The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 4.3.1.24     
Accepted name: phenylalanine ammonia-lyase
Reaction: L-phenylalanine = trans-cinnamate + NH3
For diagram of chalcone and stilbene biosynthesis, click here
Other name(s): phenylalanine deaminase; phenylalanine ammonium-lyase; PAL; L-phenylalanine ammonia-lyase; Phe ammonia-lyase
Systematic name: L-phenylalanine ammonia-lyase (trans-cinnamate-forming)
Comments: This enzyme is a member of the aromatic amino acid lyase family, other members of which are EC 4.3.1.3 (histidine ammonia-lyase) and EC 4.3.1.23 (tyrosine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase). The enzyme contains the cofactor 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO), which is common to this family [3]. This unique cofactor is formed autocatalytically by cyclization and dehydration of the three amino-acid residues alanine, serine and glycine [9]. The enzyme from some species is highly specific for phenylalanine [7,8].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9024-28-6
References:
1.  Koukol, J. and Conn, E.E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236 (1961) 2692–2698. [PMID: 14458851]
2.  Young, M.R. and Neish, A.C. Properties of the ammonia-lyases deaminating phenylalanine and related compounds in Triticum sestivum and Pteridium aquilinum. Phytochemistry 5 (1966) 1121–1132.
3.  Louie, G.V., Bowman, M.E., Moffitt, M.C., Baiga, T.J., Moore, B.S. and Noel, J.P. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem. Biol. 13 (2006) 1327–1338. [DOI] [PMID: 17185228]
4.  Calabrese, J.C., Jordan, D.B., Boodhoo, A., Sariaslani, S. and Vannelli, T. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43 (2004) 11403–11416. [DOI] [PMID: 15350127]
5.  Ritter, H. and Schulz, G.E. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16 (2004) 3426–3436. [DOI] [PMID: 15548745]
6.  Watts, K.T., Mijts, B.N., Lee, P.C., Manning, A.J. and Schmidt-Dannert, C. Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem. Biol. 13 (2006) 1317–1326. [DOI] [PMID: 17185227]
7.  Appert, C., Logemann, E., Hahlbrock, K., Schmid, J. and Amrhein, N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). Eur. J. Biochem. 225 (1994) 491–499. [DOI] [PMID: 7925471]
8.  Cochrane, F.C., Davin, L.B. and Lewis, N.G. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65 (2004) 1557–1564. [DOI] [PMID: 15276452]
9.  Schwede, T.F., Rétey, J. and Schulz, G.E. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. Biochemistry 38 (1999) 5355–5361. [DOI] [PMID: 10220322]
[EC 4.3.1.24 created 2008 (EC 4.3.1.5 created 1965, part-incorporated 2008)]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald