The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 5.5.1.8     
Accepted name: (+)-bornyl diphosphate synthase
Reaction: geranyl diphosphate = (+)-bornyl diphosphate
For diagram of bornane and related monoterpenoids, click here
Glossary: (+)-bornyl diphosphate = (1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl diphosphate
Other name(s): bornyl pyrophosphate synthase; bornyl pyrophosphate synthetase; (+)-bornylpyrophosphate cyclase; geranyl-diphosphate cyclase (ambiguous)
Systematic name: (+)-bornyl-diphosphate lyase (decyclizing)
Comments: Requires Mg2+. The enzyme from Salvia officinalis (sage) can also use (3R)-linalyl diphosphate or more slowly neryl diphosphate in vitro [3]. The reaction proceeds via isomeration of geranyl diphosphate to (3R)-linalyl diphosphate. The oxygen and phosphorus originally linked to C-1 of geranyl diphosphate end up linked to C-2 of (+)-bornyl diphosphate [3]. cf. EC 5.5.1.22 [(-)-bornyl diphosphate synthase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72668-91-8
References:
1.  Croteau, R. and Karp, F. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch. Biochem. Biophys. 198 (1979) 512–522. [PMID: 42356]
2.  Croteau, R., Gershenzon, J., Wheeler, C.J. and Satterwhite, D.M. Biosynthesis of monoterpenes: stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Arch. Biochem. Biophys. 277 (1990) 374–381. [PMID: 2178556]
3.  Croteau, R., Satterwhite, D.M., Cane, D.E. and Chang, C.C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 261 (1986) 13438–13445. [PMID: 3759972]
4.  Croteau, R., Felton, N.M. and Wheeler, C.J. Stereochemistry at C-1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)- and (-)-bornyl pyrophosphate. J. Biol. Chem. 260 (1985) 5956–5962. [PMID: 3997807]
5.  Croteau, R.B., Shaskus, J.J., Renstrom, B., Felton, N.M., Cane, D.E., Saito, A. and Chang, C. Mechanism of the pyrophosphate migration in the enzymatic cyclization of geranyl and linalyl pyrophosphates to (+)- and (-)-bornyl pyrophosphates. Biochemistry 24 (1985) 7077–7085. [PMID: 4084562]
6.  McGeady, P. and Croteau, R. Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. Arch. Biochem. Biophys. 317 (1995) 149–155. [PMID: 7872777]
7.  Wise, M.L., Savage, T.J., Katahira, E. and Croteau, R. Monoterpene synthases from common sage (Salvia officinalis). cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase. J. Biol. Chem. 273 (1998) 14891–14899. [PMID: 9614092]
8.  Whittington, D.A., Wise, M.L., Urbansky, M., Coates, R.M., Croteau, R.B. and Christianson, D.W. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. USA 99 (2002) 15375–15380. [PMID: 12432096]
9.  Peters, R.J. and Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 417 (2003) 203–211. [PMID: 12941302]
[EC 5.5.1.8 created 1984, modified 2012]
 
 


Data © 2001–2014 IUBMB
Web site © 2005–2014 Andrew McDonald