The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.13.12.7     
Accepted name: firefly luciferase
Reaction: D-firefly luciferin + O2 + ATP = firefly oxyluciferin + CO2 + AMP + diphosphate +
For diagram of reaction, click here
Glossary: D-firefly luciferin = Photinus-luciferin = (S)-4,5-dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylate
firefly oxyluciferin = 4,5-dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazol-4-one
Other name(s): Photinus-luciferin 4-monooxygenase (ATP-hydrolysing); luciferase (firefly luciferin); Photinus luciferin 4-monooxygenase (adenosine triphosphate-hydrolyzing); firefly luciferin luciferase; Photinus pyralis luciferase; Photinus-luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing)
Systematic name: D-firefly luciferin:oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing)
Comments: The enzyme, which is found in fireflies (Lampyridae), is responsible for their biolouminescence. The reaction begins with the formation of an acid anhydride between the carboxylic group of D-firefly luciferin and AMP, with the release of diphosphate. An oxygenation follows, with release of the AMP group and formation of a very short-lived peroxide that cyclizes into a dioxetanone structure, which collapses, releasing a CO2 molecule. The spontaneous breakdown of the dioxetanone (rather than the hydrolysis of the adenylate) releases the energy (about 50 kcal/mole) that is necessary to generate the excited state of oxyluciferin. The excited luciferin then emits a photon, returning to its ground state. The enzyme has a secondary acyl-CoA ligase activity when acting on L-firefly luciferin (see EC 6.2.1.52).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 61970-00-1
References:
1.  Green, A. A. and McElroy, W. D. Crystalline firefly luciferase. Biochim. Biophys. Acta 20 (1956) 170–176. [DOI] [PMID: 13315363]
2.  White, E.H., McCapra, F., Field, G.F. and McElroy, W.D. The structure and synthesis of firefly luciferin. J. Am. Chem. Soc. 83 (1961) 2402–2403.
3.  Hopkins, T.A., Seliger, H.H., White, E.H. and Cass, M.W. The chemiluminescence of firefly luciferin. A model for the bioluminescent reaction and identification of the product excited state. J. Am. Chem. Soc. 89 (1967) 7148–7150. [PMID: 6064360]
4.  White, E.H., Rapaport, E., Hopkins, T.A. and Seliger, H.H. Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc. 91 (1969) 2178–2180. [PMID: 5784183]
5.  Koo, J.A., Schmidt, S.P. and Schuster, G.B. Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc. Natl. Acad. Sci. USA 75 (1978) 30–33. [DOI] [PMID: 272645]
6.  de Wet, J.R., Wood, K.V., Helinski, D.R. and DeLuca, M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82 (1985) 7870–7873. [DOI] [PMID: 3906652]
7.  Nakamura, M., Maki, S., Amano, Y., Ohkita, Y., Niwa, K., Hirano, T., Ohmiya, Y. and Niwa, H. Firefly luciferase exhibits bimodal action depending on the luciferin chirality. Biochem. Biophys. Res. Commun. 331 (2005) 471–475. [DOI] [PMID: 15850783]
8.  Sundlov, J.A., Fontaine, D.M., Southworth, T.L., Branchini, B.R. and Gulick, A.M. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51 (2012) 6493–6495. [DOI] [PMID: 22852753]
[EC 1.13.12.7 created 1976, modified 1981, modified 1982, modified 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald