The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version



EC 4.2.3.9     
Accepted name: aristolochene synthase
Reaction: (2E,6E)-farnesyl diphosphate = aristolochene + diphosphate
For diagram of eremophilane and spirovetivane sesquiterpenoid biosynthesis, click here
Other name(s): sesquiterpene cyclase; trans,trans-farnesyl diphosphate aristolochene-lyase; trans,trans-farnesyl-diphosphate diphosphate-lyase (cyclizing, aristolochene-forming)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, aristolochene-forming)
Comments: The initial internal cyclization produces the monocyclic intermediate germacrene A; further cyclization and methyl transfer converts the intermediate into aristolochene. While in some species germacrene A remains as an enzyme-bound intermediate, it has been shown to be a minor product of the reaction in Penicillium roqueforti [5] (see also EC 4.2.3.23, germacrene-A synthase). The enzyme from Penicillium roqueforti requires Mg2+. Mn2+ can partially substitute, at low concentrations. Aristolochene is the likely parent compound for a number of sesquiterpenes produced by filamentous fungi.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 94185-89-4
References:
1.  Cane, D.E., Prabhakaran, P.C., Oliver, J.S. and McIlwaine, D.B. Aristolochene biosynthesis. Stereochemistry of the deprotonation steps in the enzymatic cyclization of farnesyl pyrophosphate. J. Am. Chem. Soc. 112 (1990) 3209–3210.
2.  Cane, D.E., Prabhakaran, P.C., Salaski, E.J., Harrison, P.M.H., Noguchi, H. and Rawlings, B.J. Aristolochene biosynthesis and enzymatic cyclization of farnesyl pyrophosphate. J. Am. Chem. Soc. 111 (1989) 8914–8916.
3.  Hohn, T.M. and Plattner, R.D. Purification and characterization of the sesquiterpene cyclase aristolochene synthase from Penicillium roqueforti. Arch. Biochem. Biophys. 272 (1989) 137–143. [DOI] [PMID: 2544140]
4.  Proctor, R.H. and Hohn, T.M. Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J. Biol. Chem. 268 (1993) 4543–4548. [PMID: 8440737]
5.  Calvert, M.J., Ashton, P.R. and Allemann, R.K. Germacrene A is a product of the aristolochene synthase-mediated conversion of farnesylpyrophosphate to aristolochene. J. Am. Chem. Soc. 124 (2002) 11636–11641. [DOI] [PMID: 12296728]
[EC 4.2.3.9 created 1992 as EC 2.5.1.40, transferred 1999 to EC 4.1.99.7, transferred 2000 to EC 4.2.3.9, modified 2006]
 
 
EC 4.2.3.90     
Accepted name: 5-epi-α-selinene synthase
Reaction: (2E,6E)-farnesyl diphosphate = 5-epi-α-selinene + diphosphate
For diagram of eudesmol and selinene biosynthesis, click here
Glossary: 5-epi-α-selinene = 5β-eudesma-3,11-diene = (2R,4aR,8aS)-1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(prop-1-en-2-yl)naphthalene;;
[= 8a-epi-α-selinene which uses naththalene numbering not eudesmane]
Other name(s): 8a-epi-α-selinene synthase; NP1
Systematic name: (2Z,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, 5-epi-α-selinene-forming)
Comments: Requires Mg2+. The enzyme forms 5-epi-α-selinene possibly via germecrene A or a 1,6-hydride shift mechanism.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Agger, S.A., Lopez-Gallego, F., Hoye, T.R. and Schmidt-Dannert, C. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J. Bacteriol. 190 (2008) 6084–6096. [DOI] [PMID: 18658271]
[EC 4.2.3.90 created 2011]
 
 
EC 4.2.3.91     
Accepted name: cubebol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = cubebol + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here and for diagram of cadinene, cubebol and muuroladiene biosynthesis, click here
Other name(s): Cop4
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, cubebol-forming)
Comments: Requires Mg2+. The enzyme gives 28% cubebol, 29% (-)-germacrene D, 10% (+)-δ-cadinene and traces of several other sesquiterpenoids. See also EC 4.2.3.75 ()-germacrene D synthase and EC 4.2.3.13 (+)-δ-cadinene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. and Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem. 11 (2010) 1093–1106. [DOI] [PMID: 20419721]
[EC 4.2.3.91 created 2011]
 
 
EC 4.2.3.92     
Accepted name: (+)-γ-cadinene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (+)-γ-cadinene + diphosphate
For diagram of cadinane sesquiterpenoid biosynthesis, click here and for diagram of cadinene, cubebol and muuroladiene biosynthesis, click here
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase [(+)-γ-cadinene-forming]
Comments: The cloned enzyme from the melon, Cucumis melo, gave mainly δ- and γ-cadinene with traces of several other sesquiterpenoids cf. EC 4.2.3.62 (-)-γ-cadinene synthase [(2Z,6E)-farnesyl diphosphate cyclizing]; EC 4.2.3.13 (+)-δ-cadinene synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D.R., Bar, E., Lewinsohn, E. and Pichersky, E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136 (2004) 3724–3736. [DOI] [PMID: 15516500]
2.  Portnoy, V., Benyamini, Y., Bar, E., Harel-Beja, R., Gepstein, S., Giovannoni, J.J., Schaffer, A.A., Burger, J., Tadmor, Y., Lewinsohn, E. and Katzir, N. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol. Biol. 66 (2008) 647–661. [DOI] [PMID: 18264780]
[EC 4.2.3.92 created 2011]
 
 
EC 4.2.3.93     
Accepted name: δ-guaiene synthase
Reaction: (2E,6E)-farnesyl diphosphate = δ-guaiene + diphosphate
For diagram of guaiene, α-gurjunene, patchoulol and viridiflorene biosynthesis, click here
Glossary: δ-guaiene = α-bulnesene
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, δ-guaiene-forming)
Comments: Requires Mg2+. In Aquilaria crassna three clones of the enzyme gave about 80% δ-guaiene and 20% α-guaiene (see also EC 4.2.3.87). A fourth clone gave 54% δ-guaiene and 45% α-guaiene [2]. The enzyme from Pogostemon cablin gives 13% δ-guaiene as well as 37% (-)-patchoulol (see EC 4.2.3.70), 13% α-guaiene (see EC 4.2.3.87), and traces of at least ten other sesquiterpenoids [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Deguerry, F., Pastore, L., Wu, S., Clark, A., Chappell, J. and Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 454 (2006) 123–136. [DOI] [PMID: 16970904]
2.  Kumeta, Y. and Ito, M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 154 (2010) 1998–2007. [DOI] [PMID: 20959422]
[EC 4.2.3.93 created 2011]
 
 
EC 4.2.3.94     
Accepted name: γ-curcumene synthase
Reaction: (2E,6E)-farnesyl diphosphate = γ-curcumene + diphosphate
For diagram of bisabolene biosynthesis, click here and for diagram of γ-curcumene, β-sesquiphellandrene and zingiberene biosynthesis, click here
Other name(s): PatTpsA (gene name)
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, γ-curcumene-forming)
Comments: One of five sesquiterpenoid synthases in Pogostemon cablin (patchouli).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Deguerry, F., Pastore, L., Wu, S., Clark, A., Chappell, J. and Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 454 (2006) 123–136. [DOI] [PMID: 16970904]
[EC 4.2.3.94 created 2012]
 
 
EC 4.2.3.95     
Accepted name: (-)-α-cuprenene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-α-cuprenene + diphosphate
For diagram of biosynthesis of bicyclic sesquiterpenoids derived from bisabolyl cation, click here and for diagram of trichodiene and (–)-α-cuprenene biosynthesis, click here
Other name(s): Cop6
Systematic name: (-)-α-cuprenene hydrolase [cyclizing, (-)-α-cuprenene-forming]
Comments: The enzyme from the fungus Coprinopsis cinerea produces (-)-α-cuprenene with high selectivity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. and Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem. 11 (2010) 1093–1106. [DOI] [PMID: 20419721]
[EC 4.2.3.95 created 2012]
 
 
EC 4.2.3.96     
Accepted name: avermitilol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = avermitilol + diphosphate
For diagram of bicyclogermacrene and avermitilol biosynthesis, click here
Systematic name: avermitilol hydrolase (cyclizing, avermitilol-forming)
Comments: Requires Mg2+. The recombinent enzyme gives avermitilol (85%) plus traces of germacrene A, germacrene B and viridiflorol. The (1S)-hydrogen of farnesyl diphosphate is retained.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Chou, W.K., Fanizza, I., Uchiyama, T., Komatsu, M., Ikeda, H. and Cane, D.E. Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J. Am. Chem. Soc. 132 (2010) 8850–8851. [DOI] [PMID: 20536237]
[EC 4.2.3.96 created 2012]
 
 
EC 4.2.3.97     
Accepted name: (-)-δ-cadinene synthase
Reaction: (2E,6E)-farnesyl diphosphate = (-)-δ-cadinene + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Glossary: (-)-δ-cadinene = (1R,8aS)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (-)-δ-cadinene-forming)
Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthogermacradienyl cation. Following a 1,3-hydride shift of the original 1-pro-S hydrogen of (2E,6E)-farnesyl diphosphate, cyclization and deprotonation gives (-)-δ-cadinene.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hu, Y., Chou, W.K., Hopson, R. and Cane, D.E. Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem. Biol. 18 (2011) 32–37. [DOI] [PMID: 21276937]
[EC 4.2.3.97 created 2012]
 
 
EC 4.2.3.98     
Accepted name: (+)-T-muurolol synthase
Reaction: (2E,6E)-farnesyl diphosphate + H2O = (+)-T-muurolol + diphosphate
For diagram of ent-cadinane sesquiterpenoid biosynthesis, click here
Glossary: (+)-T-muurolol = (1R,4R,4aS,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol
Systematic name: (2E,6E)-farnesyl-diphosphate diphosphate-lyase (cyclizing, (+)-T-muurolol-forming)
Comments: The cyclization mechanism involves an intermediate nerolidyl diphosphate leading to a helminthogermacradienyl cation. After a 1,3-hydride shift of the original 1-pro-S hydrogen of farnesyl diphosphate, cyclization and deprotonation result in (+)-T-muurolol.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hu, Y., Chou, W.K., Hopson, R. and Cane, D.E. Genome mining in Streptomyces clavuligerus: expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem. Biol. 18 (2011) 32–37. [DOI] [PMID: 21276937]
[EC 4.2.3.98 created 2012]
 
 
EC 4.2.3.99     
Accepted name: labdatriene synthase
Reaction: 9α-copalyl diphosphate = (12E)-9α-labda-8(17),12,14-triene + diphosphate
For diagram of diterpenoids from 9α-copalyl diphosphate, click here
Glossary: 9α-copalyl diphosphate = syn-copalyl diphosphate = (2E)-3-methyl-5-[(1R,4aS,8aS)-5,5,8a-trimethyl-2-methylidenedecahydronaphthalen-1-yl]pent-2-en-1-yl trihydrogen diphosphate
(12E)-9α-labda-8(17),12,14-triene = (4aS,5R,8aS)-1,1,4a-trimethyl-6-methylidene-5-[(2E)-3-methylpenta-2,4-dien-1-yl]decahydronaphthalene
Other name(s): OsKSL10 (gene name)
Systematic name: 9α-copalyl-diphosphate diphosphate-lyase [(12E)-9α-labda-8(17),12,14-triene-forming]
Comments: The enzyme from rice (Oryza sativa), expressed in Escherichia coli, also produces ent-sandaracopimara-8(14),15-diene from ent-copalyl diphosphate, another naturally occuring copalyl isomer in rice (cf. ent-sandaracopimaradiene synthase, EC 4.2.3.29).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Morrone, D., Hillwig, M.L., Mead, M.E., Lowry, L., Fulton, D.B. and Peters, R.J. Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals. Biochem. J. 435 (2011) 589–595. [DOI] [PMID: 21323642]
[EC 4.2.3.99 created 2012]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald