The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

EC 2.7.7.7     
Accepted name: DNA-directed DNA polymerase
Reaction: a 2′-deoxyribonucleoside 5′-triphosphate + DNAn = diphosphate + DNAn+1
Other name(s): DNA polymerase I; DNA polymerase II; DNA polymerase III; DNA polymerase α; DNA polymerase β; DNA polymerase γ; DNA nucleotidyltransferase (DNA-directed); deoxyribonucleate nucleotidyltransferase; deoxynucleate polymerase; deoxyribonucleic acid duplicase; deoxyribonucleic acid polymerase; deoxyribonucleic duplicase; deoxyribonucleic polymerase; deoxyribonucleic polymerase I; DNA duplicase; DNA nucleotidyltransferase; DNA polymerase; DNA replicase; DNA-dependent DNA polymerase; duplicase; Klenow fragment; sequenase; Taq DNA polymerase; Taq Pol I; Tca DNA polymerase
Systematic name: 2′-deoxyribonucleoside-5′-triphosphate:DNA deoxynucleotidyltransferase (DNA-directed)
Comments: Catalyses DNA-template-directed extension of the 3′- end of a DNA strand by one nucleotide at a time. Cannot initiate a chain de novo. Requires a primer, which may be DNA or RNA. See also EC 2.7.7.49 RNA-directed DNA polymerase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9012-90-2
References:
1.  Bollum, F.J. Calf thymus polymerase. J. Biol. Chem. 235 (1960) 2399–2403. [PMID: 13802334]
2.  Falaschi, A. and Kornberg, A. Biochemical studies of bacterial sporulation. II. Deoxy-ribonucleic acid polymerase in spores of Bacillus subtilis. J. Biol. Chem. 241 (1966) 1478–1482. [PMID: 4957767]
3.  Lehman, I.R., Bessman, M.J., Simms, E.S. and Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233 (1958) 163–170. [PMID: 13563462]
4.  Richardson, C.C., Schildkraut, C.L., Aposhian, H.V. and Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. XIV. Further purification and properties of deoxyribonucleic acid polymerase of Escherichia coli. J. Biol. Chem. 239 (1964) 222–232. [PMID: 14114848]
5.  Schachman, H.K., Adler, J., Radding, C.M., Lehman, I.R. and Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J. Biol. Chem. 235 (1960) 3242–3249. [PMID: 13747134]
6.  Zimmerman, B.K. Purification and properties of deoxyribonucleic acid polymerase from Micrococcus lysodeikticus. J. Biol. Chem. 241 (1966) 2035–2041. [PMID: 5946628]
[EC 2.7.7.7 created 1961, modified 1981, modified 1982]
 
 
EC 2.7.7.70     
Accepted name: D-glycero-β-D-manno-heptose 1-phosphate adenylyltransferase
Reaction: D-glycero-β-D-manno-heptose 1-phosphate + ATP = ADP-D-glycero-β-D-manno-heptose + diphosphate
Other name(s): D-β-D-heptose 7-phosphate kinase/D-β-D-heptose 1-phosphate adenylyltransferase; D-glycero-D-manno-heptose-1β-phosphate adenylyltransferase; hldE (gene name); rfaE (gene name)
Systematic name: ATP:D-glycero-β-D-manno-heptose 1-phosphate adenylyltransferase
Comments: The bifunctional protein hldE includes D-glycero-β-D-manno-heptose-7-phosphate kinase and D-glycero-β-D-manno-heptose 1-phosphate adenylyltransferase activity (cf. EC 2.7.1.167). The enzyme is involved in biosynthesis of ADP-L-glycero-β-D-manno-heptose, which is utilized for assembly of the lipopolysaccharide inner core in Gram-negative bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Valvano, M.A., Marolda, C.L., Bittner, M., Glaskin-Clay, M., Simon, T.L. and Klena, J.D. The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose. J. Bacteriol. 182 (2000) 488–497. [DOI] [PMID: 10629197]
2.  Kneidinger, B., Marolda, C., Graninger, M., Zamyatina, A., McArthur, F., Kosma, P., Valvano, M.A. and Messner, P. Biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol. 184 (2002) 363–369. [DOI] [PMID: 11751812]
3.  Valvano, M.A., Messner, P. and Kosma, P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148 (2002) 1979–1989. [DOI] [PMID: 12101286]
4.  Wang, L., Huang, H., Nguyen, H.H., Allen, K.N., Mariano, P.S. and Dunaway-Mariano, D. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). Biochemistry 49 (2010) 1072–1081. [DOI] [PMID: 20050615]
[EC 2.7.7.70 created 2010]
 
 
EC 2.7.7.71     
Accepted name: D-glycero-α-D-manno-heptose 1-phosphate guanylyltransferase
Reaction: D-glycero-α-D-manno-heptose 1-phosphate + GTP = GDP-D-glycero-α-D-manno-heptose + diphosphate
Other name(s): hddC (gene name); gmhD (gene name)
Systematic name: GTP:D-glycero-α-D-manno-heptose 1-phosphate guanylyltransferase
Comments: The enzyme is involved in biosynthesis of GDP-D-glycero-α-D-manno-heptose, which is required for assembly of S-layer glycoprotein in some Gram-positive bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kneidinger, B., Graninger, M., Puchberger, M., Kosma, P. and Messner, P. Biosynthesis of nucleotide-activated D-glycero-D-manno-heptose. J. Biol. Chem. 276 (2001) 20935–20944. [DOI] [PMID: 11279237]
[EC 2.7.7.71 created 2010]
 
 
EC 2.7.7.72     
Accepted name: CCA tRNA nucleotidyltransferase
Reaction: a tRNA precursor + 2 CTP + ATP = a tRNA with a 3′ CCA end + 3 diphosphate (overall reaction)
(1a) a tRNA precursor + CTP = a tRNA with a 3′ cytidine end + diphosphate
(1b) a tRNA with a 3′ cytidine + CTP = a tRNA with a 3′ CC end + diphosphate
(1c) a tRNA with a 3′ CC end + ATP = a tRNA with a 3′ CCA end + diphosphate
Other name(s): CCA-adding enzyme; tRNA adenylyltransferase; tRNA cytidylyltransferase; tRNA CCA-pyrophosphorylase; tRNA-nucleotidyltransferase; transfer-RNA nucleotidyltransferase; transfer ribonucleic acid nucleotidyl transferase; CTP(ATP):tRNA nucleotidyltransferase; transfer ribonucleate adenylyltransferase; transfer ribonucleate adenyltransferase; transfer RNA adenylyltransferase; transfer ribonucleate nucleotidyltransferase; ATP (CTP):tRNA nucleotidyltransferase; ribonucleic cytidylic cytidylic adenylic pyrophosphorylase; transfer ribonucleic adenylyl (cytidylyl) transferase; transfer ribonucleic-terminal trinucleotide nucleotidyltransferase; transfer ribonucleate cytidylyltransferase; ribonucleic cytidylyltransferase; -C-C-A pyrophosphorylase; ATP(CTP)-tRNA nucleotidyltransferase; tRNA adenylyl(cytidylyl)transferase; CTP:tRNA cytidylyltransferase
Systematic name: CTP,CTP,ATP:tRNA cytidylyl,cytidylyl,adenylyltransferase
Comments: The acylation of all tRNAs with an amino acid occurs at the terminal ribose of a 3′ CCA sequence. The CCA sequence is added to the tRNA precursor by stepwise nucleotide addition performed by a single enzyme that is ubiquitous in all living organisms. Although the enzyme has the option of releasing the product after each addition, it prefers to stay bound to the product and proceed with the next addition [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Schofield, P. and Williams, K.R. Purification and some properties of Escherichia coli tRNA nucleotidyltransferase. J. Biol. Chem. 252 (1977) 5584–5588. [PMID: 328503]
2.  Shi, P.Y., Maizels, N. and Weiner, A.M. CCA addition by tRNA nucleotidyltransferase: polymerization without translocation. EMBO J. 17 (1998) 3197–3206. [DOI] [PMID: 9606201]
3.  Augustin, M.A., Reichert, A.S., Betat, H., Huber, R., Morl, M. and Steegborn, C. Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. J. Mol. Biol. 328 (2003) 985–994. [DOI] [PMID: 12729736]
4.  Yakunin, A.F., Proudfoot, M., Kuznetsova, E., Savchenko, A., Brown, G., Arrowsmith, C.H. and Edwards, A.M. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2′,3′-cyclic phosphodiesterase, 2′-nucleotidase, and phosphatase activities. J. Biol. Chem. 279 (2004) 36819–36827. [DOI] [PMID: 15210699]
5.  Hou, Y.M. CCA addition to tRNA: implications for tRNA quality control. IUBMB Life 62 (2010) 251–260. [DOI] [PMID: 20101632]
[EC 2.7.7.72 created 1965 as EC 2.7.7.21 and EC 2.7.7.25, both transferred 2010 to EC 2.7.7.72]
 
 
EC 2.7.7.73     
Accepted name: sulfur carrier protein ThiS adenylyltransferase
Reaction: ATP + [ThiS] = diphosphate + adenylyl-[ThiS]
Other name(s): thiF (gene name)
Systematic name: ATP:[ThiS] adenylyltransferase
Comments: Binds Zn2+. The enzyme catalyses the adenylation of ThiS, a sulfur carrier protein involved in the biosynthesis of thiamine. The enzyme shows significant structural similarity to ubiquitin-activating enzyme [3,4]. In Escherichia coli, but not in Bacillus subtilis, the enzyme forms a cross link from Cys-184 to the ThiS carboxy terminus (the position that is also thiolated) via an acyldisulfide [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Taylor, S.V., Kelleher, N.L., Kinsland, C., Chiu, H.J., Costello, C.A., Backstrom, A.D., McLafferty, F.W. and Begley, T.P. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation. J. Biol. Chem. 273 (1998) 16555–16560. [DOI] [PMID: 9632726]
2.  Xi, J., Ge, Y., Kinsland, C., McLafferty, F.W. and Begley, T.P. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc. Natl. Acad. Sci. USA 98 (2001) 8513–8518. [DOI] [PMID: 11438688]
3.  Duda, D.M., Walden, H., Sfondouris, J. and Schulman, B.A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349 (2005) 774–786. [DOI] [PMID: 15896804]
4.  Lehmann, C., Begley, T.P. and Ealick, S.E. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45 (2006) 11–19. [DOI] [PMID: 16388576]
[EC 2.7.7.73 created 2011]
 
 
EC 2.7.7.74     
Accepted name: 1L-myo-inositol 1-phosphate cytidylyltransferase
Reaction: CTP + 1L-myo-inositol 1-phosphate = diphosphate + CDP-1L-myo-inositol
For diagram of bis(1L-myo-inositol) 1,3′-phosphate biosynthesis, click here
Glossary: 1L-myo-inositol 1-phosphate = 1D-myo-inositol 3-phosphate
Other name(s): CTP:inositol-1-phosphate cytidylyltransferase (bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS)); IPCT (bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS)); L-myo-inositol-1-phosphate cytidylyltransferase
Systematic name: CTP:1L-myo-inositol 1-phosphate cytidylyltransferase
Comments: In many organisms this activity is catalysed by a bifunctional enzyme. The cytidylyltransferase domain of the bifunctional EC 2.7.7.74/EC 2.7.8.34 (CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase) is absolutely specific for CTP and 1L-myo-inositol 1-phosphate. The enzyme is involved in biosynthesis of bis(1L-myo-inositol) 1,3′-phosphate, a widespread organic solute in microorganisms adapted to hot environments.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Rodrigues, M.V., Borges, N., Henriques, M., Lamosa, P., Ventura, R., Fernandes, C., Empadinhas, N., Maycock, C., da Costa, M.S. and Santos, H. Bifunctional CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles. J. Bacteriol. 189 (2007) 5405–5412. [DOI] [PMID: 17526717]
[EC 2.7.7.74 created 2011]
 
 
EC 2.7.7.75     
Accepted name: molybdopterin adenylyltransferase
Reaction: ATP + molybdopterin = diphosphate + adenylyl-molybdopterin
For diagram of MoCo biosynthesis, click here
Glossary: molybdopterin = H2Dtpp-mP = [(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl)-4,5,5a,8,9a,10-hexahydro-1H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogen phosphate
Other name(s): MogA; Cnx1 (ambiguous)
Systematic name: ATP:molybdopterin adenylyltransferase
Comments: Catalyses the activation of molybdopterin for molybdenum insertion. In eukaryotes, this reaction is catalysed by the C-terminal domain of a fusion protein that also includes molybdopterin molybdotransferase (EC 2.10.1.1). The reaction requires a divalent cation such as Mg2+ or Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Nichols, J.D. and Rajagopalan, K.V. In vitro molybdenum ligation to molybdopterin using purified components. J. Biol. Chem. 280 (2005) 7817–7822. [DOI] [PMID: 15632135]
2.  Kuper, J., Palmer, T., Mendel, R.R. and Schwarz, G. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization. Proc. Natl. Acad. Sci. USA 97 (2000) 6475–6480. [DOI] [PMID: 10823911]
3.  Llamas, A., Mendel, R.R. and Schwarz, G. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J. Biol. Chem. 279 (2004) 55241–55246. [DOI] [PMID: 15504727]
[EC 2.7.7.75 created 2011]
 
 
EC 2.7.7.76     
Accepted name: molybdenum cofactor cytidylyltransferase
Reaction: CTP + molybdenum cofactor = diphosphate + cytidylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MocA; CTP:molybdopterin cytidylyltransferase; MoCo cytidylyltransferase; Mo-MPT cytidyltransferase
Systematic name: CTP:molybdenum cofactor cytidylyltransferase
Comments: Catalyses the cytidylation of the molybdenum cofactor. This modification occurs only in prokaryotes. Divalent cations such as Mg2+ or Mn2+ are required for activity. ATP or GTP cannot replace CTP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Neumann, M., Mittelstadt, G., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J. Biol. Chem. 284 (2009) 21891–21898. [DOI] [PMID: 19542235]
2.  Neumann, M., Seduk, F., Iobbi-Nivol, C. and Leimkuhler, S. Molybdopterin dinucleotide biosynthesis in Escherichia coli: Identification of amino acid residues of molybdopterin dinucleotide transferases that determine specificity for binding of guanine or cytosine nucleotides. J. Biol. Chem. 286 (2011) 1400–1408. [DOI] [PMID: 21081498]
[EC 2.7.7.76 created 2011]
 
 
EC 2.7.7.77     
Accepted name: molybdenum cofactor guanylyltransferase
Reaction: GTP + molybdenum cofactor = diphosphate + guanylyl molybdenum cofactor
For diagram of MoCo biosynthesis, click here
Glossary: molybdenum cofactor = MoCo = MoO2(OH)Dtpp-mP = {[(5aR,8R,9aR)-2-amino-4-oxo-6,7-bis(sulfanyl-κS)-1,5,5a,8,9a,10-hexahydro-4H-pyrano[3,2-g]pteridin-8-yl]methyl dihydrogenato(2-) phosphate}(dioxo)molybdate
Other name(s): MobA; MoCo guanylyltransferase
Systematic name: GTP:molybdenum cofactor guanylyltransferase
Comments: Catalyses the guanylation of the molybdenum cofactor. This modification occurs only in prokaryotes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Lake, M.W., Temple, C.A., Rajagopalan, K.V. and Schindelin, H. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J. Biol. Chem. 275 (2000) 40211–40217. [DOI] [PMID: 10978347]
2.  Temple, C.A. and Rajagopalan, K.V. Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J. Biol. Chem. 275 (2000) 40202–40210. [DOI] [PMID: 10978348]
3.  Guse, A., Stevenson, C.E., Kuper, J., Buchanan, G., Schwarz, G., Giordano, G., Magalon, A., Mendel, R.R., Lawson, D.M. and Palmer, T. Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA. J. Biol. Chem. 278 (2003) 25302–25307. [DOI] [PMID: 12719427]
[EC 2.7.7.77 created 2011]
 
 
EC 2.7.7.78     
Accepted name: GDP-D-glucose phosphorylase
Reaction: GDP-α-D-glucose + phosphate = α-D-glucose 1-phosphate + GDP
Systematic name: GDP:α-D-glucose 1-phosphate guanylyltransferase
Comments: The enzyme may be involved in prevention of misincorporation of glucose in place of mannose residues into glycoconjugates i.e. to remove accidentally produced GDP-α-D-glucose. Activities with GDP-L-galactose, GDP-D-mannose and UDP-D-glucose are all less than 3% that with GDP-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Adler, L.N., Gomez, T.A., Clarke, S.G. and Linster, C.L. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J. Biol. Chem. 286 (2011) 21511–21523. [DOI] [PMID: 21507950]
[EC 2.7.7.78 created 2011]
 
 
EC 2.7.7.79     
Accepted name: tRNAHis guanylyltransferase
Reaction: p-tRNAHis + ATP + GTP + H2O = pGp-tRNAHis + AMP + 2 diphosphate (overall reaction)
(1a) p-tRNAHis + ATP = App-tRNAHis + diphosphate
(1b) App-tRNAHis + GTP = pppGp-tRNAHis + AMP
(1c) pppGp-tRNAHis + H2O = pGp-tRNAHis + diphosphate
Glossary: p-tRNAHis = 5′-phospho-ribonucleotide-[tRNAHis]
pGp-tRNAHis = 5′-phospho-guanosine-ribonucleotide-[tRNAHis]
App-tRNAHis = 5′-(5′-diphosphoadenosine)-ribonucleotide-[tRNAHis]
pppGp-tRNAHis = 5′-triphospho-ribonucleotide-[tRNAHis]
Other name(s): histidine tRNA guanylyltransferase; Thg1p (ambiguous); Thg1 (ambiguous)
Systematic name: p-tRNAHis:GTP guanylyltransferase (ATP-hydrolysing)
Comments: In eukarya an additional guanosine residue is added post-transcriptionally to the 5′-end of tRNAHis molecules. The addition occurs opposite a universally conserved adenosine73 and is thus the result of a non-templated 3′-5′ addition reaction. The additional guanosine residue is an important determinant for aminoacylation by EC 6.1.1.21, histidine—tRNA ligase.The enzyme requires a divalent cation for activity [2]. ATP activation is not required when the substrate contains a 5′-triphosphate (ppp-tRNAHis) [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Jahn, D. and Pande, S. Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. II. Catalytic mechanism. J. Biol. Chem. 266 (1991) 22832–22836. [PMID: 1660462]
2.  Pande, S., Jahn, D. and Soll, D. Histidine tRNA guanylyltransferase from Saccharomyces cerevisiae. I. Purification and physical properties. J. Biol. Chem. 266 (1991) 22826–22831. [PMID: 1660461]
3.  Gu, W., Jackman, J.E., Lohan, A.J., Gray, M.W. and Phizicky, E.M. tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev. 17 (2003) 2889–2901. [DOI] [PMID: 14633974]
4.  Placido, A., Sieber, F., Gobert, A., Gallerani, R., Giege, P. and Marechal-Drouard, L. Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res. 38 (2010) 7711–7717. [DOI] [PMID: 20660484]
5.  Jackman, J.E. and Phizicky, E.M. Identification of critical residues for G-1 addition and substrate recognition by tRNA(His) guanylyltransferase. Biochemistry 47 (2008) 4817–4825. [DOI] [PMID: 18366186]
6.  Hyde, S.J., Eckenroth, B.E., Smith, B.A., Eberley, W.A., Heintz, N.H., Jackman, J.E. and Doublie, S. tRNA(His) guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc. Natl. Acad. Sci. USA 107 (2010) 20305–20310. [DOI] [PMID: 21059936]
[EC 2.7.7.79 created 2011]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald