The Enzyme Database

Your query returned 164 entries.    printer_iconPrintable version



EC 1.14.13.235     Relevance: 100%
Accepted name: indole-3-acetate monooxygenase
Reaction: (indol-3-yl)acetate + NADH + H+ + O2 = (2-hydroxy-1H-indol-3-yl)acetate + NAD+ + H2O
Glossary: (indol-3-yl)acetate =(1H-indol-3-yl)acetate = indole-3-acetate
Other name(s): iacA (gene name)
Systematic name: (indol-3-yl)acetate,NADH:oxygen oxidoreductase (2-hydroxylating)
Comments: The enzyme, characterized from Pseudomonas putida strains, catalyses the first step in a pathway for degradation of the plant hormone indole-3-acetate. When acting on indole, the enzyme forms indoxyl, which reacts spontaneously with oxygen to form the blue dye indigo.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Leveau, J.H. and Lindow, S.E. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71 (2005) 2365–2371. [DOI] [PMID: 15870323]
2.  Scott, J.C., Greenhut, I.V. and Leveau, J.H. Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39 (2013) 942–951. [DOI] [PMID: 23881445]
[EC 1.14.13.235 created 2017]
 
 
EC 2.7.2.1     Relevance: 96.3%
Accepted name: acetate kinase
Reaction: ATP + acetate = ADP + acetyl phosphate
Other name(s): acetokinase; AckA; AK; acetic kinase; acetate kinase (phosphorylating)
Systematic name: ATP:acetate phosphotransferase
Comments: Requires Mg2+ for activity. While purified enzyme from Escherichia coli is specific for acetate [4], others have found that the enzyme can also use propanoate as a substrate, but more slowly [7]. Acetate can be converted into the key metabolic intermediate acetyl-CoA by coupling acetate kinase with EC 2.3.1.8, phosphate acetyltransferase. Both this enzyme and EC 2.7.2.15, propionate kinase, play important roles in the production of propanoate [9].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-42-3
References:
1.  Romain, Y., Demassieux, S. and Carriere, S. Partial purification and characterization of two isoenzymes involved in the sulfurylation of catecholamines. Biochem. Biophys. Res. Commun. 106 (1982) 999–1005. [DOI] [PMID: 6956338]
2.  Romano, A.H. and Nickerson, W.J. Cystine reductase of pea seeds and yeast. J. Biol. Chem. 208 (1954) 409–416. [PMID: 13174550]
3.  Stern, J.R. and Ochoa, S. Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J. Biol. Chem. 191 (1951) 161–172. [PMID: 14850456]
4.  Fox, D.K. and Roseman, S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 261 (1986) 13487–13497. [PMID: 3020034]
5.  Knorr, R., Ehrmann, M.A. and Vogel, R.F. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiol. Res. 156 (2001) 267–277. [DOI] [PMID: 11716215]
6.  Buss, K.A., Cooper, D.R., Ingram-Smith, C., Ferry, J.G., Sanders, D.A. and Hasson, M.S. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J. Bacteriol. 183 (2001) 680–686. [DOI] [PMID: 11133963]
7.  Ingram-Smith, C., Gorrell, A., Lawrence, S.H., Iyer, P., Smith, K. and Ferry, J.G. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J. Bacteriol. 187 (2005) 2386–2394. [DOI] [PMID: 15774882]
8.  Gorrell, A., Lawrence, S.H. and Ferry, J.G. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 280 (2005) 10731–10742. [DOI] [PMID: 15647264]
9.  Heßlinger, C., Fairhurst, S.A. and Sawers, G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27 (1998) 477–492. [DOI] [PMID: 9484901]
[EC 2.7.2.1 created 1961, modified 2005]
 
 
EC 3.1.1.94     Relevance: 94.9%
Accepted name: versiconal hemiacetal acetate esterase
Reaction: (1) versiconal hemiacetal acetate + H2O = versiconal + acetate
(2) versiconol acetate + H2O = versiconol + acetate
For diagram of aflatoxin biosynthesis (part 2), click here
Glossary: versiconal = (2S,3S)-2,4,6,8-tetrahydroxy-3-(2-hydroxyethyl)anthra[2,3-b]furan-5,10-dione
versiconal hemiacetal acetate = 2-[(2S,3S)-2,4,6,8-tetrahydroxy-5,10-dioxo-5,10-dihydroanthra[2,3-b]furan-3-yl]ethyl acetate
versiconol = 1,3,6,8-tetrahydroxy-3-[(2S)-1,4-dihydroxybutan-2-yl]anthracene-5,10-dione
versiconol acetate = (3S)-4-hydroxy-3-[1,3,6,8-tetrahydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl]butyl acetate
Other name(s): VHA esterase
Systematic name: versiconal-hemiacetal-acetate O-acetylhydrolase
Comments: Isolated from the mold Aspergillus parasiticus. Involved in a metabolic grid that leads to aflatoxin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kusumoto, K. and Hsieh, D.P. Purification and characterization of the esterases involved in aflatoxin biosynthesis in Aspergillus parasiticus. Can. J. Microbiol. 42 (1996) 804–810. [PMID: 8776851]
2.  Chang, P.K., Yabe, K. and Yu, J. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70 (2004) 3593–3599. [DOI] [PMID: 15184162]
[EC 3.1.1.94 created 2013]
 
 
EC 2.1.1.278     Relevance: 91.8%
Accepted name: indole-3-acetate O-methyltransferase
Reaction: S-adenosyl-L-methionine + (indol-3-yl)acetate = S-adenosyl-L-homocysteine + methyl (indol-3-yl)acetate
Other name(s): IAA carboxylmethyltransferase; IAMT
Systematic name: S-adenosyl-L-methionine:(indol-3-yl)acetate O-methyltransferase
Comments: Binds Mg2+. The enzyme is found in plants and is important for regulation of the plant hormone (indol-3-yl)acetate. The product, methyl (indol-3-yl)acetate is inactive as hormone [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Zubieta, C., Ross, J.R., Koscheski, P., Yang, Y., Pichersky, E. and Noel, J.P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15 (2003) 1704–1716. [DOI] [PMID: 12897246]
2.  Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., Gu, H., Zhao, Y. and Qu, L.J. The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Rep. 27 (2008) 575–584. [DOI] [PMID: 17926040]
3.  Zhao, N., Ferrer, J.L., Ross, J., Guan, J., Yang, Y., Pichersky, E., Noel, J.P. and Chen, F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 146 (2008) 455–467. [DOI] [PMID: 18162595]
[EC 2.1.1.278 created 2013]
 
 
EC 2.8.3.18     Relevance: 91%
Accepted name: succinyl-CoA:acetate CoA-transferase
Reaction: succinyl-CoA + acetate = acetyl-CoA + succinate
Other name(s): aarC (gene name); SCACT
Systematic name: succinyl-CoA:acetate CoA-transferase
Comments: In acetic acid bacteria the enzyme, which is highly specific, catalyses the conversion of toxic acetate to acetyl-CoA [2,3]. In the hydrogenosomes of some trichomonads the enzyme catalyses the production of acetate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Steinbuchel, A. and Muller, M. Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 20 (1986) 57–65. [DOI] [PMID: 3090435]
2.  Mullins, E.A., Francois, J.A. and Kappock, T.J. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J. Bacteriol. 190 (2008) 4933–4940. [DOI] [PMID: 18502856]
3.  Mullins, E.A. and Kappock, T.J. Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases. Biochemistry 51 (2012) 8422–8434. [DOI] [PMID: 23030530]
[EC 2.8.3.18 created 2013]
 
 
EC 2.8.3.8     Relevance: 89.2%
Accepted name: acetate CoA-transferase
Reaction: acyl-CoA + acetate = a fatty acid anion + acetyl-CoA
Other name(s): acetate coenzyme A-transferase; butyryl CoA:acetate CoA transferase; butyryl coenzyme A transferase; succinyl-CoA:acetate CoA transferase
Systematic name: acyl-CoA:acetate CoA-transferase
Comments: The enzyme belongs to family I of CoA-transferases, which operate with a ping-pong kinetic mechanism. The reaction takes place in two half-reactions and involves the formation of a CoA thioester intermediate with a glutamate residue. Unlike EC 2.8.3.9, butyrate—acetoacetate CoA-transferase, this enzyme exhibits maximal activity using acetate as the CoA acceptor. Substrate range depends on the specific enzyme. Typical substrates include butanoyl-CoA and pentanoyl-CoA.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 37278-35-6
References:
1.  Vanderwinkel, E., Furmanski, P., Reeves, H.C. and Ajl, S.J. Growth of Escherichia coli on fatty acids: requirement for coenzyme A transferase activity. Biochem. Biophys. Res. Commun. 33 (1968) 902–908. [DOI] [PMID: 4884054]
2.  Rangarajan, E.S., Li, Y., Ajamian, E., Iannuzzi, P., Kernaghan, S.D., Fraser, M.E., Cygler, M. and Matte, A. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases. J. Biol. Chem. 280 (2005) 42919–42928. [DOI] [PMID: 16253988]
[EC 2.8.3.8 created 1972]
 
 
EC 3.1.1.56     Relevance: 89%
Accepted name: methylumbelliferyl-acetate deacetylase
Reaction: 4-methylumbelliferyl acetate + H2O = 4-methylumbelliferone + acetate
Other name(s): esterase D
Systematic name: 4-methylumbelliferyl-acetate acylhydrolase
Comments: Acts on short-chain acyl esters of 4-methylumbelliferone, but not on naphthyl, indoxyl or thiocholine esters.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83380-83-0
References:
1.  Hopkinson, D.A., Mestriner, M.A., Cortner, J. and Harris, H. Esterase D: a new human polymorphism. Ann. Hum. Genet. 37 (1973) 119–137. [DOI] [PMID: 4768551]
[EC 3.1.1.56 created 1986]
 
 
EC 2.7.2.12     Relevance: 86.7%
Accepted name: acetate kinase (diphosphate)
Reaction: diphosphate + acetate = phosphate + acetyl phosphate
Other name(s): pyrophosphate-acetate phosphotransferase
Systematic name: diphosphate:acetate phosphotransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 57657-58-6
References:
1.  Reeves, R.E. and Guthrie, J.D. Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem. Biophys. Res. Commun. 66 (1975) 1389–1395. [DOI] [PMID: 172079]
[EC 2.7.2.12 created 1976]
 
 
EC 6.2.1.13     Relevance: 83.9%
Accepted name: acetate—CoA ligase (ADP-forming)
Reaction: ATP + acetate + CoA = ADP + phosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase (ADP-forming); acetyl coenzyme A synthetase (adenosine diphosphate-forming); acetate thiokinase
Systematic name: acetate:CoA ligase (ADP-forming)
Comments: Also acts on propanoate and, very slowly, on butanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 62009-85-2
References:
1.  Reeves, R.E., Warren, L.G., Susskind, B. and Lo, H.-S. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J. Biol. Chem. 252 (1977) 726–731. [PMID: 13076]
[EC 6.2.1.13 created 1978]
 
 
EC 1.14.13.168     Relevance: 79.8%
Accepted name: indole-3-pyruvate monooxygenase
Reaction: (indol-3-yl)pyruvate + NADPH + H+ + O2 = (indol-3-yl)acetate + NADP+ + H2O + CO2
For diagram of indoleacetic acid biosynthesis, click here
Glossary: (indol-3-yl)pyruvate = 3-(1H-indol-3-yl)-2-oxopropanoate, (indol-3-yl)acetate = 2-(1H-indol-3-yl)acetate = indole-3-acetate
Other name(s): YUC2 (gene name); spi1 (gene name)
Systematic name: indole-3-pyruvate,NADPH:oxygen oxidoreductase (1-hydroxylating, decarboxylating)
Comments: This plant enzyme, along with EC 2.6.1.99 L-tryptophan—pyruvate aminotransferase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [DOI] [PMID: 22025724]
2.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [DOI] [PMID: 22155950]
[EC 1.14.13.168 created 2012]
 
 
EC 6.2.1.35     Relevance: 79.6%
Accepted name: acetate—[acyl-carrier protein] ligase
Reaction: ATP + acetate + an [acyl-carrier protein] = AMP + diphosphate + an acetyl-[acyl-carrier protein]
For diagram of malonate decarboxylase, click here
Other name(s): HS-acyl-carrier protein:acetate ligase; [acyl-carrier protein]:acetate ligase; MadH; ACP-SH:acetate ligase
Systematic name: acetate:[acyl-carrier-protein] ligase (AMP-forming)
Comments: This enzyme, from the anaerobic bacterium Malonomonas rubra, is a component of the multienzyme complex EC 4.1.1.89, biotin-dependent malonate decarboxylase. The enzyme uses the energy from hydrolysis of ATP to convert the thiol group of the acyl-carrier-protein-bound 2′-(5-phosphoribosyl)-3′-dephospho-CoA prosthetic group into its acetyl thioester [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hilbi, H., Dehning, I., Schink, B. and Dimroth, P. Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. Eur. J. Biochem. 207 (1992) 117–123. [DOI] [PMID: 1628643]
2.  Berg, M., Hilbi, H. and Dimroth, P. The acyl carrier protein of malonate decarboxylase of Malonomonas rubra contains 2′-(5"-phosphoribosyl)-3′-dephosphocoenzyme A as a prosthetic group. Biochemistry 35 (1996) 4689–4696. [DOI] [PMID: 8664258]
3.  Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function. Eur. J. Biochem. 245 (1997) 103–115. [DOI] [PMID: 9128730]
4.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 6.2.1.35 created 2008]
 
 
EC 6.2.1.22     Relevance: 79.4%
Accepted name: [citrate (pro-3S)-lyase] ligase
Reaction: ATP + acetate + holo-[citrate (pro-3S)-lyase] = AMP + diphosphate + acetyl-[citrate (pro-3S)-lyase]
Glossary: citrate = 2-hydroxypropane-1,2,3-tricarboxylate
Other name(s): citrate lyase ligase; citrate lyase synthetase; acetate: SH-[acyl-carrier-protein] enzyme ligase (AMP); acetate:HS-citrate lyase ligase; acetate:citrate-(pro-3S)-lyase(thiol-form) ligase (AMP-forming); acetate:[citrate-(pro-3S)-lyase](thiol-form) ligase (AMP-forming)
Systematic name: acetate:holo-[citrate-(pro-3S)-lyase] ligase (AMP-forming)
Comments: Both this enzyme and EC 2.3.1.49,deacetyl-[citrate-(pro-3S)-lyase] S-acetyltransferase, acetylate and activate EC 4.1.3.6, citrate (pro-3S)-lyase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52660-22-7
References:
1.  Antranikian, G. and Gottschalk, G. Copurification of citrate lyase and citrate lyase ligase from Rhodopseudomonas gelatinosa and subsequent separation of the two enzymes. Eur. J. Biochem. 126 (1982) 43–47. [DOI] [PMID: 7128585]
2.  Antranikian, G., Herzberg, C. and Gottschalk, G. Covalent modification of citrate lyase ligase from Clostridium sphenoides by phosphorylation/dephosphorylation. Eur. J. Biochem. 153 (1985) 413–420. [DOI] [PMID: 3935436]
3.  Quentmeier, A. and Antranikian, G. Characterization of citrate lyase from Clostridium sporosphaeroides. Arch. Microbiol. 141 (1985) 85–90. [PMID: 3994485]
4.  Schmellenkamp, H. and Eggerer, H. Mechanism of enzymic acetylation of des-acetyl citrate lyase. Proc. Natl. Acad. Sci. USA 71 (1974) 1987–1991. [DOI] [PMID: 4365579]
[EC 6.2.1.22 created 1989]
 
 
EC 4.1.1.44     Relevance: 79.1%
Accepted name: 4-carboxymuconolactone decarboxylase
Reaction: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 4,5-dihydro-5-oxofuran-2-acetate + CO2
For diagram of benzoate metabolism, click here
Glossary: 4-carboxymuconolactone = 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate
Other name(s): γ-4-carboxymuconolactone decarboxylase; 4-carboxymuconolactone carboxy-lyase; 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Systematic name: (R)-2-carboxy-2,5-dihydro-5-oxofuran-2-acetate carboxy-lyase (4,5-dihydro-5-oxofuran-2-acetate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-46-6
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 4.1.1.44 created 1972]
 
 
EC 1.1.1.353     Relevance: 78.6%
Accepted name: versiconal hemiacetal acetate reductase
Reaction: (1) versicolorone + NADP+ = 1′-hydroxyversicolorone + NADPH + H+
(2) versiconol acetate + NADP+ = versiconal hemiacetal acetate + NADPH + H+
(3) versiconol + NADP+ = versiconal + NADPH + H+
Glossary: 1′-hydroxyversicolorone = (2S,3S)-2,4,6,8-tetrahydroxy-3-(3-oxobutyl)anthra[2,3-b]furan-5,10-dione
versiconal = (2S,3S)-2,4,6,8-tetrahydroxy-3-(2-hydroxyethyl)anthra[2,3-b]furan-5,10-dione
versiconal hemiacetal acetate = 2-[(2S,3S)-2,4,6,8-tetrahydroxy-5,10-dioxo-5,10-dihydroanthra[2,3-b]furan-3-yl]ethyl acetate
versiconol = 1,3,6,8-tetrahydroxy-3-[(2S)-1,4-dihydroxybutan-2-yl]anthracene-5,10-dione
versiconol acetate = (3S)-4-hydroxy-3-[1,3,6,8-tetrahydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl]butyl acetate
versicolorone = 1,3,6,8-tetrahydroxy-2-[(2S)-1-hydroxy-5-oxohexan-2-yl]anthracene-5,10-dione
Other name(s): VHA reductase; VHA reductase I; VHA reductase II; vrdA (gene name)
Systematic name: versiconol-acetate:NADP+ oxidoreductase
Comments: Isolated from the mold Aspergillus parasiticus. Involved in a metabolic grid that leads to aflatoxin biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Matsushima, K., Ando, Y., Hamasaki, T. and Yabe, K. Purification and characterization of two versiconal hemiacetal acetate reductases involved in aflatoxin biosynthesis. Appl. Environ. Microbiol. 60 (1994) 2561–2567. [PMID: 16349333]
2.  Shima, Y., Shiina, M., Shinozawa, T., Ito, Y., Nakajima, H., Adachi, Y. and Yabe, K. Participation in aflatoxin biosynthesis by a reductase enzyme encoded by vrdA gene outside the aflatoxin gene cluster. Fungal Genet. Biol. 46 (2009) 221–231. [DOI] [PMID: 19211038]
[EC 1.1.1.353 created 2013]
 
 
EC 1.14.13.146     Relevance: 78.1%
Accepted name: taxoid 14β-hydroxylase
Reaction: 10β-hydroxytaxa-4(20),11-dien-5α-yl acetate + O2 + NADPH + H+ = 10β,14β-dihydroxytaxa-4(20),11-dien-5α-yl acetate + NADP+ + H2O
For diagram of taxadiene hydroxylation, click here
Systematic name: 10β-hydroxytaxa-4(20),11-dien-5α-yl-acetate,NADPH:oxygen 14-oxidoreductase
Comments: Requires cytochrome P450. From the yew Taxus cuspidata. Also acts on taxa-4(20),11-dien-5α-yl acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jennewein, S., Rithner, C.D., Williams, R.M. and Croteau, R. Taxoid metabolism: Taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch. Biochem. Biophys. 413 (2003) 262–270. [DOI] [PMID: 12729625]
[EC 1.14.13.146 created 2012]
 
 
EC 2.7.2.15     Relevance: 76.6%
Accepted name: propionate kinase
Reaction: ATP + propanoate = ADP + propanoyl phosphate
Other name(s): PduW; TdcD; propionate/acetate kinase
Systematic name: ATP:propanoate phosphotransferase
Comments: Requires Mg2+. Acetate can also act as a substrate. Involved in the anaerobic degradation of L-threonine in bacteria [1]. Both this enzyme and EC 2.7.2.1, acetate kinase, play important roles in the production of propanoate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39369-28-3
References:
1.  Heßlinger, C., Fairhurst, S.A. and Sawers, G. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27 (1998) 477–492. [DOI] [PMID: 9484901]
2.  Palacios, S., Starai, V.J. and Escalante-Semerena, J.C. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J. Bacteriol. 185 (2003) 2802–2810. [DOI] [PMID: 12700259]
3.  Wei, Y. and Miller, C.G. Characterization of a group of anaerobically induced, fnr-dependent genes of Salmonella typhimurium. J. Bacteriol. 181 (1999) 6092–6097. [PMID: 10498722]
4.  Ingram-Smith, C., Gorrell, A., Lawrence, S.H., Iyer, P., Smith, K. and Ferry, J.G. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J. Bacteriol. 187 (2005) 2386–2394. [DOI] [PMID: 15774882]
5.  Simanshu, D.K. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of propionate kinase (TdcD) from Salmonella typhimurium. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 61 (2005) 52–55. [DOI] [PMID: 16508089]
6.  Simanshu, D.K., Savithri, H.S. and Murthy, M.R. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily. J. Mol. Biol. 352 (2005) 876–892. [DOI] [PMID: 16139298]
[EC 2.7.2.15 created 2005]
 
 
EC 5.5.1.7     Relevance: 74.7%
Accepted name: chloromuconate cycloisomerase
Reaction: (2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate = 3-chloro-cis,cis-muconate
For diagram of reaction, click here
Glossary: (2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate = (+)-4-chloromuconolactone
3-chloro-cis,cis-muconate = (2E,4Z)-3-chlorohexa-2,4-dienedioate
Other name(s): muconate cycloisomerase II; 2-chloro-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing); 2-chloro-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Systematic name: (2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Comments: Requires Mn2+. The product of cycloisomerization of 3-chloro-cis,cis-muconate spontaneously eliminates chloride to produce cis-4-carboxymethylenebut-2-en-4-olide. Also acts on 2-chloro-cis,cis-muconate. Not identical with EC 5.5.1.1 (muconate cycloisomerase) or EC 5.5.1.11 (dichloromuconate cycloisomerase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 95990-33-3
References:
1.  Schmidt, E. and Knackmuss, H.-J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J. 192 (1980) 339–347. [PMID: 7305906]
2.  Kaulmann, U., Kaschabek, S.R. and Schlomann, M. Mechanism of chloride elimination from 3-chloro- and 2,4-dichloro-cis,cis-muconate: new insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. J. Bacteriol. 183 (2001) 4551–4561. [DOI] [PMID: 11443090]
3.  Kajander, T., Lehtio, L., Schlomann, M. and Goldman, A. The structure of Pseudomonas P51 Cl-muconate lactonizing enzyme: co-evolution of structure and dynamics with the dehalogenation function. Protein Sci. 12 (2003) 1855–1864. [DOI] [PMID: 12930985]
[EC 5.5.1.7 created 1983]
 
 
EC 3.7.1.18     Relevance: 74.4%
Accepted name: 6-oxocamphor hydrolase
Reaction: bornane-2,6-dione + H2O = [(1S)-4-hydroxy-2,2,3-trimethylcyclopent-3-enyl]acetate
For diagram of camphor catabolism, click here
Glossary: α-campholonate = (4-hydroxy-2,2,3-trimethylcyclopent-3-enyl)acetate (enol form) = (2,2,3-trimethyl-4-oxocyclopentyl)acetate (keto form)
Other name(s): OCH; camK (gene name)
Systematic name: bornane-2,6-dione hydrolase
Comments: Isolated from Rhodococcus sp. The bornane ring system is cleaved by a retro-Claisen reaction to give the enol of α-campholonate. When separate from the enzyme the enol is tautomerised to the keto form as a 6:1 mixture of [(1S,3R)-2,2,3-trimethyl-4-oxocyclopentyl]acetate and [(1S,3S)-2,2,3-trimethyl-4-oxocyclopentyl]acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Grogan, G., Roberts, G.A., Bougioukou, D., Turner, N.J. and Flitsch, S.L. The desymmetrization of bicyclic β-diketones by an enzymatic retro-Claisen reaction. A new reaction of the crotonase superfamily. J. Biol. Chem. 276 (2001) 12565–12572. [DOI] [PMID: 11278926]
2.  Whittingham, J.L., Turkenburg, J.P., Verma, C.S., Walsh, M.A. and Grogan, G. The 2-Å crystal structure of 6-oxo camphor hydrolase. New structural diversity in the crotonase superfamily. J. Biol. Chem. 278 (2003) 1744–1750. [DOI] [PMID: 12421807]
3.  Leonard, P.M. and Grogan, G. Structure of 6-oxo camphor hydrolase H122A mutant bound to its natural product, (2S,4S)-α-campholinic acid: mutant structure suggests an atypical mode of transition state binding for a crotonase homolog. J. Biol. Chem. 279 (2004) 31312–31317. [DOI] [PMID: 15138275]
[EC 3.7.1.18 created 2012]
 
 
EC 1.14.13.226     Relevance: 73.2%
Accepted name: acetone monooxygenase (methyl acetate-forming)
Reaction: acetone + NADPH + H+ + O2 = methyl acetate + NADP+ + H2O
Other name(s): acmA (gene name)
Systematic name: acetone,NADPH:oxygen oxidoreductase (methyl acetate-forming)
Comments: Contains FAD. The enzyme, characterized from the bacterium Gordonia sp. TY-5, is a Baeyer-Villiger type monooxygenase and participates in a propane utilization pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kotani, T., Yurimoto, H., Kato, N. and Sakai, Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J. Bacteriol. 189 (2007) 886–893. [DOI] [PMID: 17071761]
[EC 1.14.13.226 created 2016]
 
 
EC 3.1.1.66     Relevance: 72.8%
Accepted name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene deacetylase
Reaction: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(3-hydroxy-4-acetoxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): diacetoxybutynylbithiophene acetate esterase; 3,4-diacetoxybutinylbithiophene:4-acetate esterase
Systematic name: 5-(3,4-diacetoxybut-1-ynyl)-2,2′-bithiophene acetylhydrolase
Comments: A highly specific enzyme from Tagetes patula.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 95990-32-2
References:
1.  Pensl, R. and Suetfeld, R. Occurrence of 3,4-diacetoybutinylbithiophene in Tagetes patula and its enzymatic conversion. Z. Naturforsch. C: Biosci. 40 (1985) 3–7.
[EC 3.1.1.66 created 1989]
 
 
EC 5.5.1.2     Relevance: 71.5%
Accepted name: 3-carboxy-cis,cis-muconate cycloisomerase
Reaction: 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate = cis,cis-butadiene-1,2,4-tricarboxylate
For diagram of benzoate metabolism, click here
Other name(s): β-carboxymuconate lactonizing enzyme; 3-carboxymuconolactone hydrolase; 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing)
Systematic name: 2-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-77-8
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 241 (1966) 3787–3794. [PMID: 5916392]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 5.5.1.2 created 1972]
 
 
EC 1.13.12.22     Relevance: 70.9%
Accepted name: deoxynogalonate monooxygenase
Reaction: deoxynogalonate + O2 = nogalonate + H2O
For diagram of nogalamycin biosynthesis, click here
Glossary: deoxynogalonate = [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate
nogalonate = [4,5-dihydroxy-9,10-dioxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate
Other name(s): SnoaB (gene name); 12-deoxynogalonic acid oxidoreductase; [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate oxidase; [4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate monooxygenase; deoxynogalonate oxidoreductase
Systematic name: deoxynogalonate:oxygen oxidoreductase
Comments: The enzyme, characterized from the bacterium Streptomyces nogalater, is involved in the biosynthesis of the aromatic polyketide nogalamycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koskiniemi, H., Grocholski, T., Schneider, G. and Niemi, J. Expression, purification and crystallization of the cofactor-independent monooxygenase SnoaB from the nogalamycin biosynthetic pathway. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 (2009) 256–259. [DOI] [PMID: 19255477]
2.  Grocholski, T., Koskiniemi, H., Lindqvist, Y., Mantsala, P., Niemi, J. and Schneider, G. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 49 (2010) 934–944. [DOI] [PMID: 20052967]
[EC 1.13.12.22 created 2015]
 
 
EC 1.14.13.76      
Transferred entry: taxane 10β-hydroxylase. Now EC 1.14.14.105, taxane 10β-hydroxylase
[EC 1.14.13.76 created 2002, deleted 2018]
 
 
EC 4.1.1.83     Relevance: 70.1%
Accepted name: 4-hydroxyphenylacetate decarboxylase
Reaction: (4-hydroxyphenyl)acetate + H+ = 4-methylphenol + CO2
Other name(s): p-hydroxyphenylacetate decarboxylase; p-Hpd; 4-Hpd; 4-hydroxyphenylacetate carboxy-lyase
Systematic name: (4-hydroxyphenyl)acetate carboxy-lyase (4-methylphenol-forming)
Comments: The enzyme, from the strict anaerobe Clostridium difficile, can also use (3,4-dihydroxyphenyl)acetate as a substrate, yielding 4-methylcatechol as a product. The enzyme is a glycyl radical enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 340137-18-0
References:
1.  D'Ari, L. and Barker, H.A. p-Cresol formation by cell-free extracts of Clostridium difficile. Arch. Microbiol. 143 (1985) 311–312. [PMID: 3938267]
2.  Selmer, T. and Andrei, P.I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268 (2001) 1363–1372. [DOI] [PMID: 11231288]
3.  Andrei, P.I., Pierik, A.J., Zauner, S., Andrei-Selmer, L.C. and Selmer, T. Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity. Eur. J. Biochem. 271 (2004) 2225–2230. [DOI] [PMID: 15153112]
[EC 4.1.1.83 created 2005]
 
 
EC 2.3.1.268     Relevance: 69.6%
Accepted name: ethanol O-acetyltransferase
Reaction: ethanol + acetyl-CoA = ethyl acetate + CoA
Other name(s): eat1 (gene name); ethanol acetyltransferase
Systematic name: acetyl-CoA:ethanol O-acetyltransferase
Comments: The enzyme, characterized from the yeast Wickerhamomyces anomalus, is responsible for most ethyl acetate synthesis in known ethyl acetate-producing yeasts. It is only distantly related to enzymes classified as EC 2.3.1.84, alcohol O-acetyltransferase. The enzyme also possesses thioesterase and esterase activities, which are inhibited by high ethanol concentrations.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kruis, A.J., Levisson, M., Mars, A.E., van der Ploeg, M., Garces Daza, F., Ellena, V., Kengen, S.WM., van der Oost, J. and Weusthuis, R.A. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab. Eng. 41 (2017) 92–101. [DOI] [PMID: 28356220]
[EC 2.3.1.268 created 2018]
 
 
EC 5.5.1.5     Relevance: 68.9%
Accepted name: carboxy-cis,cis-muconate cyclase
Reaction: 3-carboxy-2,5-dihydro-5-oxofuran-2-acetate = 3-carboxy-cis,cis-muconate
For diagram of reaction, click here
Other name(s): 3-carboxymuconate cyclase; 3-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing)
Systematic name: 3-carboxy-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-55-1
References:
1.  Gross, S.R., Gafford, R.D. and Tatum, E.L. The metabolism of protocatechuic acid by Neurospora. J. Biol. Chem. 219 (1956) 781–796. [PMID: 13319299]
[EC 5.5.1.5 created 1972]
 
 
EC 1.1.1.319     Relevance: 68.6%
Accepted name: isoeugenol synthase
Reaction: isoeugenol + acetate + NADP+ = coniferyl acetate + NADPH + H+
Other name(s): IGS1; t-anol/isoeugenol synthase 1
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl acetate reducing)
Comments: The enzyme acts in the opposite direction. In Ocimum basilicum (sweet basil), Clarkia breweri and Petunia hybrida only isoeugenol is formed [1,2]. However in Pimpinella anisum (anise) only anol is formed in vivo, although the cloned enzyme does produce isoeugenol [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
3.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.319 created 2012]
 
 
EC 6.2.1.1     Relevance: 67.8%
Accepted name: acetate—CoA ligase
Reaction: ATP + acetate + CoA = AMP + diphosphate + acetyl-CoA
Other name(s): acetyl-CoA synthetase; acetyl activating enzyme; acetate thiokinase; acyl-activating enzyme; acetyl coenzyme A synthetase; acetic thiokinase; acetyl CoA ligase; acetyl CoA synthase; acetyl-coenzyme A synthase; short chain fatty acyl-CoA synthetase; short-chain acyl-coenzyme A synthetase; ACS
Systematic name: acetate:CoA ligase (AMP-forming)
Comments: Also acts on propanoate and propenoate.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-31-1
References:
1.  Chou, T.C. and Lipmann, F. Separation of acetyl transfer enzymes in pigeon liver extract. J. Biol. Chem. 196 (1952) 89–103. [PMID: 12980945]
2.  Eisenberg, M.A. The acetate-activating enzyme of Rhodospirillum rubrum. Biochim. Biophys. Acta 16 (1955) 58–65. [DOI] [PMID: 14363230]
3.  Hele, P. The acetate activating enzyme of beef heart. J. Biol. Chem. 206 (1954) 671–676. [PMID: 13143026]
4.  Millerd, A. and Bonner, J. Acetate activation and acetoacetate formation in plant systems. Arch. Biochem. Biophys. 49 (1954) 343–355. [DOI] [PMID: 13159282]
[EC 6.2.1.1 created 1961]
 
 
EC 2.4.1.121     Relevance: 67.5%
Accepted name: indole-3-acetate β-glucosyltransferase
Reaction: UDP-glucose + (indol-3-yl)acetate = UDP + 1-O-(indol-3-yl)acetyl-β-D-glucose
Other name(s): uridine diphosphoglucose-indoleacetate glucosyltransferase; UDPG-indol-3-ylacetyl glucosyl transferase; UDP-glucose:indol-3-ylacetate glucosyltransferase; indol-3-ylacetylglucose synthase; UDP-glucose:indol-3-ylacetate glucosyl-transferase; IAGlu synthase; IAA-glucose synthase; UDP-glucose:indole-3-acetate β-D-glucosyltransferase
Systematic name: UDP-glucose:(indol-3-yl)acetate β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74082-56-7
References:
1.  Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207 (1982) 273–281. [PMID: 6218801]
[EC 2.4.1.121 created 1984]
 
 
EC 2.3.1.195     Relevance: 67.5%
Accepted name: (Z)-3-hexen-1-ol acetyltransferase
Reaction: acetyl-CoA + (3Z)-hex-3-en-1-ol = CoA + (3Z)-hex-3-en-1-yl acetate
Other name(s): CHAT; At3g03480
Systematic name: acetyl-CoA:(3Z)-hex-3-en-1-ol acetyltransferase
Comments: The enzyme is resonsible for the production of (3Z)-hex-3-en-1-yl acetate, the major volatile compound released upon mechanical wounding of the leaves of Arabidopsis thaliana [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  D'Auria, J.C., Pichersky, E., Schaub, A., Hansel, A. and Gershenzon, J. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 49 (2007) 194–207. [DOI] [PMID: 17163881]
2.  D'Auria, J.C., Chen, F. and Pichersky, E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130 (2002) 466–476. [DOI] [PMID: 12226525]
[EC 2.3.1.195 created 2011]
 
 
EC 4.1.3.6     Relevance: 67.3%
Accepted name: citrate (pro-3S)-lyase
Reaction: citrate = acetate + oxaloacetate
Other name(s): citrase; citratase; citritase; citridesmolase; citrate aldolase; citric aldolase; citrate lyase; citrate oxaloacetate-lyase; citrate oxaloacetate-lyase [(pro-3S)-CH2COO-→acetate]
Systematic name: citrate oxaloacetate-lyase (forming acetate from the pro-S carboxymethyl group of citrate)
Comments: The enzyme can be dissociated into components, two of which are identical with EC 2.8.3.10 (citrate CoA-transferase) and EC 4.1.3.34 (citryl-CoA lyase). EC 3.1.2.16, citrate lyase deacetylase, deacetylates and inactivates the enzyme.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9012-83-3
References:
1.  Dagley, S. and Dawes, E.A. Citridesmolase: its properties and mode of action. Biochim. Biophys. Acta 17 (1955) 177–184. [DOI] [PMID: 13239657]
2.  Dimroth, P., Loyal, R. and Eggerer, H. Characterization of the isolated transferase subunit of citrate lyase as a CoA-transferase. Evidence against a covalent enzyme-substrate intermediate. Eur. J. Biochem. 80 (1977) 479–488. [DOI] [PMID: 336371]
[EC 4.1.3.6 created 1961]
 
 
EC 5.3.3.4     Relevance: 66.9%
Accepted name: muconolactone Δ-isomerase
Reaction: (+)-muconolactone = (4,5-dihydro-5-oxofuran-2-yl)-acetate
For diagram of benzoate metabolism, click here
Glossary: (+)-muconolactone = (S)-(2,5-dihydro-5-oxofuran-2-yl)-acetate
Other name(s): muconolactone isomerase; 5-oxo-4,5-dihydrofuran-2-acetate Δ32-isomerase
Systematic name: (+)-muconolactone Δ32-isomerase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37318-46-0
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
[EC 5.3.3.4 created 1961 as EC 3.1.1.16, part transferred 1972 to EC 5.3.3.4 rest to EC 5.3.3.4]
 
 
EC 5.5.1.11     Relevance: 65.8%
Accepted name: dichloromuconate cycloisomerase
Reaction: 2,4-dichloro-2,5-dihydro-5-oxofuran-2-acetate = 2,4-dichloro-cis,cis-muconate
For diagram of reaction, click here
Other name(s): 2,4-dichloro-2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing)
Systematic name: 2,4-dichloro-2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Comments: Requires Mn2+. The product of cycloisomerization of dichloro-cis,cis-muconate spontaneously eliminates chloride to produce cis-4-carboxymethylene-3-chlorobut-2-en-4-olide. Also acts, in the reverse direction, on cis,cis-muconate and its monochloro-derivatives, but with lower affinity. Not identical with EC 5.5.1.1 (muconate cycloisomerase) or EC 5.5.1.7 (chloromuconate cycloisomerase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 126904-95-8
References:
1.  Kuhm, A.E., Schlömann, M., Knackmuss, H.-J. and Pieper, D.H. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem. J. 266 (1990) 877–883. [PMID: 2327971]
[EC 5.5.1.11 created 1992]
 
 
EC 3.1.1.72     Relevance: 63.2%
Accepted name: acetylxylan esterase
Reaction: Deacetylation of xylans and xylo-oligosaccharides
Systematic name: acetylxylan esterase
Comments: Catalyses the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, α-napthyl acetate, p-nitrophenyl acetate but not from triacetylglycerol. Does not act on acetylated mannan or pectin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 188959-24-2
References:
1.  Sundberg, M., Poutanen, K. Purification and properties of two acetylxylan esterases of Trichoderma reesei. Biotechnol. Appl. Biochem. 13 (1991) 1–11.
2.  Poutanen, K., Sundberg, M., Korte, H., Puls, J. Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl. Microbiol. Biotechnol. 33 (1990) 506–510.
3.  Margolles-Clark, E., Tenkanen, M., Söderland, H., Penttilä, M. Acetyl xylan esterase from Trichoderma reesei contains an active site serine and a cellulose binding domain. Eur. J. Biochem. 237 (1996) 553–560. [DOI] [PMID: 8647098]
[EC 3.1.1.72 created 1999]
 
 
EC 2.3.1.230     Relevance: 62.9%
Accepted name: 2-heptyl-4(1H)-quinolone synthase
Reaction: octanoyl-CoA + (2-aminobenzoyl)acetate = 2-heptyl-4-quinolone + CoA + CO2 + H2O (overall reaction)
(1a) octanoyl-CoA + L-cysteinyl-[PqsC protein] = S-octanoyl-L-cysteinyl-[PqsC protein] + CoA
(1b) S-octanoyl-L-cysteinyl-[PqsC protein] + (2-aminobenzoyl)acetate = 1-(2-aminophenyl)decane-1,3-dione + CO2 + L-cysteinyl-[PqsC protein]
(1c) 1-(2-aminophenyl)decane-1,3-dione = 2-heptyl-4-quinolone + H2O
Glossary: 2-heptyl-4-quinolone = 2-heptylquinolin-4(1H)-one
Other name(s): pqsBC (gene names); malonyl-CoA:anthraniloyl-CoA C-acetyltransferase (decarboxylating)
Systematic name: octanoyl-CoA:(2-aminobenzoyl)acetate octanoyltransferase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, is a heterodimeric complex. The PqsC subunit acquires an octanoyl group from octanoyl-CoA and attaches it to an internal cysteine residue. Together with the PqsB subunit, the proteins catalyse the coupling of the octanoyl group with (2-aminobenzoyl)acetate, leading to decarboxylation and dehydration events that result in closure of the quinoline ring.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dulcey, C.E., Dekimpe, V., Fauvelle, D.A., Milot, S., Groleau, M.C., Doucet, N., Rahme, L.G., Lepine, F. and Deziel, E. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem. Biol. 20 (2013) 1481–1491. [DOI] [PMID: 24239007]
2.  Drees, S.L., Li, C., Prasetya, F., Saleem, M., Dreveny, I., Williams, P., Hennecke, U., Emsley, J. and Fetzner, S. PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism. J. Biol. Chem. 291 (2016) 6610–6624. [DOI] [PMID: 26811339]
[EC 2.3.1.230 created 2013, modified 2017]
 
 
EC 1.1.1.318     Relevance: 62.1%
Accepted name: eugenol synthase
Reaction: eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH + H+
Other name(s): LtCES1; EGS1; EGS2
Systematic name: eugenol:NADP+ oxidoreductase (coniferyl ester reducing)
Comments: The enzyme acts in the opposite direction. The enzymes from the plants Ocimum basilicum (sweet basil) [1,3], Clarkia breweri and Petunia hybrida [4] only accept coniferyl acetate and form eugenol. The enzyme from Pimpinella anisum (anise) forms anol (from 4-coumaryl acetate) in vivo, although the recombinant enzyme can form eugenol from coniferyl acetate [5]. The enzyme from Larrea tridentata (creosote bush) also forms chavicol from a coumaryl ester and can use NADH [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Koeduka, T., Fridman, E., Gang, D.R., Vassão, D.G., Jackson, B.L., Kish, C.M., Orlova, I., Spassova, S.M., Lewis, N.G., Noel, J.P., Baiga, T.J., Dudareva, N. and Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103 (2006) 10128–10133. [DOI] [PMID: 16782809]
2.  Vassão, D.G., Kim, S.J., Milhollan, J.K., Eichinger, D., Davin, L.B. and Lewis, N.G. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol. Arch. Biochem. Biophys. 465 (2007) 209–218. [DOI] [PMID: 17624297]
3.  Louie, G.V., Baiga, T.J., Bowman, M.E., Koeduka, T., Taylor, J.H., Spassova, S.M., Pichersky, E. and Noel, J.P. Structure and reaction mechanism of basil eugenol synthase. PLoS One 2 (2007) e993. [DOI] [PMID: 17912370]
4.  Koeduka, T., Louie, G.V., Orlova, I., Kish, C.M., Ibdah, M., Wilkerson, C.G., Bowman, M.E., Baiga, T.J., Noel, J.P., Dudareva, N. and Pichersky, E. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J. 54 (2008) 362–374. [DOI] [PMID: 18208524]
5.  Koeduka, T., Baiga, T.J., Noel, J.P. and Pichersky, E. Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol. 149 (2009) 384–394. [DOI] [PMID: 18987218]
[EC 1.1.1.318 created 2012]
 
 
EC 1.14.14.105     Relevance: 61.9%
Accepted name: taxane 10β-hydroxylase
Reaction: taxa-4(20),11-dien-5α-yl acetate + [reduced NADPH—hemoprotein reductase] + O2 = 10β-hydroxytaxa-4(20),11-dien-5α-yl acetate + [oxidized NADPH—hemoprotein reductase] + H2O
For diagram of taxadiene hydroxylation, click here
Other name(s): CYP725A1 (gene name); 5-α-taxadienol-10-β-hydroxylase
Systematic name: taxa-4(20),11-dien-5α-yl acetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (10β-hydroxylating)
Comments: This microsomal cytochrome-P-450 (heme-thiolate) enzyme from the plant Taxus cuspidata is involved in the biosynthesis of the diterpenoid antineoplastic drug taxol (paclitaxel).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 337514-75-7
References:
1.  Wheeler, A.L., Long, R.M., Ketchum, R.E., Rithner, C.D., Williams, R.M. and Croteau, R. Taxol biosynthesis: differential transformations of taxadien-5α-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch. Biochem. Biophys. 390 (2001) 265. [DOI] [PMID: 11396929]
2.  Jennewein, S., Rithner, C.D., Williams, R.M. and Croteau, R.B. Taxol biosynthesis: taxane 13 α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 98 (2001) 13595. [DOI] [PMID: 11707604]
3.  Schoendorf, A., Rithner, C.D., Williams, R.M. and Croteau, R.B. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA 98 (2001) 1501–1506. [DOI] [PMID: 11171980]
[EC 1.14.14.105 created 2002 as EC 1.14.13.76, transferred 2018 to EC 1.14.14.105]
 
 
EC 3.1.1.6     Relevance: 61.7%
Accepted name: acetylesterase
Reaction: an acetic ester + H2O = an alcohol + acetate
For diagram of peraksine biosynthesis, click here
Other name(s): C-esterase (in animal tissues); acetic ester hydrolase; chloroesterase; p-nitrophenyl acetate esterase; Citrus acetylesterase
Systematic name: acetic-ester acetylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 9000-82-2
References:
1.  Aldridge, W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochem. J. 53 (1953) 110–117. [PMID: 13032041]
2.  Bergmann, F. and Rimon, S. Fractionation of C-esterase from the hog's kidney extract. Biochem. J. 77 (1960) 209–214. [PMID: 16748846]
3.  Jansen, E.F., Nutting, M.-D.F. and Balls, A.K. The reversible inhibition of acetylesterase by diisopropyl fluorophosphate and tetraethyl pyrophosphate. J. Biol. Chem. 175 (1948) 975–987. [PMID: 18880795]
[EC 3.1.1.6 created 1961]
 
 
EC 4.1.3.26     Relevance: 60.8%
Accepted name: 3-hydroxy-3-isohexenylglutaryl-CoA lyase
Reaction: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA = 7-methyl-3-oxooct-6-enoyl-CoA + acetate
Other name(s): β-hydroxy-β-isohexenylglutaryl CoA-lyase; hydroxyisohexenylglutaryl-CoA:acetatelyase; 3-hydroxy-3-isohexenylglutaryl coenzyme A lyase; 3-hydroxy-3-isohexenylglutaryl-CoA isopentenylacetoacetyl-CoA-lyase; 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA acetate-lyase
Systematic name: 3-hydroxy-3-(4-methylpent-3-en-1-yl)glutaryl-CoA acetate-lyase (7-methyl-3-oxooct-6-enoyl-CoA-forming)
Comments: Also acts on the hydroxy derivative of farnesoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-69-0
References:
1.  Seubert, W. and Fass, E. Untersuchungen über den bakterielle Abbau von Isoprenoiden. IV. Reinigung und Eigenschaftender β-Isohexenylglutaconyl-CoA-hydratase und β-Hydroxy-β-isohexenylglutaryl-CoA-lyase. Biochem. Z. 341 (1964) 23–34. [PMID: 14339651]
[EC 4.1.3.26 created 1972]
 
 
EC 3.1.1.2     Relevance: 60.8%
Accepted name: arylesterase
Reaction: a phenyl acetate + H2O = a phenol + acetate
Other name(s): A-esterase; paraoxonase; aromatic esterase
Systematic name: aryl-ester hydrolase
Comments: Acts on many phenolic esters. The reactions of EC 3.1.8.1 aryldialkylphosphatase, were previously attributed to this enzyme. It is likely that the three forms of human paraoxonase are lactonases rather than aromatic esterases [7,8]. The natural substrates of the paraoxonases are lactones [7,8], with (±)-5-hydroxy-6E,8Z,11Z,4Z-eicostetraenoic-acid 1,5-lactone being the best substrate [8].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9032-73-9
References:
1.  Aldridge, W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochem. J. 53 (1953) 110–117. [PMID: 13032041]
2.  Augustinsson, K.-B. and Olsson, B. Esterases in the milk and blood plasma of swine. 1. Substrate specificity and electrophoresis studies. Biochem. J. 71 (1959) 477–484. [PMID: 13638253]
3.  Bosmann, H.B. Membrane marker enzymes. Characterization of an arylesterase of guinea pig cerebral cortex utilizing p-nitrophenyl acetate as substrate. Biochim. Biophys. Acta 276 (1972) 180–191. [DOI] [PMID: 5047702]
4.  Kim, D.-H., Yang, Y.-S. and Jakoby, W.B. Nonserine esterases from rat liver cytosol. Protein Expr. Purif. 1 (1990) 19–27. [DOI] [PMID: 2152179]
5.  Mackness, M.I., Thompson, H.M., Hardy, A.R. and Walker, C.H. Distinction between 'A′-esterases and arylesterases. Implications for esterase classification. Biochem. J. 245 (1987) 293–296. [PMID: 2822017]
6.  Reiner, E., Aldridge, W.N. and Hoskin, C.G. (Eds), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, UK, 1989.
7.  Khersonsky, O. and Tawfik, D.S. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry 44 (2005) 6371–6382. [DOI] [PMID: 15835926]
8.  Draganov, D.I., Teiber, J.F., Speelman, A., Osawa, Y., Sunahara, R. and La Du, B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 46 (2005) 1239–1247. [DOI] [PMID: 15772423]
[EC 3.1.1.2 created 1961, modified 1989]
 
 
EC 3.5.1.113     Relevance: 60.6%
Accepted name: 2′′′-acetyl-6′′′-hydroxyneomycin C deacetylase
Reaction: 2′′′-acetyl-6′′′-deamino-6′′′-hydroxyneomycin C + H2O = 6′′′-deamino-6′′′-hydroxyneomycin C + acetate
Other name(s): neoL (gene name)
Systematic name: 2′′′-acetyl-6′′′-hydroxyneomycin C hydrolase (acetate-forming)
Comments: Involved in the biosynthetic pathway of aminoglycoside antibiotics of the neomycin family. The enzyme from the bacterium Streptomyces fradiae also catalyses EC 3.5.1.112, 2′-N-acetylparomamine deacetylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [DOI] [PMID: 18311744]
[EC 3.5.1.113 created 2012]
 
 
EC 3.1.1.54     Relevance: 59.5%
Accepted name: acetoxybutynylbithiophene deacetylase
Reaction: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene + H2O = 5-(4-hydroxybut-1-ynyl)-2,2′-bithiophene + acetate
Other name(s): acetoxybutynylbithiophene esterase; 5-(4-acetoxy-1-butynyl)-2,2′-bithiophene:acetate esterase
Systematic name: 5-(4-acetoxybut-1-ynyl)-2,2′-bithiophene O-acetylhydrolase
Comments: The enzyme is highly specific.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 82346-63-2
References:
1.  Sütfeld, R. and Towers, G.H.N. 5-(4-Acetoxy-1-butinyl)-2,2′-bithiophene:acetate esterase from Tagetes patula. Phytochemistry 21 (1982) 277–279.
[EC 3.1.1.54 created 1986]
 
 
EC 6.3.4.8     Relevance: 58.8%
Accepted name: imidazoleacetate—phosphoribosyldiphosphate ligase
Reaction: ATP + imidazole-4-acetate + 5-phosphoribosyl diphosphate = ADP + phosphate + 1-(5-phosphoribosyl)imidazole-4-acetate + diphosphate
Other name(s): 5-phosphoribosylimidazoleacetate synthetase
Systematic name: imidazoleacetate:5-phosphoribosyl-diphosphate ligase (ADP- and diphosphate-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37318-65-3
References:
1.  Crowley, G.M. The enzymatic synthesis of 5′-phosphoribosylimidazoleacetic acid. J. Biol. Chem. 239 (1964) 2593–2601. [PMID: 14235540]
[EC 6.3.4.8 created 1972]
 
 
EC 5.5.1.1     Relevance: 58.7%
Accepted name: muconate cycloisomerase
Reaction: (+)-muconolactone = cis,cis-muconate
For diagram of benzoate metabolism, click here
Glossary: (+)-muconolactone = (S)-(2,5-dihydro-5-oxofuran-2-yl)-acetate
cis,cis-muconate = cis,cis-hexadienedioate = (2Z,4Z)-hexa-2,4-dienedioate
Other name(s): muconate cycloisomerase I; cis,cis-muconate-lactonizing enzyme; cis,cis-muconate cycloisomerase; muconate lactonizing enzyme; 4-carboxymethyl-4-hydroxyisocrotonolactone lyase (decyclizing); CatB; MCI; 2,5-dihydro-5-oxofuran-2-acetate lyase (decyclizing); 2,5-dihydro-5-oxofuran-2-acetate lyase (ring-opening)
Systematic name: (+)-muconolactone lyase (ring-opening)
Comments: Requires Mn2+. Also acts (in the reverse reaction) on 3-methyl-cis,cis-muconate and, very slowly, on cis,trans-muconate. Not identical with EC 5.5.1.7 (chloromuconate cycloisomerase) or EC 5.5.1.11 (dichloromuconate cycloisomerase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9023-72-7
References:
1.  Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. J. Biol. Chem. 241 (1966) 3795–3799. [PMID: 5330966]
2.  Ornston, L.N. Conversion of catechol and protocatechuate to β-ketoadipate (Pseudomonas putida). Methods Enzymol. 17A (1970) 529–549.
3.  Sistrom, W.R. and Stanier, R.Y. The mechanism of formation of β-ketoadipic acid by bacteria. J. Biol. Chem. 210 (1954) 821–836. [PMID: 13211620]
[EC 5.5.1.1 created 1961]
 
 
EC 2.8.3.1     Relevance: 58.1%
Accepted name: propionate CoA-transferase
Reaction: acetyl-CoA + propanoate = acetate + propanoyl-CoA
Other name(s): propionate coenzyme A-transferase; propionate-CoA:lactoyl-CoA transferase; propionyl CoA:acetate CoA transferase; propionyl-CoA transferase
Systematic name: acetyl-CoA:propanoate CoA-transferase
Comments: Butanoate and lactate can also act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 9026-15-7
References:
1.  Stadtman, E.R. Acyl-coenzyme A synthesis by phosphotransacetylase and coenzyme A transphorase. Fed. Proc. 11 (1952) 291.
[EC 2.8.3.1 created 1961]
 
 
EC 6.3.2.20     Relevance: 57.3%
Accepted name: indoleacetate—lysine synthetase
Reaction: ATP + (indol-3-yl)acetate + L-lysine = ADP + phosphate + N6-[(indol-3-yl)acetyl]-L-lysine
Other name(s): indoleacetate:L-lysine ligase (ADP-forming)
Systematic name: (indol-3-yl)acetate:L-lysine ligase (ADP-forming)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 103537-15-1
References:
1.  Glass, N.L. and Kosuge, T. Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J. Bacteriol. 166 (1986) 598. [DOI] [PMID: 3084452]
2.  Hutzinger, O. and Kosuge, T. Microbial synthesis and degradation of indole-3-acetic acid. 3. The isolation and characterization of indole-3-acetyl-ε-L-lysine. Biochemistry 7 (1968) 601–605. [PMID: 5644130]
[EC 6.3.2.20 created 1989]
 
 
EC 2.8.3.19     Relevance: 57.3%
Accepted name: CoA:oxalate CoA-transferase
Reaction: acetyl-CoA + oxalate = acetate + oxalyl-CoA
Other name(s): acetyl-coenzyme A transferase; acetyl-CoA oxalate CoA-transferase; ACOCT; YfdE; UctC
Systematic name: acetyl-CoA:oxalate CoA-transferase
Comments: The enzymes characterized from the bacteria Escherichia coli and Acetobacter aceti can also use formyl-CoA and oxalate (EC 2.8.3.16, formyl-CoA transferase) or formyl-CoA and acetate, with significantly reduced specific activities.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mullins, E.A., Sullivan, K.L. and Kappock, T.J. Function and X-Ray crystal structure of Escherichia coli YfdE. PLoS One 8 (2013) e67901. [DOI] [PMID: 23935849]
[EC 2.8.3.19 created 2013]
 
 
EC 6.2.1.38     Relevance: 56.2%
Accepted name: (2,2,3-trimethyl-5-oxocyclopent-3-enyl)acetyl-CoA synthase
Reaction: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate + ATP + CoA = AMP + diphosphate + [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA
For diagram of camphor catabolism, click here
Other name(s): 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA synthetase
Systematic name: [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate:CoA ligase (AMP-forming)
Comments: Isolated from Pseudomonas putida. Forms part of the pathway of camphor catabolism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Ougham, H.J., Taylor, D.G. and Trudgill, P.W. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida. J. Bacteriol. 153 (1983) 140–152. [PMID: 6848481]
[EC 6.2.1.38 created 2012]
 
 
EC 1.14.13.54     Relevance: 55.9%
Accepted name: ketosteroid monooxygenase
Reaction: a ketosteroid + NADPH + H+ + O2 = a steroid ester/lactone + NADP+ + H2O (general reaction)
(1) progesterone + NADPH + H+ + O2 = testosterone acetate + NADP+ + H2O
(2) androstenedione + NADPH + H+ + O2 = testololactone + NADP+ + H2O
(3) 17α-hydroxyprogesterone + NADPH + H+ + O2 = androstenedione + acetate + NADP+ + H2O
Glossary: progesterone = pregn-4-ene-3,20-dione
testosterone acetate = 3-oxoandrost-4-en-17β-yl acetate
androstenedione = androst-4-ene-3,17-dione
testololactone = 3-oxo-13,17-secoandrost-4-eno-17,13α-lactone
17α-hydroxyprogesterone = 17α-hydroxypregn-4-ene-3,20-dione
Other name(s): steroid-ketone monooxygenase; progesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating, ester-producing); 17α-hydroxyprogesterone, NADPH2:oxygen oxidoreductase (20-hydroxylating, side-chain cleaving); androstenedione, NADPH2:oxygen oxidoreductase (17-hydroxylating, lactonizing)
Systematic name: ketosteroid,NADPH:oxygen oxidoreductase (20-hydroxylating, ester-producing/20-hydroxylating, side-chain cleaving/17-hydroxylating, lactonizing)
Comments: A single FAD-containing enzyme catalyses three types of monooxygenase (Baeyer-Villiger oxidation) reaction. The oxidative esterification of a number of derivatives of progesterone to produce the corresponding 17α-hydroxysteroid 17-acetate ester, such as testosterone acetate, is shown in Reaction (1). The oxidative lactonization of a number of derivatives of androstenedione to produce the 13,17-secoandrosteno-17,13α-lactone, such as testololactone, is shown in Reaction (2). The oxidative cleavage of the 17β-side-chain of 17α-hydroxyprogesterone to produce androstenedione and acetate is shown in Reaction (3). Reaction (1) is also catalysed by EC 1.14.99.4 (progesterone monooxygenase), and Reactions (2) and (3) correspond to that catalysed by EC 1.14.99.12 (androst-4-ene-3,17-dione monooxygenase). The possibility that a single enzyme is responsible for the reactions ascribed to EC 1.14.99.4 and EC 1.14.99.12 in other tissues cannot be excluded.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9044-53-5
References:
1.  Katagiri, M. and Itagaki, E. A steroid ketone monooxygenase from Cylindrocarpon radicicola. In: Müller, F. (Ed.), Chemistry and Biochemistry of Flavoenzymes, CRC Press, Florida, 1991, pp. 102–108.
2.  Itagaki, E. Studies on a steroid monooxygenase from Cylindrocarpon radicicola ATCC 11011. Purification and characterization. J. Biochem. (Tokyo) 99 (1986) 815–824. [PMID: 3486863]
3.  Itagaki, E. Studies on a steroid monooxygenase from Cylindrocarpon radicicola ATCC11011. Oxygenative lactonization of androstenedione to testololactone. J. Biochem. (Tokyo) 99 (1986) 825–832. [PMID: 3486864]
[EC 1.14.13.54 created 1999]
 
 
EC 1.1.3.46     Relevance: 55.9%
Accepted name: 4-hydroxymandelate oxidase
Reaction: (S)-4-hydroxymandelate + O2 = 2-(4-hydroxyphenyl)-2-oxoacetate + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
2-(4-hydroxyphenyl)-2-oxoacetate = 4-hydroxyphenylglyoxylate = (4-hydroxyphenyl)(oxo)acetate
L-(4-hydroxyphenyl)glycine = (S)-4-hydroxyphenylglycine
L-(3,5-dihydroxyphenyl)glycine = (S)-3,5-dihydroxyphenylglycine
Other name(s): 4HmO; HmO
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase
Comments: A flavoprotein (FMN). The enzyme from the bacterium Amycolatopsis orientalis is involved in the biosynthesis of L-(4-hydroxyphenyl)glycine and L-(3,5-dihydroxyphenyl)glycine, two non-proteinogenic amino acids occurring in the vancomycin group of antibiotics.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hubbard, B.K., Thomas, M.G. and Walsh, C.T. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7 (2000) 931–942. [DOI] [PMID: 11137816]
2.  Li, T.L., Choroba, O.W., Charles, E.H., Sandercock, A.M., Williams, D.H. and Spencer, J.B. Characterisation of a hydroxymandelate oxidase involved in the biosynthesis of two unusual amino acids occurring in the vancomycin group of antibiotics. Chem. Commun. (Camb.) (2001) 1752–1753. [PMID: 12240298]
[EC 1.1.3.46 created 2014]
 
 
EC 2.3.1.224     Relevance: 55.4%
Accepted name: acetyl-CoA-benzylalcohol acetyltransferase
Reaction: (1) acetyl-CoA + benzyl alcohol = CoA + benzyl acetate
(2) acetyl-CoA + cinnamyl alcohol = CoA + cinnamyl acetate
Other name(s): BEAT
Systematic name: acetyl-CoA:benzylalcohol O-acetyltransferase
Comments: The enzyme is found in flowers like Clarkia breweri, where it is important for floral scent production. Unlike EC 2.3.1.84, alcohol O-acetyltransferase, this enzyme is active with alcohols that contain a benzyl ring.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dudareva, N., D'Auria, J.C., Nam, K.H., Raguso, R.A. and Pichersky, E. Acetyl-CoA:benzylalcohol acetyltransferase - an enzyme involved in floral scent production in Clarkia breweri. Plant J. 14 (1998) 297–304. [DOI] [PMID: 9628024]
[EC 2.3.1.224 created 2013]
 
 
EC 2.5.1.100     Relevance: 54%
Accepted name: fumigaclavine A dimethylallyltransferase
Reaction: fumigaclavine A + dimethylallyl diphosphate = fumigaclavine C + diphosphate
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: fumigaclavine A = 6,8β-dimethylergolin-9β-yl acetate;
fumigaclavine C = 2-(2-methylbut-3-en-2-yl)-6,8β-dimethylergolin-9β-yl acetate
Other name(s): FgaPT1
Systematic name: dimethylallyl-diphosphate:fumigaclavine A dimethylallyltransferase
Comments: Fumigaclavine C is an ergot alkaloid produced by some fungi of the Trichocomaceae family. Activity does not require any metal ions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Unsöld, I.A. and Li, S.M. Reverse prenyltransferase in the biosynthesis of fumigaclavine C in Aspergillus fumigatus: gene expression, purification, and characterization of fumigaclavine C synthase FGAPT1. ChemBioChem. 7 (2006) 158–164. [DOI] [PMID: 16397874]
[EC 2.5.1.100 created 2012]
 
 
EC 1.14.13.228     Relevance: 53.8%
Accepted name: jasmonic acid 12-hydroxylase
Reaction: (–)-jasmonate + NADPH + H+ + O2 = trans-12-hydroxyjasmonate + NADP+ + H2O
Glossary: (–)-jasmonate = {(1R,2R)-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate
trans-12-hydroxyjasmonate = {(1R,2R)-2-[(2Z)-5-hydroxypent-2-en-1-yl]-3-oxocyclopentyl}acetate
Other name(s): ABM (gene name)
Systematic name: jasmonate,NADPH:oxygen oxidoreductase (12-hydroxylating)
Comments: Although believed to occur in plants, the enzyme has so far been characterized only from the rice blast fungus, Magnaporthe oryzae. The fungus strategically deploys the enzyme to hydroxylate and inactivate endogenous jasmonate to evade the jasmonate-based innate immunity in rice plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Patkar, R.N., Benke, P.I., Qu, Z., Chen, Y.Y., Yang, F., Swarup, S. and Naqvi, N.I. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11 (2015) 733–740. [DOI] [PMID: 26258762]
[EC 1.14.13.228 created 2016]
 
 
EC 1.1.3.19     Relevance: 53.7%
Accepted name: 4-hydroxymandelate oxidase (decarboxylating)
Reaction: (S)-4-hydroxymandelate + O2 = 4-hydroxybenzaldehyde + CO2 + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): L-4-hydroxymandelate oxidase (decarboxylating); (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate:oxygen 1-oxidoreductase; (S)-4-hydroxymandelate:oxygen 1-oxidoreductase; 4-hydroxymandelate oxidase
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FAD), requires Mn2+. The enzyme from the bacterium Pseudomonas putida is involved in the degradation of mandelate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 60976-30-9
References:
1.  Bhat, S.G. and Vaidyanathan, C.S. Purification and properties of L-4-hydroxymandelate oxidase from Pseudomonas convexa. Eur. J. Biochem. 68 (1976) 323–331. [DOI] [PMID: 976259]
[EC 1.1.3.19 created 1984, modified 2014]
 
 
EC 3.5.1.112     Relevance: 53.5%
Accepted name: 2′-N-acetylparomamine deacetylase
Reaction: 2′-N-acetylparomamine + H2O = paromamine + acetate
For diagram of paromamine biosynthesis, click here
Glossary: paromamine = (1R)-O4-(2-amino-2-deoxy-α-D-glucopyranosyl)-2-deoxy-streptamine
Other name(s): btrD (gene name); neoL (gene name); kanN (gene name)
Systematic name: 2′-N-acetylparomamine hydrolase (acetate-forming)
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including kanamycin, butirosin, neomycin and ribostamycin. The enzyme from the bacterium Streptomyces fradiae can also accept 2′′′-acetyl-6′′′-hydroxyneomycin C as substrate, cf. EC 3.5.1.113, 2′′′-acetyl-6′′′-hydroxyneomycin C deacetylase [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Truman, A.W., Huang, F., Llewellyn, N.M. and Spencer, J.B. Characterization of the enzyme BtrD from Bacillus circulans and revision of its functional assignment in the biosynthesis of butirosin. Angew. Chem. Int. Ed. Engl. 46 (2007) 1462–1464. [DOI] [PMID: 17226887]
2.  Yokoyama, K., Yamamoto, Y., Kudo, F. and Eguchi, T. Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem. 9 (2008) 865–869. [DOI] [PMID: 18311744]
[EC 3.5.1.112 created 2012]
 
 
EC 3.5.1.127     Relevance: 51.1%
Accepted name: jasmonoyl-L-amino acid hydrolase
Reaction: a jasmonoyl-L-amino acid + H2O = jasmonate + an L-amino acid
Glossary: tuberonic acid = 12-hydroxyjasmonate = {(1R,2R)-2-[(2Z)-5-hydroxypent-2-enyl]-3-oxo-cyclopentyl}acetate
jasmonate = {(1R,2R)-3-oxo-2-[(2Z)-pent-2-enyl]cyclopentyl}acetate
Other name(s): IAR3 (gene name); ILL4 (gene name); ILL6 (gene name)
Systematic name: jasmonoyl-L amino acid amidohydrolase
Comments: This entry includes a family of enzymes that recyle jasmonoyl-amino acid conjugates back to jasmonates. The enzymes from Arabidopsis thaliana have been shown to also act on 12-hydroxyjasmonoyl-L-isoleucine, generating tuberonic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Widemann, E., Miesch, L., Lugan, R., Holder, E., Heinrich, C., Aubert, Y., Miesch, M., Pinot, F. and Heitz, T. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288 (2013) 31701–31714. [DOI] [PMID: 24052260]
[EC 3.5.1.127 created 2017]
 
 
EC 3.1.1.80     Relevance: 50.9%
Accepted name: acetylajmaline esterase
Reaction: (1) 17-O-acetylajmaline + H2O = ajmaline + acetate
(2) 17-O-acetylnorajmaline + H2O = norajmaline + acetate
For diagram of ajmaline, vinorine, vomilenine and raucaffricine biosynthesis, click here
Other name(s): AAE; 2β(R)-17-O-acetylajmalan:acetylesterase; acetylajmalan esterase
Systematic name: 17-O-acetylajmaline O-acetylhydrolase
Comments: This plant enzyme is responsible for the last stages in the biosynthesis of the indole alkaloid ajmaline. The enzyme is highly specific for the substrates 17-O-acetylajmaline and 17-O-acetylnorajmaline as the structurally related acetylated alkaloids vinorine, vomilenine, 1,2-dihydrovomilenine and 1,2-dihydroraucaffricine cannot act as substrates [2]. This is a novel member of the GDSL family of serine esterases/lipases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110183-46-5
References:
1.  Polz, L., Schübel, H. and Stöckigt, J. Characterization of 2β(R)-17-O-acetylajmalan:acetylesterase—a specific enzyme involved in the biosynthesis of the Rauwolfia alkaloid ajmaline. Z. Naturforsch. [C] 42 (1987) 333–342. [PMID: 2955586]
2.  Ruppert, M., Woll, J., Giritch, A., Genady, E., Ma, X. and Stöckigt, J. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222 (2005) 888–898. [DOI] [PMID: 16133216]
[EC 3.1.1.80 created 2006]
 
 
EC 2.5.1.49     Relevance: 50.6%
Accepted name: O-acetylhomoserine aminocarboxypropyltransferase
Reaction: O-acetyl-L-homoserine + methanethiol = L-methionine + acetate
For diagram of reaction, click here
Other name(s): O-acetyl-L-homoserine acetate-lyase (adding methanethiol); O-acetyl-L-homoserine sulfhydrolase; O-acetylhomoserine (thiol)-lyase; O-acetylhomoserine sulfhydrolase; methionine synthase (misleading)
Systematic name: O-acetyl-L-homoserine:methanethiol 3-amino-3-carboxypropyltransferase
Comments: Also reacts with other thiols and H2S, producing homocysteine or thioethers. The name methionine synthase is more commonly applied to EC 2.1.1.13, methionine synthase. The enzyme from baker’s yeast also catalyses the reaction of EC 2.5.1.47 cysteine synthase, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-90-7
References:
1.  Kerr, D. O-Acetylhomoserine sulfhydrylase (Neurospora). Methods Enzymol. 17B (1971) 446–450.
2.  Smith, I.K. and Thompson, J.F. Utilization of S-methylcysteine and methylmercaptan by methionineless mutants of Neurospora and the pathway of their conversion to methionine. II. Enzyme studies. Biochim. Biophys. Acta 184 (1969) 130–138. [DOI] [PMID: 5791104]
3.  Yamagata, S. and Takeshima, K. O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Further purification and characterization as a pyridoxal enzyme. J. Biochem. (Tokyo) 80 (1976) 777–785. [PMID: 795806]
4.  Yamagata, S. O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Subunit structure. J. Biochem. (Tokyo) 80 (1976) 787–797. [PMID: 795807]
5.  Yamagata, S., Takeshima, K. and Naikai, N. Evidence for the identity of O-acetylserine sulfhydrylase with O-acetylhomoserine sulfhydrylase in yeast. J. Biochem. (Tokyo) 75 (1974) 1221–1229. [PMID: 4609980]
6.  Yamagata, S. Roles of O-acetyl-L-homoserine sulfhydrylases in micro-organisms. Biochimie 71 (1989) 1125–1143. [DOI] [PMID: 2517474]
7.  Shimizu, H., Yamagata, S., Masui, R., Inoue, Y., Shibata, T., Yokoyama, S., Kuramitsu, S. and Iwama, T. Cloning and overexpression of the oah1 gene encoding O-acetyl-L-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product. Biochim. Biophys. Acta 1549 (2001) 61–72. [DOI] [PMID: 11566369]
[EC 2.5.1.49 created 1972 as EC 4.2.99.10, transferred 2002 to EC 2.5.1.49]
 
 
EC 6.2.1.36     Relevance: 49%
Accepted name: 3-hydroxypropionyl-CoA synthase
Reaction: 3-hydroxypropanoate + ATP + CoA = 3-hydroxypropanoyl-CoA + AMP + diphosphate
For diagram of the 3-hydroxypropanoate cycle, click here and for diagram of the 3-hydroxypropanoate/4-hydroxybutanoate cycle and dicarboxylate/4-hydroxybutanoate cycle in archaea, click here
Glossary: 3-hydroxypropionyl-CoA = 3-hydroxypropanoyl-CoA
Other name(s): 3-hydroxypropionyl-CoA synthetase (AMP-forming); 3-hydroxypropionate—CoA ligase
Systematic name: hydroxypropanoate:CoA ligase (AMP-forming)
Comments: Catalyses a step in the 3-hydroxypropanoate/4-hydroxybutanoate cycle, an autotrophic CO2 fixation pathway found in some thermoacidophilic archaea [1,2].The enzymes from Metallosphaera sedula and Sulfolobus tokodaii can also use propionate, acrylate, acetate, and butanoate as substrates [2], and are thus different from EC 6.2.1.17 (propionate—CoA ligase), which does not accept acetate or butanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Berg, I.A., Kockelkorn, D., Buckel, W. and Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318 (2007) 1782–1786. [DOI] [PMID: 18079405]
2.  Alber, B.E., Kung, J.W. and Fuchs, G. 3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. J. Bacteriol. 190 (2008) 1383–1389. [DOI] [PMID: 18165310]
[EC 6.2.1.36 created 2009]
 
 
EC 4.1.3.22     Relevance: 48.8%
Accepted name: citramalate lyase
Reaction: (2S)-2-hydroxy-2-methylbutanedioate = acetate + pyruvate
For diagram of reaction, click here
Glossary: (+)-citramalate = (2S)-2-hydroxy-2-methylbutanedioate
Other name(s): citramalate pyruvate-lyase; citramalate synthase; citramalic-condensing enzyme; citramalate synthetase; citramalic synthase; (S)-citramalate lyase; (+)-citramalate pyruvate-lyase; citramalate pyruvate lyase; (3S)-citramalate pyruvate-lyase; (2S)-2-hydroxy-2-methylbutanedioate pyruvate-lyase
Systematic name: (2S)-2-hydroxy-2-methylbutanedioate pyruvate-lyase (acetate-forming)
Comments: The enzyme can be dissociated into components, two of which are identical with EC 2.8.3.11 (citramalate CoA-transferase) and EC 4.1.3.25 (citramalyl-CoA lyase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-93-4
References:
1.  Barker, H.A. Citramalate lyase of Clostridium tetanomorphum. Arch. Mikrobiol. 59 (1967) 4–12. [PMID: 4301387]
2.  Dimroth, P., Buckel, W., Loyal, R. and Eggerer, H. Isolation and function of the subunits of citramalate lyase and formation of hybrids with the subunits of citrate lyase. Eur. J. Biochem. 80 (1977) 469–477. [DOI] [PMID: 923590]
[EC 4.1.3.22 created 1972]
 
 
EC 1.14.14.32     Relevance: 48.3%
Accepted name: 17α-hydroxyprogesterone deacetylase
Reaction: (1) 17α-hydroxyprogesterone + [reduced NADPH—hemoprotein reductase] + O2 = androstenedione + acetate + [oxidized NADPH—hemoprotein reductase] + H2O
(2) 17α-hydroxypregnenolone + [reduced NADPH—hemoprotein reductase] + O2 = 3β-hydroxyandrost-5-en-17-one + acetate + [oxidized NADPH—hemoprotein reductase] + H2O
Glossary: androstenedione = androst-4-ene-3,17-dione
Other name(s): C-17/C-20 lyase; 17α-hydroxyprogesterone acetaldehyde-lyase; CYP17; CYP17A1 (gene name); 17α-hydroxyprogesterone 17,20-lyase
Systematic name: 17α-hydroxyprogesterone,NADPH—hemoprotein reductase:oxygen oxidoreductase (17α-hydroxylating, acetate-releasing)
Comments: A microsomal cytochrome P-450 (heme-thiolate) protein that catalyses two independent reactions at the same active site - the 17-hydroxylation of pregnenolone and progesterone, which is part of glucocorticoid hormones biosynthesis (EC 1.14.14.19), and the conversion of the 17-hydroxylated products via a 17,20-lyase reaction to form androstenedione and 3β-hydroxyandrost-5-en-17-one, leading to sex hormone biosynthesis. The activity of this reaction is dependent on the allosteric interaction of the enzyme with cytochrome b5 without any transfer of electrons from the cytochrome [2,4]. The enzymes from different organisms differ in their substrate specificity. While the enzymes from pig, hamster, and rat accept both 17α-hydroxyprogesterone and 17α-hydroxypregnenolone, the enzymes from human, bovine, sheep, goat, and bison do not accept the former, and the enzyme from guinea pig does not accept the latter [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 62213-24-5
References:
1.  Gilep, A.A., Estabrook, R.W. and Usanov, S.A. Molecular cloning and heterologous expression in E. coli of cytochrome P45017α. Comparison of structural and functional properties of substrate-specific cytochromes P450 from different species. Biochemistry (Mosc.) 68 (2003) 86–98. [PMID: 12693981]
2.  Auchus, R.J., Lee, T.C. and Miller, W.L. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J. Biol. Chem. 273 (1998) 3158–3165. [DOI] [PMID: 9452426]
3.  Mak, P.J., Gregory, M.C., Denisov, I.G., Sligar, S.G. and Kincaid, J.R. Unveiling the crucial intermediates in androgen production. Proc. Natl. Acad. Sci. USA 112 (2015) 15856–15861. [DOI] [PMID: 26668369]
4.  Simonov, A.N., Holien, J.K., Yeung, J.C., Nguyen, A.D., Corbin, C.J., Zheng, J., Kuznetsov, V.L., Auchus, R.J., Conley, A.J., Bond, A.M., Parker, M.W., Rodgers, R.J. and Martin, L.L. Mechanistic scrutiny identifies a kinetic role for cytochrome b5 regulation of human cytochrome P450c17 (CYP17A1, P450 17A1). PLoS One 10:e0141252 (2015). [DOI] [PMID: 26587646]
5.  Bhatt, M.R., Khatri, Y., Rodgers, R.J. and Martin, L.L. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J. Steroid Biochem. Mol. Biol. (2016) . [DOI] [PMID: 26976652]
[EC 1.14.14.32 created 1976 as EC 4.1.2.30, transferred 2016 to EC 1.14.14.32]
 
 
EC 2.5.1.52     Relevance: 47%
Accepted name: L-mimosine synthase
Reaction: O-acetyl-L-serine + 3,4-dihydroxypyridine = 3-(3,4-dihydroxypyridin-1-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Glossary: O-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
L-mimosine = (2S)-2-amino-3-(3-hydroxy-4-oxopyridin-1(4H)-yl)propanoic acid
Other name(s): O3-acetyl-L-serine acetate-lyase (adding 3,4-dihydroxypyridin-1-yl); 3-O-acetyl-L-serine:3,4-dihydroxypyridine 1-(2-amino-2-carboxyethyl)transferase; O3-acetyl-L-serine:3,4-dihydroxypyridine 1-(2-amino-2-carboxyethyl)transferase
Systematic name: O-acetyl-L-serine:3,4-dihydroxypyridine 1-(2-amino-2-carboxyethyl)transferase
Comments: Brings about the biosynthesis of L-mimosine in plants of the Mimosa and Leucaena genera. Not identical with EC 2.5.1.51, β-pyrazolylalanine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 93229-75-5
References:
1.  Murakoshi, I., Ikegami, F., Hinuma, Y. and Hanma, Y. Purification and characterization of β-(pyrazol-1-yl)-L-alanine synthase from Citrullus vulgaris. Phytochemistry 23 (1984) 973–977.
2.  Murakoshi, I., Ikegami, F., Hinuma, Y. and Hanma, Y. Purification and characterization of L-mimosine synthase from Leucaena leucocephala. Phytochemistry 23 (1984) 1905–1908.
3.  Murakoshi, I., Kuramoto, H. and Haginiwa, J. The enzymic synthesis of β-substituted alanines. Phytochemistry 11 (1972) 177–182.
4.  Noji, M., Murakoshi, I. and Saito, K. Evidence for identity of β-pyrazolealanine synthase with cysteine synthase in watermelon: formation of β-pyrazole-alanine by cloned cysteine synthase in vitro and in vivo. Biochem. Biophys. Res. Commun. 197 (1993) 1111–1117. [DOI] [PMID: 8280125]
[EC 2.5.1.52 created 1989 as EC 4.2.99.15, transferred 2002 to EC 2.5.1.52]
 
 
EC 3.7.1.1     Relevance: 45.4%
Accepted name: oxaloacetase
Reaction: oxaloacetate + H2O = oxalate + acetate
Other name(s): oxalacetic hydrolase
Systematic name: oxaloacetate acetylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-89-9
References:
1.  Hayaishi, O., Shimazono, H., Katagiri, M. and Saito, Y. Enzymatic formation of oxalate and acetate from oxaloacetate. J. Am. Chem. Soc. 78 (1956) 5126–5127.
[EC 3.7.1.1 created 1961]
 
 
EC 4.1.1.89     Relevance: 44.8%
Accepted name: biotin-dependent malonate decarboxylase
Reaction: malonate + H+ = acetate + CO2
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): malonate decarboxylase (with biotin); malonate decarboxylase (ambiguous)
Systematic name: malonate carboxy-lyase (biotin-dependent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. The enzyme described here is a biotin-dependent, Na+-translocating enzyme that includes both soluble and membrane-bound components [6]. The other type is a biotin-independent cytosolic protein (cf. EC 4.1.1.88, biotin-independent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. Both enzymes achieve this by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-bound form of the enzyme. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. In the anaerobic bacterium Malonomonas rubra, the components of the multienzyme complex/enzymes involved in carrying out the reactions of this enzyme are as follows: MadA (EC 2.3.1.187, acetyl-S-ACP:malonate ACP transferase), MadB (EC 4.3.99.2, carboxybiotin decarboxylase), MadC/MadD (EC 2.1.3.10, malonyl-S-ACP:biotin-protein carboxyltransferase) and MadH (EC 6.2.1.35, ACP-SH:acetate ligase). Two other components that are involved are MadE, the acyl-carrier protein and MadF, the biotin protein. The carboxy group is lost with retention of configuration [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hilbi, H., Dehning, I., Schink, B. and Dimroth, P. Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. Eur. J. Biochem. 207 (1992) 117–123. [DOI] [PMID: 1628643]
2.  Hilbi, H. and Dimroth, P. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase. Arch. Microbiol. 162 (1994) 48–56. [PMID: 18251085]
3.  Berg, M., Hilbi, H. and Dimroth, P. The acyl carrier protein of malonate decarboxylase of Malonomonas rubra contains 2′-(5"-phosphoribosyl)-3′-dephosphocoenzyme A as a prosthetic group. Biochemistry 35 (1996) 4689–4696. [DOI] [PMID: 8664258]
4.  Berg, M., Hilbi, H. and Dimroth, P. Sequence of a gene cluster from Malonomonas rubra encoding components of the malonate decarboxylase Na+ pump and evidence for their function. Eur. J. Biochem. 245 (1997) 103–115. [DOI] [PMID: 9128730]
5.  Micklefield, J., Harris, K.J., Gröger, S., Mocek, U., Hilbi, H., Dimroth, P. and Floss, H.G. Stereochemical course of malonate decarboxylase in Malonomonas rubra has biotin decarboxylation with retention. J. Am. Chem. Soc. 117 (1995) 1153–1154.
6.  Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 35 (2002) 443–451. [PMID: 12359084]
7.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 4.1.1.89 created 2008]
 
 
EC 2.5.1.51     Relevance: 44.3%
Accepted name: β-pyrazolylalanine synthase
Reaction: O-acetyl-L-serine + pyrazole = 3-(pyrazol-1-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Glossary: O-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
Other name(s): β-(1-pyrazolyl)alanine synthase; β-pyrazolealanine synthase; β-pyrazolylalanine synthase (acetylserine); O3-acetyl-L-serine acetate-lyase (adding pyrazole); BPA-synthase; pyrazolealanine synthase; pyrazolylalaninase; 3-O-acetyl-L-serine:pyrazole 1-(2-amino-2-carboxyethyl)transferase; O3-acetyl-L-serine:pyrazole 1-(2-amino-2-carboxyethyl)transferase
Systematic name: O-acetyl-L-serine:pyrazole 1-(2-amino-2-carboxyethyl)transferase
Comments: The enzyme is highly specific for acetylserine and pyrazole. Not identical with EC 2.5.1.52 L-mimosine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37290-81-6
References:
1.  Murakoshi, I., Ikegami, F., Hinuma, Y. and Hanma, Y. Purification and characterization of β-(pyrazol-1-yl)-L-alanine synthase from Citrullus vulgaris. Phytochemistry 23 (1984) 973–977.
2.  Murakoshi, I., Ikegami, F., Hinuma, Y. and Hanma, Y. Purification and characterization of L-mimosine synthase from Leucaena leucocephala. Phytochemistry 23 (1984) 1905–1908.
3.  Murakoshi, I., Kuramoto, H. and Haginiwa, J. The enzymic synthesis of β-substituted alanines. Phytochemistry 11 (1972) 177–182.
4.  Noji, M., Murakoshi, I. and Saito, K. Evidence for identity of β-pyrazolealanine synthase with cysteine synthase in watermelon: formation of β-pyrazole-alanine by cloned cysteine synthase in vitro and in vivo. Biochem. Biophys. Res. Commun. 197 (1993) 1111–1117. [DOI] [PMID: 8280125]
[EC 2.5.1.51 created 1989 as EC 4.2.99.14 (EC 4.2.99.17 incorporated 1992), transferred 2002 to EC 2.5.1.51]
 
 
EC 2.5.1.47     Relevance: 43%
Accepted name: cysteine synthase
Reaction: O-acetyl-L-serine + hydrogen sulfide = L-cysteine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Glossary: O-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
Other name(s): O-acetyl-L-serine sulfhydrylase; O-acetyl-L-serine sulfohydrolase; O-acetylserine (thiol)-lyase; O-acetylserine (thiol)-lyase A; O-acetylserine sulfhydrylase; O3-acetyl-L-serine acetate-lyase (adding hydrogen-sulfide); acetylserine sulfhydrylase; cysteine synthetase; S-sulfocysteine synthase; 3-O-acetyl-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase; O3-acetyl-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase
Systematic name: O-acetyl-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase
Comments: A pyridoxal-phosphate protein. Some alkyl thiols, cyanide, pyrazole and some other heterocyclic compounds can act as acceptors. Not identical with EC 2.5.1.51 (β-pyrazolylalanine synthase), EC 2.5.1.52 (L-mimosine synthase) and EC 2.5.1.53 (uracilylalanine synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37290-89-4
References:
1.  Becker, M.A., Kredich, N.M. and Tomkins, G.M. The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J. Biol. Chem. 244 (1969) 2418–2427. [PMID: 4891157]
2.  Hara, S., Payne, M.A., Schnackerz, K.D. and Cook, P.F. A rapid purification procedure and computer-assisted sulfide ion selective electrode assay for O-acetylserine sulfhydrylase from Salmonella typhimurium. Protein Expr. Purif. 1 (1990) 70–76. [PMID: 2152186]
3.  Ikegami, F., Kaneko, M., Lambein, F., Kuo, Y.-H. and Murakoshi, I. Difference between uracilylalanine synthases and cysteine synthases in Pisum sativum. Phytochemistry 26 (1987) 2699–2704.
4.  Murakoshi, I., Kaneko, M., Koide, C. and Ikegami, F. Enzymatic-synthesis of the neuroexcitatory amino-acid quisqualic by cysteine synthase. Phytochemistry 25 (1986) 2759–2763.
5.  Tai, C.H., Burkhard, P., Gani, D., Jenn, T., Johnson, C. and Cook, P.F. Characterization of the allosteric anion-binding site of O-acetylserine sulfhydrylase. Biochemistry 40 (2001) 7446–7452. [DOI] [PMID: 11412097]
6.  Bettati, S., Benci, S., Campanini, B., Raboni, S., Chirico, G., Beretta, S., Schnackerz, K.D., Hazlett, T.L., Gratton, E. and Mozzarelli, A. Role of pyridoxal 5′-phosphate in the structural stabilization of O-acetylserine sulfhydrylase. J. Biol. Chem. 275 (2000) 40244–40251. [DOI] [PMID: 10995767]
[EC 2.5.1.47 created 1972 as EC 4.2.99.8, modified 1976, modified 1990, transferred 2002 to EC 2.5.1.47]
 
 
EC 2.5.1.53     Relevance: 42.9%
Accepted name: uracilylalanine synthase
Reaction: O-acetyl-L-serine + uracil = 3-(uracil-1-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Glossary: O-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
3-(uracil-1-yl)-L-alanine = L-willardiine
3-(uracil-3-yl)-L-alanine = L-isowillardiine
Other name(s): O3-acetyl-L-serine acetate-lyase (adding uracil); isowillardiine synthase; willardiine synthase; 3-O-acetyl-L-serine:uracil 1-(2-amino-2-carboxyethyl)transferase; O3-acetyl-L-serine:uracil 1-(2-amino-2-carboxyethyl)transferase
Systematic name: O-acetyl-L-serine:uracil 1-(2-amino-2-carboxyethyl)transferase
Comments: The enzyme produces the non-proteinogenic amino acid L-willardiine, which is naturally found in the plants Acacia willardiana, Mimosa pigra, and Pisum sativum (pea). The enzyme from Pisum species also produces L-isowillardiine. Not identical with EC 2.5.1.47 cysteine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 113573-73-2
References:
1.  Ahmmad, M.A.S., Maskall, C.S. and Brown, E.G. Partial-purification and properties of willardiine and synthase activity from Pisum sativum. Phytochemistry 23 (1984) 265–270.
2.  Ikegami, F., Kaneko, M., Lambein, F., Kuo, Y.-H. and Murakoshi, I. Difference between uracilylalanine synthases and cysteine synthases in Pisum sativum. Phytochemistry 26 (1987) 2699–2704.
3.  Murakoshi, I., Ikegami, F., Ookawa, N., Ariki, T., Haginiwa, J., Kuo, Y.-H. and Lambein, F. Biosynthesis of the uracilylalanines willardiine and isowillardiine in higher plants. Phytochemistry 17 (1978) 1571–1576.
[EC 2.5.1.53 created 1990 as EC 4.2.99.16, transferred 2002 to EC 2.5.1.53]
 
 
EC 3.5.1.41     Relevance: 42.5%
Accepted name: chitin deacetylase
Reaction: chitin + H2O = chitosan + acetate
Systematic name: chitin amidohydrolase
Comments: Hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 56379-60-3
References:
1.  Araki, Y. and Ito, E. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Biochem. Biophys. Res. Commun. 56 (1974) 669–675. [DOI] [PMID: 4826874]
[EC 3.5.1.41 created 1976]
 
 
EC 3.7.1.6     Relevance: 42.3%
Accepted name: acetylpyruvate hydrolase
Reaction: acetylpyruvate + H2O = acetate + pyruvate
Systematic name: 2,4-dioxopentanoate acetylhydrolase
Comments: Highly specific; does not act on pyruvate, oxaloacetate, maleylpyruvate, fumarylpyruvate or acetylacetone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 56214-30-3
References:
1.  Davey, J.F. and Ribbons, D.W. Metabolism of resorcinylic compounds by bacteria. Purification and properties of acetylpyruvate hydrolase from Pseudomonas putida 01. J. Biol. Chem. 250 (1975) 3826–3830. [PMID: 236305]
[EC 3.7.1.6 created 1984]
 
 
EC 3.5.1.63     Relevance: 41.8%
Accepted name: 4-acetamidobutyrate deacetylase
Reaction: 4-acetamidobutanoate + H2O = acetate + 4-aminobutanoate
Glossary: 4-aminobutanoate = γ-aminobutyrate = GABA
Systematic name: 4-acetamidobutanoate amidohydrolase
Comments: Also acts on N-acetyl-β-alanine and 5-acetamidopentanoate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 102347-82-0
References:
1.  Haywood, G.W. and Large, P.J. 4-Acetamidobutyrate deacetylase in the yeast Candida boidinii grown on putrescine or spermidine as sole nitrogen source and its probable role in polyamine catabolism. J. Gen. Microbiol. 132 (1986) 7–14.
[EC 3.5.1.63 created 1989]
 
 
EC 2.5.1.50     Relevance: 41.7%
Accepted name: zeatin 9-aminocarboxyethyltransferase
Reaction: O-acetyl-L-serine + zeatin = lupinate + acetate
For diagram of reaction, click here
Glossary: lupinate = (S)-2-amino-3-{[(E)-4-hydroxy-3-methylbut-2-enylamino]purin-9-yl}propanoate
zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
O-acetyl-L-serine = O3-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
Other name(s): β-(9-cytokinin)-alanine synthase; β-(9-cytokinin)alanine synthase; O-acetyl-L-serine acetate-lyase (adding N6-substituted adenine); lupinate synthetase; lupinic acid synthase; lupinic acid synthetase; 3-O-acetyl-L-serine:zeatin 2-amino-2-carboxyethyltransferase
Systematic name: O-acetyl-L-serine:zeatin 2-amino-2-carboxyethyltransferase
Comments: The enzyme acts not only on zeatin but also on other N6-substituted adenines. The reaction destroys their cytokinin activity and forms the corresponding 3-(adenin-9-yl)-L-alanine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 88086-35-5
References:
1.  Entsch, B., Parker, C.W. and Letham, D.S. An enzyme from lupin seeds forming alanine derivatives of cytokinins. Phytochemistry 22 (1983) 375–381.
2.  Mok, D.W.S. and Mok, M.C. Cytokinin metabolism and action. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 89–118.
[EC 2.5.1.50 created 1984 as EC 4.2.99.13, transferred 2002 to EC 2.5.1.50]
 
 
EC 3.5.1.85     Relevance: 40.3%
Accepted name: (S)-N-acetyl-1-phenylethylamine hydrolase
Reaction: N-acetylphenylethylamine + H2O = phenylethylamine + acetate
Systematic name: (S)-N-acetylphenylethylamine:H2O hydrolase
Comments: Inhibited by phenylmethanesulfonyl fluoride. Some related acetylated compounds are hydrolysed with variable enantiomeric selectivities.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 192230-94-7
References:
1.  Brunella, A., Graf, M., Kittelmann, M., Lauma, K. and Ghisalba, O. Production, purification, and characterization of a highly enantioselective (S)-N-acetyl-1-phenylethyl amidohydrolase from Rhodococcus. Appl. Microbiol. Biotechnol. 47 (1997) 515–520.
[EC 3.5.1.85 created 2000, modified 2002]
 
 
EC 3.1.2.32     Relevance: 40.1%
Accepted name: 2-aminobenzoylacetyl-CoA thioesterase
Reaction: (2-aminobenzoyl)acetyl-CoA + H2O = (2-aminobenzoyl)acetate + CoA
Other name(s): pqsE (gene name)
Systematic name: (2-aminobenzoyl)acetyl-CoA hydrolase
Comments: The enzyme, characterized from the bacterium Pseudomonas aeruginosa, participates in the production of the signal molecule 2-heptyl-4(1H)-quinolone (HHQ).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yu, S., Jensen, V., Seeliger, J., Feldmann, I., Weber, S., Schleicher, E., Haussler, S. and Blankenfeldt, W. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48 (2009) 10298–10307. [DOI] [PMID: 19788310]
2.  Drees, S.L. and Fetzner, S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol. 22 (2015) 611–618. [DOI] [PMID: 25960261]
[EC 3.1.2.32 created 2016]
 
 
EC 6.2.1.17     Relevance: 39.9%
Accepted name: propionate—CoA ligase
Reaction: ATP + propanoate + CoA = AMP + diphosphate + propanoyl-CoA
Other name(s): propionyl-CoA synthetase
Systematic name: propanoate:CoA ligase (AMP-forming)
Comments: Propenoate can act instead of propanoate. Not identical with EC 6.2.1.1 (acetate—CoA ligase) or EC 6.2.1.2 (butyrate—CoA ligase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 55326-49-3
References:
1.  Ricks, C.A. and Cook, R.M. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver. J. Dairy Sci. 64 (1981) 2324–2335. [DOI] [PMID: 7341659]
[EC 6.2.1.17 created 1984]
 
 
EC 3.11.1.2     Relevance: 39.8%
Accepted name: phosphonoacetate hydrolase
Reaction: phosphonoacetate + H2O = acetate + phosphate
Systematic name: phosphonoacetate phosphonohydrolase
Comments: A zinc-dependent enzyme. Belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 153570-68-4
References:
1.  McGrath, J.W., Wisdom, G.B., McMullan, G., Larkin, M.J., Quinn, J.P. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme from Pseudomonas fluorescens 23F. Eur. J. Biochem. 234 (1995) 225–230. [DOI] [PMID: 8529644]
[EC 3.11.1.2 created 1999]
 
 
EC 4.1.1.88     Relevance: 39.4%
Accepted name: biotin-independent malonate decarboxylase
Reaction: malonate + H+ = acetate + CO2
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): malonate decarboxylase (without biotin); malonate decarboxylase (ambiguous); MDC
Systematic name: malonate carboxy-lyase (biotin-independent)
Comments: Two types of malonate decarboxylase are currently known, both of which form multienzyme complexes. This enzyme is a cytosolic protein that is biotin-independent. The other type is a biotin-dependent, Na+-translocating enzyme that includes both soluble and membrane-bound components (cf. EC 4.1.1.89, biotin-dependent malonate decarboxylase). As free malonate is chemically rather inert, it has to be activated prior to decarboxylation. In both enzymes, this is achieved by exchanging malonate with an acetyl group bound to an acyl-carrier protiein (ACP), to form malonyl-ACP and acetate, with subsequent decarboxylation regenerating the acetyl-ACP. The ACP subunit of both enzymes differs from that found in fatty-acid biosynthesis by having phosphopantethine attached to a serine side-chain as 2-(5-triphosphoribosyl)-3-dephospho-CoA rather than as phosphopantetheine 4′-phosphate. The individual enzymes involved in carrying out the reaction of this enzyme complex are EC 2.3.1.187 (acetyl-S-ACP:malonate ACP transferase), EC 2.3.1.39 ([acyl-carrier-protein] S-malonyltransferase) and EC 4.1.1.87 (malonyl-S-ACP decarboxylase). The carboxy group is lost with retention of configuration [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schmid, M., Berg, M., Hilbi, H. and Dimroth, P. Malonate decarboxylase of Klebsiella pneumoniae catalyses the turnover of acetyl and malonyl thioester residues on a coenzyme-A-like prosthetic group. Eur. J. Biochem. 237 (1996) 221–228. [DOI] [PMID: 8620876]
2.  Byun, H.S. and Kim, Y.S. Subunit organization of bacterial malonate decarboxylases: the smallest δ subunit as an acyl-carrier protein. J. Biochem. Mol. Biol. 30 (1997) 132–137.
3.  Hoenke, S., Schmid, M. and Dimroth, P. Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246 (1997) 530–538. [DOI] [PMID: 9208947]
4.  Chohnan, S., Fujio, T., Takaki, T., Yonekura, M., Nishihara, H. and Takamura, Y. Malonate decarboxylase of Pseudomonas putida is composed of five subunits. FEMS Microbiol. Lett. 169 (1998) 37–43. [DOI] [PMID: 9851033]
5.  Hoenke, S., Schmid, M. and Dimroth, P. Identification of the active site of phosphoribosyl-dephospho-coenzyme A transferase and relationship of the enzyme to an ancient class of nucleotidyltransferases. Biochemistry 39 (2000) 13233–13240. [DOI] [PMID: 11052676]
6.  Handa, S., Koo, J.H., Kim, Y.S. and Floss, H.G. Stereochemical course of biotin-independent malonate decarboxylase catalysis. Arch. Biochem. Biophys. 370 (1999) 93–96. [DOI] [PMID: 10496981]
7.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [DOI] [PMID: 10561613]
8.  Kim, Y.S. Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 35 (2002) 443–451. [PMID: 12359084]
9.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 4.1.1.88 created 2008]
 
 
EC 3.5.1.51     Relevance: 39.4%
Accepted name: 4-acetamidobutyryl-CoA deacetylase
Reaction: 4-acetamidobutanoyl-CoA + H2O = acetate + 4-aminobutanoyl-CoA
Other name(s): aminobutyryl-CoA thiolesterase; deacetylase-thiolesterase
Systematic name: 4-acetamidobutanoyl-CoA amidohydrolase
Comments: The enzyme also hydrolyses 4-aminobutanoyl-CoA to aminobutanoate and coenzyme A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ohsugi, M., Khan, J., Hensley, C., Chew, S. and Barker, H.A. Metabolism of L-β-lysine by a Pseudomonas. Purification and properties of a deacetylase-thiolesterase utilizing 4-acetamidobutyryl CoA and related compounds. J. Biol. Chem. 256 (1981) 7642–7651. [PMID: 6788773]
[EC 3.5.1.51 created 1984]
 
 
EC 2.8.3.12     Relevance: 39.2%
Accepted name: glutaconate CoA-transferase
Reaction: acetyl-CoA + (E)-glutaconate = acetate + glutaconyl-1-CoA
For diagram of reaction, click here
Systematic name: acetyl-CoA:(E)-glutaconate CoA-transferase
Comments: Glutarate, (R)-2-hydroxyglutarate, propenoate and propanoate, but not (Z)-glutaconate, can also act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 79078-99-2
References:
1.  Buckel, W.S., Dorn, U. and Semmler, R. Glutaconate CoA-transferase from Acidaminococcus fermentans. Eur. J. Biochem. 118 (1981) 315–321. [DOI] [PMID: 6945182]
[EC 2.8.3.12 created 1984, modified 2002]
 
 
EC 3.5.1.33     Relevance: 39%
Accepted name: N-acetylglucosamine deacetylase
Reaction: N-acetyl-D-glucosamine + H2O = D-glucosamine + acetate
Other name(s): acetylaminodeoxyglucose acetylhydrolase; N-acetyl-D-glucosaminyl N-deacetylase
Systematic name: N-acetyl-D-glucosamine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9012-32-2
References:
1.  Roseman, S. Glucosamine metabolism. I. N-Acetylglucosamine deacetylase. J. Biol. Chem. 226 (1957) 115–123. [PMID: 13428742]
[EC 3.5.1.33 created 1972]
 
 
EC 3.5.1.125     Relevance: 38.9%
Accepted name: N2-acetyl-L-2,4-diaminobutanoate deacetylase
Reaction: (2S)-2-acetamido-4-aminobutanoate + H2O = L-2,4-diaminobutanoate + acetate
Other name(s): doeB (gene name)
Systematic name: (2S)-2-acetamido-4-aminobutanoate amidohydrolase
Comments: The enzyme, found in bacteria, has no activity with (2S)-4-acetamido-2-aminobutanoate (cf. EC 3.5.4.44, ectoine hydrolase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Schwibbert, K., Marin-Sanguino, A., Bagyan, I., Heidrich, G., Lentzen, G., Seitz, H., Rampp, M., Schuster, S.C., Klenk, H.P., Pfeiffer, F., Oesterhelt, D. and Kunte, H.J. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ. Microbiol. 13 (2011) 1973–1994. [DOI] [PMID: 20849449]
[EC 3.5.1.125 created 2017]
 
 
EC 3.1.1.7     Relevance: 38.6%
Accepted name: acetylcholinesterase
Reaction: acetylcholine + H2O = choline + acetate
Other name(s): true cholinesterase; choline esterase I; cholinesterase; acetylthiocholinesterase; acetylcholine hydrolase; acetyl.β-methylcholinesterase; AcCholE
Systematic name: acetylcholine acetylhydrolase
Comments: Acts on a variety of acetic esters; also catalyses transacetylations.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9000-81-1
References:
1.  Augustinsson, K.-B. Cholinesterases. A study in comparative enzymology. Acta Physiol. Scand. 15, Suppl. 2 (1948) .
2.  Bergmann, F., Rimon, S. and Segal, R. Effect of pH on the activity of eel esterase towards different substrates. Biochem. J. 68 (1958) 493–499. [PMID: 13522650]
3.  Cilliv, G. and Ozand, P.T. Human erythrocyte acetylcholinesterase purification, properties and kinetic behavior. Biochim. Biophys. Acta 284 (1972) 136–156. [DOI] [PMID: 5073758]
4.  Leuzinger, W., Baker, A.L. and Cauvin, E. Acetylcholinesterase. II. Crystallization, absorption spectra, isoionic point. Proc. Natl. Acad. Sci. USA 59 (1968) 620–623. [DOI] [PMID: 5238989]
5.  Nachmansohn, D. and Wilson, I.B. The enzymic hydrolysis and synthesis of acetylcholine. Adv. Enzymol. Relat. Subj. Biochem. 12 (1951) 259–339. [PMID: 14885021]
6.  Zittle, C.A., DellaMonica, E.S., Custer, J.H. and Krikorian, R. Purification of human red cell acetylcholinesterase by electrophoresis, ultracentrifugation and gradient extraction. Arch. Biochem. Biophys. 56 (1955) 469–475. [DOI] [PMID: 14377597]
[EC 3.1.1.7 created 1961]
 
 
EC 1.14.12.9     Relevance: 38.6%
Accepted name: 4-chlorophenylacetate 3,4-dioxygenase
Reaction: 4-chlorophenylacetate + NADH + H+ + O2 = 3,4-dihydroxyphenylacetate + chloride + NAD+
For diagram of reaction, click here
Systematic name: 4-chlorophenylacetate,NADH:oxygen oxidoreductase (3,4-hydroxylating, dechlorinating)
Comments: A system, containing a reductase and an iron-sulfur oxygenase, and no independent ferredoxin. Requires Fe2+. Also acts on 4-bromophenyl acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 105006-00-6
References:
1.  Markus, A., Krekel, D. and Lingens, F. Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS. J. Biol. Chem. 261 (1986) 12883–12888. [PMID: 3745216]
[EC 1.14.12.9 created 1989 as EC 1.13.99.4, transferred 1992 to EC 1.14.12.9]
 
 
EC 1.13.11.46     Relevance: 38.4%
Accepted name: 4-hydroxymandelate synthase
Reaction: 4-hydroxyphenylpyruvate + O2 = (S)-4-hydroxymandelate + CO2
For diagram of 4-hydroxyphenylpyruvate metabolites, click here
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): 4-hydroxyphenylpyruvate dioxygenase II
Systematic name: (S)-4-hydroxyphenylpyruvate:oxygen oxidoreductase (decarboxylating)
Comments: Requires Fe2+. Involved in the biosynthesis of the vancomycin group of glycopeptide antibiotics.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 280566-04-3
References:
1.  Hubbard, B.K., Thomas, M.G. and Walsh, C.T. Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7 (2000) 931–942. [DOI] [PMID: 11137816]
2.  Choroba, O.W., Williams, D.H. and Spencer, J.B. Biosynthesis of the vancomycin group of antibiotics: involvement of an unusual dioxygenase in the pathway to (S)-4-hydroxyphenylglycine. J. Am. Chem. Soc. 122 (2000) 5389–5390.
[EC 1.13.11.46 created 2001]
 
 
EC 3.5.1.29     Relevance: 38.3%
Accepted name: 2-(acetamidomethylene)succinate hydrolase
Reaction: 2-(acetamidomethylene)succinate + 2 H2O = acetate + succinate semialdehyde + NH3 + CO2
Other name(s): α-(N-acetylaminomethylene)succinic acid hydrolase
Systematic name: 2-(acetamidomethylene)succinate amidohydrolase (deaminating, decarboxylating)
Comments: Involved in the degradation of pyridoxin in Pseudomonas.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37289-09-1
References:
1.  Huynh, M.S. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of two N-acetylamidohydrolases. J. Biol. Chem. 260 (1985) 2379–2383. [PMID: 3972793]
2.  Nyns, E.J., Zach, D. and Snell, E.E. The bacterial oxidation of vitamin B6. 8. Enzymatic breakdown of α-(N-acetylaminomethylene) succinic acid. J. Biol. Chem. 244 (1969) 2601–2605. [PMID: 5769993]
[EC 3.5.1.29 created 1972]
 
 
EC 2.8.3.10     Relevance: 38.1%
Accepted name: citrate CoA-transferase
Reaction: acetyl-CoA + citrate = acetate + (3S)-citryl-CoA
Systematic name: acetyl-CoA:citrate CoA-transferase
Comments: The enzyme is a component of EC 4.1.3.6 [citrate (pro-3S)-lyase]. Also catalyses the transfer of thioacyl carrier protein from its acetyl thioester to citrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65187-14-6
References:
1.  Dimroth, P., Loyal, R. and Eggerer, H. Characterization of the isolated transferase subunit of citrate lyase as a CoA-transferase. Evidence against a covalent enzyme-substrate intermediate. Eur. J. Biochem. 80 (1977) 479–488. [DOI] [PMID: 336371]
[EC 2.8.3.10 created 1984]
 
 
EC 2.8.3.11     Relevance: 38.1%
Accepted name: citramalate CoA-transferase
Reaction: acetyl-CoA + citramalate = acetate + (3S)-citramalyl-CoA
Systematic name: acetyl-CoA:citramalate CoA-transferase
Comments: The enzyme is a component of EC 4.1.3.22 citramalate lyase. Also catalyses the transfer of thioacyl carrier protein from its acetyl thioester to citramalate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9033-60-7
References:
1.  Dimroth, P., Buckel, W., Loyal, R. and Eggerer, H. Isolation and function of the subunits of citramalate lyase and formation of hybrids with the subunits of citrate lyase. Eur. J. Biochem. 80 (1977) 469–477. [DOI] [PMID: 923590]
[EC 2.8.3.11 created 1984]
 
 
EC 1.13.12.3     Relevance: 37.8%
Accepted name: tryptophan 2-monooxygenase
Reaction: L-tryptophan + O2 = (indol-3-yl)acetamide + CO2 + H2O
Other name(s): tms1 (gene name); iaaM (gene name)
Systematic name: L-tryptophan:oxygen 2-oxidoreductase (decarboxylating)
Comments: The enzyme, studied from phytopathogenic bacteria such as Pseudomonas savastanoi, is involved in a pathway for the production of (indol-3-yl)acetate (IAA), the main auxin hormone in plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-65-8
References:
1.  Kosuge, T., Heskett, M.G. and Wilson, E.E. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J. Biol. Chem. 241 (1966) 3738–3744. [PMID: 5916389]
2.  Kuo, T.T. and Kosuge, T. Factors influencing the production and further metabolism of indole-3-acetic acid by Pseudomonas savastanoi. J. Gen. Appl. Microbiol. 15 (1969) 51–63.
3.  Hutcheson, S.W. and Kosuge, T. Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv. savastanoi. Purification and properties of tryptophan 2-monooxygenase. J. Biol. Chem. 260 (1985) 6281–6287. [PMID: 3997822]
4.  Onckelen, H.V., Prinsen, E., Inze, D., Ruedeisheim, P., Lijsebettens, M.V., Follin, A., Schell, J., Montagu, M.V. and Greef, J.D. AgrobacteriumT-DNA gene1codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett. 198 (1986) 357–360.
5.  Emanuele, J.J. and Fitzpatrick, P.F. Mechanistic studies of the flavoprotein tryptophan 2-monooxygenase. 1. Kinetic mechanism. Biochemistry 34 (1995) 3710–3715. [PMID: 7893667]
[EC 1.13.12.3 created 1972]
 
 
EC 3.1.1.33     Relevance: 37.7%
Accepted name: 6-acetylglucose deacetylase
Reaction: 6-acetyl-D-glucose + H2O = D-glucose + acetate
Other name(s): 6-O-acetylglucose deacetylase
Systematic name: 6-acetyl-D-glucose acetylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37278-46-9
References:
1.  Duff, R.B. and Webley, D.M. Metabolism of 6-O-acetyl-D-glucopyranose and other monoacetyl-sugars by strains of Bacillus megaterium and other soil organisms. Biochem. J. 70 (1958) 520–528. [PMID: 13596370]
[EC 3.1.1.33 created 1972]
 
 
EC 2.8.2.39     Relevance: 37.3%
Accepted name: hydroxyjasmonate sulfotransferase
Reaction: 3′-phosphoadenylyl-sulfate + 12-hydroxyjasmonate = adenosine 3′,5′-bisphosphate + 12-sulfooxyjasmonate
Glossary: 12-hydroxyjasmonate = {(1R,2R)-2-[(2E)-5-hydroxypent-2-enyl]-3-oxocyclopentyl}acetate
Other name(s): ST2A (gene name)
Systematic name: 3′-phosphoadenylyl-sulfate:12-hydroxyjasmonate sulfotransferase
Comments: The enzyme, charaterized from the plant Arabidopsis thaliana, also acts on 11-hydroxyjasmonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C. and Varin, L. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278 (2003) 17895–17900. [DOI] [PMID: 12637544]
[EC 2.8.2.39 created 2017]
 
 
EC 2.8.3.3     Relevance: 37.3%
Accepted name: malonate CoA-transferase
Reaction: acetyl-CoA + malonate = acetate + malonyl-CoA
Other name(s): malonate coenzyme A-transferase
Systematic name: acetyl-CoA:malonate CoA-transferase
Comments: The enzyme from Pseudomonas ovalis also catalyses the reaction of EC 4.1.1.9 malonyl-CoA decarboxylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-18-0
References:
1.  Hayaishi, O. Enzymatic decarboxylation of malonic acid. J. Biol. Chem. 215 (1955) 125–136. [PMID: 14392148]
2.  Takamura, Y. and Kitayama, Y. Purification and some properties of malonate decarboxylase from Pseudomonas ovalis: an oligomeric enzyme with bifunctional properties. Biochem. Int. 3 (1981) 483–491.
[EC 2.8.3.3 created 1961]
 
 
EC 3.5.1.62     Relevance: 37.1%
Accepted name: acetylputrescine deacetylase
Reaction: N-acetylputrescine + H2O = acetate + putrescine
Glossary: putrescine = butane-1,4-diamine
spermidine = N-(3-aminopropyl)butane-1,4-diamine
Systematic name: N-acetylputrescine acetylhydrolase
Comments: The enzyme from Micrococcus luteus also acts on N8-acetylspermidine and acetylcadaverine, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 103679-48-7
References:
1.  Suzuki, O., Ishikawa, Y., Miyazaki, K., Izu, K. and Matsumoto, T. Acetylputrescine deacetylase from Micrococcus luteus K-11. Biochim. Biophys. Acta 882 (1986) 140–142.
[EC 3.5.1.62 created 1989]
 
 
EC 3.5.1.16     Relevance: 36.9%
Accepted name: acetylornithine deacetylase
Reaction: N2-acetyl-L-ornithine + H2O = acetate + L-ornithine
For diagram of ornithine biosynthesis, click here
Other name(s): acetylornithinase; N-acetylornithinase; 2-N-acetyl-L-ornithine amidohydrolase
Systematic name: N2-acetyl-L-ornithine amidohydrolase
Comments: Also hydrolyses N-acetylmethionine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9025-12-1
References:
1.  Vogel, H.J. Path of ornithine synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 39 (1953) 578–583. [DOI] [PMID: 16589307]
2.  Vogel, H.J. and Bonner, D.M. Acetylornithine deacetylase of Escherichia coli : partial purification and some properties. J. Biol. Chem. 218 (1956) 97–106. [PMID: 13278318]
[EC 3.5.1.16 created 1965]
 
 
EC 2.3.1.69     Relevance: 36.8%
Accepted name: monoterpenol O-acetyltransferase
Reaction: acetyl-CoA + a monoterpenol = CoA + a monoterpenol acetate ester
For diagram of menthol biosynthesis, click here
Other name(s): menthol transacetylase
Systematic name: acetyl-CoA:monoterpenol O-acetyltransferase
Comments: (-)-Menthol, (+)-neomenthol, borneol, and also cyclohexanol and decan-1-ol can be acetylated.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 78990-59-7
References:
1.  Croteau, R. and Hooper, C.L. Metabolism of monoterpenes. Acetylation of (-)-menthol by a soluble enzyme preparation from peppermint (Mentha piperita) leaves. Plant Physiol. 61 (1978) 737–742. [PMID: 16660375]
2.  Martinkus, C. and Croteau, R. Metabolism of monoterpenes - evidence for compartmentation of L-menthone metabolism in peppermint (Mentha piperita) leaves. Plant Physiol. 68 (1981) 99–106. [PMID: 16661898]
[EC 2.3.1.69 created 1984]
 
 
EC 1.14.99.4     Relevance: 36.8%
Accepted name: progesterone monooxygenase
Reaction: progesterone + reduced acceptor + O2 = testosterone acetate + acceptor + H2O
Other name(s): progesterone hydroxylase
Systematic name: progesterone,hydrogen-donor:oxygen oxidoreductase (hydroxylating)
Comments: Has a wide specificity. A single enzyme from ascomycete the Neonectria radicicola (EC 1.14.13.54 ketosteroid monooxygenase) catalyses both this reaction and that catalysed by EC 1.14.99.12 androst-4-ene-3,17-dione monooxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37256-85-2
References:
1.  Rahim, M.A. and Sih, C.J. Mechanisms of steroid oxidation by microorganisms. XI. Enzymatic cleavage of the pregnane side chain. J. Biol. Chem. 241 (1966) 3615–3623. [PMID: 5950688]
[EC 1.14.99.4 created 1972, modified 1999]
 
 
EC 2.7.1.86     Relevance: 36.6%
Accepted name: NADH kinase
Reaction: ATP + NADH = ADP + NADPH
Other name(s): reduced nicotinamide adenine dinucleotide kinase (phosphorylating); DPNH kinase; reduced diphosphopyridine nucleotide kinase; NADH2 kinase
Systematic name: ATP:NADH 2′-phosphotransferase
Comments: CTP, ITP, UTP and GTP can also act as phosphate donors (in decreasing order of activity). The enzyme is specific for NADH. Activated by acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 62213-39-2
References:
1.  Griffiths, M.M. and Bernofsky, C. Purification and properties of reduced diphosphopyridine nucleotide kinase from yeast mitochondria. J. Biol. Chem. 247 (1972) 1473–1478. [PMID: 4335000]
[EC 2.7.1.86 created 1976 (EC 2.7.1.96 created 1978, incorporated 1978)]
 
 
EC 1.14.13.211     Relevance: 36.3%
Accepted name: rifampicin monooxygenase
Reaction: rifampicin + NAD(P)H + O2 = 2′-N-hydroxyrifampicin + NAD(P)+ + H2O
Glossary: rifampicin = (2S,12Z,14E,16S,17S,18R,19R,20R,21S,22R,23S,24E)-5,6,9,17,19-pentahydroxy-23-methoxy-2,4,12,16,18,20,22-heptamethyl-8-{[(E)-(4-methylpiperazin-1-yl)imino]methyl}-1,11-dioxo-1,2-dihydro-2,7-(epoxypentadeca-1,11,13-trienoimino)nathpho[2,1-b]furan-21-yl acetate
Other name(s): RIF-O
Systematic name: rifampicin:NAD(P)H:oxygen oxidoreductase (2′-N-hydroxyrifampicin-forming)
Comments: The enzyme has been found in the Corynebacteria Rhodococcus equi and Nocardia farcinica. It confers increased resistance to the antibiotic rifampicin by initiating its degradation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Andersen, S.J., Quan, S., Gowan, B. and Dabbs, E.R. Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob. Agents Chemother. 41 (1997) 218–221. [PMID: 8980786]
2.  Hoshino, Y., Fujii, S., Shinonaga, H., Arai, K., Saito, F., Fukai, T., Satoh, H., Miyazaki, Y. and Ishikawa, J. Monooxygenation of rifampicin catalyzed by the rox gene product of Nocardia farcinica: structure elucidation, gene identification and role in drug resistance. J. Antibiot. (Tokyo) 63 (2010) 23–28. [DOI] [PMID: 19942945]
[EC 1.14.13.211 created 2016]
 
 
EC 2.3.1.28     Relevance: 36.2%
Accepted name: chloramphenicol O-acetyltransferase
Reaction: acetyl-CoA + chloramphenicol = CoA + chloramphenicol 3-acetate
Other name(s): chloramphenicol acetyltransferase; chloramphenicol acetylase; chloramphenicol transacetylase; CAT I; CAT II; CAT III
Systematic name: acetyl-CoA:chloramphenicol 3-O-acetyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9040-07-7
References:
1.  Shaw, W.V. The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. Biol. Chem. 242 (1967) 687–693. [PMID: 5335032]
2.  Shaw, W.V. and Brodsky, R.F. Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J. Bacteriol. 95 (1968) 28–36. [PMID: 4965980]
[EC 2.3.1.28 created 1972]
 
 
EC 1.14.16.6     Relevance: 36.2%
Accepted name: mandelate 4-monooxygenase
Reaction: (S)-2-hydroxy-2-phenylacetate + tetrahydrobiopterin + O2 = (S)-4-hydroxymandelate + dihydrobiopterin + H2O
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): L-mandelate 4-hydroxylase; mandelic acid 4-hydroxylase
Systematic name: (S)-2-hydroxy-2-phenylacetate,tetrahydrobiopterin:oxygen oxidoreductase (4-hydroxylating)
Comments: Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39459-82-0
References:
1.  Bhat, S.G. and Vaidyanathan, C.S. Purifications and properties of L-mandelate-4-hydroxylase from Pseudomonas convexa. Arch. Biochem. Biophys. 176 (1976) 314–323. [DOI] [PMID: 9909]
[EC 1.14.16.6 created 1984]
 
 
EC 3.5.1.47     Relevance: 36.1%
Accepted name: N-acetyldiaminopimelate deacetylase
Reaction: N-acetyl-LL-2,6-diaminoheptanedioate + H2O = acetate + LL-2,6-diaminoheptanedioate
Other name(s): N-acetyl-L-diaminopimelic acid deacylase; N-acetyl-LL-diaminopimelate deacylase; 6-N-acetyl-LL-2,6-diaminoheptanedioate amidohydrolase
Systematic name: N6-acetyl-LL-2,6-diaminoheptanedioate amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 99193-93-8
References:
1.  Bartlett, A.T.M. and White, P.J. Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase. J. Gen. Microbiol. 131 (1985) 2145–2152.
2.  Saleh, F. and White, P.J. Metabolism of DD-2,6-diaminopimelic acid by a diaminopimelate-requiring mutant of Bacillus megaterium. J. Gen. Microbiol. 115 (1979) 95–100.
3.  Sundharadas, G. and Gilvarg, C. Biosynthesis of α,ε-diaminopimelic acid in Bacillus megaterium. J. Biol. Chem. 242 (1967) 3983–3984. [PMID: 4962540]
[EC 3.5.1.47 created 1984 (EC 3.1.1.62 created 1989, incorporated 1992)]
 
 
EC 3.5.1.21     Relevance: 35.9%
Accepted name: N-acetyl-β-alanine deacetylase
Reaction: N-acetyl-β-alanine + H2O = acetate + β-alanine
Systematic name: N-acetyl-β-alanine amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37289-04-6
References:
1.  Fujimoto, D., Koyama, T. and Tamiya, N. N-Acetyl-β-alanine deacetylase in hog kidney. Biochim. Biophys. Acta 167 (1968) 407–413.
[EC 3.5.1.21 created 1972]
 
 
EC 3.5.1.76     Relevance: 35.8%
Accepted name: arylalkyl acylamidase
Reaction: N-acetylarylalkylamine + H2O = arylalkylamine + acetate
Other name(s): aralkyl acylamidase
Systematic name: N-acetylarylalkylamine amidohydrolase
Comments: Identified in Pseudomonas putida. Strict specificity for N-acetyl arylalkylamines, including N-acetyl-2-phenylethylamine, N-acetyl-3-phenylpropylamine, N-acetyldopamine, N-acetyl-serotonin and melatonin. It also accepts arylalkyl acetates but not acetanilide derivatives, which are common substrates of EC 3.5.1.13, aryl acylamidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Shimizu, S., Ogawa, J., Chung, M.C.-M., Yamada, H. Purification and characterization of a novel enzyme, arylalkyl acylamidase, from Pseudomonas putida Sc2. Eur. J. Biochem. 209 (1992) 375–382. [DOI] [PMID: 1396711]
[EC 3.5.1.76 created 1999]
 
 
EC 3.1.1.41     Relevance: 35.6%
Accepted name: cephalosporin-C deacetylase
Reaction: cephalosporin C + H2O = deacetylcephalosporin C + acetate
For diagram of cephalosporin biosynthesis, click here
Other name(s): cephalosporin C acetyl-hydrolase; cephalosporin C acetylase; cephalosporin acetylesterase; cephalosporin C acetylesterase; cephalosporin C acetyl-esterase; cephalosporin C deacetylase
Systematic name: cephalosporin-C acetylhydrolase
Comments: Hydrolyses the acetyl ester bond on the 10-position of the antibiotic cephalosporin C.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52227-71-1
References:
1.  Fujisawa, Y., Shirafuji, H., Kida, M. and Nara, K. New findings on cephalosporin C biosynthesis. Nat. New Biol. 246 (1973) 154–155. [PMID: 4519146]
[EC 3.1.1.41 created 1976]
 
 
EC 2.8.3.14     Relevance: 35.5%
Accepted name: 5-hydroxypentanoate CoA-transferase
Reaction: acetyl-CoA + 5-hydroxypentanoate = acetate + 5-hydroxypentanoyl-CoA
Other name(s): 5-hydroxyvalerate CoA-transferase; 5-hydroxyvalerate coenzyme A transferase
Systematic name: acetyl-CoA:5-hydroxypentanoate CoA-transferase
Comments: Propanoyl-CoA, acetyl-CoA, butanoyl-CoA and some other acyl-CoAs can act as substrates, but more slowly than 5-hydroxypentanoyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 111684-68-5
References:
1.  Eikmanns, U. and Buckel, W. Properties of 5-hydroxyvalerate CoA-transferase from Clostridium aminovalericum. Biol. Chem. Hoppe-Seyler 371 (1990) 1077–1082. [PMID: 2085413]
[EC 2.8.3.14 created 1992]
 
 
EC 3.1.1.58     Relevance: 35.2%
Accepted name: N-acetylgalactosaminoglycan deacetylase
Reaction: N-acetyl-D-galactosaminoglycan + H2O = D-galactosaminoglycan + acetate
Other name(s): polysaccharide deacetylase (misleading); Vi-polysaccharide deacetylase; N-acetyl galactosaminoglycan deacetylase
Systematic name: N-acetyl-D-galactosaminoglycan acetylhydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52410-59-0
References:
1.  Jorge, J.A., Kinney, S.G. and Reissig, J.L. Purification and characterization of Neurospora crassa N-acetyl galactosaminoglycan deacetylase. Braz. J. Med. Biol. Res. 15 (1982) 29–34. [PMID: 6217857]
[EC 3.1.1.58 created 1986]
 
 
EC 6.2.1.30     Relevance: 35.2%
Accepted name: phenylacetate—CoA ligase
Reaction: ATP + phenylacetate + CoA = AMP + diphosphate + phenylacetyl-CoA
For diagram of aerobic phenylacetate catabolism, click here
Other name(s): phenacyl coenzyme A synthetase; phenylacetyl-CoA ligase; PA-CoA ligase; phenylacetyl-CoA ligase (AMP-forming)
Systematic name: phenylacetate:CoA ligase (AMP-forming)
Comments: Also acts, more slowly, on acetate, propanoate and butanoate, but not on hydroxy derivatives of phenylacetate and related compounds.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 57219-71-3
References:
1.  Martinez-Blanco, H., Reglero, A., Rodriguez-Asparicio, L.B. and Luengo, J.M. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J. Biol. Chem. 265 (1990) 7084–7090. [PMID: 2324116]
[EC 6.2.1.30 created 1992 (EC 6.2.1.21 created 1986, incorporated 2001)]
 
 
EC 2.1.1.3     Relevance: 35.1%
Accepted name: thetin—homocysteine S-methyltransferase
Reaction: dimethylsulfonioacetate + L-homocysteine = (methylsulfanyl)acetate + L-methionine
Glossary: thetin = sulfobetaine = dimethylsulfonioacetate
Other name(s): dimethylthetin-homocysteine methyltransferase; thetin-homocysteine methylpherase
Systematic name: dimethylsulfonioacetate:L-homocysteine S-methyltransferase
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9029-76-9
References:
1.  Klee, W.A., Richards, H.H. and Cantoni, G.L. The synthesis of methionine by enzymic transmethylation. VII. Existence of two separate homocysteine methylpherases on mammalian liver. Biochim. Biophys. Acta 54 (1961) 157–164. [DOI] [PMID: 14456704]
2.  Maw, G.A. Thetin-homocysteine transmethylase. A preliminary manometric study of the enzyme from rat liver. Biochem. J. 63 (1956) 116–124. [PMID: 13315256]
3.  Maw, G.A. Thetin-homocysteine transmethylase. Some further characteristics of the enzyme from rat liver. Biochem. J. 70 (1958) 168–173. [PMID: 13584318]
[EC 2.1.1.3 created 1961]
 
 
EC 3.1.1.53     Relevance: 34.8%
Accepted name: sialate O-acetylesterase
Reaction: N-acetyl-O-acetylneuraminate + H2O = N-acetylneuraminate + acetate
Other name(s): N-acetylneuraminate acetyltransferase; sialate 9(4)-O-acetylesterase; sialidase
Systematic name: N-acyl-O-acetylneuraminate O-acetylhydrolase
Comments: Acts on free and glycosidically bound N-acetyl- or N-glycoloyl-neuraminic acid; acts mainly on the 4-O- and 9-O-acetyl groups. Also acts on some other O-acetyl esters, both cyclic and acyclic compounds, which are not sialic acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 89400-31-7
References:
1.  Garcia-Sastre, A., Villar, E., Manuguerra, J.C., Hannoun, C. and Cabezas, J.A. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochem. J. 273 (1991) 435–441. [PMID: 1991039]
2.  Shukla, A.K. and Schauer, R. High performance liquid chromatography of enzymes of sialic acid metabolism. Hoppe-Seyler's Z. Physiol. Chem. 363 (1982) 1039–1040.
[EC 3.1.1.53 created 1984]
 
 
EC 3.5.1.66     Relevance: 34.7%
Accepted name: 2-(hydroxymethyl)-3-(acetamidomethylene)succinate hydrolase
Reaction: 2-(hydroxymethyl)-3-(acetamidomethylene)succinate + 2 H2O = acetate + 2-(hydroxymethyl)-4-oxobutanoate + NH3 + CO2
Other name(s): compound B hydrolase; α-hydroxymethyl-α’-(N-acetylaminomethylene)succinic acid hydrolase
Systematic name: 2-(hydroxymethyl)-3-(acetamidomethylene)succinate amidohydrolase (deaminating, decarboxylating)
Comments: Involved in the degradation of pyridoxin by Pseudomonas and Arthrobacter.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 95829-26-8
References:
1.  Huynh, M.S. and Snell, E.E. Enzymes of vitamin B6 degradation. Purification and properties of two N-acetylamidohydrolases. J. Biol. Chem. 260 (1985) 2379–2383. [PMID: 3972793]
[EC 3.5.1.66 created 1989]
 
 
EC 1.14.14.54     Relevance: 34.7%
Accepted name: phenylacetate 2-hydroxylase
Reaction: phenylacetate + [reduced NADPH—hemoprotein reductase] + O2 = (2-hydroxyphenyl)acetate + [oxidized NADPH—hemoprotein reductase] + H2O
Other name(s): CYP504; phaA (gene name)
Systematic name: phenylacetate,[reduced NADPH—hemoprotein reductase]:oxygen oxidoreductase (2-hydroxylating)
Comments: This cytochrome P-450 (heme-thiolate) enzyme, found in Aspergillus nidulans, is involved in the degradation of phenylacetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mingot, J.M., Penalva, M.A. and Fernandez-Canon, J.M. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J. Biol. Chem. 274 (1999) 14545–14550. [DOI] [PMID: 10329644]
2.  Rodriguez-Saiz, M., Barredo, J.L., Moreno, M.A., Fernandez-Canon, J.M., Penalva, M.A. and Diez, B. Reduced function of a phenylacetate-oxidizing cytochrome P450 caused strong genetic improvement in early phylogeny of penicillin-producing strains. J. Bacteriol. 183 (2001) 5465–5471. [DOI] [PMID: 11544206]
[EC 1.14.14.54 created 2017]
 
 
EC 2.1.1.315     Relevance: 34.6%
Accepted name: 27-O-demethylrifamycin SV methyltransferase
Reaction: S-adenosyl-L-methionine + 27-O-demethylrifamycin SV = S-adenosyl-L-homocysteine + rifamycin SV
Glossary: rifamycin SV = (7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.14,7.05,28]triaconta-1(28),2,4,9, 19,21,25(29),26-octaen-13-yl acetate
Other name(s): AdoMet:27-O-demethylrifamycin SV methyltransferase
Systematic name: S-adenosyl-L-methionine:27-O-demethylrifamycin-SV 27-O-methyltransferase
Comments: The enzyme, characterized from the bacterium Amycolatopsis mediterranei, is involved in biosynthesis of the antitubercular drug rifamycin B.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xu, J., Mahmud, T. and Floss, H.G. Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Arch. Biochem. Biophys. 411 (2003) 277–288. [DOI] [PMID: 12623077]
[EC 2.1.1.315 created 2015]
 
 
EC 1.13.12.4     Relevance: 34.3%
Accepted name: lactate 2-monooxygenase
Reaction: (S)-lactate + O2 = acetate + CO2 + H2O
Other name(s): lactate oxidative decarboxylase; lactate oxidase; lactic oxygenase; lactate oxygenase; lactic oxidase; L-lactate monooxygenase; lactate monooxygenase; L-lactate-2-monooxygenase
Systematic name: (S)-lactate:oxygen 2-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FMN).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-72-2
References:
1.  Hayaishi, O. and Sutton, W.B. Enzymatic oxygen fixation into acetate concomitant with the enzymatic decarboxylation of L-lactate. J. Am. Chem. Soc. 79 (1957) 4809–4810.
2.  Sutton, W.B. Mechanism of action and crystalization of lactic oxidative decarboxylase from Mycobacterium phlei. J. Biol. Chem. 226 (1957) 395–405. [PMID: 13428772]
[EC 1.13.12.4 created 1961 as EC 1.1.3.2, transferred 1972 to EC 1.13.12.4]
 
 
EC 3.5.1.25     Relevance: 34.2%
Accepted name: N-acetylglucosamine-6-phosphate deacetylase
Reaction: N-acetyl-D-glucosamine 6-phosphate + H2O = D-glucosamine 6-phosphate + acetate
For diagram of the biosynthesis of UDP-N-acetylglucosamine, click here
Other name(s): acetylglucosamine phosphate deacetylase; acetylaminodeoxyglucosephosphate acetylhydrolase; 2-acetamido-2-deoxy-D-glucose-6-phosphate amidohydrolase
Systematic name: N-acetyl-D-glucosamine-6-phosphate amidohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-50-3
References:
1.  White, R.J. and Pasternak, C.A. The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli. Biochem. J. 105 (1967) 121–125. [PMID: 4861885]
2.  Yamano, N., Matsushita, Y., Kamada, Y., Fujishima, S., Arita, M. Purification and characterization of N-acetylglucosamine 6-phosphate deacetylase with activity against N-acetylglucosamine from Vibrio cholerae non-O1. Biosci. Biotechnol. Biochem. 60 (1996) 1320–1323. [DOI] [PMID: 8987551]
[EC 3.5.1.25 created 1972 (EC 3.5.1.80 created 1999, incorporated 2002)]
 
 
EC 1.3.8.11     Relevance: 33.8%
Accepted name: cyclohexane-1-carbonyl-CoA dehydrogenase
Reaction: cyclohexane-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1-ene-1-carbonyl-CoA + reduced electron-transfer flavoprotein
Systematic name: cyclohexane-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditrophicus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism during fermentation of benzoate and crotonate to acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kung, J.W., Seifert, J., von Bergen, M. and Boll, M. Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. J. Bacteriol. 195 (2013) 3193–3200. [DOI] [PMID: 23667239]
[EC 1.3.8.11 created 2013]
 
 
EC 1.3.8.10     Relevance: 33.7%
Accepted name: cyclohex-1-ene-1-carbonyl-CoA dehydrogenase
Reaction: cyclohex-1-ene-1-carbonyl-CoA + electron-transfer flavoprotein = cyclohex-1,5-diene-1-carbonyl-CoA + reduced electron-transfer flavoprotein
Systematic name: cyclohex-1-ene-1-carbonyl-CoA:electron transfer flavoprotein oxidoreductase
Comments: Contains FAD. The enzyme, characterized from the strict anaerobic bacterium Syntrophus aciditrophicus, is involved in production of cyclohexane-1-carboxylate, a byproduct produced by that organism during fermentation of benzoate and crotonate to acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kung, J.W., Seifert, J., von Bergen, M. and Boll, M. Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. J. Bacteriol. 195 (2013) 3193–3200. [DOI] [PMID: 23667239]
[EC 1.3.8.10 created 2013]
 
 
EC 2.3.1.205     Relevance: 33.7%
Accepted name: fumigaclavine B O-acetyltransferase
Reaction: acetyl-CoA + fumigaclavine B = CoA + fumigaclavine A
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: fumigaclavine B = 6,8β-dimethylergolin-9-ol;
fumigaclavine A = 6,8β-dimethylergolin-9β-yl acetate
Other name(s): FgaAT
Systematic name: acetyl-CoA:fumigaclavine B O-acetyltransferase
Comments: The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some fungi of the Trichocomaceae family.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Liu, X., Wang, L., Steffan, N., Yin, W.B. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. ChemBioChem. 10 (2009) 2325–2328. [DOI] [PMID: 19672909]
[EC 2.3.1.205 created 2012]
 
 
EC 1.14.13.84     Relevance: 33.7%
Accepted name: 4-hydroxyacetophenone monooxygenase
Reaction: (4-hydroxyphenyl)ethan-1-one + NADPH + H+ + O2 = 4-hydroxyphenyl acetate + NADP+ + H2O
For diagram of reaction, click here
Other name(s): HAPMO
Systematic name: (4-hydroxyphenyl)ethan-1-one,NADPH:oxygen oxidoreductase (ester-forming)
Comments: Contains FAD. The enzyme from Pseudomonas fluorescens ACB catalyses the conversion of a wide range of acetophenone derivatives. Highest activity occurs with compounds bearing an electron-donating substituent at the para position of the aromatic ring [1]. In the absence of substrate, the enzyme can act as an NAD(P)H oxidase (EC 1.6.3.1).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 156621-13-5
References:
1.  Kamerbeek, N.M., Moonen, M.J., van der Ven, J.G., van Berkel, W.J.H., Fraaije, M.W. and Janssen, D.B. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB: a novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds. Eur. J. Biochem. 268 (2001) 2547–2557. [DOI] [PMID: 11322873]
2.  Kamerbeek, N.M, Olsthoorn, A.J.J., Fraaije, M.W. and Janssen, D.B. Substrate specificity of a novel Baeyer-Villiger monooxygenase, 4-hydroxyacetophenone monooxygenase. Appl. Environ. Microbiol. 69 (2003) 419–426. [DOI] [PMID: 12514023]
[EC 1.14.13.84 created 2004]
 
 
EC 2.3.1.27     Relevance: 33.6%
Accepted name: cortisol O-acetyltransferase
Reaction: acetyl-CoA + cortisol = CoA + cortisol 21-acetate
Other name(s): cortisol acetyltransferase; corticosteroid acetyltransferase; corticosteroid-21-O-acetyltransferase
Systematic name: acetyl-CoA:cortisol O-acetyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9076-48-6
References:
1.  Thomas, P.J. Cortisol acetyltransferase from baboon brain. Biochem. J. 109 (1968) 695–696. [PMID: 4971640]
[EC 2.3.1.27 created 1972]
 
 
EC 2.6.99.3     Relevance: 33.3%
Accepted name: O-ureido-L-serine synthase
Reaction: O-acetyl-L-serine + hydroxyurea = O-ureido-L-serine + acetate
Glossary: O-ureido-L-serine = (2S)-2-amino-3-[(carbamoylamino)oxy]propanoate
O-acetyl-L-serine = O3-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
Other name(s): dcsD (gene name)
Systematic name: O-acetyl-L-serine:hydroxyurea 2-amino-2-carboxyethyltransferase
Comments: The enzyme participates in the biosynthetic pathway of D-cycloserine, an antibiotic substance produced by several Streptomyces species. Also catalyses EC 2.5.1.47, cysteine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kumagai, T., Koyama, Y., Oda, K., Noda, M., Matoba, Y. and Sugiyama, M. Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae. Antimicrob. Agents Chemother. 54 (2010) 1132–1139. [DOI] [PMID: 20086163]
2.  Uda, N., Matoba, Y., Kumagai, T., Oda, K., Noda, M. and Sugiyama, M. Establishment of an in vitro D-cycloserine-synthesizing system by using O-ureido-L-serine synthase and D-cycloserine synthetase found in the biosynthetic pathway. Antimicrob. Agents Chemother. 57 (2013) 2603–2612. [DOI] [PMID: 23529730]
[EC 2.6.99.3 created 2013]
 
 
EC 2.6.1.99     Relevance: 33.3%
Accepted name: L-tryptophan—pyruvate aminotransferase
Reaction: L-tryptophan + pyruvate = indole-3-pyruvate + L-alanine
For diagram of indoleacetic acid biosynthesis, click here
Other name(s): TAA1 (gene name); vt2 (gene name)
Systematic name: L-tryptophan:pyruvate aminotransferase
Comments: This plant enzyme, along with EC 1.14.13.168, indole-3-pyruvate monooxygenase, is responsible for the biosynthesis of the plant hormone indole-3-acetate from L-tryptophan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballare, C.L., Sandberg, G., Noel, J.P. and Chory, J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133 (2008) 164–176. [DOI] [PMID: 18394996]
2.  Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K., Kamiya, Y. and Kasahara, H. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108 (2011) 18512–18517. [DOI] [PMID: 22025724]
3.  Phillips, K.A., Skirpan, A.L., Liu, X., Christensen, A., Slewinski, T.L., Hudson, C., Barazesh, S., Cohen, J.D., Malcomber, S. and McSteen, P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23 (2011) 550–566. [DOI] [PMID: 21335375]
4.  Zhao, Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5 (2012) 334–338. [DOI] [PMID: 22155950]
[EC 2.6.1.99 created 2012]
 
 
EC 3.1.1.51     Relevance: 33.2%
Accepted name: phorbol-diester hydrolase
Reaction: phorbol 12,13-dibutanoate + H2O = phorbol 13-butanoate + butanoate
For diagram of reaction, click here
Other name(s): diacylphorbate 12-hydrolase; diacylphorbate 12-hydrolase; phorbol-12,13-diester 12-ester hydrolase; PDEH
Systematic name: 12,13-diacylphorbate 12-acylhydrolase
Comments: Hydrolyses the 12-ester bond in a variety of 12,13-diacylphorbols (phorbol is a diterpenoid); this reaction inactivates the tumour promotor 12-O-tetradecanoylphorbol-13-acetate from croton oil.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81181-74-0
References:
1.  Shoyab, M., Warren, T.C. and Todaro, G.J. Isolation and characterization of an ester hydrolase active on phorbol diesters from murine liver. J. Biol. Chem. 256 (1981) 12529–12534. [PMID: 6946062]
[EC 3.1.1.51 created 1984]
 
 
EC 1.14.15.2      
Transferred entry: camphor 1,2-monooxygenase. Now EC 1.14.13.162, 2,5-diketocamphane 1,2-monooxygenase.
[EC 1.14.15.2 created 1972, deleted 2012]
 
 
EC 1.14.13.92     Relevance: 33.1%
Accepted name: phenylacetone monooxygenase
Reaction: phenylacetone + NADPH + H+ + O2 = benzyl acetate + NADP+ + H2O
For diagram of reaction, click here
Other name(s): PAMO
Systematic name: phenylacetone,NADPH:oxygen oxidoreductase
Comments: A flavoprotein (FAD). NADH cannot replace NADPH as coenzyme. In addition to phenylacetone, which is the best substrate found to date, this Baeyer-Villiger monooxygenase can oxidize other aromatic ketones [1-(4-hydroxyphenyl)propan-2-one, 1-(4-hydroxyphenyl)propan-2-one and 3-phenylbutan-2-one], some alipatic ketones (e.g. dodecan-2-one) and sulfides (e.g. 1-methyl-4-(methylsulfanyl)benzene).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1005768-90-0
References:
1.  Malito, E., Alfieri, A., Fraaije, M.W. and Mattevi, A. Crystal structure of a Baeyer-Villiger monooxygenase. Proc. Natl. Acad. Sci. USA 101 (2004) 13157–13162. [DOI] [PMID: 15328411]
2.  Fraaije, M.W., Wu, J., Heuts, D.P., van Hellemond, E.W., Spelberg, J.H. and Janssen, D.B. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl. Microbiol. Biotechnol. 66 (2005) 393–400. [DOI] [PMID: 15599520]
[EC 1.14.13.92 created 2005]
 
 
EC 3.1.1.47     Relevance: 33%
Accepted name: 1-alkyl-2-acetylglycerophosphocholine esterase
Reaction: 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine + H2O = 1-alkyl-sn-glycero-3-phosphocholine + acetate
Other name(s): 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase; alkylacetyl-GPC:acetylhydrolase
Systematic name: 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetohydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 76901-00-3
References:
1.  Blank, M.L., Lee, T.-C., Fitzgerald, V. and Snyder, F. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). J. Biol. Chem. 256 (1981) 175–178. [PMID: 7451433]
[EC 3.1.1.47 created 1984]
 
 
EC 3.1.2.1     Relevance: 32.9%
Accepted name: acetyl-CoA hydrolase
Reaction: acetyl-CoA + H2O = CoA + acetate
Other name(s): acetyl-CoA deacylase; acetyl-CoA acylase; acetyl coenzyme A hydrolase; acetyl coenzyme A deacylase; acetyl coenzyme A acylase; acetyl-CoA thiol esterase
Systematic name: acetyl-CoA hydrolase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-54-7
References:
1.  Gergely, J., Hele, P. and Ramakrishnan, C.V. Succinyl and acetyl coenzyme A deacylases. J. Biol. Chem. 198 (1952) 323–334. [PMID: 12999747]
[EC 3.1.2.1 created 1961]
 
 
EC 1.13.11.50     Relevance: 32.8%
Accepted name: acetylacetone-cleaving enzyme
Reaction: pentane-2,4-dione + O2 = acetate + 2-oxopropanal
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): Dke1; acetylacetone dioxygenase; diketone cleaving dioxygenase; diketone cleaving enzyme
Systematic name: acetylacetone:oxygen oxidoreductase
Comments: An Fe(II)-dependent enzyme. Forms the first step in the acetylacetone degradation pathway of Acinetobacter johnsonii. While acetylacetone is by far the best substrate, heptane-3,5-dione, octane-2,4-dione, 2-acetylcyclohexanone and ethyl acetoacetate can also act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 524047-53-8
References:
1.  Straganz, G.D., Glieder, A., Brecker, L., Ribbons, D.W. and Steiner, W. Acetylacetone-cleaving enzyme Dke1: a novel C-C-bond-cleaving enzyme from Acinetobacter johnsonii. Biochem. J. 369 (2003) 573–581. [DOI] [PMID: 12379146]
[EC 1.13.11.50 created 2003]
 
 
EC 5.5.1.26     Relevance: 32.8%
Accepted name: nogalonic acid methyl ester cyclase
Reaction: nogalaviketone = methyl nogalonate
Glossary: methyl nogalonate = methyl [4,5-dihydroxy-9,10-dioxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate
nogalaviketone = methyl 5,7-dihydroxy-2-methyl-4,6,11-trioxo-3,4,6,11-tetrahydrotetracene-1-carboxylate
Other name(s): methyl nogalonate cyclase; SnoaL (gene name); methyl nogalonate lyase (cyclizing)
Systematic name: nogalaviketone lyase (ring-opening)
Comments: The enzyme, characterized from the bacterium Streptomyces nogalater, is involved in the biosynthesis of the aromatic polyketide nogalamycin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sultana, A., Kallio, P., Jansson, A., Wang, J.S., Niemi, J., Mantsala, P. and Schneider, G. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. EMBO J. 23 (2004) 1911–1921. [DOI] [PMID: 15071504]
2.  Sultana, A., Kallio, P., Jansson, A., Niemi, J., Mantsala, P. and Schneider, G. Crystallization and preliminary crystallographic data of SnoaL, a polyketide cyclase in nogalamycin biosynthesis. Acta Crystallogr. D Biol. Crystallogr. 60 (2004) 1118–1120. [DOI] [PMID: 15159574]
[EC 5.5.1.26 created 2015]
 
 
EC 3.1.1.71     Relevance: 32.7%
Accepted name: acetylalkylglycerol acetylhydrolase
Reaction: 2-acetyl-1-alkyl-sn-glycerol + H2O = 1-alkyl-sn-glycerol + acetate
Other name(s): alkylacetylglycerol acetylhydrolase
Systematic name: 2-acetyl-1-alkyl-sn-glycerol acetylhydrolase
Comments: Hydrolysis of the acetyl group from the 1-alkyl-2-acetyl and 1-alkyl-3-acetyl substrates occurs at apparently identical rates. The enzyme from Erlich ascites cells is membrane-bound. It differs from lipoprotein lipase (EC 3.1.1.34) since 1,2-diacetyl-sn-glycerols are not substrates. It also differs from EC 3.1.1.47, 1-acetyl-2-alkyl-glycerophosphocholine esterase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Blank, M.L., Smith, Z.L., Cress, E.A., Snyder, F. Characterization of the enzymatic hydrolysis of acetate from alkylacetylglycerols in the de novo pathway of PAF biosynthesis. Biochim. Biophys. Acta 1042 (1990) 153–158. [DOI] [PMID: 2302414]
[EC 3.1.1.71 created 1999]
 
 
EC 1.14.15.19     Relevance: 32.3%
Accepted name: C-19 steroid 1α-hydroxylase
Reaction: testosterone + 2 reduced ferredoxin [iron-sulfur] cluster + O2 + 2 H+ = 1α-hydroxytestosterone + H2O + 2 oxidized ferredoxin [iron-sulfur] cluster
Other name(s): CYP260A1
Systematic name: testosterone,reduced-ferredoxin:oxygen oxidoreductase (1α-hydroxylating)
Comments: The enzyme, characterized from the bacterium Sorangium cellulosum, is a class I cytochrome P-450, and uses ferredoxin as its electron donor [1]. It was shown to act on several C-19 steroid substrates, including testosterone, androstenedione, testosterone-acetate and 11-oxoandrostenedione [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ewen, K.M., Hannemann, F., Khatri, Y., Perlova, O., Kappl, R., Krug, D., Huttermann, J., Muller, R. and Bernhardt, R. Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. J. Biol. Chem. 284 (2009) 28590–28598. [DOI] [PMID: 19696019]
2.  Khatri, Y., Ringle, M., Lisurek, M., von Kries, J.P., Zapp, J. and Bernhardt, R. Substrate hunting for the myxobacterial CYP260A1 revealed new 1α-hydroxylated products from C-19 steroids. Chembiochem 17 (2016) 90–101. [DOI] [PMID: 26478560]
[EC 1.14.15.19 created 2016]
 
 
EC 2.3.1.162     Relevance: 32.3%
Accepted name: taxadien-5α-ol O-acetyltransferase
Reaction: acetyl-CoA + taxa-4(20),11-dien-5α-ol = CoA + taxa-4(20),11-dien-5α-yl acetate
For diagram of taxadiene biosynthesis, click here
Other name(s): acetyl coenzyme A:taxa-4(20),11(12)-dien-5α-ol O-acetyl transferase
Systematic name: acetyl-CoA:taxa-4(20),11-dien-5α-ol O-acetyltransferase
Comments: This is the third enzyme in the biosynthesis of the diterpenoid antineoplastic drug taxol (paclitaxel), which is widely used in the treatment of carcinomas, sarcomas and melanomas.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 229032-29-5
References:
1.  Walker, K., Ketchum, R.E., Hezari, M., Gatfield, D., Goleniowski, M., Barthol, A. and Croteau, R. Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5α-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Arch. Biochem. Biophys. 364 (1999) 273. [DOI] [PMID: 10190984]
2.  Walker, K., Schoendorf, A. and Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374 (2000) 371–380. [DOI] [PMID: 10666320]
[EC 2.3.1.162 created 2002]
 
 
EC 1.2.2.2      
Deleted entry: pyruvate dehydrogenase (cytochrome). Now covered by EC 1.2.5.1, pyruvate dehydrogenase (quinone)
[EC 1.2.2.2 created 1961, deleted 2010]
 
 
EC 1.97.1.9     Relevance: 32%
Accepted name: selenate reductase
Reaction: selenite + H2O + acceptor = selenate + reduced acceptor
Systematic name: selenite:reduced acceptor oxidoreductase
Comments: The periplasmic enzyme from Thauera selenatis is a complex comprising three heterologous subunits (α, β and γ) that contains molybdenum, iron, acid-labile sulfide and heme b as cofactor constituents. Nitrate, nitrite, chlorate and sulfate are not substrates. A number of compounds, including acetate, lactate, pyruvate, and certain sugars, amino acids, fatty acids, di- and tricarboxylic acids, and benzoate can serve as electron donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 146359-71-9
References:
1.  Schröder, I., Rech, S., Krafft, T. and Macy, J.M. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272 (1997) 23765–23768. [DOI] [PMID: 9295321]
2.  Macy, J.M., Rech, S., Auling, G., Dorsch, M., Stackebrandt, E. and Sly, L.I. Thauera selenatis gen. nov., sp. nov., a member of the β subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43 (1993) 135–142. [DOI] [PMID: 8427805]
3.  Krafft, T., Bowen, A., Theis, F. and Macy, J.M. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA 10 (2000) 365–377. [PMID: 10826693]
4.  Stolz, J.F. and Oremland, R.S. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23 (1999) 615–627. [DOI] [PMID: 10525169]
[EC 1.97.1.9 created 2003]
 
 
EC 1.14.14.155     Relevance: 31.8%
Accepted name: 3,6-diketocamphane 1,2-monooxygenase
Reaction: (–)-bornane-2,5-dione + O2 + FMNH2 = (–)-5-oxo-1,2-campholide + FMN + H2O
Glossary: (–)-bornane-2,5-dione = 3,6-diketocamphane
Other name(s): 3,6-diketocamphane lactonizing enzyme; 3,6-DKCMO
Systematic name: (–)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida and encoded on the cam plasmid. Involved in the degradation of (–)-camphor. Requires a dedicated NADH—FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [1,2]. The product spontaneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Iwaki, H., Grosse, S., Bergeron, H., Leisch, H., Morley, K., Hasegawa, Y. and Lau, P.C. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 79 (2013) 3282–3293. [PMID: 23524667]
2.  Isupov, M.N., Schroder, E., Gibson, R.P., Beecher, J., Donadio, G., Saneei, V., Dcunha, S.A., McGhie, E.J., Sayer, C., Davenport, C.F., Lau, P.C., Hasegawa, Y., Iwaki, H., Kadow, M., Balke, K., Bornscheuer, U.T., Bourenkov, G. and Littlechild, J.A. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase. Acta Crystallogr. D Biol. Crystallogr. 71 (2015) 2344–2353. [PMID: 26527149]
[EC 1.14.14.155 created 2018]
 
 
EC 1.2.5.1     Relevance: 31.7%
Accepted name: pyruvate dehydrogenase (quinone)
Reaction: pyruvate + ubiquinone + H2O = acetate + CO2 + ubiquinol
Other name(s): pyruvate dehydrogenase; pyruvic dehydrogenase; pyruvic (cytochrome b1) dehydrogenase; pyruvate:ubiquinone-8-oxidoreductase; pyruvate oxidase (ambiguous); pyruvate dehydrogenase (cytochrome) (incorrect)
Systematic name: pyruvate:ubiquinone oxidoreductase
Comments: Flavoprotein (FAD) [1]. This bacterial enzyme is located on the inner surface of the cytoplasmic membrane and coupled to the respiratory chain via ubiquinone [2,3]. Does not accept menaquinone. Activity is greatly enhanced by lipids [4,5,6]. Requires thiamine diphosphate [7]. The enzyme can also form acetoin [8].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Recny, M.A. and Hager, L.P. Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD. J. Biol. Chem. 257 (1982) 12878–12886. [PMID: 6752142]
2.  Cunningham, C.C. and Hager, L.P. Reactivation of the lipid-depleted pyruvate oxidase system from Escherichia coli with cell envelope neutral lipids. J. Biol. Chem. 250 (1975) 7139–7146. [PMID: 1100621]
3.  Koland, J.G., Miller, M.J. and Gennis, R.B. Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase. Biochemistry 23 (1984) 445–453. [PMID: 6367818]
4.  Grabau, C. and Cronan, J.E., Jr. In vivo function of Escherichia coli pyruvate oxidase specifically requires a functional lipid binding site. Biochemistry 25 (1986) 3748–3751. [PMID: 3527254]
5.  Wang, A.Y., Chang, Y.Y. and Cronan, J.E., Jr. Role of the tetrameric structure of Escherichia coli pyruvate oxidase in enzyme activation and lipid binding. J. Biol. Chem. 266 (1991) 10959–10966. [PMID: 2040613]
6.  Chang, Y.Y. and Cronan, J.E., Jr. Sulfhydryl chemistry detects three conformations of the lipid binding region of Escherichia coli pyruvate oxidase. Biochemistry 36 (1997) 11564–11573. [DOI] [PMID: 9305946]
7.  O'Brien, T.A., Schrock, H.L., Russell, P., Blake, R., 2nd and Gennis, R.B. Preparation of Escherichia coli pyruvate oxidase utilizing a thiamine pyrophosphate affinity column. Biochim. Biophys. Acta 452 (1976) 13–29. [DOI] [PMID: 791368]
8.  Bertagnolli, B.L. and Hager, L.P. Role of flavin in acetoin production by two bacterial pyruvate oxidases. Arch. Biochem. Biophys. 300 (1993) 364–371. [DOI] [PMID: 8424670]
[EC 1.2.5.1 created 2010]
 
 
EC 3.7.1.12     Relevance: 31.7%
Accepted name: cobalt-precorrin 5A hydrolase
Reaction: cobalt-precorrin-5A + H2O = cobalt-precorrin-5B + acetaldehyde + 2 H+
For diagram of anaerobic corrin biosynthesis (part 1), click here
Other name(s): CbiG
Systematic name: cobalt-precorrin 5A acylhydrolase
Comments: This enzyme hydrolyses the ring A acetate δ-lactone of cobalt-precorrin-5A resulting in the loss of the C-20 carbon and its attached methyl group in the form of acetaldehyde. This is a key reaction in the contraction of the porphyrin-type tetrapyrrole ring and its conversion to a corrin ring in the anaerobic (early cobalt insertion) adenosylcobalamin biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kajiwara, Y., Santander, P.J., Roessner, C.A., Perez, L.M. and Scott, A.I. Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and -5B, two new intermediates on the anaerobic pathway to vitamin B12: definition of the roles of the CbiF and CbiG enzymes. J. Am. Chem. Soc. 128 (2006) 9971–9978. [DOI] [PMID: 16866557]
2.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 3.7.1.12 created 2010]
 
 
EC 3.5.1.104     Relevance: 31.6%
Accepted name: peptidoglycan-N-acetylglucosamine deacetylase
Reaction: peptidoglycan-N-acetyl-D-glucosamine + H2O = peptidoglycan-D-glucosamine + acetate
Other name(s): HP310; PgdA; SpPgdA; BC1960; peptidoglycan deacetylase; N-acetylglucosamine deacetylase; peptidoglycan GlcNAc deacetylase; peptidoglycan N-acetylglucosamine deacetylase; PG N-deacetylase
Systematic name: peptidoglycan-N-acetylglucosamine amidohydrolase
Comments: Modification of peptidoglycan by N-deacetylation is an important factor in virulence of Helicobacter pylori, Listeria monocytogenes and Streptococcus suis [4-6]. The enzyme from Streptococcus pneumoniae is a metalloenzyme using a His-His-Asp zinc-binding triad with a nearby aspartic acid and histidine acting as the catalytic base and acid, respectively [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Psylinakis, E., Boneca, I.G., Mavromatis, K., Deli, A., Hayhurst, E., Foster, S.J., Varum, K.M. and Bouriotis, V. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis. J. Biol. Chem. 280 (2005) 30856–30863. [DOI] [PMID: 15961396]
2.  Tsalafouta, A., Psylinakis, E., Kapetaniou, E.G., Kotsifaki, D., Deli, A., Roidis, A., Bouriotis, V. and Kokkinidis, M. Purification, crystallization and preliminary X-ray analysis of the peptidoglycan N-acetylglucosamine deacetylase BC1960 from Bacillus cereus in the presence of its substrate (GlcNAc)6. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 (2008) 203–205. [DOI] [PMID: 18323609]
3.  Blair, D.E., Schuttelkopf, A.W., MacRae, J.I. and van Aalten, D.M. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl. Acad. Sci. USA 102 (2005) 15429–15434. [DOI] [PMID: 16221761]
4.  Wang, G., Olczak, A., Forsberg, L.S. and Maier, R.J. Oxidative stress-induced peptidoglycan deacetylase in Helicobacter pylori. J. Biol. Chem. 284 (2009) 6790–6800. [DOI] [PMID: 19147492]
5.  Popowska, M., Kusio, M., Szymanska, P. and Markiewicz, Z. Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysis. J. Microbiol. Biotechnol. 19 (2009) 932–945. [PMID: 19809250]
6.  Fittipaldi, N., Sekizaki, T., Takamatsu, D., de la Cruz Domínguez-Punaro, M., Harel, J., Bui, N.K., Vollmer, W. and Gottschalk, M. Significant contribution of the pgdA gene to the virulence of Streptococcus suis. Mol. Microbiol. 70 (2008) 1120–1135. [DOI] [PMID: 18990186]
[EC 3.5.1.104 created 2010]
 
 
EC 3.1.1.55     Relevance: 31.6%
Accepted name: acetylsalicylate deacetylase
Reaction: acetylsalicylate + H2O = salicylate + acetate
Other name(s): aspirin esterase; aspirin esterase; acetylsalicylic acid esterase; aspirin hydrolase
Systematic name: acetylsalicylate O-acetylhydrolase
Comments: Not identical with EC 3.1.1.1 (carboxylesterase), EC 3.1.1.2 (arylesterase), EC 3.1.1.7 (acetylcholinesterase) or EC 3.1.1.8 (cholinesterase). The activity of the liver cytosol enzyme is highest with acetyl esters of aryl alcohols, and thioesters are also hydrolysed; the microsomal enzyme also hydrolyses some other negatively charged esters, with highest activity on esters of salicylate with long-chain alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 87348-04-7
References:
1.  Ali, B. and Kaur, S. Mammalian tissue acetylsalicylic acid esterase(s): identification, distribution and discrimination from other esterases. J. Pharmacol. Exp. Ther. 226 (1983) 589–594. [PMID: 6875867]
2.  Kim, D.-H., Yang, Y.-S. and Jakoby, W.B. Aspirin hydrolyzing esterases from rat liver cytosol. Biochem. Pharmacol. 40 (1990) 481–487. [DOI] [PMID: 2383281]
3.  White, K.N. and Hope, D.B. Partial purification and characterization of a microsomal carboxylesterase specific for salicylate esters from guinea-pig liver. Biochim. Biophys. Acta 785 (1984) 138–147. [DOI] [PMID: 6704404]
[EC 3.1.1.55 created 1986, modified 1989]
 
 
EC 2.5.1.134     Relevance: 31.5%
Accepted name: cystathionine β-synthase (O-acetyl-L-serine)
Reaction: O-acetyl-L-serine + L-homocysteine = L-cystathionine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Other name(s): MccB; O-acetylserine dependent cystathionine β-synthase
Systematic name: O-acetyl-L-serine:L-homocysteine 2-amino-2-carboxyethyltransferase
Comments: A pyridoxal 5′-phosphate protein. The enzyme, purified from the bacterium Bacillus subtilis, also has a low activity with L-serine (cf. EC 4.2.1.22, cystathionine β-synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hullo, M.F., Auger, S., Soutourina, O., Barzu, O., Yvon, M., Danchin, A. and Martin-Verstraete, I. Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J. Bacteriol. 189 (2007) 187–197. [DOI] [PMID: 17056751]
[EC 2.5.1.134 created 2016]
 
 
EC 2.1.1.288     Relevance: 31.3%
Accepted name: aklanonic acid methyltransferase
Reaction: S-adenosyl-L-methionine + aklanonate = S-adenosyl-L-homocysteine + methyl aklanonate
For diagram of aflatoxin biosynthesis, click here
Glossary: methyl aklanonate = methyl [1,4,5-trihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetate
aklanonate = [4,5-dihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetic acid
Other name(s): DauC; AAMT
Systematic name: S-adenosyl-L-methionine:aklanonate O-methyltransferase
Comments: The enzyme from the Gram-positive bacterium Streptomyces sp. C5 is involved in the biosynthesis of the anthracycline daunorubicin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dickens, M.L., Ye, J. and Strohl, W.R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J. Bacteriol. 177 (1995) 536–543. [DOI] [PMID: 7836284]
[EC 2.1.1.288 created 2013]
 
 
EC 2.1.1.152     Relevance: 30.8%
Accepted name: precorrin-6A synthase (deacetylating)
Reaction: S-adenosyl-L-methionine + precorrin-5 + H2O = S-adenosyl-L-homocysteine + precorrin-6A + acetate
For diagram of corrin biosynthesis (part 3), click here and for mechanism of reaction, click here
Other name(s): precorrin-6X synthase (deacetylating); CobF
Systematic name: S-adenosyl-L-methionine:precorrin-5 C1-methyltransferase (deacetylating)
Comments: In the aerobic cobalamin biosythesis pathway, four enzymes are involved in the conversion of precorrin-3A to precorrin-6A. The first of the four steps is carried out by EC 1.14.13.83, precorrin-3B synthase (CobG), yielding precorrin-3B as the product. This is followed by three methylation reactions, which introduce a methyl group at C-17 (CobJ; EC 2.1.1.131), C-11 (CobM; EC 2.1.1.133) and C-1 (CobF; EC 2.1.1.152) of the macrocycle, giving rise to precorrin-4, precorrin-5 and precorrin-6A, respectively.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Debussche, L., Thibaut, D., Cameron, B., Crouzet, J. and Blanche, F. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J. Bacteriol. 175 (1993) 7430–7440. [DOI] [PMID: 8226690]
2.  Warren, M.J., Raux, E., Schubert, H.L. and Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19 (2002) 390–412. [PMID: 12195810]
[EC 2.1.1.152 created 2004]
 
 
EC 3.5.1.48     Relevance: 30.7%
Accepted name: acetylspermidine deacetylase
Reaction: N8-acetylspermidine + H2O = acetate + spermidine
Glossary: spermidine = N-(3-aminopropyl)butane-1,4-diamine
spermine = N,N′-bis(3-aminopropyl)butane-1,4-diamine
Other name(s): N8-monoacetylspermidine deacetylase; N8-acetylspermidine deacetylase; N-acetylspermidine deacetylase; N1-acetylspermidine amidohydrolase (incorrect); 8-N-acetylspermidine amidohydrolase
Systematic name: N8-acetylspermidine amidohydrolase
Comments: It was initially thought that N1-acetylspermidine was the substrate for this deacetylase reaction [1] but this has since been disproved by Marchant et al. [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67339-07-5
References:
1.  Libby, P.R. Properties of an acetylspermidine deacetylase from rat liver. Arch. Biochem. Biophys. 188 (1978) 360–363. [DOI] [PMID: 28089]
2.  Blankenship, J. Deacetylation of N8-acetylspermidine by subcellular fractions of rat tissue. Arch. Biochem. Biophys. 189 (1978) 20–27. [DOI] [PMID: 708044]
3.  Marchant, P., Manneh, V.A. and Blankenship, J. N1-Acetylspermidine is not a substrate for N-acetylspermidine deacetylase. Biochim. Biophys. Acta 881 (1986) 297–299. [DOI] [PMID: 3955076]
[EC 3.5.1.48 created 1984, modified 2005]
 
 
EC 2.3.1.235     Relevance: 30.4%
Accepted name: tetracenomycin F2 synthase
Reaction: 10 malonyl-CoA = tetracenomycin F2 + 10 CoA + 10 CO2 + 2 H2O
For diagram of polyketides biosynthesis, click here
Glossary: tetracenomycin F2 = 4-(3-acetyl-4,5,7,10-tetrahydroxyanthracen-2-yl)-3-oxobutanoic acid
Other name(s): TCM PKS
Systematic name: malonyl-CoA:acetate malonyltransferase (tetracenomycin F2 forming)
Comments: A multi-domain polyketide synthase involved in the synthesis of tetracenomycin in the bacterium Streptomyces glaucescens. It involves a ketosynthase complex (TcmKL), an acyl carrier protein (TcmM), a malonyl CoA:ACP acyltransferase (MAT), and a cyclase (TcmN). A malonyl-CoA molecule is initially bound to the acyl carrier protein and decarboxylated to form an acetyl starter unit. Additional two-carbon units are added from nine more malonyl-CoA molecules.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bao, W., Wendt-Pienkowski, E. and Hutchinson, C.R. Reconstitution of the iterative type II polyketide synthase for tetracenomycin F2 biosynthesis. Biochemistry 37 (1998) 8132–8138. [DOI] [PMID: 9609708]
[EC 2.3.1.235 created 2014]
 
 
EC 2.1.1.196     Relevance: 30.2%
Accepted name: cobalt-precorrin-6B (C15)-methyltransferase [decarboxylating]
Reaction: cobalt-precorrin-6B + S-adenosyl-L-methionine = cobalt-precorrin-7 + S-adenosyl-L-homocysteine + CO2
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): cbiT (gene name); S-adenosyl-L-methionine:precorrin-7 C15-methyltransferase (C-12-decarboxylating); cobalt-precorrin-7 (C15)-methyltransferase [decarboxylating]
Systematic name: S-adenosyl-L-methionine:precorrin-6B C15-methyltransferase (C-12-decarboxylating)
Comments: This enzyme catalyses both methylation at C-15 and decarboxylation of the C-12 acetate side chain of cobalt-precorrin-6B, a step in the anaerobic (early cobalt insertion) adenosylcobalamin biosynthesis pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Keller, J.P., Smith, P.M., Benach, J., Christendat, D., deTitta, G.T. and Hunt, J.F. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure 10 (2002) 1475–1487. [DOI] [PMID: 12429089]
2.  Santander, P.J., Kajiwara, Y., Williams, H.J. and Scott, A.I. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg. Med. Chem. 14 (2006) 724–731. [DOI] [PMID: 16198574]
3.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 2.1.1.196 created 2010, modified 2013]
 
 
EC 1.1.1.317     Relevance: 30.1%
Accepted name: perakine reductase
Reaction: raucaffrinoline + NADP+ = perakine + NADPH + H+
For diagram of peraksine biosynthesis, click here
Glossary: raucaffrinoline = (17R,20α,21β)-1,2-didehydro-1-demethyl-19-hydroxy-21-methyl-18-norajmalan-17-yl acetate
perakine = raucaffrine = (17R,20α,21β)-1,2-didehydro-1-demethyl-17-(acetyloxy)-21-methyl-18-norajmalan-19-al
Systematic name: raucaffrinoline:NADP+ oxidoreductase
Comments: The biosynthesis of raucaffrinoline from perakine is a side route of the ajmaline biosynthesis pathway. The enzyme is a member of the aldo-keto reductase enzyme superfamily from higher plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sun, L., Ruppert, M., Sheludko, Y., Warzecha, H., Zhao, Y. and Stockigt, J. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia. Plant Mol. Biol. 67 (2008) 455–467. [DOI] [PMID: 18409028]
2.  Rosenthal, C., Mueller, U., Panjikar, S., Sun, L., Ruppert, M., Zhao, Y. and Stockigt, J. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 (2006) 1286–1289. [DOI] [PMID: 17142919]
[EC 1.1.1.317 created 2011]
 
 
EC 1.2.3.7     Relevance: 29.9%
Accepted name: indole-3-acetaldehyde oxidase
Reaction: (indol-3-yl)acetaldehyde + H2O + O2 = (indol-3-yl)acetate + H2O2
Other name(s): indoleacetaldehyde oxidase; IAAld oxidase; AO1; indole-3-acetaldehyde:oxygen oxidoreductase
Systematic name: (indol-3-yl)acetaldehyde:oxygen oxidoreductase
Comments: A hemoprotein. This enzyme is an isoform of aldehyde oxidase (EC 1.2.3.1). It has a preference for aldehydes having an indole-ring structure as substrate [6,7]. It may play a role in plant hormone biosynthesis as its activity is higher in the auxin-overproducing mutant, super-root1, than in wild-type Arabidopsis thaliana [7]. While (indol-3-yl)acetaldehyde is the preferred substrate, it also oxidizes indole-3-carbaldehyde and acetaldehyde, but more slowly. The enzyme from maize contains FAD, iron and molybdenum [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 66082-22-2
References:
1.  Bower, P.J., Brown, H.M. and Purves, W.K. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61 (1978) 107–110. [PMID: 16660220]
2.  Miyata, S., Suzuki, Y., Kamisaka, S. and Masuda, Y. Indole-3-acetaldehyde oxidase of pea-seedlings. Physiol. Plant. 51 (1981) 402–406.
3.  Rajagopal, R. Metabolism of indole-3-acetaldehyde. III. Some characteristics of the aldehyde oxidase of Avena coleoptiles. Physiol. Plant. 24 (1971) 272–281.
4.  Koshiba, T., Saito, E., Ono, N., Yamamoto, N. and Sato, M. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 110 (1996) 781–789. [PMID: 12226218]
5.  Koshiba, T. and Matsuyama, H. An in vitro system of indole-3-acetic acid formation from tryptophan in maize (Zea mays) coleoptile extracts. Plant Physiol. 102 (1993) 1319–1324. [PMID: 12231908]
6.  Sekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., Marion-Poll, A., Caboche, M., Kamiya, Y. and Koshiba, T. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol. 39 (1998) 433–442. [PMID: 9615466]
7.  Seo, M., Akaba, S., Oritani, T., Delarue, M., Bellini, C., Caboche, M. and Koshiba, T. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 116 (1998) 687–693. [PMID: 9489015]
[EC 1.2.3.7 created 1984, modified 2004, modified 2006]
 
 
EC 5.5.1.23     Relevance: 29.9%
Accepted name: aklanonic acid methyl ester cyclase
Reaction: aklaviketone = methyl aklanonate
For diagram of aklavinone biosynthesis, click here
Glossary: aklaviketone = methyl (1R,2R)-2-ethyl-2,5,7-trihydroxy-4,6,11-trioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate
methyl aklanonate = methyl [4,5-dihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetate
Other name(s): dauD (gene name); aknH (gene name); dnrD (gene name); methyl aklanonate cyclase; methyl aklanonate-aklaviketone isomerase (cyclizing); aklaviketone lyase (decyclizing)
Systematic name: aklaviketone lyase (ring-opening)
Comments: The enzyme is involved in the biosynthesis of aklaviketone, an intermediate in the biosynthetic pathways leading to formation of several anthracycline antibiotics, including aclacinomycin, daunorubicin and doxorubicin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Dickens, M.L., Ye, J. and Strohl, W.R. Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J. Bacteriol. 177 (1995) 536–543. [DOI] [PMID: 7836284]
2.  Kendrew, S.G., Katayama, K., Deutsch, E., Madduri, K. and Hutchinson, C.R. DnrD cyclase involved in the biosynthesis of doxorubicin: purification and characterization of the recombinant enzyme. Biochemistry 38 (1999) 4794–4799. [DOI] [PMID: 10200167]
3.  Kallio, P., Sultana, A., Niemi, J., Mantsala, P. and Schneider, G. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. J. Mol. Biol. 357 (2006) 210–220. [DOI] [PMID: 16414075]
[EC 5.5.1.23 created 2013, modified 2014]
 
 
EC 2.5.1.118     Relevance: 29.9%
Accepted name: β-(isoxazolin-5-on-2-yl)-L-alanine synthase
Reaction: O-acetyl-L-serine + isoxazolin-5-one = 3-(5-oxoisoxazolin-2-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Systematic name: O-acetyl-L-serine:isoxazolin-5-one 2-(2-amino-2-carboxyethyl)transferase
Comments: The enzyme from the plants Lathyrus odoratus (sweet pea) and L. sativus (grass pea) also forms 3-(5-oxoisoxazolin-4-yl)-L-alanine in vitro (cf. EC 2.5.1.119). However, only 3-(5-oxoisoxazolin-2-yl)-L-alanine is formed in vivo. 3-(5-oxoisoxazolin-2-yl)-L-alanine is the biosynthetic precursor of the neurotoxin N3-oxalyl-L-2,3-diaminopropanoic acid, the cause of lathyrism. Closely related and possibly identical to EC 2.5.1.47, cysteine synthase, and EC 2.5.1.51, β-pyrazolylalanine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ikegami, F., Kamiya, M., Kuo, Y.H., Lambein, F. and Murakoshi, I. Enzymatic synthesis of two isoxazolylalanine isomers by cysteine synthases in Lathyrus species. Biol. Pharm. Bull. 19 (1996) 1214–1215. [PMID: 8889043]
[EC 2.5.1.118 created 2014]
 
 
EC 3.1.2.16     Relevance: 29.8%
Accepted name: citrate-lyase deacetylase
Reaction: acetyl-[citrate (pro-3S)-lyase] + H2O = holo-[citrate (pro-3S)-lyase] + acetate
Other name(s): [citrate-(pro-3S)-lyase] thiolesterase; acetyl-S-(acyl-carrier protein) enzyme thioester hydrolase; citrate lyase deacetylase; [citrate-(pro-3S)-lyase](acetyl-form) hydrolase
Systematic name: acetyl-[citrate-(pro-3S)-lyase] hydrolase
Comments: In the proteobacterium Rubrivivax gelatinosus, this enzyme modulates the activity of EC 4.1.3.6, citrate (pro-3S)-lyase, by converting it from its active acetyl form into its inactive thiol form by removal of its acetyl groups [2]. The activity of citrate-lyase deacetylase is itself inhibited by L-glutamate [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 58319-93-0
References:
1.  Giffhorn, F. and Gottschalk, G. Inactivation of citrate lyase from Rhodopseudomonas gelatinosa by a specific deacetylase and inhibition of this inactivation by L-(+)-glutamate. J. Bacteriol. 124 (1975) 1052–1061. [PMID: 356]
2.  Giffhorn, F., Rode, H., Kuhn, A. and Gottschalk, G. Citrate lyase deacetylase of Rhodopseudomonas gelatinosa. Isolation of the enzyme and studies on the inhibition by L-glutamate. Eur. J. Biochem. 111 (1980) 461–471. [DOI] [PMID: 7460909]
[EC 3.1.2.16 created 1989]
 
 
EC 2.5.1.119     Relevance: 29.3%
Accepted name: β-(isoxazolin-5-on-4-yl)-L-alanine synthase
Reaction: O-acetyl-L-serine + isoxazolin-5-one = 3-(5-oxoisoxazolin-4-yl)-L-alanine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Systematic name: O-acetyl-L-serine:isoxazolin-5-one 4-(2-amino-2-carboxyethyl)transferase
Comments: 3-(5-Oxoisoxazolin-4-yl)-L-alanine is an antifungal antibiotic produced by the bacterium Streptomyces platensis. The enzymes from the plants Lathyrus odoratus (sweet pea), L. sativus (grass pea) and Citrullus vulgaris (watermelon) that catalyse EC 2.5.1.118 (β-(isoxazolin-5-on-2-yl)-L-alanine synthase) also catalyse this reaction in vitro, but not in vivo. Closely related and possibly identical to EC 2.5.1.47, cysteine synthase, and EC 2.5.1.51, β-pyrazolylalanine synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ikegami, F., Kamiya, M., Kuo, Y.H., Lambein, F. and Murakoshi, I. Enzymatic synthesis of two isoxazolylalanine isomers by cysteine synthases in Lathyrus species. Biol. Pharm. Bull. 19 (1996) 1214–1215. [PMID: 8889043]
[EC 2.5.1.119 created 2014]
 
 
EC 2.3.1.49     Relevance: 29.1%
Accepted name: deacetyl-[citrate-(pro-3S)-lyase] S-acetyltransferase
Reaction: S-acetylphosphopantetheine + holo-[citrate (pro-3S)-lyase] = phosphopantetheine + acetyl-[citrate (pro-3S)-lyase]
Other name(s): S-acetyl phosphopantetheine:deacetyl citrate lyase S-acetyltransferase; deacetyl-[citrate-(pro-3S)-lyase] acetyltransferase; S-acetylphosphopantetheine:deacetyl-[citrate-oxaloacetate-lyase((pro-3S)-CH2COO-→acetate)] S-acetyltransferase
Systematic name: S-acetylphosphopantetheine:holo-[citrate (pro-3S)-lyase] S-acetyltransferase
Comments: Both this enzyme and EC 6.2.1.22, [citrate (pro-3S)-lyase] ligase, acetylate and activate EC 4.1.3.6, citrate (pro-3S)-lyase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 42616-18-2
References:
1.  Singh, M., Böttger, B., Brooks, G.C. and Srere, P.A. S-Acetyl phosphopantetheine: deacetyl citrate lyase S-acetyl transferase from Klebsiella aerogenes. Biochem. Biophys. Res. Commun. 53 (1973) 1–9. [DOI] [PMID: 4741546]
[EC 2.3.1.49 created 1976]
 
 
EC 3.1.1.73     Relevance: 29%
Accepted name: feruloyl esterase
Reaction: feruloyl-polysaccharide + H2O = ferulate + polysaccharide
Glossary: ferulate = 4-hydroxy-3-methoxycinnamate
Other name(s): ferulic acid esterase, hydroxycinnamoyl esterase, hemicellulase accessory enzymes; FAE-III, cinnamoyl ester hydrolase, FAEA, cinnAE, FAE-I, FAE-II
Systematic name: 4-hydroxy-3-methoxycinnamoyl-sugar hydrolase
Comments: Catalyses the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from an esterified sugar, which is usually arabinose in "natural" substrates. p-Nitrophenol acetate and methyl ferulate are poorer substrates. All microbial ferulate esterases are secreted into the culture medium. They are sometimes called hemicellulase accessory enzymes, since they help xylanases and pectinases to break down plant cell wall hemicellulose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 134712-49-5
References:
1.  Faulds, C.B. and Williamson, G. The purification and characterisation of 4-hydroxy-3-methoxy-cinnamic (ferulic) acid esterase from Streptomyces olivochromogenes (3232). J. Gen. Microbiol. 137 (1991) 2339–2345. [DOI] [PMID: 1663152]
2.  Faulds, C.B. and Williamson, G. Purification and characterisation of a ferulic acid esterase (FAE-III) from Aspergillus niger. Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140 (1994) 779–787.
3.  Kroon, P.A., Faulds, C.B. and Williamson, G. Purification and characterisation of a novel ferulic acid esterase induced by growth of Aspergillus niger on sugarbeet pulp. Biotechnol. Appl. Biochem. 23 (1996) 255–262. [PMID: 8679110]
4.  deVries, R.P. , Michelsen,B., Poulsen, C.H., Kroon, P.A., van den Heuvel, R.H.H., Faulds, C.B., Williamson, G., van den Homberg, J.P.T.W. and Visser, J. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol. 63 (1997) 4638–4644. [PMID: 9406381]
5.  Castanares, A., Mccrae, S.I. and Wood, T.M. Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microbiol. Technol. 14 (1992) 875–884.
[EC 3.1.1.73 created 2000]
 
 
EC 1.14.14.108     Relevance: 28.5%
Accepted name: 2,5-diketocamphane 1,2-monooxygenase
Reaction: (+)-bornane-2,5-dione + FMNH2 + O2 = (+)-5-oxo-1,2-campholide + FMN + H2O
For diagram of camphor catabolism, click here
Glossary: (+)-bornane-2,5-dione = 2,5-diketocamphane
Other name(s): 2,5-diketocamphane lactonizing enzyme; ketolactonase I (ambiguous); 2,5-diketocamphane 1,2-monooxygenase oxygenating component; 2,5-DKCMO; camP (gene name); camphor 1,2-monooxygenase; camphor ketolactonase I
Systematic name: (+)-bornane-2,5-dione,FMNH2:oxygen oxidoreductase (1,2-lactonizing)
Comments: A Baeyer-Villiger monooxygenase isolated from camphor-grown strains of Pseudomonas putida and encoded on the cam plasmid. Involved in the degradation of (+)-camphor. Requires a dedicated NADH-FMN reductase [cf. EC 1.5.1.42, FMN reductase (NADH)] [1-3]. Can accept several bicyclic ketones including (+)- and (–)-camphor [6] and adamantanone [4]. The product spontaneously converts to [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Conrad, H.E., DuBus, R., Namtvedt, M.J. and Gunsalus, I.C. Mixed function oxidation. II. Separation and properties of the enzymes catalyzing camphor lactonizaton. J. Biol. Chem. 240 (1965) 495–503. [PMID: 14253460]
2.  Yu, C.A. and Gunsalus, I.C. Monoxygenases. VII. Camphor ketolactonase I and the role of three protein components. J. Biol. Chem. 244 (1969) 6149–6152. [PMID: 4310834]
3.  Taylor, D.G. and Trudgill, P.W. Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J. Bacteriol. 165 (1986) 489–497. [DOI] [PMID: 3944058]
4.  Selifonov, S.A. Microbial oxidation of adamantanone by Pseudomonas putida carrying the camphor catabolic plasmid. Biochem. Biophys. Res. Commun. 186 (1992) 1429–1436. [DOI] [PMID: 1510672]
5.  Jones, K.H., Smith, R.T. and Trudgill, P.W. Diketocamphane enantiomer-specific ’Baeyer-Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J. Gen. Microbiol. 139 (1993) 797–805. [DOI] [PMID: 8515237]
6.  Kadow, M., Sass, S., Schmidt, M. and Bornscheuer, U.T. Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express 1:13 (2011). [DOI] [PMID: 21906366]
7.  Iwaki, H., Grosse, S., Bergeron, H., Leisch, H., Morley, K., Hasegawa, Y. and Lau, P.C. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 79 (2013) 3282–3293. [PMID: 23524667]
[EC 1.14.14.108 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, transferred 2018 to EC 1.14.14.108]
 
 
EC 2.1.1.245     Relevance: 28.4%
Accepted name: 5-methyltetrahydrosarcinapterin:corrinoid/iron-sulfur protein Co-methyltransferase
Reaction: a [methyl-Co(III) corrinoid Fe-S protein] + tetrahydrosarcinapterin = a [Co(I) corrinoid Fe-S protein] + 5-methyltetrahydrosarcinapterin
Other name(s): cdhD (gene name); cdhE (gene name)
Systematic name: 5-methyltetrahydrosarcinapterin:corrinoid/iron-sulfur protein methyltransferase
Comments: Catalyses the transfer of a methyl group from the cobamide cofactor of a corrinoid/Fe-S protein to the N5 group of tetrahydrosarcinapterin. Forms, together with EC 1.2.7.4, carbon-monoxide dehydrogenase (ferredoxin) and EC 2.3.1.169, CO-methylating acetyl-CoA synthase, the acetyl-CoA decarbonylase/synthase complex that catalyses the demethylation of acetyl-CoA in a reaction that also forms CO2. This reaction is a key step in methanogenesis from acetate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maupin-Furlow, J. and Ferry, J.G. Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J. Bacteriol. 178 (1996) 340–346. [DOI] [PMID: 8550451]
2.  Grahame, D.A. and DeMoll, E. Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J. Biol. Chem. 271 (1996) 8352–8358. [DOI] [PMID: 8626532]
[EC 2.1.1.245 created 2012]
 
 
EC 1.14.13.162      
Transferred entry: 2,5-diketocamphane 1,2-monooxygenase. Now EC 1.14.14.108, 2,5-diketocamphane 1,2-monooxygenase
[EC 1.14.13.162 created 1972 as EC 1.14.15.2, transferred 2012 to EC 1.14.13.162, deleted 2018]
 
 
EC 3.5.1.89     Relevance: 28%
Accepted name: N-acetylglucosaminylphosphatidylinositol deacetylase
Reaction: 6-(N-acetyl-α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + acetate
For diagram of glycosylphosphatidyl-myo-inositol biosynthesis, click here
Other name(s): N-acetyl-D-glucosaminylphosphatidylinositol acetylhydrolase; N-acetylglucosaminylphosphatidylinositol de-N-acetylase; GlcNAc-PI de-N-acetylase; GlcNAc-PI deacetylase; acetylglucosaminylphosphatidylinositol deacetylase
Systematic name: 6-(N-acetyl-α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol acetylhydrolase
Comments: Involved in the second step of glycosylphosphatidylinositol (GPI) anchor formation in all eukaryotes. The enzyme appears to be composed of a single subunit (PIG-L in mammalian cells and GPI12 in yeast). In some species, the long-chain sn-1-acyl group of the phosphatidyl group is replaced by a long-chain alkyl or alk-1-enyl group.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 122191-30-4
References:
1.  Doering, T.L., Masteron, W.J., Englund, P.T. and Hart, G.W. Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein. Origin of the non-acetylated glucosamine. J. Biol. Chem. 264 (1989) 11168–11173. [PMID: 2525555]
2.  Nakamura, N., Inoue, N., Watanabe, R., Takahashi, M., Takeda, J., Stevens, V.L. and Kinoshita, T. Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J. Biol. Chem. 272 (1997) 15834–15840. [DOI] [PMID: 9188481]
3.  Watanabe, R., Ohishi, K., Maeda, Y., Nakamura, N. and Kinoshita, T. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem. J. 339 (1999) 185–192. [PMID: 10085243]
4.  Smith, T.K, Crossman, A., Borissow, C.N., Paterson, M.J., Dix, A., Brimacombe, J.S. and Ferguson, M.A.J. Specificity of GlcNAc-PI de-N-acetylase of GPI biosynthesis and synthesis of parasite-specific suicide substrate inhibitors. EMBO J. 20 (2001) 3322–3332. [DOI] [PMID: 11432820]
[EC 3.5.1.89 created 1992 as EC 3.1.1.69, transferred 2002 to EC 3.5.1.89, modified 2002]
 
 
EC 3.5.1.103     Relevance: 28%
Accepted name: N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-α-D-glucopyranoside deacetylase
Reaction: 1-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O = 1-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + acetate
For diagram of mycothiol biosynthesis, click here
Glossary: mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): MshB
Systematic name: 1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol acetylhydrolase
Comments: This enzyme is considered the key enzyme and rate limiting step in the mycothiol biosynthesis pathway [1]. In addition to acetylase activity, the enzyme possesses weak activity of EC 3.5.1.115, mycothiol S-conjugate amidase, and shares sequence similarity with that enzyme [2]. The enzyme requires a divalent transition metal ion for activity, believed to be Zn2+ [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rawat, M., Kovacevic, S., Billman-Jacobe, H. and Av-Gay, Y. Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology 149 (2003) 1341–1349. [DOI] [PMID: 12724395]
2.  Newton, G.L., Av-Gay, Y. and Fahey, R.C. N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J. Bacteriol. 182 (2000) 6958–6963. [DOI] [PMID: 11092856]
3.  Maynes, J.T., Garen, C., Cherney, M.M., Newton, G., Arad, D., Av-Gay, Y., Fahey, R.C. and James, M.N. The crystal structure of 1-D-myo-inosityl 2-acetamido-2-deoxy-α-D-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold. J. Biol. Chem. 278 (2003) 47166–47170. [DOI] [PMID: 12958317]
[EC 3.5.1.103 created 2010]
 
 
EC 2.5.1.144     Relevance: 27.9%
Accepted name: S-sulfo-L-cysteine synthase (O-acetyl-L-serine-dependent)
Reaction: O-acetyl-L-serine + thiosulfate = S-sulfo-L-cysteine + acetate
For diagram of O3-Acetyl-L-serine metabolism, click here
Glossary: O-acetyl-L-serine = (2S)-3-acetyloxy-2-aminopropanoic acid
Other name(s): cysteine synthase B; cysM (gene name); CS26 (gene name)
Systematic name: O-acetyl-L-serine:thiosulfate 2-amino-2-carboxyethyltransferase
Comments: In plants, the activity is catalysed by a chloroplastic enzyme that plays an important role in chloroplast function and is essential for light-dependent redox regulation within the chloroplast. The bacterial enzyme also catalyses the activity of EC 2.5.1.47, cysteine synthase. cf. EC 2.8.5.1, S-sulfo-L-cysteine synthase (3-phospho-L-serine-dependent).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hensel, G. and Truper, H.G. O-Acetylserine sulfhydrylase and S-sulfocysteine synthase activities of Rhodospirillum tenue. Arch. Microbiol. 134 (1983) 227–232. [PMID: 6615127]
2.  Nakamura, T., Iwahashi, H. and Eguchi, Y. Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium. J. Bacteriol. 158 (1984) 1122–1127. [PMID: 6373737]
3.  Bermudez, M.A., Paez-Ochoa, M.A., Gotor, C. and Romero, L.C. Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell 22 (2010) 403–416. [DOI] [PMID: 20179139]
4.  Bermudez, M.A., Galmes, J., Moreno, I., Mullineaux, P.M., Gotor, C. and Romero, L.C. Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol. 160 (2012) 274–288. [DOI] [PMID: 22829322]
5.  Gotor, C. and Romero, L.C. S-sulfocysteine synthase function in sensing chloroplast redox status. Plant Signal Behav 8:e23313 (2013). [DOI] [PMID: 23333972]
[EC 2.5.1.144 created 2018]
 
 
EC 2.1.1.156     Relevance: 27.1%
Accepted name: glycine/sarcosine N-methyltransferase
Reaction: 2 S-adenosyl-L-methionine + glycine = 2 S-adenosyl-L-homocysteine + N,N-dimethylglycine (overall reaction)
(1a) S-adenosyl-L-methionine + glycine = S-adenosyl-L-homocysteine + sarcosine
(1b) S-adenosyl-L-methionine + sarcosine = S-adenosyl-L-homocysteine + N,N-dimethylglycine
Glossary: sarcosine = N-methylglycine
Other name(s): ApGSMT; glycine-sarcosine methyltransferase; GSMT; GMT; glycine sarcosine N-methyltransferase; S-adenosyl-L-methionine:sarcosine N-methyltransferase
Systematic name: S-adenosyl-L-methionine:glycine(or sarcosine) N-methyltransferase [sarcosine(or N,N-dimethylglycine)-forming]
Comments: Cells of the oxygen-evolving halotolerant cyanobacterium Aphanocthece halophytica synthesize betaine from glycine by a three-step methylation process. This is the first enzyme and it leads to the formation of either sarcosine or N,N-dimethylglycine, which is further methylated to yield betaine (N,N,N-trimethylglycine) by the action of EC 2.1.1.157, sarcosine/dimethylglycine N-methyltransferase. Differs from EC 2.1.1.20, glycine N-methyltransferase, as it can further methylate the product of the first reaction. Acetate, dimethylglycine and S-adenosyl-L-homocysteine can inhibit the reaction [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 294210-82-5
References:
1.  Nyyssölä, A., Kerovuo, J., Kaukinen, P., von Weymarn, N. and Reinikainen, T. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 275 (2000) 22196–22201. [DOI] [PMID: 10896953]
2.  Nyyssölä, A., Reinikainen, T. and Leisola, M. Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase. Appl. Environ. Microbiol. 67 (2001) 2044–2050. [DOI] [PMID: 11319079]
3.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
[EC 2.1.1.156 created 2005]
 
 
EC 3.5.1.105     Relevance: 26.8%
Accepted name: chitin disaccharide deacetylase
Reaction: N,N′-diacetylchitobiose + H2O = N-acetyl-β-D-glucosaminyl-(1→4)-D-glucosamine + acetate
Glossary: N,N′-diacetylchitobiose = N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-D-glucosamine
Other name(s): chitobiose amidohydolase; COD; chitin oligosaccharide deacetylase; chitin oligosaccharide amidohydolase; 2-(acetylamino)-4-O-[2-(acetylamino)-2-deoxy-β-D-glucopyranosyl]-2-deoxy-D-glucopyranose acetylhydrolase
Systematic name: N,N′-diacetylchitobiose acetylhydrolase
Comments: Chitin oligosaccharide deacetylase is a key enzyme in the chitin catabolic cascade of chitinolytic Vibrio strains. Besides being a nutrient, the heterodisaccharide product 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a unique inducer of chitinase production in Vibrio parahemolyticus [2]. In contrast to EC 3.5.1.41 (chitin deacetylase) this enzyme is specific for the chitin disaccharide [1,3]. It also deacetylates the chitin trisaccharide with lower efficiency [3]. No activity with higher polymers of GlcNAc [1,3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kadokura, K., Rokutani, A., Yamamoto, M., Ikegami, T., Sugita, H., Itoi, S., Hakamata, W., Oku, T. and Nishio, T. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl. Microbiol. Biotechnol. 75 (2007) 357–365. [DOI] [PMID: 17334758]
2.  Hirano, T., Kadokura, K., Ikegami, T., Shigeta, Y., Kumaki, Y., Hakamata, W., Oku, T. and Nishio, T. Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes. Glycobiology 19 (2009) 1046–1053. [DOI] [PMID: 19553519]
3.  Ohishi, K., Yamagishi, M., Ohta, T., Motosugi, M., Izumida, H., Sano, H., Adachi, K., Miwa, T. Purification and properties of two deacetylases produced by Vibrio alginolyticus H-8. Biosci. Biotechnol. Biochem. 61 (1997) 1113–1117.
4.  Ohishi, K., Murase, K., Ohta, T. and Etoh, H. Cloning and sequencing of the deacetylase gene from Vibrio alginolyticus H-8. J. Biosci. Bioeng. 90 (2000) 561–563. [DOI] [PMID: 16232910]
[EC 3.5.1.105 created 2010]
 
 
EC 3.5.1.108     Relevance: 26.6%
Accepted name: UDP-3-O-acyl-N-acetylglucosamine deacetylase
Reaction: UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl-α-D-glucosamine + H2O = UDP-3-O-[(3R)-3-hydroxymyristoyl]-α-D-glucosamine + acetate
For diagram of lipid IVA biosynthesis, click here
Other name(s): LpxC protein; LpxC enzyme; LpxC deacetylase; deacetylase LpxC; UDP-3-O-acyl-GlcNAc deacetylase; UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-acyl)-N-acetylglucosamine deacetylase; UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase; UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetylglucosamine amidohydrolase
Systematic name: UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl-α-D-glucosamine amidohydrolase
Comments: A zinc protein. The enzyme catalyses a committed step in the biosynthesis of lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hernick, M., Gennadios, H.A., Whittington, D.A., Rusche, K.M., Christianson, D.W. and Fierke, C.A. UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism. J. Biol. Chem. 280 (2005) 16969–16978. [DOI] [PMID: 15705580]
2.  Jackman, J.E., Raetz, C.R. and Fierke, C.A. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38 (1999) 1902–1911. [DOI] [PMID: 10026271]
3.  Hyland, S.A., Eveland, S.S. and Anderson, M.S. Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol. 179 (1997) 2029–2037. [DOI] [PMID: 9068651]
4.  Wang, W., Maniar, M., Jain, R., Jacobs, J., Trias, J. and Yuan, Z. A fluorescence-based homogeneous assay for measuring activity of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. Anal. Biochem. 290 (2001) 338–346. [DOI] [PMID: 11237337]
5.  Whittington, D.A., Rusche, K.M., Shin, H., Fierke, C.A. and Christianson, D.W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl. Acad. Sci. USA 100 (2003) 8146–8150. [DOI] [PMID: 12819349]
6.  Mochalkin, I., Knafels, J.D. and Lightle, S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci. 17 (2008) 450–457. [DOI] [PMID: 18287278]
[EC 3.5.1.108 created 2010]
 
 
EC 4.1.3.24     Relevance: 26.4%
Accepted name: malyl-CoA lyase
Reaction: (1) (S)-malyl-CoA = acetyl-CoA + glyoxylate
(2) (2R,3S)-2-methylmalyl-CoA = propanoyl-CoA + glyoxylate
For diagram of the 3-hydroxypropanoate cycle, click here
Glossary: (S)-malyl-CoA = (3S)-3-carboxy-3-hydroxypropanoyl-CoA
(2R,3S)-2-methylmalyl-CoA = L-erythro-β-methylmalyl-CoA = (2R,3S)-2-methyl-3-carboxy-3-hydroxypropanoyl-CoA
Other name(s): malyl-coenzyme A lyase; (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase; mclA (gene name); mcl1 (gene name); (3S)-3-carboxy-3-hydroxypropanoyl-CoA glyoxylate-lyase (acetyl-CoA-forming); L-malyl-CoA lyase
Systematic name: (S)-malyl-CoA glyoxylate-lyase (acetyl-CoA-forming)
Comments: The enzymes from Rhodobacter species catalyse a step in the ethylmalonyl-CoA pathway for acetate assimilation [3,5]. The enzyme from halophilic bacteria participate in the methylaspartate cycle and catalyse the reaction in the direction of malyl-CoA formation [6]. The enzyme from the bacterium Chloroflexus aurantiacus, which participates in the 3-hydroxypropanoate cycle for carbon assimilation, also has the activity of EC 4.1.3.25, (3S)-citramalyl-CoA lyase [2,4].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 37290-67-8
References:
1.  Tuboi, S. and Kikuchi, G. Enzymic cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylic acid. Biochim. Biophys. Acta 96 (1965) 148–153. [DOI] [PMID: 14285256]
2.  Herter, S., Busch, A. and Fuchs, G. L-Malyl-coenzyme A lyase/β-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J. Bacteriol. 184 (2002) 5999–6006. [DOI] [PMID: 12374834]
3.  Meister, M., Saum, S., Alber, B.E. and Fuchs, G. L-malyl-coenzyme A/β-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus. J. Bacteriol. 187 (2005) 1415–1425. [DOI] [PMID: 15687206]
4.  Friedmann, S., Alber, B.E. and Fuchs, G. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J. Bacteriol. 189 (2007) 2906–2914. [DOI] [PMID: 17259315]
5.  Erb, T.J., Frerichs-Revermann, L., Fuchs, G. and Alber, B.E. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-malyl-coenzyme A (CoA)/β-methylmalyl-CoA lyase and (3S)-malyl-CoA thioesterase. J. Bacteriol. 192 (2010) 1249–1258. [DOI] [PMID: 20047909]
6.  Borjian, F., Han, J., Hou, J., Xiang, H., Zarzycki, J. and Berg, I.A. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica. J. Bacteriol. 199 (2017) . [DOI] [PMID: 27920298]
[EC 4.1.3.24 created 1972, modified 2014]
 
 
EC 3.5.1.114     Relevance: 26%
Accepted name: N-acyl-aromatic-L-amino acid amidohydrolase
Reaction: (1) an N-acyl-aromatic-L-amino acid + H2O = an aromatic-L-amino acid + a carboxylate
(2) an N-acetyl-L-cysteine-S-conjugate + H2O = an L-cysteine-S-conjugate + acetate
Glossary: N-acetyl-L-cysteine-S-conjugate = mercapturic acid
Other name(s): aminoacylase 3; aminoacylase III; ACY3 (gene name)
Systematic name: N-acyl-aromatic-L-amino acid amidohydrolase (carboxylate-forming)
Comments: This enzyme is found in animals and is involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate). It preferentially deacetylates Nα-acetylated aromatic amino acids and mercapturic acids (S-conjugates of N-acetyl-L-cysteine) that are usually not deacetylated by EC 3.5.1.14, N-acyl-aliphatic-L-amino acid amidohydrolase. The enzyme is significantly activated by Co2+ and Ni2+ [3]. Some bacterial aminoacylases demonstrate substrate specificity for both EC 3.5.1.14 and EC 3.5.1.114. cf. EC 3.5.1.14, N-acyl-aliphatic-L-amino acid amidohydrolase and EC 3.5.1.15, aspartoacylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Pushkin, A., Carpenito, G., Abuladze, N., Newman, D., Tsuprun, V., Ryazantsev, S., Motemoturu, S., Sassani, P., Solovieva, N., Dukkipati, R. and Kurtz, I. Structural characterization, tissue distribution, and functional expression of murine aminoacylase III. Am. J. Physiol. Cell Physiol. 286 (2004) C848–C856. [DOI] [PMID: 14656720]
2.  Newman, D., Abuladze, N., Scholz, K., Dekant, W., Tsuprun, V., Ryazantsev, S., Bondar, G., Sassani, P., Kurtz, I. and Pushkin, A. Specificity of aminoacylase III-mediated deacetylation of mercapturic acids. Drug Metab. Dispos. 35 (2007) 43–50. [DOI] [PMID: 17012540]
3.  Tsirulnikov, K., Abuladze, N., Newman, D., Ryazantsev, S., Wolak, T., Magilnick, N., Koag, M.C., Kurtz, I. and Pushkin, A. Mouse aminoacylase 3: a metalloenzyme activated by cobalt and nickel. Biochim. Biophys. Acta 1794 (2009) 1049–1057. [DOI] [PMID: 19362172]
4.  Hsieh, J.M., Tsirulnikov, K., Sawaya, M.R., Magilnick, N., Abuladze, N., Kurtz, I., Abramson, J. and Pushkin, A. Structures of aminoacylase 3 in complex with acetylated substrates. Proc. Natl. Acad. Sci. USA 107 (2010) 17962–17967. [DOI] [PMID: 20921362]
5.  Tsirulnikov, K., Abuladze, N., Bragin, A., Faull, K., Cascio, D., Damoiseaux, R., Schibler, M.J. and Pushkin, A. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal. Toxicol. Appl. Pharmacol. 263 (2012) 303–314. [DOI] [PMID: 22819785]
[EC 3.5.1.114 created 2013]
 
 
EC 3.5.1.14     Relevance: 24.9%
Accepted name: N-acyl-aliphatic-L-amino acid amidohydrolase
Reaction: (1) an N-acyl-aliphatic-L-amino acid + H2O = an aliphatic L-amino acid + a carboxylate
(2) an N-acetyl-L-cysteine-S-conjugate + H2O = an L-cysteine-S-conjugate + acetate
Glossary: N-acetyl-L-cysteine-S-conjugate = mercapturic acid
Other name(s): aminoacylase 1; aminoacylase I; dehydropeptidase II; histozyme; hippuricase; benzamidase; acylase I; hippurase; amido acid deacylase; L-aminoacylase; acylase; aminoacylase; L-amino-acid acylase; α-N-acylaminoacid hydrolase; long acyl amidoacylase; short acyl amidoacylase; ACY1 (gene name); N-acyl-L-amino-acid amidohydrolase
Systematic name: N-acyl-aliphatic-L-amino acid amidohydrolase (carboxylate-forming)
Comments: Contains Zn2+. The enzyme is found in animals and is involved in the hydrolysis of N-acylated or N-acetylated amino acids (except L-aspartate). It acts on mercapturic acids (S-conjugates of N-acetyl-L-cysteine) and neutral aliphatic N-acyl-α-amino acids. Some bacterial aminoacylases demonstrate substrate specificity of both EC 3.5.1.14 and EC 3.5.1.114. cf. EC 3.5.1.15, aspartoacylase and EC 3.5.1.114, N-acyl-aromatic-L-amino acid amidohydrolase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-37-7
References:
1.  Birnbaum, S.M., Levintow, L., Kingsley, R.B. and Greenstein, J.P. Specificity of amino acid acylases. J. Biol. Chem. 194 (1952) 455–470. [PMID: 14927637]
2.  Fones, W.S. and Lee, M. Hydrolysis of N-acyl derivatives of alanine and phenylalanine by acylase I and carboxypeptidase. J. Biol. Chem. 201 (1953) 847–856. [PMID: 13061423]
3.  Henseling, J. and Rohm, K.H. Aminoacylase I from hog kidney: anion effects and the pH dependence of kinetic parameters. Biochim. Biophys. Acta 959 (1988) 370–377. [DOI] [PMID: 3355856]
4.  Heese, D., Berger, S. and Rohm, K.H. Nuclear magnetic relaxation studies of the role of the metal ion in Mn2+-substituted aminoacylase I. Eur. J. Biochem. 188 (1990) 175–180. [DOI] [PMID: 2318199]
5.  Palm, G.J. and Rohm, K.H. Aminoacylase I from porcine kidney: identification and characterization of two major protein domains. J. Protein Chem. 14 (1995) 233–240. [PMID: 7662111]
6.  Uttamsingh, V., Keller, D.A. and Anders, M.W. Acylase I-catalyzed deacetylation of N-acetyl-L-cysteine and S-alkyl-N-acetyl-L-cysteines. Chem. Res. Toxicol. 11 (1998) 800–809. [DOI] [PMID: 9671543]
7.  Lindner, H., Hopfner, S., Tafler-Naumann, M., Miko, M., Konrad, L. and Rohm, K.H. The distribution of aminoacylase I among mammalian species and localization of the enzyme in porcine kidney. Biochimie 82 (2000) 129–137. [DOI] [PMID: 10727768]
[EC 3.5.1.14 created 1965, modified 2013]
 
 
EC 2.3.1.187     Relevance: 24.8%
Accepted name: acetyl-S-ACP:malonate ACP transferase
Reaction: an acetyl-[acyl-carrier protein] + malonate = a malonyl-[acyl-carrier protein] + acetate
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): acetyl-S-ACP:malonate ACP-SH transferase; acetyl-S-acyl-carrier protein:malonate acyl-carrier-protein-transferase; MdcA; MadA; ACP transferase; malonate/acetyl-CoA transferase; malonate:ACP transferase; acetyl-S-acyl carrier protein:malonate acyl carrier protein-SH transferase
Systematic name: acetyl-[acyl-carrier-protein]:malonate S-[acyl-carrier-protein]transferase
Comments: This is the first step in the catalysis of malonate decarboxylation and involves the exchange of an acetyl thioester residue bound to the activated acyl-carrier protein (ACP) subunit of the malonate decarboxylase complex for a malonyl thioester residue [2]. This enzyme forms the α subunit of the multienzyme complexes biotin-independent malonate decarboxylase (EC 4.1.1.88) and biotin-dependent malonate decarboxylase (EC 4.1.1.89). The enzyme can also use acetyl-CoA as a substrate but more slowly [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hilbi, H. and Dimroth, P. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase. Arch. Microbiol. 162 (1994) 48–56. [PMID: 18251085]
2.  Hoenke, S., Schmid, M. and Dimroth, P. Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246 (1997) 530–538. [DOI] [PMID: 9208947]
3.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [DOI] [PMID: 10561613]
4.  Chohnan, S., Akagi, K. and Takamura, Y. Functions of malonate decarboxylase subunits from Pseudomonas putida. Biosci. Biotechnol. Biochem. 67 (2003) 214–217. [DOI] [PMID: 12619701]
5.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 2.3.1.187 created 2008]
 
 
EC 1.8.98.4     Relevance: 24.2%
Accepted name: coenzyme F420:CoB-CoM heterodisulfide,ferredoxin reductase
Reaction: 2 oxidized coenzyme F420 + 2 reduced ferredoxin [iron-sulfur] cluster + CoB + CoM + 2 H+ = 2 reduced coenzyme F420 + 2 oxidized ferredoxin [iron-sulfur] cluster + CoM-S-S-CoB
Glossary: CoB = coenzyme B = N-(7-mercaptoheptanoyl)threonine 3-O-phosphate = N-(7-thioheptanoyl)-3-O-phosphothreonine
CoM = coenzyme M = 2-mercaptoethanesulfonate
CoM-S-S-CoB = CoB-CoM heterodisulfide = N-{7-[(2-sulfoethyl)dithio]heptanoyl}-O3-phospho-L-threonine
Other name(s): hdrA2B2C2 (gene names)
Systematic name: CoB,CoM,ferredoxin:coenzyme F420 oxidoreductase
Comments: The enzyme, characterized from the archaeon Methanosarcina acetivorans, catalyses the reduction of CoB-CoM heterodisulfide back to CoB and CoM. The enzyme consists of three components, HdrA, HdrB and HdrC, all of which contain [4Fe-4S] clusters. Electrons enter at HdrA, which also contains FAD, and are transferred via HdrC to the catalytic component, HdrB. During methanogenesis from acetate the enzyme catalyses the activity of EC 1.8.7.3, ferredoxin:CoB-CoM heterodisulfide reductase. However, it can also use electron bifurcation to direct electron pairs from reduced coenzyme F420 towards the reduction of both ferredoxin and CoB-CoM heterodisulfide. This activity is proposed to take place during Fe(III)-dependent anaerobic methane oxidation. cf. EC 1.8.98.5, H2:CoB-CoM heterodisulfide,ferredoxin reductase, EC 1.8.98.6, formate:CoB-CoM heterodisulfide,ferredoxin reductase, and EC 1.8.98.1, dihydromethanophenazine:CoB-CoM heterodisulfide reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yan, Z., Wang, M. and Ferry, J.G. A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains Bacteria and Archaea. mBio 8 (2017) e02285-16. [DOI] [PMID: 28174314]
[EC 1.8.98.4 created 2017]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald