8682792]
[EC 6.1.1.13 created 1965, modified 2001]
 
 
EC 6.1.1.14     
Accepted name: glycine—tRNA ligase
Reaction: ATP + glycine + tRNAGly = AMP + diphosphate + glycyl-tRNAGly
Other name(s): glycyl-tRNA synthetase; glycyl-transfer ribonucleate synthetase; glycyl-transfer RNA synthetase; glycyl-transfer ribonucleic acid synthetase; glycyl translase
Systematic name: glycine:tRNAGly ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9037-62-1
References:
1.  Fraser, M.J. Glycyl-RNA synthetase of rat liver: partial purification and effects of some metal ions on its activity. Can. J. Biochem. Physiol. 41 (1963) 1123–1233. [PMID: 13959340]
2.  Niyomporn, B., Dahl, J.L. and Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus. J. Biol. Chem. 243 (1968) 773–778. [PMID: 4295604]
[EC 6.1.1.14 created 1972]
 
 
EC 6.1.1.15     
Accepted name: proline—tRNA ligase
Reaction: ATP + L-proline + tRNAPro = AMP + diphosphate + L-prolyl-tRNAPro
Other name(s): prolyl-tRNA synthetase; prolyl-transferRNA synthetase; prolyl-transfer ribonucleate synthetase; proline translase; prolyl-transfer ribonucleic acid synthetase; prolyl-s-RNA synthetase; prolinyl-tRNA ligase
Systematic name: L-proline:tRNAPro ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9055-68-9
References:
1.  Norton, S.J. Purification and properties of the prolyl RNA synthetase of Escherichia coli. Arch. Biochem. Biophys. 106 (1964) 147–152. [DOI] [PMID: 14217147]
2.  Peterson, P.J. and Fowden, L. Purification, properties and comparative specificities of the enzyme prolyl-transfer ribonucleic acid synthetase from Phaseolus aureus and Polygonatum multiflorum. Biochem. J. 97 (1965) 112–124. [PMID: 16749091]
[EC 6.1.1.15 created 1972]
 
 
EC 6.1.1.16     
Accepted name: cysteine—tRNA ligase
Reaction: ATP + L-cysteine + tRNACys = AMP + diphosphate + L-cysteinyl-tRNACys
Other name(s): cysteinyl-tRNA synthetase; cysteinyl-transferRNA synthetase; cysteinyl-transfer ribonucleate synthetase; cysteine translase
Systematic name: L-cysteine:tRNACys ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-56-2
References:
1.  McCorquodale, D.J. The separation and partial purification of aminoacyl-RNA synthetases from Escherichia coli. Biochim. Biophys. Acta 91 (1964) 541–548. [DOI] [PMID: 14262440]
[EC 6.1.1.16 created 1972]
 
 
EC 6.1.1.17     
Accepted name: glutamate—tRNA ligase
Reaction: ATP + L-glutamate + tRNAGlu = AMP + diphosphate + L-glutamyl-tRNAGlu
For diagram of porphyrin biosynthesis (early stages), click here
Other name(s): glutamyl-tRNA synthetase; glutamyl-transfer ribonucleate synthetase; glutamyl-transfer RNA synthetase; glutamyl-transfer ribonucleic acid synthetase; glutamate-tRNA synthetase; glutamic acid translase
Systematic name: L-glutamate:tRNAGlu ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9068-76-2
References:
1.  Ravel, J.M., Wang, S., Heinemeyer, C. and Shive, W. Glutamyl and glutaminyl ribonucleic acid synthetases of Escherichia coli W. Separation, properties, and stimulation of adenosine triphosphate-pyrophosphate exchange by acceptor ribonucleic acid. J. Biol. Chem. 240 (1965) 432–438. [PMID: 14253448]
[EC 6.1.1.17 created 1972]
 
 
EC 6.1.1.18     
Accepted name: glutamine—tRNA ligase
Reaction: ATP + L-glutamine + tRNAGln = AMP + diphosphate + L-glutaminyl-tRNAGln
Other name(s): glutaminyl-tRNA synthetase; glutaminyl-transfer RNA synthetase; glutaminyl-transfer ribonucleate synthetase; glutamine-tRNA synthetase; glutamine translase; glutamate-tRNA ligase; glutaminyl ribonucleic acid; GlnRS
Systematic name: L-glutamine:tRNAGln ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-59-6
References:
1.  Ravel, J.M., Wang, S., Heinemeyer, C. and Shive, W. Glutamyl and glutaminyl ribonucleic acid synthetases of Escherichia coli W. Separation, properties, and stimulation of adenosine triphosphate-pyrophosphate exchange by acceptor ribonucleic acid. J. Biol. Chem. 240 (1965) 432–438. [PMID: 14253448]
[EC 6.1.1.18 created 1972]
 
 
EC 6.1.1.19     
Accepted name: arginine—tRNA ligase
Reaction: ATP + L-arginine + tRNAArg = AMP + diphosphate + L-arginyl-tRNAArg
Other name(s): arginyl-tRNA synthetase; arginyl-transfer ribonucleate synthetase; arginyl-transfer RNA synthetase; arginyl transfer ribonucleic acid synthetase; arginine-tRNA synthetase; arginine translase
Systematic name: L-arginine:tRNAArg ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37205-35-9
References:
1.  Allende, C.C. and Allende, J.E. Purification and substrate specificity of arginyl-ribonucleic acid synthetase from rat liver. J. Biol. Chem. 239 (1964) 1102–1106. [PMID: 14165914]
2.  Mehler, A.H. and Mitra, S.K. The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J. Biol. Chem. 242 (1967) 5495–5499. [PMID: 12325365]
3.  Mitra, S.K. and Mehler, A.H. The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 242 (1967) 5491–5494. [PMID: 12325364]
[EC 6.1.1.19 created 1972]
 
 
EC 6.1.1.20     
Accepted name: phenylalanine—tRNA ligase
Reaction: ATP + L-phenylalanine + tRNAPhe = AMP + diphosphate + L-phenylalanyl-tRNAPhe
Other name(s): phenylalanyl-tRNA synthetase; phenylalanyl-transfer ribonucleate synthetase; phenylalanine-tRNA synthetase; phenylalanyl-transfer RNA synthetase; phenylalanyl-tRNA ligase; phenylalanyl-transfer RNA ligase; L-phenylalanyl-tRNA synthetase; phenylalanine translase
Systematic name: L-phenylalanine:tRNAPhe ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9055-66-7
References:
1.  Stulberg, M.P. The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B. J. Biol. Chem. 242 (1967) 1060–1064. [PMID: 5335910]
[EC 6.1.1.20 created 1972]
 
 
EC 6.1.1.21     
Accepted name: histidine—tRNA ligase
Reaction: ATP + L-histidine + tRNAHis = AMP + diphosphate + L-histidyl-tRNAHis
Other name(s): histidyl-tRNA synthetase; histidyl-transfer ribonucleate synthetase; histidine translase
Systematic name: L-histidine:tRNAHis ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9068-78-4
References:
1.  Tigerstrom, M.V. and Tener, G.M. Histidyl transfer ribonucleic acid synthetase from bakers' yeast. Can. J. Biochem. 45 (1967) 1067–1074. [PMID: 6035970]
[EC 6.1.1.21 created 1972]
 
 
EC 6.1.1.22     
Accepted name: asparagine—tRNA ligase
Reaction: ATP + L-asparagine + tRNAAsn = AMP + diphosphate + L-asparaginyl-tRNAAsn
Other name(s): asparaginyl-tRNA synthetase; asparaginyl-transfer ribonucleate synthetase; asparaginyl transfer RNA synthetase; asparaginyl transfer ribonucleic acid synthetase; asparagyl-transfer RNA synthetase; asparagine translase
Systematic name: L-asparagine:tRNAAsn ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37211-76-0
References:
1.  Davies, M.R. and Marshall, R.D. Partial purification of L-asparginyl-tRNA synthetase from rabbit liver. Biochem. Biophys. Res. Commun. 47 (1972) 1386–1395. [DOI] [PMID: 5040239]
[EC 6.1.1.22 created 1976]
 
 
EC 6.1.1.23     
Accepted name: aspartate—tRNAAsn ligase
Reaction: ATP + L-aspartate + tRNAAsx = AMP + diphosphate + L-aspartyl-tRNAAsx
Other name(s): nondiscriminating aspartyl-tRNA synthetase
Systematic name: L-aspartate:tRNAAsx ligase (AMP-forming)
Comments: When this enzyme acts on tRNAAsp, it catalyses the same reaction as EC 6.1.1.12, aspartate—tRNA ligase. It has, however, diminished discrimination, so that it can also form aspartyl-tRNAAsn. This relaxation of specificity has been found to result from the absence of a loop in the tRNA that specifically recognizes the third position of the anticodon [1]. This accounts for the ability of this enzyme in, for example, Thermus thermophilus, to recognize both tRNAAsp (GUC anticodon) and tRNAAsn (GUU anticodon). The aspartyl-tRNAAsn is not used in protein synthesis until it is converted by EC 6.3.5.6, asparaginyl-tRNA synthase (glutamine-hydrolysing), into asparaginyl-tRNAAsn.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-32-1
References:
1.  Ibba, M. and Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69 (2000) 617–650. [DOI] [PMID: 10966471]
2.  Schmitt, E., Moulinier, L., Fujiwara, S., Imanaka, T., Thierry, J.C. and Moras, D. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 17 (1998) 5227–5237. [DOI] [PMID: 9724658]
3.  Becker, H.D. and Kern, D. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc. Natl. Acad. Sci. USA 95 (1998) 12832–12837. [DOI] [PMID: 9789000]
[EC 6.1.1.23 created 2002]
 
 
EC 6.1.1.24     
Accepted name: glutamate—tRNAGln ligase
Reaction: ATP + L-glutamate + tRNAGlx = AMP + diphosphate + L-glutamyl-tRNAGlx
Other name(s): nondiscriminating glutamyl-tRNA synthetase
Systematic name: L-glutamate:tRNAGlx ligase (AMP-forming)
Comments: When this enzyme acts on tRNAGlu, it catalyses the same reaction as EC 6.1.1.17, glutamate—tRNA ligase. It has, however, diminished discrimination, so that it can also form glutamyl-tRNAGln. This relaxation of specificity has been found to result from the absence of a loop in the tRNA that specifically recognizes the third position of the anticodon [1]. This accounts for the ability of this enzyme in, for example, Bacillus subtilis, to recognize both tRNA1Gln (UUG anticodon) and tRNAGlu (UUC anticodon) but not tRNA2Gln (CUG anticodon). The ability of this enzyme to recognize both tRNAGlu and one of the tRNAGln isoacceptors derives from their sharing a major identity element, a hypermodified derivative of U34 (5-methylaminomethyl-2-thiouridine). The glutamyl-tRNAGln is not used in protein synthesis until it is converted by EC 6.3.5.7, glutaminyl-tRNA synthase (glutamine-hydrolysing), into glutaminyl-tRNAGln.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9068-76-2
References:
1.  Ibba, M. and Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69 (2000) 617–650. [DOI] [PMID: 10966471]
2.  Schmitt, E., Moulinier, L., Fujiwara, S., Imanaka, T., Thierry, J.C. and Moras, D. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 17 (1998) 5227–5237. [DOI] [PMID: 9724658]
3.  Kim, S.I. and Söll, D. Major identity element of glutamine tRNAs from Bacillus subtilis and Escherichia coli in the reaction with B. subtilis glutamyl-tRNA synthetase. Mol. Cells 8 (1998) 459–465. [PMID: 9749534]
[EC 6.1.1.24 created 2002]
 
 
EC 6.1.1.26     
Accepted name: pyrrolysine—tRNAPyl ligase
Reaction: ATP + L-pyrrolysine + tRNAPyl = AMP + diphosphate + L-pyrrolysyl-tRNAPyl
Glossary: pyrrolysine = N6-[(2R,3R)-3-methyl-3,4-dihydro-2H-pyrrol-2-ylcarbonyl]-L-lysine
Other name(s): PylS; pyrrolysyl-tRNA synthetase
Systematic name: L-pyrrolysine:tRNAPyl ligase (AMP-forming)
Comments: In organisms such as Methanosarcina barkeri that incorporate the modified amino acid pyrrolysine (Pyl) into certain methylamine methyltransferases, an unusual tRNAPyl, with a CUA anticodon, can be charged directly with pyrrolysine by this class II aminoacyl—tRNA ligase. The enzyme is specific for pyrrolysine as substrate as it cannot be replaced by lysine or any of the other natural amino acids [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Blight, S.K., Larue, R.C., Mahapatra, A., Longstaff, D.G., Chang, E., Zhao, G., Kang, P.T., Green-Church, K.B., Chan, M.K. and Krzycki, J.A. Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431 (2004) 333–335. [DOI] [PMID: 15329732]
2.  Polycarpo, C., Ambrogelly, A., Bérubé, A., Winbush, S.M., McCloskey, J.A., Crain, P.F., Wood, J.L. and Söll, D. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. USA 101 (2004) 12450–12454. [DOI] [PMID: 15314242]
3.  Schimmel, P. and Beebe, K. Molecular biology: genetic code seizes pyrrolysine. Nature 431 (2004) 257–258. [DOI] [PMID: 15372017]
[EC 6.1.1.26 created 2007]
 
 
EC 6.1.1.27     
Accepted name: O-phospho-L-serine—tRNA ligase
Reaction: ATP + O-phospho-L-serine + tRNACys = AMP + diphosphate + O-phospho-L-seryl-tRNACys
Other name(s): O-phosphoseryl-tRNA ligase; non-canonical O-phosphoseryl-tRNA synthetase; SepRS
Systematic name: O-phospho-L-serine:tRNACys ligase (AMP-forming)
Comments: In organisms like Archaeoglobus fulgidus lacking EC 6.1.1.16 (cysteine—tRNA ligase) for the direct Cys-tRNACys formation, Cys-tRNACys is produced by an indirect pathway, in which EC 6.1.1.27 (O-phosphoseryl-tRNA ligase) ligates O-phosphoserine to tRNACys, and EC 2.5.1.73 (O-phospho-L-seryl-tRNA: Cys-tRNA synthase) converts the produced O-phospho-L-seryl-tRNACys to Cys-tRNACys. The SepRS/SepCysS pathway is the sole route for cysteine biosynthesis in the organism [1]. Methanosarcina mazei can use both pathways, the direct route using EC 6.1.1.16 (cysteine—tRNA ligase) and the indirect pathway with EC 6.1.1.27 and EC 2.5.1.73 (O-phospho-L-seryl-tRNA: Cys-tRNA synthase) [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fukunaga, R. and Yokoyama, S. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nat. Struct. Mol. Biol. 14 (2007) 272–279. [DOI] [PMID: 17351629]
2.  Hauenstein, S.I. and Perona, J.J. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J. Biol. Chem. 283 (2008) 22007–22017. [DOI] [PMID: 18559341]
[EC 6.1.1.27 created 2009]
 
 
EC 6.1.2.1     
Accepted name: D-alanine—(R)-lactate ligase
Reaction: D-alanine + (R)-lactate + ATP = D-alanyl-(R)-lactate + ADP + phosphate
Glossary: (R)-lactate = D-lactate
D-alanyl-(R)-lactate = D-alanyl-D-lactate = (2R)-2-(D-alanyloxy)propanoic acid = (R)-2-((R)-2-aminopropanoyloxy)propanoic acid
Other name(s): VanA; VanB; VanD
Systematic name: D-alanine:(R)-lactate ligase (ADP-forming)
Comments: The product of this enzyme, the depsipeptide D-alanyl-(R)-lactate, can be incorporated into the peptidoglycan pentapeptide instead of the usual D-alanyl-D-alanine dipeptide, which is formed by EC 6.3.2.4, D-alanine—D-alanine ligase. The resulting peptidoglycan does not bind the glycopeptide antibiotics vancomycin and teicoplanin, conferring resistance on the bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bugg, T.D., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P. and Walsh, C.T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30 (1991) 10408–10415. [PMID: 1931965]
2.  Meziane-Cherif, D., Badet-Denisot, M.A., Evers, S., Courvalin, P. and Badet, B. Purification and characterization of the VanB ligase associated with type B vancomycin resistance in Enterococcus faecalis V583. FEBS Lett. 354 (1994) 140–142. [DOI] [PMID: 7957913]
3.  Perichon, B., Reynolds, P. and Courvalin, P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob. Agents Chemother. 41 (1997) 2016–2018. [PMID: 9303405]
[EC 6.1.2.1 created 2010]
 
 
EC 6.1.2.2     
Accepted name: nebramycin 5′ synthase
Reaction: (1) tobramycin + carbamoyl phosphate + ATP + H2O = nebramycin 5′ + AMP + diphosphate + phosphate (overall reaction)
(1a) carbamoyl phosphate + ATP + H2O = diphosphate + O-carbamoyladenylate + phosphate
(1b) O-carbamoyladenylate + tobramycin = AMP + nebramycin 5′
(2) kanamycin A + carbamoyl phosphate + ATP + H2O = 6′′-O-carbamoylkanamycin A + AMP + diphosphate + phosphate (overall reaction)
(2a) carbamoyl phosphate + ATP + H2O = diphosphate + O-carbamoyladenylate + phosphate
(2b) O-carbamoyladenylate + kanamycin A = AMP + 6′′-O-carbamoylkanamycin A
For diagram of kanamycin A biosynthesis, click here
Glossary: tobramycin = (1S,2S,3R,4S,6R)-4,6-diamino-3-(2,6-diamino-2,3,6-trideoxy-α-D-ribo-hexopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy-α-D-glucopyranoside
nebramycin 5′ = (1S,2S,3R,4S,6R)-4,6-diamino-3-[(2,6-diamino-2,3,6-trideoxy-α-D-ribo-hexopyranosyl)oxy]-2-hydroxycyclohexyl 3-amino-6-O-carbamoyl-3-deoxy-α-D-glucopyranoside
kanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-(6-amino-6-deoxy--D-glucopyranosyloxy)-2-hydroxycyclohexyl 3-amino-3-deoxy--D-glucopyranoside
6′′-O-carbamoylkanamycin A = (1S,2R,3R,4S,6R)-4,6-diamino-3-[(6-amino-6-deoxy-α-D-glucopyranosyl)oxy]-2-hydroxycyclohexyl 3-amino-6-O-carbamoyl-3-deoxy-α-D-glucopyranoside
Other name(s): tobramycin carbamoyltransferase; TobZ
Systematic name: tobramycin:carbamoyl phosphate ligase (AMP,phosphate-forming)
Comments: Requires Fe(III). The enzyme from the bacterium Streptoalloteichus tenebrarius catalyses the activation of carbamoyl phosphate to O-carbamoyladenylate and the subsequent carbamoylation of kanamycin and tobramycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Parthier, C., Gorlich, S., Jaenecke, F., Breithaupt, C., Brauer, U., Fandrich, U., Clausnitzer, D., Wehmeier, U.F., Bottcher, C., Scheel, D. and Stubbs, M.T. The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew. Chem. Int. Ed. Engl. 51 (2012) 4046–4052. [DOI] [PMID: 22383337]
[EC 6.1.2.2 created 2014]
 
 
EC 6.1.3.1     
Accepted name: olefin β-lactone synthetase
Reaction: ATP + a (2R,3S)-2-alkyl-3-hydroxyalkanoate = AMP + diphosphate + a cis-3-alkyl-4-alkyloxetan-2-one
Other name(s): oleC (gene name)
Systematic name: (2R,3S)-2-alkyl-3-hydroxyalkanoate ligase (β-lactone,AMP-forming)
Comments: The enzyme, found in certain bacterial species, participates in a pathway for the production of olefins. It forms a β-lactone. The alkyl group at C2 of the substrate ends up as the 3-alkyl group of the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sukovich, D.J., Seffernick, J.L., Richman, J.E., Hunt, K.A., Gralnick, J.A. and Wackett, L.P. Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl. Environ. Microbiol. 76 (2010) 3842–3849. [DOI] [PMID: 20418444]
2.  Frias, J.A., Goblirsch, B.R., Wackett, L.P. and Wilmot, C.M. Cloning, purification, crystallization and preliminary X-ray diffraction of the OleC protein from Stenotrophomonas maltophilia involved in head-to-head hydrocarbon biosynthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 (2010) 1108–1110. [DOI] [PMID: 20823539]
3.  Kancharla, P., Bonnett, S.A. and Reynolds, K.A. Stenotrophomonas maltophilia OleC-catalyzed ATP-dependent formation of long-chain Z-olefins from 2-alkyl-3-hydroxyalkanoic acids. ChemBioChem 17 (2016) 1426–1429. [DOI] [PMID: 27238740]
4.  Christenson, J.K., Richman, J.E., Jensen, M.R., Neufeld, J.Y., Wilmot, C.M. and Wackett, L.P. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56 (2017) 348–351. [DOI] [PMID: 28029240]
[EC 6.1.3.1 created 2017]
 
 
EC 6.2.1.1     
Accepted name: acetate—CoA ligase
Reaction: ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase; acetyl activating enzyme; acetate thiokinase; acyl-activating enzyme; acetyl coenzyme A synthetase; acetic thiokinase; acetyl CoA ligase; acetyl CoA synthase; acetyl-coenzyme A synthase; short chain fatty acyl-CoA synthetase; short-chain acyl-coenzyme A synthetase; ACS
Systematic name: acetate:CoA ligase (AMP-forming)
Comments: Also acts on propanoate and propenoate.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-31-1
References:
1.  Chou, T.C. and Lipmann, F. Separation of acetyl transfer enzymes in pigeon liver extract. J. Biol. Chem. 196 (1952) 89–103. [PMID: 12980945]
2.  Eisenberg, M.A. The acetate-activating enzyme of Rhodospirillum rubrum. Biochim. Biophys. Acta 16 (1955) 58–65. [DOI] [PMID: 14363230]
3.  Hele, P. The acetate activating enzyme of beef heart. J. Biol. Chem. 206 (1954) 671–676. [PMID: 13143026]
4.  Millerd, A. and Bonner, J. Acetate activation and acetoacetate formation in plant systems. Arch. Biochem. Biophys. 49 (1954) 343–355. [DOI] [PMID: 13159282]
[EC 6.2.1.1 created 1961]
 
 
EC 6.2.1.2     
Accepted name: medium-chain acyl-CoA ligase
Reaction: ATP + a medium-chain fatty acid + CoA = AMP + diphosphate + a medium-chain acyl-CoA
Other name(s): fadK (gene name); lvaE (gene name); butyryl-CoA synthetase; fatty acid thiokinase (medium chain); acyl-activating enzyme; fatty acid elongase; fatty acid activating enzyme; fatty acyl coenzyme A synthetase; butyrate—CoA ligase; butyryl-coenzyme A synthetase; L-(+)-3-hydroxybutyryl CoA ligase; short-chain acyl-CoA synthetase; medium-chain acyl-CoA synthetase; butanoate:CoA ligase (AMP-forming)
Systematic name: medium-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on fatty acids from C4 to C11 and on the corresponding 3-hydroxy and 2,3- or 3,4-unsaturated acids. The enzyme from the bacterium Pseudomonas putida also acts on 4-oxo and 4-hydroxy derivatives.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9080-51-7
References:
1.  Mahler, H.R., Wakil, S.J. and Bock, R.M. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J. Biol. Chem. 204 (1953) 453–468. [PMID: 13084616]
2.  Massaro, E.J. and Lennarz, W.J. The partial purification and characterization of a bacterial fatty acyl coenzyme A synthetase. Biochemistry 4 (1965) 85–90. [PMID: 14285249]
3.  Websterlt, J.R., Gerowin, L.D. and Rakita, L. Purification and characteristics of a butyryl coenzyme A synthetase from bovine heart mitochondria. J. Biol. Chem. 240 (1965) 29–33. [PMID: 14253428]
4.  Morgan-Kiss, R.M. and Cronan, J.E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem. 279 (2004) 37324–37333. [PMID: 15213221]
5.  Rand, J.M., Pisithkul, T., Clark, R.L., Thiede, J.M., Mehrer, C.R., Agnew, D.E., Campbell, C.E., Markley, A.L., Price, M.N., Ray, J., Wetmore, K.M., Suh, Y., Arkin, A.P., Deutschbauer, A.M., Amador-Noguez, D. and Pfleger, B.F. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol 2 (2017) 1624–1634. [PMID: 28947739]
[EC 6.2.1.2 created 1961, modified 2011, modified 2018]
 
 
EC 6.2.1.3     
Accepted name: long-chain-fatty-acid—CoA ligase
Reaction: ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA
Glossary: a long-chain-fatty acid = a fatty acid with an aliphatic chain of 13-22 carbons.
Other name(s): acyl-CoA synthetase; fatty acid thiokinase (long chain); acyl-activating enzyme; palmitoyl-CoA synthase; lignoceroyl-CoA synthase; arachidonyl-CoA synthetase; acyl coenzyme A synthetase; acyl-CoA ligase; palmitoyl coenzyme A synthetase; thiokinase; palmitoyl-CoA ligase; acyl-coenzyme A ligase; fatty acid CoA ligase; long-chain fatty acyl coenzyme A synthetase; oleoyl-CoA synthetase; stearoyl-CoA synthetase; long chain fatty acyl-CoA synthetase; long-chain acyl CoA synthetase; fatty acid elongase; LCFA synthetase; pristanoyl-CoA synthetase; ACS3; long-chain acyl-CoA synthetase I; long-chain acyl-CoA synthetase II; fatty acyl-coenzyme A synthetase; long-chain acyl-coenzyme A synthetase; FAA1
Systematic name: long-chain fatty acid:CoA ligase (AMP-forming)
Comments: Acts on a wide range of long-chain saturated and unsaturated fatty acids, but the enzymes from different tissues show some variation in specificity. The liver enzyme acts on acids from C6 to C20; that from brain shows high activity up to C24.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-18-7
References:
1.  Bakken, A.M. and Farstad, M. Identical subcellular distribution of palmitoyl-CoA and arachidonoyl-CoA synthetase activities in human blood platelets. Biochem. J. 261 (1989) 71–76. [PMID: 2528345]
2.  Hosaka, K., Mishima, M., Tanaka, T., Kamiryo, T. and Numa, S. Acyl-coenzyme-A synthetase I from Candida lipolytica. Purification, properties and immunochemical studies. Eur. J. Biochem. 93 (1979) 197–203. [DOI] [PMID: 108099]
3.  Nagamatsu, K., Soeda, S., Mori, M. and Kishimoto, Y. Lignoceroyl-coenzyme A synthetase from developing rat brain: partial purification, characterization and comparison with palmitoyl-coenzyme A synthetase activity and liver enzyme. Biochim. Biophys. Acta 836 (1985) 80–88. [DOI] [PMID: 3161545]
4.  Tanaka, T., Hosaka, K., Hoshimaru, M. and Numa, S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur. J. Biochem. 98 (1979) 165–172. [DOI] [PMID: 467438]
[EC 6.2.1.3 created 1961, modified 1989, modified 2011]
 
 
EC 6.2.1.4     
Accepted name: succinate—CoA ligase (GDP-forming)
Reaction: GTP + succinate + CoA = GDP + phosphate + succinyl-CoA
For diagram of the citric-acid cycle, click here
Other name(s): succinyl-CoA synthetase (GDP-forming); succinyl coenzyme A synthetase (guanosine diphosphate-forming); succinate thiokinase (ambiguous); succinic thiokinase (ambiguous); succinyl coenzyme A synthetase (ambiguous); succinate-phosphorylating enzyme (ambiguous); P-enzyme; SCS (ambiguous); G-STK; succinyl coenzyme A synthetase (GDP-forming); succinyl CoA synthetase (ambiguous)
Systematic name: succinate:CoA ligase (GDP-forming)
Comments: Itaconate can act instead of succinate, and ITP instead of GTP.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9014-36-2
References:
1.  Hager, L.P. Succinyl CoA synthetase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 387–399.
2.  Kaufman, S., Gilvarg, C., Cori, O. and Ochoa, S. Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. Biol. Chem. 203 (1953) 869–888. [PMID: 13084656]
3.  Mazumder, R., Sanadi, D.R. and Rodwell, W.V. Purification and properties of hog kidney succinic thiokinase. J. Biol. Chem. 235 (1960) 2546–2550. [PMID: 13768680]
4.  Sanadi, D.R., Gibson, D.M. and Ayengar, P. Guanosine triphosphate, the primary product of phosphorylation coupled to the breakdown of succinyl coenzyme A. Biochim. Biophys. Acta 14 (1954) 434–436. [DOI] [PMID: 13181903]
[EC 6.2.1.4 created 1961]
 
 
EC 6.2.1.5     
Accepted name: succinate—CoA ligase (ADP-forming)
Reaction: ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
For diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Other name(s): succinyl-CoA synthetase (ADP-forming); succinic thiokinase (ambiguous); succinate thiokinase (ambiguous); succinyl-CoA synthetase (ambiguous); succinyl coenzyme A synthetase (adenosine diphosphate-forming); succinyl coenzyme A synthetase (ambiguous); A-STK (adenin nucleotide-linked succinate thiokinase); STK (ambiguous); A-SCS
Systematic name: succinate:CoA ligase (ADP-forming)
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9080-33-5
References:
1.  Hager, L.P. Succinyl CoA synthetase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 387–399.
2.  Kaufman, S. Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. Biol. Chem. 216 (1955) 153–164. [PMID: 13252015]
3.  Kaufman, S. and Alivasatos, S.G.A. Purification and properties of the phosphorylating enzyme from spinach. J. Biol. Chem. 216 (1955) 141–152. [PMID: 13252014]
[EC 6.2.1.5 created 1961]
 
 
EC 6.2.1.6     
Accepted name: glutarate—CoA ligase
Reaction: ATP + glutarate + CoA = ADP + phosphate + glutaryl-CoA
Other name(s): glutaryl-CoA synthetase; glutaryl coenzyme A synthetase
Systematic name: glutarate:CoA ligase (ADP-forming)
Comments: GTP or ITP can act instead of ATP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9023-68-1
References:
1.  Menon, G.K.K., Friedman, D.L. and Stern, J.R. Enzymic synthesis of glutaryl-coenzyme A. Biochim. Biophys. Acta 44 (1960) 375–377. [DOI] [PMID: 13769477]
[EC 6.2.1.6 created 1961]
 
 
EC 6.2.1.7     
Accepted name: cholate—CoA ligase
Reaction: (1) ATP + cholate + CoA = AMP + diphosphate + choloyl-CoA
(2) ATP + (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oate + CoA = AMP + diphosphate + (25R)-3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA
For diagram of cholic acid conjugates biosynthesis, click here and for diagram of cholic acid biosynthesis (sidechain), click here
Glossary: cholate = 3α,7α,12α-trihydroxy-5β-cholan-24-oate
trihydroxycoprostanoate = 3α,7α,12α-trihydroxy-5β-cholestan-26-oate
Other name(s): BAL; bile acid CoA ligase; bile acid coenzyme A ligase; choloyl-CoA synthetase; choloyl coenzyme A synthetase; cholic thiokinase; cholate thiokinase; cholic acid:CoA ligase; 3α,7α,12α-trihydroxy-5β-cholestanoyl coenzyme A synthetase; 3α,7α,12α-trihydroxy-5β-cholestanoate-CoA ligase; 3α,7α,12α-trihydroxy-5β-cholestanoate-CoA synthetase; THCA-CoA ligase; 3α,7α,12α-trihydroxy-5β-cholestanate—CoA ligase; 3α,7α,12α-trihydroxy-5β-cholestanate:CoA ligase (AMP-forming); cholyl-CoA synthetase; trihydroxycoprostanoyl-CoA synthetase
Systematic name: cholate:CoA ligase (AMP-forming)
Comments: Requires Mg2+ for activity. The mammalian enzyme is membrane-bound and catalyses the first step in the conjugation of bile acids with amino acids, converting bile acids into their acyl-CoA thioesters. Chenodeoxycholate, deoxycholate, lithocholate and trihydroxycoprostanoate can also act as substrates [7]. The bacterial enzyme is soluble and participates in an anaerobic bile acid 7 α-dehydroxylation pathway [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-90-1
References:
1.  Elliott, W.H. The enzymic activation of cholic acid by guinea-pig-liver microsomes. Biochem. J. 62 (1956) 427–433. [PMID: 13303991]
2.  Elliott, W.H. The breakdown of adenosine triphosphate accompanying cholic acid activation by guinea-pig liver microsomes. Biochem. J. 65 (1957) 315–321. [PMID: 13403911]
3.  Prydz, K., Kase, B.F., Björkhem, I. and Pedersen, J.I. Subcellular localization of 3α,7α-dihydroxy- and 3α,7α,12α-trihydroxy-5β-cholestanoyl-coenzyme A ligase(s) in rat liver. J. Lipid Res. 29 (1988) 997–1004. [PMID: 3183523]
4.  Schepers, L., Casteels, M., Verheyden, K., Parmentier, G., Asselberghs, S., Eyssen, H.J. and Mannaerts, G.P. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. Biochem. J. 257 (1989) 221–229. [PMID: 2521999]
5.  Mallonee, D.H., Adams, J.L. and Hylemon, P.B. The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. J. Bacteriol. 174 (1992) 2065–2071. [DOI] [PMID: 1551828]
6.  Wheeler, J.B., Shaw, D.R. and Barnes, S. Purification and characterization of a rat liver bile acid coenzyme A ligase from rat liver microsomes. Arch. Biochem. Biophys. 348 (1997) 15–24. [DOI] [PMID: 9390170]
7.  Falany, C.N., Xie, X., Wheeler, J.B., Wang, J., Smith, M., He, D. and Barnes, S. Molecular cloning and expression of rat liver bile acid CoA ligase. J. Lipid Res. 43 (2002) 2062–2071. [PMID: 12454267]
[EC 6.2.1.7 created 1961 (EC 6.2.1.29 created 1992, incorporated 2005), modified 2005]
 
 
EC 6.2.1.8     
Accepted name: oxalate—CoA ligase
Reaction: ATP + oxalate + CoA = AMP + diphosphate + oxalyl-CoA
Other name(s): oxalyl-CoA synthetase; oxalyl coenzyme A synthetase
Systematic name: oxalate:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-57-3
References:
1.  Giovanelli, J. Oxalyl-coenzyme A synthetase from pea seeds. Biochim. Biophys. Acta 118 (1966) 124–143. [PMID: 4288975]
[EC 6.2.1.8 created 1972]
 
 
EC 6.2.1.9     
Accepted name: malate—CoA ligase
Reaction: ATP + malate + CoA = ADP + phosphate + malyl-CoA
Other name(s): malyl-CoA synthetase; malyl coenzyme A synthetase; malate thiokinase
Systematic name: malate:CoA ligase (ADP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37318-58-4
References:
1.  Mue, S., Tuboi, S. and Kikuchi, G. On malyl-coenzyme A synthetase. J. Biochem. (Tokyo) 56 (1964) 545–551. [PMID: 14244056]
[EC 6.2.1.9 created 1972]
 
 
EC 6.2.1.10     
Accepted name: carboxylic acid—CoA ligase (GDP-forming)
Reaction: GTP + a carboxylate + CoA = GDP + phosphate + acyl-CoA
Other name(s): acyl-CoA synthetase (GDP-forming); acyl coenzyme A synthetase (guanosine diphosphate forming)
Systematic name: carboxylic acid:CoA ligase (GDP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37318-59-5
References:
1.  Rossi, C.R. and Gibson, D.M. Activation of fatty acids by a guanosine triphosphate-specific thiokinase from liver mitochondria. J. Biol. Chem. 239 (1964) 1694–1699. [PMID: 14213337]
[EC 6.2.1.10 created 1972, modified 2011]
 
 
EC 6.2.1.11     
Accepted name: biotin—CoA ligase
Reaction: ATP + biotin + CoA = AMP + diphosphate + biotinyl-CoA
Other name(s): biotinyl-CoA synthetase; biotin CoA synthetase; biotinyl coenzyme A synthetase
Systematic name: biotin:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37318-60-8
References:
1.  Christner, J.E., Schlesinger, M.J. and Coon, M.J. Enzymatic activation of biotin. Biotinyl adenylate formation. J. Biol. Chem. 239 (1964) 3997–4005. [PMID: 14257635]
[EC 6.2.1.11 created 1972]
 
 
EC 6.2.1.12     
Accepted name: 4-coumarate—CoA ligase
Reaction: ATP + 4-coumarate + CoA = AMP + diphosphate + 4-coumaroyl-CoA
For diagram of chalcone and stilbene biosynthesis, click here
Glossary: 4-coumarate = 3-(4-hydroxyphenyl)prop-2-enoate
Other name(s): 4-coumaroyl-CoA synthetase; p-coumaroyl CoA ligase; p-coumaryl coenzyme A synthetase; p-coumaryl-CoA synthetase; p-coumaryl-CoA ligase; feruloyl CoA ligase; hydroxycinnamoyl CoA synthetase; 4-coumarate:coenzyme A ligase; caffeolyl coenzyme A synthetase; p-hydroxycinnamoyl coenzyme A synthetase; feruloyl coenzyme A synthetase; sinapoyl coenzyme A synthetase; 4-coumaryl-CoA synthetase; hydroxycinnamate:CoA ligase; p-coumaryl-CoA ligase; p-hydroxycinnamic acid:CoA ligase; 4CL
Systematic name: 4-coumarate:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37332-51-7
References:
1.  Gross, G.G. and Zenk, M.H. Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissue of Forsythia. Eur. J. Biochem. 42 (1974) 453–459. [DOI] [PMID: 4364250]
2.  Lindl, T., Kreuzaler, F. and Hahlbrock, F. Synthesis of p-coumaroyl coenzyme A with a partially purified p-coumarate:CoA ligase from cell suspension cultures of soybean (Glycine max). Biochim. Biophys. Acta 302 (1973) 457–464. [DOI] [PMID: 4699252]
[EC 6.2.1.12 created 1976]
 
 
EC 6.2.1.13     
Accepted name: acetate—CoA ligase (ADP-forming)
Reaction: ATP + acetate + CoA = ADP + phosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase (ADP-forming); acetyl coenzyme A synthetase (adenosine diphosphate-forming); acetate thiokinase
Systematic name: acetate:CoA ligase (ADP-forming)
Comments: Also acts on propanoate and, very slowly, on butanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 62009-85-2
References:
1.  Reeves, R.E., Warren, L.G., Susskind, B. and Lo, H.-S. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J. Biol. Chem. 252 (1977) 726–731. [PMID: 13076]
[EC 6.2.1.13 created 1978]
 
 
EC 6.2.1.14     
Accepted name: 6-carboxyhexanoate—CoA ligase
Reaction: ATP + 6-carboxyhexanoate + CoA = AMP + diphosphate + 6-carboxyhexanoyl-CoA
Other name(s): 6-carboxyhexanoyl-CoA synthetase; pimelyl-CoA synthetase
Systematic name: 6-carboxyhexanoate:CoA ligase (AMP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55467-50-0
References:
1.  Izumi, Y., Morita, H., Sato, K., Tani, Y. and Ogata, K. Synthesis of biotin-vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria. Biochim. Biophys. Acta 264 (1972) 210–213. [DOI] [PMID: 4623286]
2.  Izumi, Y., Morita, H., Tani, Y. and Ogata, K. The pimelyl-CoA synthetase responsible for the first step in biotin biosynthesis by microorganisms. Agric. Biol. Chem. 38 (1974) 2257–2262.
[EC 6.2.1.14 created 1983]
 
 
EC 6.2.1.15     
Accepted name: arachidonate—CoA ligase
Reaction: ATP + arachidonate + CoA = AMP + diphosphate + arachidonoyl-CoA
Glossary: arachidonate = (all-Z)-icosa-5,8,11,14-tetraenoate
Other name(s): arachidonoyl-CoA synthetase
Systematic name: arachidonate:CoA ligase (AMP-forming)
Comments: Not identical with EC 6.2.1.3 long-chain-fatty-acid—CoA ligase. Icosa-8,11,14-trienoate, but not the other long-chain fatty acids, can act in place of arachidonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82047-87-8
References:
1.  Wilson, D.B., Prescott, S.M. and Majerus, P.W. Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J. Biol. Chem. 257 (1982) 3510–3515. [PMID: 7061494]
[EC 6.2.1.15 created 1984]
 
 
EC 6.2.1.16     
Accepted name: acetoacetate—CoA ligase
Reaction: ATP + acetoacetate + CoA = AMP + diphosphate + acetoacetyl-CoA
For diagram of mevalonate biosynthesis, click here
Other name(s): acetoacetyl-CoA synthetase
Systematic name: acetoacetate:CoA ligase (AMP-forming)
Comments: Also acts, more slowly, on L-3-hydroxybutanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39394-62-2
References:
1.  Fukui, T., Ito, M. and Tomita, K. Purification and characterization of acetoacetyl-CoA synthetase from Zoogloea ramigera I-16-M. Eur. J. Biochem. 127 (1982) 423–428. [DOI] [PMID: 7140777]
[EC 6.2.1.16 created 1984]
 
 
EC 6.2.1.17     
Accepted name: propionate—CoA ligase
Reaction: ATP + propanoate + CoA = AMP + diphosphate + propanoyl-CoA
Other name(s): propionyl-CoA synthetase
Systematic name: propanoate:CoA ligase (AMP-forming)
Comments: Propenoate can act instead of propanoate. Not identical with EC 6.2.1.1 (acetate—CoA ligase) or EC 6.2.1.2 (butyrate—CoA ligase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55326-49-3
References:
1.  Ricks, C.A. and Cook, R.M. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver. J. Dairy Sci. 64 (1981) 2324–2335. [DOI] [PMID: 7341659]
[EC 6.2.1.17 created 1984]
 
 
EC 6.2.1.18     
Accepted name: citrate—CoA ligase
Reaction: ATP + citrate + CoA = ADP + phosphate + (3S)-citryl-CoA
Glossary: citrate = 2-hydroxypropane-1,2,3-tricarboxylate
Other name(s): citryl-CoA synthetase; citrate:CoA ligase; citrate thiokinase
Systematic name: citrate:CoA ligase (ADP-forming)
Comments: The enzyme is a component of EC 2.3.3.8 ATP citrate synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 856428-87-0
References:
1.  Lill, U., Schreil, A. and Eggerer, H. Isolation of enzymically active fragments formed by limited proteolysis of ATP citrate lyase. Eur. J. Biochem. 125 (1982) 645–650. [DOI] [PMID: 6749502]
2.  Aoshima, M., Ishii, M. and Igarashi, Y. A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol. Microbiol. 52 (2004) 751–761. [DOI] [PMID: 15101981]
[EC 6.2.1.18 created 1986]
 
 
EC 6.2.1.19     
Accepted name: long-chain-fatty-acid—protein ligase
Reaction: ATP + a long-chain fatty acid + [protein]-L-cysteine = AMP + diphosphate + a [protein]-S-(long-chain-acyl)-L-cysteine
Other name(s): luxE (gene name); acyl-protein synthetase; long-chain-fatty-acid—luciferin-component ligase
Systematic name: long-chain-fatty-acid:protein ligase (AMP-forming)
Comments: Together with a hydrolase component (EC 3.1.2.2/EC 3.1.2.14) and a reductase component (EC 1.2.1.50), this enzyme forms a multienzyme fatty acid reductase complex that produces the long-chain aldehyde substrate of the bacterial luciferase enzyme (EC 1.14.14.3). The enzyme activates free long-chain fatty acids, generated by the action of the transferase component, forming a fatty acyl-AMP intermediate, followed by the transfer of the acyl group to an internal L-cysteine residue. It then transfers the acyl group to EC 1.2.1.50, long-chain acyl-protein thioester reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82657-98-5
References:
1.  Riendeau, D., Rodrigues, A. and Meighen, E. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J. Biol. Chem. 257 (1982) 6908–6915. [PMID: 7085612]
2.  Rodriguez, A. and Meighen, E. Fatty acyl-AMP as an intermediate in fatty acid reduction to aldehyde in luminescent bacteria. J. Biol. Chem. 260 (1985) 771–774. [PMID: 3968067]
3.  Wall, L. and Meighen, E.A. Subunit structure of the fatty-acid reductase complex from Photobacterium phosphoreum. Biochemistry 25 (1986) 4315–4321.
4.  Soly, R.R. and Meighen, E.A. Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria. J. Mol. Biol. 219 (1991) 69–77. [DOI] [PMID: 2023262]
5.  Lin, J.W., Chao, Y.F. and Weng, S.F. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi. Biochem. Biophys. Res. Commun. 228 (1996) 764–773. [DOI] [PMID: 8941351]
[EC 6.2.1.19 created 1986, modified 2011, modified 2016]
 
 
EC 6.2.1.20     
Accepted name: long-chain-fatty-acid—[acyl-carrier-protein] ligase
Reaction: ATP + a long-chain fatty acid + an [acyl-carrier protein] = AMP + diphosphate + a long-chain acyl-[acyl-carrier protein]
Other name(s): acyl-[acyl-carrier-protein] synthetase (ambiguous); acyl-ACP synthetase (ambiguous); stearoyl-ACP synthetase; acyl-acyl carrier protein synthetase (ambiguous); long-chain-fatty-acid:[acyl-carrier-protein] ligase (AMP-forming)
Systematic name: long-chain-fatty-acid:[acyl-carrier protein] ligase (AMP-forming)
Comments: The enzyme ligates long chain fatty acids (with aliphatic chain of 13-22 carbons) to an acyl-carrier protein. Not identical with EC 6.2.1.3 long-chain-fatty-acid—CoA ligase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 77322-37-3
References:
1.  Ray, T.K. and Cronan, J.E., Jr. Activation of long chain fatty acids with acyl carrier protein: demonstration of a new enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli. Proc. Natl. Acad. Sci. USA 73 (1976) 4374–4378. [DOI] [PMID: 794875]
2.  Kaczmarzyk, D. and Fulda, M. Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol. 152 (2010) 1598–1610. [DOI] [PMID: 20061450]
[EC 6.2.1.20 created 1986]
 
 
EC 6.2.1.22     
Accepted name: [citrate (pro-3S)-lyase] ligase
Reaction: ATP + acetate + holo-[citrate (pro-3S)-lyase] = AMP + diphosphate + acetyl-[citrate (pro-3S)-lyase]
Glossary: citrate = 2-hydroxypropane-1,2,3-tricarboxylate
Other name(s): citrate lyase ligase; citrate lyase synthetase; acetate: SH-[acyl-carrier-protein] enzyme ligase (AMP); acetate:HS-citrate lyase ligase; acetate:citrate-(pro-3S)-lyase(thiol-form) ligase (AMP-forming); acetate:[citrate-(pro-3S)-lyase](thiol-form) ligase (AMP-forming)
Systematic name: acetate:holo-[citrate-(pro-3S)-lyase] ligase (AMP-forming)
Comments: Both this enzyme and EC 2.3.1.49,deacetyl-[citrate-(pro-3S)-lyase] S-acetyltransferase, acetylate and activate EC 4.1.3.6, citrate (pro-3S)-lyase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52660-22-7
References:
1.  Antranikian, G. and Gottschalk, G. Copurification of citrate lyase and citrate lyase ligase from Rhodopseudomonas gelatinosa and subsequent separation of the two enzymes. Eur. J. Biochem. 126 (1982) 43–47. [DOI] [PMID: 7128585]
2.  Antranikian, G., Herzberg, C. and Gottschalk, G. Covalent modification of citrate lyase ligase from Clostridium sphenoides by phosphorylation/dephosphorylation. Eur. J. Biochem. 153 (1985) 413–420. [DOI] [PMID: 3935436]
3.  Quentmeier, A. and Antranikian, G. Characterization of citrate lyase from Clostridium sporosphaeroides. Arch. Microbiol. 141 (1985) 85–90. [PMID: 3994485]
4.  Schmellenkamp, H. and Eggerer, H. Mechanism of enzymic acetylation of des-acetyl citrate lyase. Proc. Natl. Acad. Sci. USA 71 (1974) 1987–1991. [DOI] [PMID: 4365579]
[EC 6.2.1.22 created 1989]
 
 
EC 6.2.1.23     
Accepted name: dicarboxylate—CoA ligase
Reaction: ATP + an α,ω-dicarboxylate + CoA = AMP + diphosphate + an ω-carboxyacyl-CoA
Other name(s): carboxylyl-CoA synthetase; dicarboxylyl-CoA synthetase
Systematic name: ω-dicarboxylate:CoA ligase (AMP-forming)
Comments: Acts on dicarboxylic acids of chain length C5 to C16; the best substrate is dodecanedioic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 99332-77-1
References:
1.  Vamecq, J., de Hoffmann, E. and van Hoof, F. The microsomal dicarboxylyl-CoA synthetase. Biochem. J. 230 (1985) 683–693. [PMID: 4062873]
[EC 6.2.1.23 created 1989, modified 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald