The Enzyme Database

Your query returned 8 entries.    printer_iconPrintable version

EC 1.5.7.1     
Accepted name: methylenetetrahydrofolate reductase (ferredoxin)
Reaction: 5-methyltetrahydrofolate + 2 oxidized ferredoxin = 5,10-methylenetetrahydrofolate + 2 reduced ferredoxin + 2 H+
For diagram of folate species interconversions, click here
Other name(s): 5,10-methylenetetrahydrofolate reductase
Systematic name: 5-methyltetrahydrofolate:ferredoxin oxidoreductase
Comments: An iron-sulfur flavoprotein that also contains zinc. The enzyme from Clostridium formicoaceticum catalyses the reduction of methylene blue, menadione, benzyl viologen, rubredoxin or FAD with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin or FADH2 with 5,10-methylenetetrahydrofolate. However, unlike EC 1.5.1.53, methylenetetrahydrofolate reductase (NADPH); EC 1.5.1.54, methylenetetrahydrofolate reductase (NADH); or EC 1.5.1.20, methylenetetrahydrofolate reductase [NAD(P)H], there is no activity with either NADH or NADP+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Clark, J.E. and Ljungdahl, L.G. Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J. Biol. Chem. 259 (1984) 10845–10849. [PMID: 6381490]
[EC 1.5.7.1 created 2005, modified 2021]
 
 
EC 1.6.7.2      
Transferred entry: rubredoxin—NAD+ reductase. Now EC 1.18.1.1, rubredoxin—NAD+ reductase
[EC 1.6.7.2 created 1972, deleted 1978]
 
 
EC 1.14.15.2      
Transferred entry: camphor 1,2-monooxygenase. Now EC 1.14.13.162, 2,5-diketocamphane 1,2-monooxygenase.
[EC 1.14.15.2 created 1972, deleted 2012]
 
 
EC 1.14.15.3     
Accepted name: alkane 1-monooxygenase
Reaction: octane + 2 reduced rubredoxin + O2 + 2 H+ = 1-octanol + 2 oxidized rubredoxin + H2O
Other name(s): alkane 1-hydroxylase; ω-hydroxylase; fatty acid ω-hydroxylase; alkane monooxygenase; 1-hydroxylase; alkane hydroxylase
Systematic name: alkane,reduced-rubredoxin:oxygen 1-oxidoreductase
Comments: Some enzymes in this group are heme-thiolate proteins (P-450). Also hydroxylates fatty acids in the ω-position.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9059-16-9
References:
1.  Cardini, G. and Jurtshuk, P. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J. Biol. Chem. 245 (1970) 2789–2796. [PMID: 4317878]
2.  McKenna, E.J. and Coon, M.J. Enzymatic ω-oxidation. IV. Purification and properties of the ω-hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 245 (1970) 3882–3889. [PMID: 4395379]
3.  Peterson, J.A., Kusunose, M., Kusunose, E. and Coon, M.J. Enzymatic ω-oxidation. II. Function of rubredoxin as the electron carrier in ω-hydroxylation. J. Biol. Chem. 242 (1967) 4334–4340. [PMID: 4294330]
[EC 1.14.15.3 created 1972]
 
 
EC 1.15.1.2     
Accepted name: superoxide reductase
Reaction: superoxide + reduced rubredoxin + 2 H+ = H2O2 + oxidized rubredoxin
Glossary: rubredoxin = iron-containing protein found in sulfur-metabolizing bacteria and archaea, participating in electron transfer
Other name(s): neelaredoxin; desulfoferrodoxin
Systematic name: rubredoxin:superoxide oxidoreductase
Comments: The enzyme contains non-heme iron.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 250679-67-5
References:
1.  Jenney, F.E., Jr., Verhagen, M.F.J.M., Cui, X. and Adams, M.W.W. Anaerobic microbes: Oxygen detoxification without superoxide dismutase. Science 286 (1999) 306–309. [DOI] [PMID: 10514376]
2.  Yeh, A.P., Hu, Y., Jenney, F.E., Jr., Adams, M.W.W. and Rees, D.C. Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states. Biochemistry 39 (2000) 2499–2508. [DOI] [PMID: 10704199]
3.  Lombard, M., Fontecave, M., Touati, D. and Niviere, V. Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J. Biol. Chem. 275 (2000) 115–121. [DOI] [PMID: 10617593]
4.  Abreu, I.A., Saraiva, L.M., Carita, J., Huber, H., Stetter, K.O., Cabelli, D. and Teixeira, M. Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by neelaredoxin. Mol. Microbiol. 38 (2000) 322–334. [DOI] [PMID: 11069658]
[EC 1.15.1.2 created 2001 as EC 1.18.96.1, transferred 2001 to EC 1.15.1.2]
 
 
EC 1.18.1.1     
Accepted name: rubredoxin—NAD+ reductase
Reaction: 2 reduced rubredoxin + NAD+ + H+ = 2 oxidized rubredoxin + NADH
For diagram of camphor catabolism, click here
Glossary: rubredoxin = iron-containing protein found in sulfur-metabolizing bacteria and archaea, participating in electron transfer
Other name(s): rubredoxin reductase; rubredoxin-nicotinamide adenine dinucleotide reductase; dihydronicotinamide adenine dinucleotide-rubredoxin reductase; reduced nicotinamide adenine dinucleotide-rubredoxin reductase; NADH-rubredoxin reductase; rubredoxin-NAD reductase; NADH: rubredoxin oxidoreductase; DPNH-rubredoxin reductase; NADH-rubredoxin oxidoreductase
Systematic name: rubredoxin:NAD+ oxidoreductase
Comments: Requires FAD. The enzyme from Clostridium acetobutylicum reduces rubredoxin, ferricyanide and dichlorophenolindophenol, but not ferredoxin or flavodoxin. The reaction does not occur when NADPH is substituted for NADH. Contains iron at the redox centre.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-27-3
References:
1.  Peterson, J.A., Kusunose, M., Kusunose, E. and Coon, M.J. Enzymatic ω-oxidation. II. Function of rubredoxin as the electron carrier in ω-hydroxylation. J. Biol. Chem. 242 (1967) 4334–4340. [PMID: 4294330]
2.  Ueda, T., Lode, E.T. and Coon, M.J. Enzymatic ω-oxidation. VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. J. Biol. Chem. 247 (1972) 2109–2116. [PMID: 4335861]
3.  Ueda, T., Lode, E.T. and Coon, M.J. Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation. J. Biol. Chem. 247 (1972) 5010–5016. [PMID: 4403503]
4.  Petitdemange, H., Marczak, R., Blusson, H. and Gay, R. Isolation and properties of reduced nicotinamide adenine dinucleotide rubredoxin oxidoreductase of Clostridium acetobutylicum. Biochem. Biophys. Res. Commun. 91 (1979) 1258–1265. [DOI] [PMID: 526302]
[EC 1.18.1.1 created 1972 as EC 1.6.7.2, transferred 1978 to EC 1.18.1.1, modified 2001]
 
 
EC 1.18.1.4     
Accepted name: rubredoxin—NAD(P)+ reductase
Reaction: 2 reduced rubredoxin + NAD(P)+ + H+ = 2 oxidized rubredoxin + NAD(P)H
Glossary: benzyl viologen = 1,1′-dibenzyl-4,4′-bipyridinium
2,6-dichloroindophenol = 4-(2,6-dichloro-4-hydroxyphenylimino)cyclohexa-2,5-dien-1-one
menadione = 2-methyl-1,4-naphthoquinone
rubredoxin = iron-containing protein found in sulfur-metabolizing bacteria and archaea, participating in electron transfer
Other name(s): rubredoxin-nicotinamide adenine dinucleotide (phosphate) reductase; rubredoxin-nicotinamide adenine; dinucleotide phosphate reductase; NAD(P)+-rubredoxin oxidoreductase; NAD(P)H-rubredoxin oxidoreductase
Systematic name: rubredoxin:NAD(P)+ oxidoreductase
Comments: The enzyme from Pyrococcus furiosus requires FAD. It reduces a number of electron carriers, including benzyl viologen, menadione and 2,6-dichloroindophenol, but rubredoxin is the most efficient. Ferredoxin is not utilized.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 80237-97-4
References:
1.  Petitdemange, H., Blusson, H. and Gay, R. Detection of NAD(P)H-rubredoxin oxidoreductases in Clostridia. Anal. Biochem. 116 (1981) 564–570. [DOI] [PMID: 6274224]
2.  Ma, K. and Adams, M.W.W. A hyperactive NAD(P)H:rubredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 181 (1999) 5530–5533. [PMID: 10464233]
[EC 1.18.1.4 created 1984, modified 2001, modified 2011]
 
 
EC 1.21.98.5     
Accepted name: tetraether lipid synthase
Reaction: (1) 2 a 2,3-bis-O-phytanyl-sn-glycero-phospholipid + 4 S-adenosyl-L-methionine + 2 reduced acceptor = a glycerol dibiphytanyl glycerol tetraether phospholipid + 4 L-methionine + 4 5′-deoxyadenosine + 2 acceptor
(2) a 2,3-bis-O-phytanyl-sn-glycero-phospholipid + 2 S-adenosyl-L-methionine + reduced acceptor = a macrocyclic archaeol phospholipid + 2 L-methionine + 2 5′-deoxyadenosine + acceptor
Glossary: 2,3-bis-O-phytanyl-sn-glycerol = archaeol
Other name(s): GDGT/MA synthase; GDGT/MAS; tetraether synthase; Tes; Mj0619 (locus name)
Systematic name: a 2,3-bis-O-phytanyl-sn-glycero-phospholipid:S-adenosyl-L-methionine,acceptor oxidoreductase (cyclyzing)
Comments: This archaeal enzyme catalyses a C-C bond formation during the biosynthesis of tetraether lipids. The bond is formed between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT). The enzyme does not distinguish whether the two lipids are connected in antiparallel or parallel geometry, resulting in formation of two forms of the product, which are known as caldarchaeol and isocaldarchaeol, respectively. The enzyme can also form macrocyclic archaeol phospholipids by joining the two lipid tails of a single substrate molecule. Even though the reaction shown here describes phospholipid substrates, the enzyme can also act on glycolipids or lipids that contains mixed types of polar head groups. The enzyme is a radical SAM enzyme that contains 3 [4Fe-4S] clusters and one mononuclear rubredoxin-like iron ion, each found in a separate domain. The enzyme uses the 5′-deoxyadenosyl radical to initiate the reaction, which involves the formation of an intermediate bond between the substrate carbon and a sulfur of one of the [4Fe-4S] clusters. Two radicals are needed per C-C bond formed. The source of the required additional electrons is not known.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zeng, Z., Chen, H., Yang, H., Chen, Y., Yang, W., Feng, X., Pei, H. and Welander, P.V. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat. Commun. 13:1545 (2022). [DOI] [PMID: 35318330]
2.  Lloyd, C.T., Iwig, D.F., Wang, B., Cossu, M., Metcalf, W.W., Boal, A.K. and Booker, S.J. Discovery, structure, and mechanism of a tetraether lipid synthase. Nature (2022) . [DOI] [PMID: 35882349]
[EC 1.21.98.5 created 2022]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald