The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 3.1.1.85     
Accepted name: pimelyl-[acyl-carrier protein] methyl ester esterase
Reaction: pimeloyl-[acyl-carrier protein] methyl ester + H2O = pimeloyl-[acyl-carrier protein] + methanol
Other name(s): BioH
Systematic name: pimeloyl-[acyl-carrier protein] methyl ester hydrolase
Comments: Involved in biotin biosynthesis in Gram-negative bacteria. The enzyme exhibits carboxylesterase activity, particularly toward substrates with short acyl chains [1,2]. Even though the enzyme can interact with coenzyme A thioesters [3], the in vivo role of the enzyme is to hydrolyse the methyl ester of pimeloyl-[acyl carrier protein], terminating the part of the biotin biosynthesis pathway that is catalysed by the fatty acid elongation enzymes [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Sanishvili, R., Yakunin, A.F., Laskowski, R.A., Skarina, T., Evdokimova, E., Doherty-Kirby, A., Lajoie, G.A., Thornton, J.M., Arrowsmith, C.H., Savchenko, A., Joachimiak, A. and Edwards, A.M. Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J. Biol. Chem. 278 (2003) 26039–26045. [DOI] [PMID: 12732651]
2.  Lemoine, Y., Wach, A. and Jeltsch, J.M. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19 (1996) 645–647. [DOI] [PMID: 8830257]
3.  Tomczyk, N.H., Nettleship, J.E., Baxter, R.L., Crichton, H.J., Webster, S.P. and Campopiano, D.J. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett. 513 (2002) 299–304. [DOI] [PMID: 11904168]
4.  Lin, S., Hanson, R.E. and Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6 (2010) 682–688. [DOI] [PMID: 20693992]
[EC 3.1.1.85 created 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald