The Enzyme Database

Your query returned 2 entries.    printer_iconPrintable version

EC 1.14.14.21     
Accepted name: dibenzothiophene monooxygenase
Reaction: dibenzothiophene + 2 FMNH2 + 2 O2 = dibenzothiophene-5,5-dioxide + 2 FMN + 2 H2O (overall reaction)
(1a) dibenzothiophene + FMNH2 + O2 = dibenzothiophene-5-oxide + FMN + H2O
(1b) dibenzothiophene-5-oxide + FMNH2 + O2 = dibenzothiophene-5,5-dioxide + FMN + H2O
Glossary: dibenzothiophene-5,5-dioxide = dibenzothiophene sulfone
Other name(s): dszC (gene name)
Systematic name: dibenzothiophene,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme catalyses the first two steps in the desulfurization pathway of dibenzothiophenes, the oxidation of dibenzothiophene into dibenzothiophene sulfone via dibenzothiophene-5-oxide. The enzyme forms a two-component system with a dedicated NADH-dependent FMN reductase (EC 1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.22, dibenzothiophene sulfone monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J. and Squires, C.H. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14 (1996) 1705–1709. [DOI] [PMID: 9634856]
2.  Liu, S., Zhang, C., Su, T., Wei, T., Zhu, D., Wang, K., Huang, Y., Dong, Y., Yin, K., Xu, S., Xu, P. and Gu, L. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 82 (2014) 1708–1720. [DOI] [PMID: 24470304]
3.  Guan, L.J., Lee, W.C., Wang, S., Ohshiro, T., Izumi, Y., Ohtsuka, J. and Tanokura, M. Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS J. 282 (2015) 3126–3135. [DOI] [PMID: 25627402]
[EC 1.14.14.21 created 2016]
 
 
EC 1.14.14.22     
Accepted name: dibenzothiophene sulfone monooxygenase
Reaction: dibenzothiophene-5,5-dioxide + FMNH2 + NADH + O2 = 2′-hydroxybiphenyl-2-sulfinate + H2O + FMN + NAD+ + H+ (overall reaction)
(1a) FMNH2 + O2 = FMN-N5-peroxide
(1b) dibenzothiophene-5,5-dioxide + FMN-N5-peroxide = 2′-hydroxybiphenyl-2-sulfinate + FMN-N5-oxide
(1c) FMN-N5-oxide + NADH = FMN + H2O + NAD+ + H+ (spontaneous)
Glossary: dibenzothiophene-5,5-dioxide = dibenzothiophene sulfone
Other name(s): dszA (gene name)
Systematic name: dibenzothiophene-5,5-dioxide,FMNH2:oxygen oxidoreductase
Comments: This bacterial enzyme catalyses a step in the desulfurization pathway of dibenzothiophenes. The enzyme forms a two-component system with a dedicated NADH-dependent FMN reductase (EC 1.5.1.42) encoded by the dszD gene, which also interacts with EC 1.14.14.21, dibenzothiophene monooxygenase. The flavin-N5-oxide that is formed by the enzyme reacts spontaneously with NADH to give oxidized flavin, releasing a water molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J. and Squires, C.H. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14 (1996) 1705–1709. [DOI] [PMID: 9634856]
2.  Ohshiro, T., Kojima, T., Torii, K., Kawasoe, H. and Izumi, Y. Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J. Biosci. Bioeng. 88 (1999) 610–616. [DOI] [PMID: 16232672]
3.  Konishi, J., Ishii, Y., Onaka, T., Ohta, Y., Suzuki, M. and Maruhashi, K. Purification and characterization of dibenzothiophene sulfone monooxygenase and FMN-dependent NADH oxidoreductase from the thermophilic bacterium Paenibacillus sp. strain A11-2. J. Biosci. Bioeng. 90 (2000) 607–613. [DOI] [PMID: 16232919]
4.  Ohshiro, T., Ishii, Y., Matsubara, T., Ueda, K., Izumi, Y., Kino, K. and Kirimura, K. Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J. Biosci. Bioeng. 100 (2005) 266–273. [DOI] [PMID: 16243275]
5.  Adak, S. and Begley, T.P. Dibenzothiophene catabolism proceeds via a flavin-N5-oxide intermediate. J. Am. Chem. Soc. 138 (2016) 6424–6426. [PMID: 27120486]
6.  Adak, S. and Begley, T.P. Flavin-N5-oxide: A new, catalytic motif in flavoenzymology. Arch. Biochem. Biophys. 632 (2017) 4–10. [PMID: 28784589]
7.  Matthews, A., Saleem-Batcha, R., Sanders, J.N., Stull, F., Houk, K.N. and Teufel, R. Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nat. Chem. Biol. 16 (2020) 556–563. [DOI] [PMID: 32066967]
[EC 1.14.14.22 created 2016, modified 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald