The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 4.1.2.43     
Accepted name: 3-hexulose-6-phosphate synthase
Reaction: D-arabino-hex-3-ulose 6-phosphate = D-ribulose 5-phosphate + formaldehyde
For diagram of reaction, click here
Other name(s): D-arabino-3-hexulose 6-phosphate formaldehyde-lyase; 3-hexulosephosphate synthase; 3-hexulose phosphate synthase; HPS
Systematic name: D-arabino-hex-3-ulose-6-phosphate formaldehyde-lyase (D-ribulose-5-phosphate-forming)
Comments: Requires Mg2+ or Mn2+ for maximal activity [1]. The enzyme is specific for D-ribulose 5-phosphate as substrate as ribose 5-phosphate, xylulose 5-phosphate, allulose 6-phosphate and fructose 6-phosphate cannot act as substrate. In addition to formaldehyde, the enzyme can also use glycolaldehyde and methylglyoxal [7]. This enzyme, along with EC 5.3.1.27, 6-phospho-3-hexuloisomerase, plays a key role in the ribulose-monophosphate cycle of formaldehyde fixation, which is present in many microorganisms that are capable of utilizing C1-compounds [1]. The hyperthermophilic and anaerobic archaeon Pyrococcus horikoshii OT3 constitutively produces a bifunctional enzyme that sequentially catalyses the reactions of this enzyme and EC 5.3.1.27, 6-phospho-3-hexuloisomerase [6]. This enzyme is a member of the orotidine 5′-monophosphate decarboxylase (OMPDC) suprafamily [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Ferenci, T., Strøm, T. and Quayle, J.R. Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem. J. 144 (1974) 477–486. [PMID: 4219834]
2.  Kato, N., Ohashi, H., Tani, Y. and Ogata, K. 3-Hexulosephosphate synthase from Methylomonas aminofaciens 77a. Purification, properties and kinetics. Biochim. Biophys. Acta 523 (1978) 236–244. [DOI] [PMID: 564713]
3.  Yanase, H., Ikeyama, K., Mitsui, R., Ra, S., Kita, K., Sakai, Y. and Kato, N. Cloning and sequence analysis of the gene encoding 3-hexulose-6-phosphate synthase from the methylotrophic bacterium, Methylomonas aminofaciens 77a, and its expression in Escherichia coli. FEMS Microbiol. Lett. 135 (1996) 201–205. [PMID: 8595859]
4.  Yurimoto, H., Kato, N. and Sakai, Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem. Rec. 5 (2005) 367–375. [DOI] [PMID: 16278835]
5.  Kato, N., Yurimoto, H. and Thauer, R.K. The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci. Biotechnol. Biochem. 70 (2006) 10–21. [DOI] [PMID: 16428816]
6.  Orita, I., Yurimoto, H., Hirai, R., Kawarabayasi, Y., Sakai, Y. and Kato, N. The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J. Bacteriol. 187 (2005) 3636–3642. [DOI] [PMID: 15901685]
7.  Kato, N., Miyamoto, N., Shimao, M. and Sakazawa, C. 3-Hexulose phosphate pynthase from a new facultative methylotroph, Mycobacterium gastri MB19. Agric. Biol. Chem. 52 (1988) 2659–2661.
[EC 4.1.2.43 created 2008]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald