The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 3.4.19.9     
Accepted name: folate γ-glutamyl hydrolase
Reaction: tetrahydropteroyl-(γ-glutamyl)n + (n-1) H2O = 5,6,7,8-tetrahydrofolate + (n-1) L-glutamate
For diagram of folate biosynthesis (late stages), click here
Other name(s): GGH (gene name); conjugase; folate conjugase; lysosomal γ-glutamyl carboxypeptidase; γ-Glu-X carboxypeptidase; pteroyl-poly-γ-glutamate hydrolase; carboxypeptidase G; folic acid conjugase; poly(γ-glutamic acid) endohydrolase; polyglutamate hydrolase; poly(glutamic acid) hydrolase II; pteroylpoly-γ-glutamyl hydrolase; γ-glutamyl hydrolase
Systematic name: tetrahydropteroyl-poly-γ-glutamyl γ-glutamyl hydrolase
Comments: The enzyme, which occurs only in animals and plants, can be either endo- and/or exopeptidase. It acts on tetrahydropteroyl polyglutamates and their modified forms, as well as the polyglutamates of the folate breakdown product N-(4-aminobenzoyl)-L-glutamate (pABA-Glu). The initial cleavage may release either monoglutamate or poly-γ-glutamate of two or more residues, depending on the specific enzyme. For example, GGH1 from the plant Arabidopsis thaliana cleaves pentaglutamates, mainly to di- and triglutamates, whereas GGH2 from the same organism yields mainly monoglutamates. The enzyme is lysosomal (and secreted) in animals and vacuolar in plants. In peptidase family C26.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, MEROPS, PDB, CAS registry number: 9074-87-7
References:
1.  McGuire, J.J. and Coward, J.K. Pteroylpolyglutamates: biosynthesis, degradation and function.. In: Blakley, R.L. and Benkovic, S.J. (Ed.), Folates and Pterins, John Wiley and Sons, New York, 1984, pp. 135–191.
2.  Wang, Y., Nimec, Z., Ryan, T.J., Dias, J.A. and Galivan, J. The properties of the secreted γ-glutamyl hydrolases from H35 hepatoma cells. Biochim. Biophys. Acta 1164 (1993) 227–235. [DOI] [PMID: 8343522]
3.  Yao, R., Rhee, M.S. and Galivan, J. Effects of γ-glutamyl hydrolase on folyl and antifolylpolyglutamates in cultured H35 hepatoma cells. Mol. Pharmacol. 48 (1995) 505–511. [PMID: 7565632]
4.  Yao, R., Schneider, E., Ryan, T.J. and Galivan, J. Human γ-glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc. Natl. Acad. Sci. USA 93 (1996) 10134–10138. [DOI] [PMID: 8816764]
5.  Yao, R., Nimec, Z., Ryan, T.J. and Galivan, J. Identification, cloning, and sequencing of a cDNA coding for rat γ-glutamyl hydrolase. J. Biol. Chem. 271 (1996) 8525–8528. [DOI] [PMID: 8621474]
6.  Orsomando, G., de la Garza, R.D., Green, B.J., Peng, M., Rea, P.A., Ryan, T.J., Gregory, J.F., 3rd and Hanson, A.D. Plant γ-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J. Biol. Chem. 280 (2005) 28877–28884. [PMID: 15961386]
7.  Akhtar, T.A., McQuinn, R.P., Naponelli, V., Gregory, J.F., 3rd, Giovannoni, J.J. and Hanson, A.D. Tomato γ-glutamylhydrolases: expression, characterization, and evidence for heterodimer formation. Plant Physiol. 148 (2008) 775–785. [PMID: 18757550]
[EC 3.4.19.9 created 1972 as EC 3.4.12.10, transferred 1978 to EC 3.4.22.12, transferred 1992 to EC 3.4.19.9, modified 1997, modified 2018]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald