The Enzyme Database

Your query returned 9 entries.    printer_iconPrintable version

EC 1.7.3.5     
Accepted name: 3-aci-nitropropanoate oxidase
Reaction: 3-aci-nitropropanoate + O2 + H2O = 3-oxopropanoate + nitrite + H2O2
Other name(s): propionate-3-nitronate oxidase
Systematic name: 3-aci-nitropropanoate:oxygen oxidoreductase
Comments: A flavoprotein (FMN). The primary products of the enzymic reaction are probably the nitropropanoate free radical and superoxide. Also acts, more slowly, on 4-aci-nitrobutanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111940-52-4
References:
1.  Porter, D.J.T. and Bright, H.J. Propionate-3-nitronate oxidase from Penicillium atrovenetum is a flavoprotein which initiates the autoxidation of its substrate by O2. J. Biol. Chem. 262 (1987) 14428–14434. [PMID: 3667582]
[EC 1.7.3.5 created 1990]
 
 
EC 1.10.3.2     
Accepted name: laccase
Reaction: 4 benzenediol + O2 = 4 benzosemiquinone + 2 H2O
Other name(s): urishiol oxidase; urushiol oxidase; p-diphenol oxidase
Systematic name: benzenediol:oxygen oxidoreductase
Comments: A group of multi-copper proteins of low specificity acting on both o- and p-quinols, and often acting also on aminophenols and phenylenediamine. The semiquinone may react further either enzymically or non-enzymically.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 80498-15-3
References:
1.  Dawson, C.R. and Tarpley, W.B. The copper oxidases. In: Sumner, J.B. and Myrbäck, K. (Ed.), The Enzymes, 1st edn, vol. 2, Academic Press, New York, 1951, pp. 454–498.
2.  Keilin, D. and Mann, T. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature (Lond.) 143 (1939) 23–24.
3.  Malmström, B.G., Andréasson, L.-E. and Reinhammar, B. Copper-containing oxidases and superoxide dismutase. In: Boyer, P.D. (Ed.), The Enzymes, 3rd edn, vol. 12, Academic Press, New York, 1975, pp. 507–579.
4.  Mayer, A.M. and Harel, E. Polyphenol oxidases in plants. Phytochemistry 18 (1979) 193–215.
5.  Nakamura, T. Purification and physico-chemical properties of laccase. Biochim. Biophys. Acta 30 (1958) 44–52. [DOI] [PMID: 13584395]
6.  Nakamura, T. Stoichiometric studies on the action of laccase. Biochim. Biophys. Acta 30 (1958) 538–542. [DOI] [PMID: 13618260]
7.  Peisach, J. and Levine, W.G. A comparison of the enzymic activities of pig ceruloplasmin and Rhus vernicifera laccase. J. Biol. Chem. 240 (1965) 2284–2289. [PMID: 14304827]
8.  Reinhammar, B. and Malmström, B.G. "Blue" copper-containing oxidases. In: Spiro, T.G. (Ed.), Copper Proteins, Copper Proteins, New York, 1981, pp. 109–149.
[EC 1.10.3.2 created 1961, deleted 1972, reinstated 1978]
 
 
EC 1.10.3.17     
Accepted name: superoxide oxidase
Reaction: 2 O2 + ubiquinol = 2 superoxide + ubiquinone + 2 H+
Other name(s): SOO; CybB; cytochrome b561; superoxide:ubiquinone oxidoreductase
Systematic name: ubiquinol:oxygen oxidoreductase (superoxide-forming)
Comments: This membrane-bound, di-heme containing enzyme, identified in the bacterium Escherichia coli, is responsible for the detoxification of superoxide in the periplasm. In vivo the reaction proceeds in the opposite direction of that shown and produces oxygen. Superoxide production was only observed when the enzyme was incubated in vitro with an excess of ubiquinol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Murakami, H., Kita, K. and Anraku, Y. Cloning of cybB, the gene for cytochrome b561 of Escherichia coli K12. Mol. Gen. Genet. 198 (1984) 1–6. [PMID: 6097799]
2.  Murakami, H., Kita, K. and Anraku, Y. Purification and properties of a diheme cytochrome b561 of the Escherichia coli respiratory chain. J. Biol. Chem. 261 (1986) 548–551. [PMID: 3510204]
3.  Lundgren, C.AK., Sjostrand, D., Biner, O., Bennett, M., Rudling, A., Johansson, A.L., Brzezinski, P., Carlsson, J., von Ballmoos, C. and Hogbom, M. Scavenging of superoxide by a membrane-bound superoxide oxidase. Nat. Chem. Biol. 14 (2018) 788–793. [PMID: 29915379]
[EC 1.10.3.17 created 2019]
 
 
EC 1.13.11.52     
Accepted name: indoleamine 2,3-dioxygenase
Reaction: (1) D-tryptophan + O2 = N-formyl-D-kynurenine
(2) L-tryptophan + O2 = N-formyl-L-kynurenine
For diagram of tryptophan catabolism, click here
Other name(s): IDO (ambiguous); tryptophan pyrrolase (ambiguous); D-tryptophan:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: D-tryptophan:oxygen 2,3-oxidoreductase (ring-opening)
Comments: A protohemoprotein. Requires ascorbic acid and methylene blue for activity. This enzyme has broader substrate specificity than EC 1.13.11.11, tryptophan 2,3-dioxygenase [1]. It is induced in response to pathological conditions and host-defense mechanisms and its distribution in mammals is not confined to the liver [2]. While the enzyme is more active with D-tryptophan than L-tryptophan, its only known function to date is in the metabolism of L-tryptophan [2,6]. Superoxide radicals can replace O2 as oxygen donor [4,7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-51-1
References:
1.  Yamamoto, S. and Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 242 (1967) 5260–5266. [PMID: 6065097]
2.  Yasui, H., Takai, K., Yoshida, R. and Hayaishi, O. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc. Natl. Acad. Sci. USA 83 (1986) 6622–6626. [DOI] [PMID: 2428037]
3.  Takikawa, O., Yoshida, R., Kido, R. and Hayaishi, O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem. 261 (1986) 3648–3653. [PMID: 2419335]
4.  Hirata, F., Ohnishi, T. and Hayaishi, O. Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. O2- complex. J. Biol. Chem. 252 (1977) 4637–4642. [PMID: 194886]
5.  Dang, Y., Dale, W.E. and Brown, O.R. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic. Biol. Med. 28 (2000) 615–624. [DOI] [PMID: 10719243]
6.  Littlejohn, T.K., Takikawa, O., Truscott, R.J. and Walker, M.J. Asp274 and His346 are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase. J. Biol. Chem. 278 (2003) 29525–29531. [DOI] [PMID: 12766158]
7.  Thomas, S.R. and Stocker, R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 4 (1999) 199–220. [DOI] [PMID: 10731095]
8.  Sono, M. Spectroscopic and equilibrium studies of ligand and organic substrate binding to indolamine 2,3-dioxygenase. Biochemistry 29 (1990) 1451–1460. [PMID: 2334706]
[EC 1.13.11.52 created 2006]
 
 
EC 1.13.12.16     
Accepted name: nitronate monooxygenase
Reaction: ethylnitronate + O2 = acetaldehyde + nitrite + other products
Other name(s): NMO; 2-nitropropane dioxygenase (incorrect)
Systematic name: nitronate:oxygen 2-oxidoreductase (nitrite-forming)
Comments: Previously classified as 2-nitropropane dioxygenase (EC 1.13.11.32), but it is now recognized that this was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Neither hydrogen peroxide nor superoxide were detected during enzyme turnover. Active towards linear alkyl nitronates of lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The enzyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Francis, K., Russell, B. and Gadda, G. Involvement of a flavosemiquinone in the enzymatic oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase. J. Biol. Chem. 280 (2005) 5195–5204. [DOI] [PMID: 15582992]
2.  Ha, J.Y., Min, J.Y., Lee, S.K., Kim, H.S., Kim do, J., Kim, K.H., Lee, H.H., Kim, H.K., Yoon, H.J. and Suh, S.W. Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base. J. Biol. Chem. 281 (2006) 18660–18667. [DOI] [PMID: 16682407]
3.  Gadda, G. and Francis, K. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis. Arch. Biochem. Biophys. 493 (2010) 53–61. [DOI] [PMID: 19577534]
4.  Francis, K. and Gadda, G. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase. Bioorg. Chem. 37 (2009) 167–172. [DOI] [PMID: 19683782]
[EC 1.13.12.16 created 1984 as EC 1.13.11.32, transferred 2009 to EC 1.13.12.16, modified 2011]
 
 
EC 1.15.1.1     
Accepted name: superoxide dismutase
Reaction: 2 superoxide + 2 H+ = O2 + H2O2
Glossary: superoxide = O2.-
Other name(s): superoxidase dismutase; copper-zinc superoxide dismutase; Cu-Zn superoxide dismutase; ferrisuperoxide dismutase; superoxide dismutase I; superoxide dismutase II; SOD; Cu,Zn-SOD; Mn-SOD; Fe-SOD; SODF; SODS; SOD-1; SOD-2; SOD-3; SOD-4; hemocuprein; erythrocuprein; cytocuprein; cuprein; hepatocuprein
Systematic name: superoxide:superoxide oxidoreductase
Comments: A metalloprotein; also known as erythrocuprein, hemocuprein or cytocuprein. Enzymes from most eukaryotes contain both copper and zinc; those from mitochondria and most prokaryotes contain manganese or iron.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9054-89-1
References:
1.  Keele, B.B., McCord, J.M. and Fridovich, I. Further characterization of bovine superoxide dismutase and its isolation from bovine heart. J. Biol. Chem. 246 (1971) 2875–2880. [PMID: 4324341]
2.  Sawada, Y., Ohyama, T. and Yamazaki, I. Preparation and physicochemical properties of green pea superoxide dismutase. Biochim. Biophys. Acta 268 (1972) 305–312. [DOI] [PMID: 4337330]
3.  Vance, P.G., Keele, B.B. and Rajagopalan, K.V. Superoxide dismutase from Streptococcus mutans. Isolation and characterization of two forms of the enzyme. J. Biol. Chem. 247 (1972) 4782–4786. [PMID: 4559499]
[EC 1.15.1.1 created 1972]
 
 
EC 1.15.1.2     
Accepted name: superoxide reductase
Reaction: superoxide + reduced rubredoxin + 2 H+ = H2O2 + oxidized rubredoxin
Glossary: rubredoxin = iron-containing protein found in sulfur-metabolizing bacteria and archaea, participating in electron transfer
Other name(s): neelaredoxin; desulfoferrodoxin
Systematic name: rubredoxin:superoxide oxidoreductase
Comments: The enzyme contains non-heme iron.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 250679-67-5
References:
1.  Jenney, F.E., Jr., Verhagen, M.F.J.M., Cui, X. and Adams, M.W.W. Anaerobic microbes: Oxygen detoxification without superoxide dismutase. Science 286 (1999) 306–309. [DOI] [PMID: 10514376]
2.  Yeh, A.P., Hu, Y., Jenney, F.E., Jr., Adams, M.W.W. and Rees, D.C. Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states. Biochemistry 39 (2000) 2499–2508. [DOI] [PMID: 10704199]
3.  Lombard, M., Fontecave, M., Touati, D. and Niviere, V. Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J. Biol. Chem. 275 (2000) 115–121. [DOI] [PMID: 10617593]
4.  Abreu, I.A., Saraiva, L.M., Carita, J., Huber, H., Stetter, K.O., Cabelli, D. and Teixeira, M. Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin. Mol. Microbiol. 38 (2000) 322–334. [DOI] [PMID: 11069658]
[EC 1.15.1.2 created 2001 as EC 1.18.96.1, transferred 2001 to EC 1.15.1.2]
 
 
EC 1.17.3.2     
Accepted name: xanthine oxidase
Reaction: xanthine + H2O + O2 = urate + H2O2
For diagram of AMP catabolism, click here
Glossary: 4-mercuribenzoate = (4-carboxylatophenyl)mercury
Other name(s): hypoxanthine oxidase; hypoxanthine:oxygen oxidoreductase; Schardinger enzyme; xanthine oxidoreductase; hypoxanthine-xanthine oxidase; xanthine:O2 oxidoreductase; xanthine:xanthine oxidase
Systematic name: xanthine:oxygen oxidoreductase
Comments: An iron-molybdenum flavoprotein (FAD) containing [2Fe-2S] centres. Also oxidizes hypoxanthine, some other purines and pterins, and aldehydes, but is distinct from EC 1.2.3.1, aldehyde oxidase. Under some conditions the product is mainly superoxide rather than peroxide: RH + H2O + 2 O2 = ROH + 2 O2.- + 2 H+. The mammalian enzyme predominantly exists as an NAD-dependent dehydrogenase (EC 1.17.1.4, xanthine dehydrogenase). During purification the enzyme is largely converted to the O2-dependent xanthine oxidase form (EC 1.17.3.2). The conversion can be triggered by several mechanisms, including the oxidation of cysteine thiols to form disulfide bonds [4,5,7,10] [which can be catalysed by EC 1.8.4.7, enzyme-thiol transhydrogenase (glutathione-disulfide) in the presence of glutathione disulfide] or limited proteolysis, which results in irreversible conversion. The conversion can also occur in vivo [4,6,10].
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9002-17-9
References:
1.  Avis, P.G., Bergel, F. and Bray, R.C. Cellular constituents. The chemistry of xanthine oxidase. Part I. The preparation of a crystalline xanthine oxidase from cow's milk. J. Chem. Soc. (Lond.) (1955) 1100–1105.
2.  Battelli, M.G. and Lorenzoni, E. Purification and properties of a new glutathione-dependent thiol:disulphide oxidoreductase from rat liver. Biochem. J. 207 (1982) 133–138. [PMID: 6960894]
3.  Bray, R.C. Xanthine oxidase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 7, Academic Press, New York, 1963, pp. 533–556.
4.  Della Corte, E. and Stirpe, F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J. 126 (1972) 739–745. [PMID: 4342395]
5.  Ikegami, T. and Nishino, T. The presence of desulfo xanthine dehydrogenase in purified and crude enzyme preparations from rat liver. Arch. Biochem. Biophys. 247 (1986) 254–260. [DOI] [PMID: 3459393]
6.  Engerson, T.D., McKelvey, T.G., Rhyne, D.B., Boggio, E.B., Snyder, S.J. and Jones, H.P. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J. Clin. Invest. 79 (1987) 1564–1570. [DOI] [PMID: 3294898]
7.  Saito, T., Nishino, T. and Tsushima, K. Interconversion between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase and difference in kinetic and redox properties between them. Adv. Exp. Med. Biol. 253B (1989) 179–183. [PMID: 2610112]
8.  Carpani, G., Racchi, M., Ghezzi, P., Terao, M. and Garattini, E. Purification and characterization of mouse liver xanthine oxidase. Arch. Biochem. Biophys. 279 (1990) 237–241. [DOI] [PMID: 2350174]
9.  Eger, B.T., Okamoto, K., Enroth, C., Sato, M., Nishino, T., Pai, E.F. and Nishino, T. Purification, crystallization and preliminary X-ray diffraction studies of xanthine dehydrogenase and xanthine oxidase isolated from bovine milk. Acta Crystallogr. D Biol. Crystallogr. 56 (2000) 1656–1658. [PMID: 11092937]
10.  Nishino, T., Okamoto, K., Eger, B.T., Pai, E.F. and Nishino, T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 275 (2008) 3278–3289. [DOI] [PMID: 18513323]
[EC 1.17.3.2 created 1961 as EC 1.2.3.2, transferred 1984 to EC 1.1.3.22, modified 1989, transferred 2004 to EC 1.17.3.2, modified 2011]
 
 
EC 1.18.96.1      
Transferred entry: superoxide reductase. Now EC 1.15.1.2, superoxide reductase
[EC 1.18.96.1 created 2001, deleted 2001]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald