The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 6.2.1.52     
Accepted name: L-firefly luciferin—CoA ligase
Reaction: ATP + L-firefly luciferin + CoA = AMP + diphosphate + L-firefly luciferyl-CoA
Glossary: L-firefly luciferin = (R)-4,5-dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylate
Other name(s): LUC
Systematic name: (R)-4,5-dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylate:CoA ligase (AMP-forming)
Comments: This is an alternative activity of the firefly luciferase (EC 1.13.12.7), which the enzyme exhibits under normal conditions only when acting on the L-enantiomer of its substrate. The D-isomer can act as a substrate for the CoA—ligase activity in vitro only under low oxygen conditions that are not found in vivo. The activation of L-firefly luciferin to a CoA ester is a step in a recycling pathway that results in its epimerization to the D enantiomer, which is the only substrate whose oxygenation results in light emission.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Fraga, H., Esteves da Silva, J.C. and Fontes, R. Identification of luciferyl adenylate and luciferyl coenzyme a synthesized by firefly luciferase. ChemBioChem 5 (2004) 110–115. [DOI] [PMID: 14695520]
2.  Nakamura, M., Maki, S., Amano, Y., Ohkita, Y., Niwa, K., Hirano, T., Ohmiya, Y. and Niwa, H. Firefly luciferase exhibits bimodal action depending on the luciferin chirality. Biochem. Biophys. Res. Commun. 331 (2005) 471–475. [DOI] [PMID: 15850783]
3.  Viviani, V.R., Scorsato, V., Prado, R.A., Pereira, J.G., Niwa, K., Ohmiya, Y. and Barbosa, J.A. The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity. Photochem Photobiol Sci 9 (2010) 1111–1119. [DOI] [PMID: 20526507]
4.  Maeda, J., Kato, D.I., Okuda, M., Takeo, M., Negoro, S., Arima, K., Ito, Y. and Niwa, K. Biosynthesis-inspired deracemizative production of D-luciferin by combining luciferase and thioesterase. Biochim. Biophys. Acta 1861 (2017) 2112–2118. [DOI] [PMID: 28454735]
[EC 6.2.1.52 created 2017]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald