The Enzyme Database

Your query returned 9 entries.    printer_iconPrintable version

EC 1.11.1.14     
Accepted name: lignin peroxidase
Reaction: (1) 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 3,4-dimethoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 (3,4-dimethoxyphenyl)methanol + H2O2 = 2 (3,4-dimethoxyphenyl)methanol radical + 2 H2O
Glossary: veratryl alcohol = (3,4-dimethoxyphenyl)methanol
veratraldehyde = 3,4-dimethoxybenzaldehyde
2-methoxyphenol = guaiacol
Other name(s): diarylpropane oxygenase; ligninase I; diarylpropane peroxidase; LiP; diarylpropane:oxygen,hydrogen-peroxide oxidoreductase (C-C-bond-cleaving); 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase (incorrect); (3,4-dimethoxyphenyl)methanol:hydrogen-peroxide oxidoreductase
Systematic name: 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein, involved in the oxidative breakdown of lignin by white-rot basidiomycete fungi. The reaction involves an initial oxidation of the heme iron by hydrogen peroxide, forming compound I (FeIV=O radical cation) at the active site. A single one-electron reduction of compound I by an electron derived from a substrate molecule yields compound II (FeIV=O non-radical cation), followed by a second one-electron transfer that returns the enzyme to the ferric oxidation state. The electron transfer events convert the substrate molecule into a transient cation radical intermediate that fragments spontaneously. The enzyme can act on a wide range of aromatic compounds, including methoxybenzenes and nonphenolic β-O-4 linked arylglycerol β-aryl ethers, but cannot act directly on the lignin molecule, which is too large to fit into the active site. However larger lignin molecules can be degraded in the presence of veratryl alcohol. It has been suggested that the free radical that is formed when the enzyme acts on veratryl alcohol can diffuse into the lignified cell wall, where it oxidizes lignin and other organic substrates. In the presence of high concentration of hydrogen peroxide and lack of substrate, the enzyme forms a catalytically inactive form (compound III). This form can be rescued by interaction with two molecules of the free radical products. In the case of veratryl alcohol, such an interaction yields two molecules of veratryl aldehyde.
Links to other databases: BRENDA, EAWAG-BBD, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 93792-13-3
References:
1.  Kersten, P.J., Tien, M., Kalyanaraman, B. and Kirk, T.K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J. Biol. Chem. 260 (1985) 2609–2612. [PMID: 2982828]
2.  Paszczynski, A., Huynh, V.-B. and Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244 (1986) 750–765. [DOI] [PMID: 3080953]
3.  Harvey, P.J., Schoemaker, H.E. and Palmer, J.M. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett. 195 (1986) 242–246.
4.  Wariishi, H., Marquez, L., Dunford, H.B. and Gold, M.H. Lignin peroxidase compounds II and III. Spectral and kinetic characterization of reactions with peroxides. J. Biol. Chem. 265 (1990) 11137–11142. [PMID: 2162833]
5.  Cai, D.Y. and Tien, M. Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry 29 (1990) 2085–2091. [PMID: 2328240]
6.  Khindaria, A., Yamazaki, I. and Aust, S.D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry 34 (1995) 16860–16869. [PMID: 8527462]
7.  Khindaria, A., Yamazaki, I. and Aust, S.D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35 (1996) 6418–6424. [DOI] [PMID: 8639588]
8.  Khindaria, A., Nie, G. and Aust, S.D. Detection and characterization of the lignin peroxidase compound II-veratryl alcohol cation radical complex. Biochemistry 36 (1997) 14181–14185. [DOI] [PMID: 9369491]
9.  Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K. and Smith, A.T. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37 (1998) 15097–15105. [DOI] [PMID: 9790672]
10.  Pollegioni, L., Tonin, F. and Rosini, E. Lignin-degrading enzymes. FEBS J. 282 (2015) 1190–1213. [DOI] [PMID: 25649492]
[EC 1.11.1.14 created 1992, modified 2006, modified 2011, modified 2016]
 
 
EC 1.11.1.16     
Accepted name: versatile peroxidase
Reaction: (1) 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 4-hydroxy-3-methoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 manganese(II) + 2 H+ + H2O2 = 2 manganese(III) + 2 H2O
Glossary: 4-hydroxy-3-methoxybenzaldehyde = vanillin
2-methoxyphenol = guaiacol
Other name(s): VP; hybrid peroxidase; polyvalent peroxidase; reactive-black-5:hydrogen-peroxide oxidoreductase
Systematic name: 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. This ligninolytic peroxidase combines the substrate-specificity characteristics of the two other ligninolytic peroxidases, EC 1.11.1.13, manganese peroxidase and EC 1.11.1.14, lignin peroxidase. Unlike these two enzymes, it is also able to oxidize phenols, hydroquinones and both low- and high-redox-potential dyes, due to a hybrid molecular architecture that involves multiple binding sites for substrates [2,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 42613-30-9, 114995-15-2
References:
1.  Martínez, M.J., Ruiz-Dueñas, F.J., Guillén, F. and Martínez, A.T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237 (1996) 424–432. [DOI] [PMID: 8647081]
2.  Heinfling, A., Ruiz-Dueñas, F.J., Martínez, M.J., Bergbauer, M., Szewzyk, U. and Martínez, A.T. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428 (1998) 141–146. [DOI] [PMID: 9654123]
3.  Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31 (1999) 223–235. [DOI] [PMID: 9987124]
4.  Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274 (1999) 10324–10330. [DOI] [PMID: 10187820]
5.  Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl. Environ. Microbiol. 65 (1999) 4705–4707. [PMID: 10508113]
6.  Camarero, S., Ruiz-Dueñas, F.J., Sarkar, S., Martínez, M.J. and Martínez, A.T. The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol. Lett. 191 (2000) 37–43. [DOI] [PMID: 11004397]
7.  Ruiz-Dueñas, F.J., Camarero, S., Pérez-Boada, M., Martínez, M.J. and Martínez, A.T. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29 (2001) 116–122. [PMID: 11356138]
8.  Banci, L., Camarero, S., Martínez, A.T., Martínez, M.J., Pérez-Boada, M., Pierattelli, R. and Ruiz-Dueñas, F.J. NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J. Biol. Inorg. Chem. 8 (2003) 751–760. [DOI] [PMID: 12884090]
9.  Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Basosi, R., Choinowski, T., Martínez, M.J., Piontek, K. and Martínez, A.T. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J. Mol. Biol. 354 (2005) 385–402. [DOI] [PMID: 16246366]
10.  Caramelo, L., Martínez, M.J. and Martínez, A.T. A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimer. Appl. Environ. Microbiol. 65 (1999) 916–922. [PMID: 10049842]
[EC 1.11.1.16 created 2006, modified 2016]
 
 
EC 1.14.19.50     
Accepted name: noroxomaritidine synthase
Reaction: (1) 4′-O-methylnorbelladine + [reduced NADPH—hemoprotein reductase] + O2 = (4aR,10bS)-noroxomaritidine + [oxidized NADPH—hemoprotein reductase] + 2 H2O
(2) 4′-O-methylnorbelladine + [reduced NADPH—hemoprotein reductase] + O2 = (4aS,10bR)-noroxomaritidine + [oxidized NADPH—hemoprotein reductase] + 2 H2O
For diagram of noroxomaritidine biosynthesis, click here
Glossary: 4′-O-methylnorbelladine = 5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol
noroxomaritidine = 8-hydroxy-9-methoxy-4,4a-dihydro-3H,6H-5,10b-ethanophenanthridin-3-one
Other name(s): CYP96T1 (gene name)
Systematic name: 4′-O-methylnorbelladine,NADPH—hemoprotein reductase:oxygen oxidoreductase (noroxomaritidine-forming)
Comments: A P-450 (heme-thiolate) enzyme. The enzyme, characterized from Narcissus pseudonarcissus (daffodil), forms the two enantiomers of the Amaryllidacea alkaloid noroxomaritidine by catalysing intramolecular oxidative para-para′ phenol coupling. The oxidation involves molecular oxygen without its incorporation into the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kilgore, M.B., Augustin, M.M., May, G.D., Crow, J.A. and Kutchan, T.M. CYP96T1 of Narcissus sp. aff. pseudonarcissus catalyzes formation of the para-paraC-C phenol couple in the Amaryllidaceae alkaloids. Front. Plant Sci. 7:225 (2016). [DOI] [PMID: 26941773]
[EC 1.14.19.50 created 2016]
 
 
EC 1.23.1.1     
Accepted name: (+)-pinoresinol reductase
Reaction: (+)-lariciresinol + NADP+ = (+)-pinoresinol + NADPH + H+
For diagram of matairesinol biosynthesis, click here
Glossary: (+)-lariciresinol = 4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(+)-pinoresinol = (1S,3aR,4S,6aR)-4,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis(2-methoxyphenol)
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (+)-pinoresinol/(+)-lariciresinol; (+)-pinoresinol-(+)-lariciresinol reductase; PLR
Systematic name: (+)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that further reduces the product to the lignan (–)-secoisolariciresinol [EC 1.23.1.2, (+)-lariciresinol reductase]. Isolated from the plants Forsythia intermedia [1,2], Thuja plicata (western red cedar) [3], Linum perenne (perennial flax) [5] and Linum corymbulosum [6]. The 4-pro-R hydrogen of NADH is transferred to the 7-pro-R position of lariciresinol [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Chu, A., Dinkova, A., Davin, L.B., Bedgar, D.L. and Lewis, N.G. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J. Biol. Chem. 268 (1993) 27026–27033. [PMID: 8262939]
2.  Dinkova-Kostova, A.T., Gang, D.R., Davin, L.B., Bedgar, D.L., Chu, A. and Lewis, N.G. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J. Biol. Chem. 271 (1996) 29473–29482. [DOI] [PMID: 8910615]
3.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [DOI] [PMID: 9872995]
4.  Min, T., Kasahara, H., Bedgar, D.L., Youn, B., Lawrence, P.K., Gang, D.R., Halls, S.C., Park, H., Hilsenbeck, J.L., Davin, L.B., Lewis, N.G. and Kang, C. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278 (2003) 50714–50723. [DOI] [PMID: 13129921]
5.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [DOI] [PMID: 17257599]
6.  Bayindir, Ü., Alfermann, A.W. and Fuss, E. Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J. 55 (2008) 810–820. [DOI] [PMID: 18489708]
[EC 1.23.1.1 created 2013]
 
 
EC 1.23.1.2     
Accepted name: (+)-lariciresinol reductase
Reaction: (–)-secoisolariciresinol + NADP+ = (+)-lariciresinol + NADPH + H+
For diagram of matairesinol biosynthesis, click here
Glossary: (+)-lariciresinol = 4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(–)-secoisolariciresinol = (2R,3R)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (+)-pinoresinol/(+)-lariciresinol; (+)-pinoresinol-(+)-lariciresinol reductase; PLR
Systematic name: (–)-secoisolariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that also reduces (+)-pinoresinol [EC 1.23.1.1, (+)-pinoresinol reductase]. Isolated from the plants Forsythia intermedia [1,2], Thuja plicata (western red cedar) [3], Linum perenne (perennial flax) [5] and Linum corymbulosum [6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chu, A., Dinkova, A., Davin, L.B., Bedgar, D.L. and Lewis, N.G. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J. Biol. Chem. 268 (1993) 27026–27033. [PMID: 8262939]
2.  Dinkova-Kostova, A.T., Gang, D.R., Davin, L.B., Bedgar, D.L., Chu, A. and Lewis, N.G. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J. Biol. Chem. 271 (1996) 29473–29482. [DOI] [PMID: 8910615]
3.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [DOI] [PMID: 9872995]
4.  Min, T., Kasahara, H., Bedgar, D.L., Youn, B., Lawrence, P.K., Gang, D.R., Halls, S.C., Park, H., Hilsenbeck, J.L., Davin, L.B., Lewis, N.G. and Kang, C. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278 (2003) 50714–50723. [DOI] [PMID: 13129921]
5.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [DOI] [PMID: 17257599]
6.  Bayindir, Ü., Alfermann, A.W. and Fuss, E. Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J. 55 (2008) 810–820. [DOI] [PMID: 18489708]
[EC 1.23.1.2 created 2013]
 
 
EC 1.23.1.3     
Accepted name: (–)-pinoresinol reductase
Reaction: (–)-lariciresinol + NADP+ = (–)-pinoresinol + NADPH + H+
For diagram of (–)-lariciresinol biosynthesis, click here
Glossary: (–)-lariciresinol = 4-[(2R,3S,4S)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(–)-pinoresinol = (1R,3aS,4R,6aS)-4,4′-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis(2-methoxyphenol)
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-lariciresinol reductase; PLR
Systematic name: (–)-lariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that usually further reduces the product to (+)-secoisolariciresinol [EC 1.23.1.4, (–)-lariciresinol reductase]. Isolated from the plants Thuja plicata (western red cedar) [1], Linum perenne (perennial flax) [2] and Arabidopsis thaliana (thale cress) [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [DOI] [PMID: 9872995]
2.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [DOI] [PMID: 17257599]
3.  Nakatsubo, T., Mizutani, M., Suzuki, S., Hattori, T. and Umezawa, T. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J. Biol. Chem. 283 (2008) 15550–15557. [DOI] [PMID: 18347017]
[EC 1.23.1.3 created 2013]
 
 
EC 1.23.1.4     
Accepted name: (–)-lariciresinol reductase
Reaction: (+)-secoisolariciresinol + NADP+ = (–)-lariciresinol + NADPH + H+
For diagram of (#150)-lariciresinol biosynthesis, click here
Glossary: (–)-lariciresinol = 4-[(2R,3S,4S)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol
(+)-secoisolariciresinol = (2S,3S)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol
Other name(s): pinoresinol/lariciresinol reductase; pinoresinol-lariciresinol reductases; (–)-pinoresinol-(–)-lariciresinol reductase; PLR
Systematic name: (+)-secoisolariciresinol:NADP+ oxidoreductase
Comments: The reaction is catalysed in vivo in the opposite direction to that shown. A multifunctional enzyme that also reduces (–)-pinoresinol [EC 1.23.1.3, (–)-pinoresinol reductase]. Isolated from the plants Thuja plicata (western red cedar) [1] and Linum corymbulosum [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Fujita, M., Gang, D.R., Davin, L.B. and Lewis, N.G. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J. Biol. Chem. 274 (1999) 618–627. [DOI] [PMID: 9872995]
2.  Hemmati, S., Schmidt, T.J. and Fuss, E. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581 (2007) 603–610. [DOI] [PMID: 17257599]
[EC 1.23.1.4 created 2013]
 
 
EC 2.1.1.291     
Accepted name: (R,S)-reticuline 7-O-methyltransferase
Reaction: (1) S-adenosyl-L-methionine + (S)-reticuline = S-adenosyl-L-homocysteine + (S)-laudanine
(2) S-adenosyl-L-methionine + (R)-reticuline = S-adenosyl-L-homocysteine + (R)-laudanine
For diagram of laudanine biosynthesis, click here
Glossary: (S)-reticuline = (1S)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol
(R)-reticuline = (1R)-1-[(3-hydroxy-4-methoxyphenyl)methyl]-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol
(S)-laudanine = 5-[((1S)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxyphenol
(R)-laudanine = 5-[((1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]-2-methoxyphenol
Systematic name: S-adenosyl-L-methionine:(R,S)-reticuline 7-O-methyltransferase
Comments: The enzyme from the plant Papaver somniferum (opium poppy) methylates (S)- and (R)-reticuline with equal efficiency and is involved in the biosynthesis of tetrahydrobenzylisoquinoline alkaloids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F. and Kutchan, T.M. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 36 (2003) 808–819. [DOI] [PMID: 14675446]
2.  Weid, M., Ziegler, J. and Kutchan, T.M. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. USA 101 (2004) 13957–13962. [DOI] [PMID: 15353584]
[EC 2.1.1.291 created 2013]
 
 
EC 2.1.1.336     
Accepted name: norbelladine O-methyltransferase
Reaction: S-adenosyl-L-methionine + norbelladine = S-adenosyl-L-homocysteine + 4′-O-methylnorbelladine
For diagram of noroxomaritidine biosynthesis, click here
Glossary: norbelladine = 4-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)benzene-1,2-diol
4′-O-methylnorbelladine = 5-({[2-(4-hydroxyphenyl)ethyl]amino}methyl)-2-methoxyphenol
Other name(s): N4OMT1 (gene name)
Systematic name: S-adenosyl-L-methionine:norbelladine O-methyltransferase
Comments: The enzyme, characterized from the plants Nerine bowdenii and Narcissus pseudonarcissus (daffodil), participates in the biosynthesis of alkaloids produced by plants that belong to the Amaryllidaceae family.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mann, J.D., Fales, H.M. and Mudd, S.H. Alkaloids and plant metabolism. VI. O-methylation in vitro of norbelladine, a precursor of Amaryllidaceae alkaloids. J. Biol. Chem. 238 (1963) 3820–3823. [PMID: 14109227]
2.  Kilgore, M.B., Augustin, M.M., Starks, C.M., O'Neil-Johnson, M., May, G.D., Crow, J.A. and Kutchan, T.M. Cloning and characterization of a norbelladine 4′-O-methyltransferase involved in the biosynthesis of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One 9:e103223 (2014). [DOI] [PMID: 25061748]
[EC 2.1.1.336 created 2016]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald