The Enzyme Database

Displaying entries 1-50 of 64.

<< Previous | Next >>    printer_iconPrintable version

EC 2.4.2.1     
Accepted name: purine-nucleoside phosphorylase
Reaction: (1) purine ribonucleoside + phosphate = purine + α-D-ribose 1-phosphate
(2) purine 2′-deoxyribonucleoside + phosphate = purine + 2-deoxy-α-D-ribose 1-phosphate
Other name(s): inosine phosphorylase; PNPase (ambiguous); PUNPI; PUNPII; inosine-guanosine phosphorylase; purine deoxynucleoside phosphorylase; purine deoxyribonucleoside phosphorylase; purine nucleoside phosphorylase; purine ribonucleoside phosphorylase
Systematic name: purine-nucleoside:phosphate ribosyltransferase
Comments: Specificity not completely determined. Can also catalyse ribosyltransferase reactions of the type catalysed by EC 2.4.2.5, nucleoside ribosyltransferase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-21-1
References:
1.  Agarwal, R.P. and Parks, R.E. Purine nucleoside phosphorylase from human erythrocytes. IV. Crystallization and some properties. J. Biol. Chem. 244 (1969) 644–647. [PMID: 5768862]
2.  Friedkin, M. and Kalckar, H. Nucleoside phosphorylases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 237–255.
3.  Heppel, L.A. and Hilmoe, R.J. Phosphorolysis and hydrolysis of purine ribosides from yeast. J. Biol. Chem. 198 (1952) 683–694. [PMID: 12999785]
4.  Kalckar, H.M. The enzymatic synthesis of purine ribosides. J. Biol. Chem. 167 (1947) 477–486. [PMID: 20285042]
5.  Saunders, P.P., Wilson, B.A. and Saunders, G.F. Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus. J. Biol. Chem. 244 (1969) 3691–3697. [PMID: 4978445]
6.  Tsuboi, K.K. and Hudson, P.B. Enzymes of the human erythrocyte. I. Purine nucleoside phosphorylase; isolation procedure. J. Biol. Chem. 224 (1957) 879–887. [PMID: 13405917]
[EC 2.4.2.1 created 1961]
 
 
EC 2.4.2.2     
Accepted name: pyrimidine-nucleoside phosphorylase
Reaction: (1) uridine + phosphate = uracil + α-D-ribose 1-phosphate
(2) cytidine + phosphate = cytosine + α-D-ribose 1-phosphate
(3) 2′-deoxyuridine + phosphate = uracil + 2-deoxy-α-D-ribose 1-phosphate
(4) thymidine + phosphate = thymine + 2-deoxy-α-D-ribose 1-phosphate
Other name(s): Py-NPase; pdp (gene name)
Systematic name: pyrimidine-nucleoside:phosphate (2′-deoxy)-α-D-ribosyltransferase
Comments: Unlike EC 2.4.2.3, uridine phosphorylase, and EC 2.4.2.4, thymidine phosphorylase, this enzyme can accept both the ribonucleosides uridine and cytidine and the 2′-deoxyribonucleosides 2′-deoxyuridine and thymidine [3,6]. The reaction is reversible, and the enzyme does not distinguish between α-D-ribose 1-phosphate and 2-deoxy-α-D-ribose 1-phosphate in the synthetic direction.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9055-35-0
References:
1.  Friedkin, M. and Kalckar, H. Nucleoside phosphorylases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Ed.), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 237–255.
2.  Saunders, P.P., Wilson, B.A. and Saunders, G.F. Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus. J. Biol. Chem. 244 (1969) 3691–3697. [PMID: 4978445]
3.  Hamamoto, T., Noguchi, T. and Midorikawa, Y. Purification and characterization of purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus TH 6-2. Biosci. Biotechnol. Biochem. 60 (1996) 1179–1180. [DOI] [PMID: 8782414]
4.  Okuyama, K., Hamamoto, T., Noguchi, T. and Midorikawa, Y. Molecular cloning and expression of the pyrimidine nucleoside phosphorylase gene from Bacillus stearothermophilus TH 6-2. Biosci. Biotechnol. Biochem. 60 (1996) 1655–1659. [DOI] [PMID: 8987664]
5.  Pugmire, M.J. and Ealick, S.E. The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation. Structure 6 (1998) 1467–1479. [DOI] [PMID: 9817849]
6.  Wei, X.K., Ding, Q.B., Zhang, L., Guo, Y.L., Ou, L. and Wang, C.L. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside. J Zhejiang Univ Sci B 9 (2008) 520–526. [DOI] [PMID: 18600781]
[EC 2.4.2.2 created 1961, modified 2021]
 
 
EC 2.4.2.3     
Accepted name: uridine phosphorylase
Reaction: uridine + phosphate = uracil + α-D-ribose 1-phosphate
Other name(s): pyrimidine phosphorylase; UrdPase; UPH; UPase
Systematic name: uridine:phosphate α-D-ribosyltransferase
Comments: The enzyme participates the the pathways of pyrimidine ribonucleosides degradation and salvage. The mammalian enzyme also accepts 2′-deoxyuridine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-22-2
References:
1.  Canellakis, E.S. Pyrimidine metabolism. II. Enzymatic pathways of uracil anabolism. J. Biol. Chem. 227 (1957) 329–338. [PMID: 13449076]
2.  Paege, L.M. and Schlenk, F. Bacterial uracil riboside phosphorylase. Arch. Biochem. Biophys. 40 (1952) 42–49. [DOI] [PMID: 12997187]
3.  Leer, J.C., Hammer-Jespersen, K. and Schwartz, M. Uridine phosphorylase from Escherichia coli. Physical and chemical characterization. Eur. J. Biochem. 75 (1977) 217–224. [DOI] [PMID: 16751]
4.  Pontis, H., Degerstedt, G. and Reichard, P. Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. Biochim. Biophys. Acta 51 (1961) 138–147. [DOI] [PMID: 13737038]
5.  Watanabe, S. and Uchida, T. Cloning and expression of human uridine phosphorylase. Biochem. Biophys. Res. Commun. 216 (1995) 265–272. [DOI] [PMID: 7488099]
6.  Liu, M., Cao, D., Russell, R., Handschumacher, R.E. and Pizzorno, G. Expression, characterization, and detection of human uridine phosphorylase and identification of variant uridine phosphorolytic activity in selected human tumors. Cancer Res. 58 (1998) 5418–5424. [PMID: 9850074]
[EC 2.4.2.3 created 1961]
 
 
EC 2.4.2.4     
Accepted name: thymidine phosphorylase
Reaction: thymidine + phosphate = thymine + 2-deoxy-α-D-ribose 1-phosphate
Other name(s): pyrimidine phosphorylase; thymidine-orthophosphate deoxyribosyltransferase; animal growth regulators, blood platelet-derived endothelial cell growth factors; blood platelet-derived endothelial cell growth factor; deoxythymidine phosphorylase; gliostatins; pyrimidine deoxynucleoside phosphorylase; thymidine:phosphate deoxy-D-ribosyltransferase
Systematic name: thymidine:phosphate deoxy-α-D-ribosyltransferase
Comments: The enzyme in some tissues also catalyses deoxyribosyltransferase reactions of the type catalysed by EC 2.4.2.6, nucleoside deoxyribosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-23-3
References:
1.  Friedkin, M. and Roberts, D. The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue. J. Biol. Chem. 207 (1954) 245–256. [PMID: 13152099]
2.  Zimmerman, M. and Seidenberg, J. Deoxyribosyl transfer. I. Thymidine phosphorylase and nucleoside deoxyribosyltransferase in normal and malignant tissues. J. Biol. Chem. 239 (1964) 2618–2621. [PMID: 14235544]
3.  Zimmerman, M. Deoxyribosyl transfer. II. Nucleoside:pyrimidine deoxyribosyltransferase activity of three partially purified thymidine phosphorylases. J. Biol. Chem. 239 (1964) 2622–2627. [PMID: 14235545]
[EC 2.4.2.4 created 1961]
 
 
EC 2.4.2.5     
Accepted name: nucleoside ribosyltransferase
Reaction: D-ribosyl-base1 + base2 = D-ribosyl-base2 + base1
Other name(s): nucleoside N-ribosyltransferase
Systematic name: nucleoside:purine(pyrimidine) D-ribosyltransferase
Comments: Base1 and base2 represent various purines and pyrimidines.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-31-3
References:
1.  Koch, A.L. Some enzymes of nucleoside metabolism of Escherichia coli. J. Biol. Chem. 223 (1956) 535–549. [PMID: 13376622]
[EC 2.4.2.5 created 1961]
 
 
EC 2.4.2.6     
Accepted name: nucleoside deoxyribosyltransferase
Reaction: 2-deoxy-D-ribosyl-base1 + base2 = 2-deoxy-D-ribosyl-base2 + base1
Other name(s): purine(pyrimidine) nucleoside:purine(pyrimidine) deoxyribosyl transferase; deoxyribose transferase; nucleoside trans-N-deoxyribosylase; trans-deoxyribosylase; trans-N-deoxyribosylase; trans-N-glycosidase; nucleoside deoxyribosyltransferase I (purine nucleoside:purine deoxyribosyltransferase: strictly specific for transfer between purine bases); nucleoside deoxyribosyltransferase II [purine(pyrimidine) nucleoside:purine(pyrimidine) deoxyribosyltransferase]
Systematic name: nucleoside:purine(pyrimidine) deoxy-D-ribosyltransferase
Comments: Base1 and base2 represent various purines and pyrimidines.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9026-86-2
References:
1.  Kalckar, H.M., MacNutt, W.S. and Hoff-Jørgensen, E. Trans-N-glycosidase studied with radioactive adenine. Biochem. J. 50 (1952) 397–400. [PMID: 14915963]
2.  MacNutt, W.S. The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem. J. 50 (1952) 384–397. [PMID: 14915962]
3.  Roush, A.H. and Betz, R.F. Purification and properties of trans-N-deoxyribosylase. J. Biol. Chem. 233 (1958) 261–266. [PMID: 13563482]
[EC 2.4.2.6 created 1961]
 
 
EC 2.4.2.7     
Accepted name: adenine phosphoribosyltransferase
Reaction: AMP + diphosphate = adenine + 5-phospho-α-D-ribose 1-diphosphate
For diagram of ribose activation, click here
Other name(s): AMP pyrophosphorylase; transphosphoribosidase; APRT; AMP-pyrophosphate phosphoribosyltransferase; adenine phosphoribosylpyrophosphate transferase; adenosine phosphoribosyltransferase; adenylate pyrophosphorylase; adenylic pyrophosphorylase
Systematic name: AMP:diphosphate phospho-D-ribosyltransferase
Comments: 5-Amino-4-imidazolecarboxamide can replace adenine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9027-80-9
References:
1.  Flaks, J.G., Erwin, M.J. and Buchanan, J.M. Biosynthesis of the purines. XVI. The synthesis of adenosine 5′-phosphate and 5-amino-4-imidazolecarboxamide ribotide by a nucleotide pyrophosphorylase. J. Biol. Chem. 228 (1957) 201–213. [PMID: 13475309]
2.  Kornberg, A., Lieberman, I. and Simms, E.S. Enzymatic synthesis of purine nucleotides. J. Biol. Chem. 215 (1955) 417–427. [PMID: 14392175]
3.  Lukens, L.N. and Herrington, K.A. Enzymic formation of 6-mercaptopurine ribotide. Biochim. Biophys. Acta 24 (1957) 432–433. [PMID: 13436452]
[EC 2.4.2.7 created 1961]
 
 
EC 2.4.2.8     
Accepted name: hypoxanthine phosphoribosyltransferase
Reaction: IMP + diphosphate = hypoxanthine + 5-phospho-α-D-ribose 1-diphosphate
Other name(s): IMP pyrophosphorylase; transphosphoribosidase; hypoxanthine—guanine phosphoribosyltransferase; guanine phosphoribosyltransferase; GPRT; HPRT; guanosine 5′-phosphate pyrophosphorylase; IMP-GMP pyrophosphorylase; HGPRTase; 6-hydroxypurine phosphoribosyltransferase; 6-mercaptopurine phosphoribosyltransferase; GMP pyrophosphorylase; guanine-hypoxanthine phosphoribosyltransferase; guanosine phosphoribosyltransferase; guanylate pyrophosphorylase; guanylic pyrophosphorylase; inosinate pyrophosphorylase; inosine 5′-phosphate pyrophosphorylase; inosinic acid pyrophosphorylase; inosinic pyrophosphorylase; purine-6-thiol phosphoribosyltransferase
Systematic name: IMP:diphosphate phospho-D-ribosyltransferase
Comments: Guanine and purine-6-thiol can replace hypoxanthine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9016-12-0
References:
1.  Flaks, J.G. Nucleotide synthesis from 5-phosphoribosylpyrophosphate. Methods Enzymol. 6 (1963) 136–158.
2.  Kornberg, A., Lieberman, I. and Simms, E.S. Enzymatic synthesis of purine nucleotides. J. Biol. Chem. 215 (1955) 417–427. [PMID: 14392175]
3.  Lukens, L.N. and Herrington, K.A. Enzymic formation of 6-mercaptopurine ribotide. Biochim. Biophys. Acta 24 (1957) 432–433. [PMID: 13436452]
4.  Remy, C.N., Remy, W.T. and Buchanan, J.M. Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of α-5-phosphoribosylpyrophosphate. J. Biol. Chem. 217 (1955) 885–895. [PMID: 13271449]
[EC 2.4.2.8 created 1961, modified 1982]
 
 
EC 2.4.2.9     
Accepted name: uracil phosphoribosyltransferase
Reaction: UMP + diphosphate = uracil + 5-phospho-α-D-ribose 1-diphosphate
Other name(s): UMP pyrophosphorylase; UPRTase; UMP:pyrophosphate phosphoribosyltransferase; uridine 5′-phosphate pyrophosphorylase; uridine monophosphate pyrophosphorylase; uridylate pyrophosphorylase; uridylic pyrophosphorylase
Systematic name: UMP:diphosphate phospho-α-D-ribosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-24-4
References:
1.  Crawford, I., Kornberg, A. and Simms, E.S. Conversion of uracil and orotate to uridine 5′-phosphate by enzymes in lactobacilli. J. Biol. Chem. 226 (1967) 1093–1101. [PMID: 13438895]
2.  Flaks, J.G. Nucleotide synthesis from 5-phosphoribosylpyrophosphate. Methods Enzymol. 6 (1963) 136–158.
[EC 2.4.2.9 created 1961]
 
 
EC 2.4.2.10     
Accepted name: orotate phosphoribosyltransferase
Reaction: orotidine 5′-phosphate + diphosphate = orotate + 5-phospho-α-D-ribose 1-diphosphate
For diagram of pyrimidine biosynthesis, click here
Other name(s): orotidylic acid phosphorylase; orotidine-5′-phosphate pyrophosphorylase; OPRTase; orotate phosphoribosyl pyrophosphate transferase; orotic acid phosphoribosyltransferase; orotidine 5′-monophosphate pyrophosphorylase; orotidine monophosphate pyrophosphorylase; orotidine phosphoribosyltransferase; orotidylate phosphoribosyltransferase; orotidylate pyrophosphorylase; orotidylic acid pyrophosphorylase; orotidylic phosphorylase; orotidylic pyrophosphorylase
Systematic name: orotidine-5′-phosphate:diphosphate phospho-α-D-ribosyl-transferase
Comments: The enzyme from higher eukaryotes also catalyses the reaction listed as EC 4.1.1.23, orotidine-5′-phosphate decarboxylase.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-25-5
References:
1.  Jones, M.E., Kavipurapu, P.R. and Traut, T.W. Orotate phosphoribosyltransferase: orotidylate decarboxylase (Ehrlich ascites cell). Methods Enzymol. 51 (1978) 155–167. [DOI] [PMID: 692383]
2.  Lieberman, I., Kornberg, A. and Simms, E.S. Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phosphate and uridine-5′-phosphate. J. Biol. Chem. 215 (1955) 403–415. [PMID: 14392174]
3.  McClard, R.W., Black, M.J., Livingstone, L.R. and Jones, M.E. Isolation and initial characterization of the single polypeptide that synthesizes uridine 5′-monophosphate from orotate in Ehrlich ascites carcinoma. Purification by tandem affinity chromatography of uridine-5′-monophosphate synthase. Biochemistry 19 (1980) 4699–4706. [PMID: 6893554]
[EC 2.4.2.10 created 1961, modified 1986]
 
 
EC 2.4.2.11      
Transferred entry: nicotinate phosphoribosyltransferase. Now EC 6.3.4.21, nicotinate phosphoribosyltransferase.
[EC 2.4.2.11 created 1961, deleted 2013]
 
 
EC 2.4.2.12     
Accepted name: nicotinamide phosphoribosyltransferase
Reaction: nicotinamide D-ribonucleotide + diphosphate = nicotinamide + 5-phospho-α-D-ribose 1-diphosphate
For diagram of NADP+ biosynthesis, click here
Other name(s): NMN pyrophosphorylase; nicotinamide mononucleotide pyrophosphorylase; nicotinamide mononucleotide synthetase; NMN synthetase; nicotinamide-nucleotide:diphosphate phospho-α-D-ribosyltransferase
Systematic name: nicotinamide-D-ribonucleotide:diphosphate phospho-α-D-ribosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-27-7
References:
1.  Preiss, J. and Handler, P. Enzymatic synthesis of nicotinamide mononucleotide. J. Biol. Chem. 225 (1957) 759–770. [PMID: 13416279]
[EC 2.4.2.12 created 1961]
 
 
EC 2.4.2.13      
Transferred entry: now EC 2.5.1.6 methionine adenosyltransferase
[EC 2.4.2.13 created 1961, deleted 1965]
 
 
EC 2.4.2.14     
Accepted name: amidophosphoribosyltransferase
Reaction: 5-phospho-β-D-ribosylamine + diphosphate + L-glutamate = L-glutamine + 5-phospho-α-D-ribose 1-diphosphate + H2O
For diagram of ribose activation, click here
Other name(s): phosphoribosyldiphosphate 5-amidotransferase; glutamine phosphoribosyldiphosphate amidotransferase; α-5-phosphoribosyl-1-pyrophosphate amidotransferase; 5′-phosphoribosylpyrophosphate amidotransferase; 5-phosphoribosyl-1-pyrophosphate amidotransferase; 5-phosphororibosyl-1-pyrophosphate amidotransferase; glutamine 5-phosphoribosylpyrophosphate amidotransferase; glutamine ribosylpyrophosphate 5-phosphate amidotransferase; phosphoribose pyrophosphate amidotransferase; phosphoribosyl pyrophosphate amidotransferase; phosphoribosylpyrophosphate glutamyl amidotransferase; 5-phosphoribosylamine:diphosphate phospho-α-D-ribosyltransferase (glutamate-amidating)
Systematic name: 5-phospho-β-D-ribosylamine:diphosphate phospho-α-D-ribosyltransferase (glutamate-amidating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-82-7
References:
1.  Caskey, C.T., Ashton, D.M. and Wyngaarden, J.B. The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J. Biol. Chem. 239 (1964) 2570–2579. [PMID: 14235537]
2.  Hartman, S.C. and Buchanan, J.M. Biosynthesis of the purines. XXI. 5-Phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 233 (1958) 451–455. [PMID: 13563519]
[EC 2.4.2.14 created 1961]
 
 
EC 2.4.2.15     
Accepted name: guanosine phosphorylase
Reaction: guanosine + phosphate = guanine + α-D-ribose 1-phosphate
Systematic name: guanosine:phosphate α-D-ribosyltransferase
Comments: Also acts on deoxyguanosine.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9030-28-8
References:
1.  Yamada, E.W. The phosphorolysis of nucleosides by rabbit bone marrow. J. Biol. Chem. 236 (1961) 3043–3046. [PMID: 14008731]
[EC 2.4.2.15 created 1965]
 
 
EC 2.4.2.16     
Accepted name: urate-ribonucleoside phosphorylase
Reaction: urate D-ribonucleoside + phosphate = urate + α-D-ribose 1-phosphate
Other name(s): UAR phosphorylase; urate-ribonucleotide:phosphate D-ribosyltransferase (incorrect); urate-ribonucleotide:phosphate α-D-ribosyltransferase (incorrect); urate-ribonucleotide phosphorylase (incorrect)
Systematic name: urate-D-ribonucleoside:phosphate α-D-ribosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-29-9
References:
1.  Laster, L. and Blair, A. An intestinal phosphorylase for uric acid ribonucleoside. J. Biol. Chem. 238 (1963) 3348–3357. [PMID: 14085385]
[EC 2.4.2.16 created 1965]
 
 
EC 2.4.2.17     
Accepted name: ATP phosphoribosyltransferase
Reaction: 1-(5-phospho-β-D-ribosyl)-ATP + diphosphate = ATP + 5-phospho-α-D-ribose 1-diphosphate
For diagram of histidine biosynthesis (early stages), click here
Other name(s): phosphoribosyl-ATP pyrophosphorylase; adenosine triphosphate phosphoribosyltransferase; phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase; phosphoribosyl ATP synthetase; phosphoribosyl ATP:pyrophosphate phosphoribosyltransferase; phosphoribosyl-ATP:pyrophosphate-phosphoribosyl phosphotransferase; phosphoribosyladenosine triphosphate pyrophosphorylase; phosphoribosyladenosine triphosphate synthetase; 1-(5-phospho-D-ribosyl)-ATP:diphosphate phospho-α-D-ribosyl-transferase
Systematic name: 1-(5-phospho-β-D-ribosyl)-ATP:diphosphate phospho-α-D-ribosyl-transferase
Comments: Involved in histidine biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9031-46-3
References:
1.  Ames, B.N., Martin, R.G. and Garry, B.J. The first step of histidine biosynthesis. J. Biol. Chem. 236 (1961) 2019–2026. [PMID: 13682989]
2.  Martin, R.G. The phosphorolysis of nucleosides by rabbit bone marrow: The nature of feedback inhibition by histidine. J. Biol. Chem. 238 (1963) 257–268.
3.  Voll, M.J., Appella, E. and Martin, R.G. Purification and composition studies of phosphoribosyladenosine triphosphate:pyrophosphate phosphoribosyltransferase, the first enzyme of histidine biosynthesis. J. Biol. Chem. 242 (1967) 1760–1767. [PMID: 5337591]
[EC 2.4.2.17 created 1972]
 
 
EC 2.4.2.18     
Accepted name: anthranilate phosphoribosyltransferase
Reaction: N-(5-phospho-D-ribosyl)-anthranilate + diphosphate = anthranilate + 5-phospho-α-D-ribose 1-diphosphate
For diagram of tryptophan biosynthesis, click here
Other name(s): phosphoribosyl-anthranilate pyrophosphorylase; PRT; anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase; anthranilate phosphoribosylpyrophosphate phosphoribosyltransferase; phosphoribosylanthranilate pyrophosphorylase; phosphoribosylanthranilate transferase; anthranilate-PP-ribose-P phosphoribosyltransferase
Systematic name: N-(5-phospho-D-ribosyl)-anthranilate:diphosphate phospho-α-D-ribosyltransferase
Comments: In some organisms, this enzyme is part of a multifunctional protein together with one or more other components of the system for biosynthesis of tryptophan [EC 4.1.1.48 (indole-3-glycerol-phosphate synthase), EC 4.1.3.27 (anthranilate synthase), EC 4.2.1.20 (tryptophan synthase) and EC 5.3.1.24 (phosphoribosylanthranilate isomerase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9059-35-2
References:
1.  Creighton, T.E. and Yanofsky, C. Chorismate to tryptophan (Escherichia coli) - anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol. 17A (1970) 365–380.
2.  Hütter, R., Niederberger, P. and DeMoss, J.A. Tryptophan synthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40 (1986) 55–77. [DOI] [PMID: 3535653]
3.  Ito, J. and Yanofsky, C. Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J. Bacteriol. 97 (1969) 734–742. [PMID: 4886290]
4.  Wegman, J. and DeMoss, J.A. The enzymatic conversion of anthranilate to indolylglycerol phosphate in Neurospora crassa. J. Biol. Chem. 240 (1965) 3781–3788. [PMID: 5842052]
[EC 2.4.2.18 created 1972]
 
 
EC 2.4.2.19     
Accepted name: nicotinate-nucleotide diphosphorylase (carboxylating)
Reaction: β-nicotinate D-ribonucleotide + diphosphate + CO2 = pyridine-2,3-dicarboxylate + 5-phospho-α-D-ribose 1-diphosphate
For diagram of NAD+ biosynthesis, click here
Glossary: quinolinate = pyridine-2,3-dicarboxylate
Other name(s): quinolinate phosphoribosyltransferase (decarboxylating); quinolinic acid phosphoribosyltransferase; QAPRTase; NAD+ pyrophosphorylase; nicotinate mononucleotide pyrophosphorylase (carboxylating); quinolinic phosphoribosyltransferase
Systematic name: β-nicotinate-D-ribonucleotide:diphosphate phospho-α-D-ribosyltransferase (carboxylating)
Comments: The reaction is catalysed in the opposite direction. Since quinolinate is synthesized from L-tryptophan in eukaryotes, but from L-aspartate in some prokaryotes, this is the first NAD+ biosynthesis enzyme shared by both eukaryotes and prokaryotes [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37277-74-0
References:
1.  Gholson, R.K., Ueda, I., Ogasawara, N. and Henderson, L.M. The enzymatic conversion of quinolinate to nicotinic acid mononucleotide in mammalian liver. J. Biol. Chem. 239 (1964) 1208–1214. [PMID: 14165928]
2.  Packman, P.M. and Jakoby, W.B. Crystalline quinolinate phosphoribosyltransferase. J. Biol. Chem. 240 (1965) 4107–4108. [PMID: 5320648]
3.  Katoh, A., Uenohara, K., Akita, M. and Hashimoto, T. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol. 141 (2006) 851–857. [DOI] [PMID: 16698895]
[EC 2.4.2.19 created 1972]
 
 
EC 2.4.2.20     
Accepted name: dioxotetrahydropyrimidine phosphoribosyltransferase
Reaction: a 2,4-dioxotetrahydropyrimidine D-ribonucleotide + diphosphate = a 2,4-dioxotetrahydropyrimidine + 5-phospho-α-D-ribose 1-diphosphate
Other name(s): dioxotetrahydropyrimidine-ribonucleotide pyrophosphorylase; dioxotetrahydropyrimidine phosphoribosyl transferase; dioxotetrahydropyrimidine ribonucleotide pyrophosphorylase; 2,4-dioxotetrahydropyrimidine-nucleotide:diphosphate phospho-α-D-ribosyltransferase
Systematic name: 2,4-dioxotetrahydropyrimidine-D-ribonucleotide:diphosphate phospho-α-D-ribosyltransferase
Comments: Acts (in the reverse direction) on uracil and other pyrimidines and pteridines containing a 2,4-diketo structure.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-75-1
References:
1.  Hatfield, D. and Wyngaarden, J.B. 3-Ribosylpurines. I. Synthesis of (3-ribosyluric acid) 5′-phosphate and (3-ribosylxanthine) 5′-phosphate by a pyrimidine ribonucleotide pyrophosphorylase of beef erythrocytes. J. Biol. Chem. 239 (1964) 2580–2586. [PMID: 14235538]
[EC 2.4.2.20 created 1972]
 
 
EC 2.4.2.21     
Accepted name: nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase
Reaction: β-nicotinate D-ribonucleotide + 5,6-dimethylbenzimidazole = nicotinate + α-ribazole 5′-phosphate
For diagram of the enzyme’s role in corrin biosynthesis, click here
Glossary: α-ribazole 5′-phosphate = N1-(5-phospho-α-D-ribosyl)-5,6-dimethylbenzimidazole
Other name(s): nicotinate mononucleotide-dimethylbenzimidazole phosphoribosyltransferase; nicotinate ribonucleotide:benzimidazole (adenine) phosphoribosyltransferase; nicotinate-nucleotide:dimethylbenzimidazole phospho-D-ribosyltransferase; CobT; nicotinate mononucleotide (NaMN):5,6-dimethylbenzimidazole phosphoribosyltransferase
Systematic name: nicotinate-nucleotide:5,6-dimethylbenzimidazole phospho-D-ribosyltransferase
Comments: Also acts on benzimidazole, and the clostridial enzyme acts on adenine to form 7-α-D-ribosyladenine 5′-phosphate. The product of the reaction, α-ribazole 5′-phosphate, forms part of the corrin-biosynthesis pathway and is a substrate for EC 2.7.8.26, adenosylcobinamide-GDP ribazoletransferase [4]. It can also be dephosphorylated to form α-ribazole by the action of EC 3.1.3.73, α-ribazole phosphatase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37277-76-2
References:
1.  Friedmann, H.C. Partial purification and properties of a single displacement trans-N-glycosidase. J. Biol. Chem. 240 (1965) 413–418. [PMID: 14253445]
2.  Friedmann, H.C. and Fyfe, J.A. Pseudovitamin B12 biosynthesis. Enzymatic formation of a new adenylic acid, 7-α-D-ribofuranosyladenine 5′-phosphate. J. Biol. Chem. 244 (1969) 1667–1671. [PMID: 5780835]
3.  Fyfe, J.A. and Friedmann, H.C. Vitamin B12 biosynthesis. Enzyme studies on the formation of the α-glycosidic nucleotide precursor. J. Biol. Chem. 244 (1969) 1659–1666. [PMID: 4238408]
4.  Cameron, B., Blanche, F., Rouyez, M.C., Bisch, D., Famechon, A., Couder, M., Cauchois, L., Thibaut, D., Debussche, L. and Crouzet, J. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5′-phosphate) synthase. J. Bacteriol. 173 (1991) 6066–6073. [DOI] [PMID: 1917841]
5.  Cheong, C.G., Escalante-Semerena, J.C. and Rayment, I. Structural investigation of the biosynthesis of alternative lower ligands for cobamides by nicotinate mononucleotide: 5,6-dimethylbenzimidazole phosphoribosyltransferase from Salmonella enterica. J. Biol. Chem. 276 (2001) 37612–37620. [DOI] [PMID: 11441022]
6.  Cheong, C.G., Escalante-Semerena, J.C. and Rayment, I. Capture of a labile substrate by expulsion of water molecules from the active site of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella enterica. J. Biol. Chem. 277 (2002) 41120–41127. [DOI] [PMID: 12101181]
[EC 2.4.2.21 created 1972]
 
 
EC 2.4.2.22     
Accepted name: xanthine phosphoribosyltransferase
Reaction: XMP + diphosphate = 5-phospho-α-D-ribose 1-diphosphate + xanthine
Glossary: XMP = 9-(5-phospho-β-D-ribosyl)xanthine = xanthosine 5′-phosphate
Other name(s): Xan phosphoribosyltransferase; xanthosine 5′-phosphate pyrophosphorylase; xanthylate pyrophosphorylase; xanthylic pyrophosphorylase; XMP pyrophosphorylase; 5-phospho-α-D-ribose-1-diphosphate:xanthine phospho-D-ribosyltransferase; 9-(5-phospho-β-D-ribosyl)xanthine:diphosphate 5-phospho-α-D-ribosyltransferase
Systematic name: XMP:diphosphate 5-phospho-α-D-ribosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9023-10-3
References:
1.  Krenitsky, T.A., Neil, S.M. and Miller, R.L. Guanine and xanthine phosphoribosyltransfer activities of Lactobacillus casei and Escherichia coli. Their relationship to hypoxanthine and adenine phosphoribosyltransfer activities. J. Biol. Chem. 245 (1970) 2605–2611. [PMID: 4910918]
[EC 2.4.2.22 created 1972]
 
 
EC 2.4.2.23      
Transferred entry: deoxyuridine phosphorylase. This activity has been shown to be catalysed by EC 2.4.2.2, pyrimidine-nucleoside phosphorylase, EC 2.4.2.3, uridine phosphorylase, and EC 2.4.2.4, thymidine phosphorylase.
[EC 2.4.2.23 created 1972, deleted 2013]
 
 
EC 2.4.2.24     
Accepted name: 1,4-β-D-xylan synthase
Reaction: UDP-D-xylose + [(1→4)-β-D-xylan]n = UDP + [(1→4)-β-D-xylan]n+1
Other name(s): uridine diphosphoxylose-1,4-β-xylan xylosyltransferase; 1,4-β-xylan synthase; xylan synthase; xylan synthetase; UDP-D-xylose:1,4-β-D-xylan 4-β-D-xylosyltransferase
Systematic name: UDP-D-xylose:(1→4)-β-D-xylan 4-β-D-xylosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-73-9
References:
1.  Bailey, R.W. and Hassid, W.Z. Xylan synthesis from uridine-diphosphate-D-xylose by particulate preparations from immature corncobs. Proc. Natl. Acad. Sci. USA 56 (1966) 1586–1593. [DOI] [PMID: 16591393]
[EC 2.4.2.24 created 1972 as EC 2.4.1.72, transferred 1976 to EC 2.4.2.24]
 
 
EC 2.4.2.25     
Accepted name: flavone apiosyltransferase
Reaction: UDP-α-D-apiose + apigenin 7-O-β-D-glucoside = UDP + apigenin 7-O-[β-D-apiosyl-(1→2)-β-D-glucoside]
For diagram of apigenin derivatives biosynthesis, click here
Glossary: apigenin = 4′,5,7-trihydroxyflavone
β-D-apiose = (2R,3R,4R)-4-(hydroxymethyl)tetrahydrofuran-2,3,4-triol
Other name(s): uridine diphosphoapiose-flavone apiosyltransferase; UDP-apiose:7-O-(β-D-glucosyl)-flavone apiosyltransferase
Systematic name: UDP-apiose:5,4′-dihydroxyflavone 7-O-β-D-glucoside 2′′-O-β-D-apiofuranosyltransferase
Comments: 7-O-β-D-Glucosides of a number of flavonoids and of 4-substituted phenols can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37332-49-3
References:
1.  Ortmann, R., Sutter, A. and Grisebach, H. Purification and properties of UDPapiose: 7-O-(β-D-glucosyl)-flavone apiosyltransferase from cell suspension cultures of parsley. Biochim. Biophys. Acta 289 (1972) 293–302. [DOI] [PMID: 4650134]
[EC 2.4.2.25 created 1976]
 
 
EC 2.4.2.26     
Accepted name: protein xylosyltransferase
Reaction: UDP-α-D-xylose + [protein]-L-serine = UDP + [protein]-3-O-(β-D-xylosyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Other name(s): UDP-D-xylose:core protein β-D-xylosyltransferase; UDP-D-xylose:core protein xylosyltransferase; UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase; UDP-xylose-core protein β-D-xylosyltransferase; uridine diphosphoxylose-core protein β-xylosyltransferase; uridine diphosphoxylose-protein xylosyltransferase; UDP-D-xylose:protein β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:protein β-D-xylosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 55576-38-0
References:
1.  Stoolmiller, A.C., Horwitz, A.L. and Dorfman, A. Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J. Biol. Chem. 247 (1972) 3525–3532. [PMID: 5030630]
2.  Götting, C., Kuhn, J., Zahn, R., Brinkmann, T. and Kleesiek, K. Molecular cloning and expression of human UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 304 (2000) 517–528. [DOI] [PMID: 11099377]
[EC 2.4.2.26 created 1976, modified 2002, modified 2016]
 
 
EC 2.4.2.27     
Accepted name: dTDP-dihydrostreptose—streptidine-6-phosphate dihydrostreptosyltransferase
Reaction: dTDP-L-dihydrostreptose + streptidine 6-phosphate = dTDP + O-(1→4)-α-L-dihydrostreptosyl-streptidine 6-phosphate
Other name(s): thymidine diphosphodihydrostreptose-streptidine 6-phosphate dihydrostreptosyltransferase
Systematic name: dTDP-L-dihydrostreptose:streptidine-6-phosphate dihydrostreptosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 73699-20-4
References:
1.  Kniep, B. and Grisebach, H. Biosynthesis of streptomycin. Purification and properties of a dTDP-L-dihydrostreptose: streptidine-6-phosphate dihydrostreptosyltransferase from Streptomyces griseus. Eur. J. Biochem. 105 (1980) 139–144. [DOI] [PMID: 6768553]
[EC 2.4.2.27 created 1982]
 
 
EC 2.4.2.28     
Accepted name: S-methyl-5′-thioadenosine phosphorylase
Reaction: S-methyl-5′-thioadenosine + phosphate = adenine + S-methyl-5-thio-α-D-ribose 1-phosphate
For diagram of methionine salvage, click here
Other name(s): 5′-deoxy-5′-methylthioadenosine phosphorylase; MTA phosphorylase; MeSAdo phosphorylase; MeSAdo/Ado phosphorylase; methylthioadenosine phosphorylase; methylthioadenosine nucleoside phosphorylase; 5′-methylthioadenosine:phosphate methylthio-D-ribosyl-transferase; S-methyl-5-thioadenosine phosphorylase; S-methyl-5-thioadenosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Systematic name: S-methyl-5′-thioadenosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Comments: Also acts on 5′-deoxyadenosine and other analogues having 5′-deoxy groups.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 61970-06-7
References:
1.  Carteni-Farina, M., Oliva, A., Romeo, G., Napolitano, G., De Rosa, M., Gambacorta, A. and Zappia, V. 5′-Methylthioadenosine phosphorylase from Caldariella acidophila. Purification and properties. Eur. J. Biochem. 101 (1979) 317–324. [DOI] [PMID: 118001]
2.  Garbers, D.L. Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung. Biochim. Biophys. Acta 523 (1978) 82–93. [DOI] [PMID: 415762]
3.  Pegg, A.E. and Williams-Ashman, H.G. Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate. Biochem. J. 115 (1969) 241–247. [PMID: 5378381]
[EC 2.4.2.28 created 1983]
 
 
EC 2.4.2.29     
Accepted name: tRNA-guanosine34 preQ1 transglycosylase
Reaction: guanine34 in tRNA + 7-aminomethyl-7-carbaguanine = 7-aminomethyl-7-carbaguanine34 in tRNA + guanine
For diagram of queuine biosynthesis, click here
Glossary: 7-aminomethyl-7-carbaguanine = preQ1 = 7-aminomethyl-7-deazaguanine
7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
Other name(s): guanine insertion enzyme (ambiguous); tRNA transglycosylase (ambiguous); Q-insertase (ambiguous); transfer ribonucleate glycosyltransferase (ambiguous); tRNA guanine34 transglycosidase (ambiguous); TGT (ambiguous); transfer ribonucleic acid guanine34 transglycosylase (ambiguous)
Systematic name: tRNA-guanosine34:7-aminomethyl-7-deazaguanine tRNA-D-ribosyltransferase
Comments: Certain prokaryotic and eukaryotic tRNAs contain the modified base queuine at position 34. In eubacteria, which produce queuine de novo, the enzyme catalyses the exchange of guanine with the queuine precursor preQ1, which is ultimately modified to queuosine [5]. The enzyme can also use an earlier intermediate, preQ0, to replace guanine in unmodified tRNATyr and tRNAAsn [1]. This enzyme acts after EC 1.7.1.13, preQ1 synthase, in the queuine-biosynthesis pathway. cf. EC 2.4.2.64, tRNA-guanosine34 queuine transglycosylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72162-89-1
References:
1.  Okada, N., Noguchi, S., Kasai, H., Shindo-Okada, N., Ohgi, T., Goto, T. and Nishimura, S. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction. J. Biol. Chem. 254 (1979) 3067–3073. [PMID: 372186]
2.  Noguchi, S., Nishimura, Y., Hirota, Y. and Nishimura, S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J. Biol. Chem. 257 (1982) 6544–6550. [PMID: 6804468]
3.  Chong, S., Curnow, A.W., Huston, T.J. and Garcia, G.A. tRNA-guanine transglycosylase from Escherichia coli is a zinc metalloprotein. Site-directed mutagenesis studies to identify the zinc ligands. Biochemistry 34 (1995) 3694–3701. [DOI] [PMID: 7893665]
4.  Goodenough-Lashua, D.M. and Garcia, G.A. tRNA-guanine transglycosylase from E. coli: a ping-pong kinetic mechanism is consistent with nucleophilic catalysis. Bioorg. Chem. 31 (2003) 331–344. [DOI] [PMID: 12877882]
5.  Todorov, K.A. and Garcia, G.A. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity. Biochemistry 45 (2006) 617–625. [DOI] [PMID: 16401090]
[EC 2.4.2.29 created 1984, modified 2007, modified 2012, modified 2020]
 
 
EC 2.4.2.30     
Accepted name: NAD+ ADP-ribosyltransferase
Reaction: NAD+ + (ADP-D-ribosyl)n-acceptor = nicotinamide + (ADP-D-ribosyl)n+1-acceptor + H+
For diagram of reaction, click here
Other name(s): poly(ADP-ribose) synthase; ADP-ribosyltransferase (polymerizing); NAD ADP-ribosyltransferase; PARP; PARP-1; NAD+:poly(adenine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyl-transferase (incorrect); NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyl-transferase
Systematic name: NAD+:poly(ADP-D-ribosyl)-acceptor ADP-D-ribosyl-transferase
Comments: The ADP-D-ribosyl group of NAD+ is transferred to an acceptor carboxy group on a histone or the enzyme itself, and further ADP-ribosyl groups are transferred to the 2′-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20–30 units.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 58319-92-9
References:
1.  Ueda, K. and Hayaishi, O. ADP-ribosylation. Annu. Rev. Biochem. 54 (1985) 73–100. [DOI] [PMID: 3927821]
2.  Ueda, K., Kawaichi, M. and Hayaishi, O. Poly(ADP-ribose) synthetase. In: Hayaishi, O. and Ueda, K. (Ed.), ADP-Ribosylation Reactions: Biology and Medicine, Academic Press, London, 1982, pp. 117–155.
3.  Ushiro, H., Yokoyama, Y. and Shizuta, Y. Purification and characterization of poly (ADP-ribose) synthetase from human placenta. J. Biol. Chem. 262 (1987) 2352–2357. [PMID: 2434482]
[EC 2.4.2.30 created 1984, modified 1990]
 
 
EC 2.4.2.31     
Accepted name: NAD+—protein-arginine ADP-ribosyltransferase
Reaction: NAD+ + protein L-arginine = nicotinamide + Nω-(ADP-D-ribosyl)-protein-L-arginine
Other name(s): ADP-ribosyltransferase; mono(ADP-ribosyl)transferase; NAD+:L-arginine ADP-D-ribosyltransferase; NAD(P)+-arginine ADP-ribosyltransferase; NAD(P)+:L-arginine ADP-D-ribosyltransferase; mono-ADP-ribosyltransferase; ART; ART1; ART2; ART3; ART4; ART5; ART6; ART7; NAD(P)+—protein-arginine ADP-ribosyltransferase; NAD(P)+:protein-L-arginine ADP-D-ribosyltransferase
Systematic name: NAD+:protein-L-arginine ADP-D-ribosyltransferase
Comments: Protein mono-ADP-ribosylation is a reversible post-translational modification that plays a role in the regulation of cellular activities [4]. Arginine residues in proteins act as acceptors. Free arginine, agmatine [(4-aminobutyl)guanidine], arginine methyl ester and guanidine can also do so. The enzyme from some, but not all, species can also use NADP+ as acceptor (giving rise to Nω-[(2′-phospho-ADP)-D-ribosyl]-protein-L-arginine as the product), but more slowly [1,5]. The enzyme catalyses the NAD+-dependent activation of EC 4.6.1.1, adenylate cyclase. Some bacterial enterotoxins possess similar enzymic activities. (cf. EC 2.4.2.36 NAD+—diphthamide ADP-ribosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 81457-93-4
References:
1.  Moss, J., Stanley, S.J. and Oppenheimer, N.J. Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J. Biol. Chem. 254 (1979) 8891–8894. [PMID: 225315]
2.  Moss, J., Stanley, S.J. and Watkins, P.A. Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J. Biol. Chem. 255 (1980) 5838–5840. [PMID: 6247348]
3.  Ueda, K. and Hayaishi, O. ADP-ribosylation. Annu. Rev. Biochem. 54 (1985) 73–100. [DOI] [PMID: 3927821]
4.  Corda, D. and Di Girolamo, M. Functional aspects of protein mono-ADP-ribosylation. EMBO J. 22 (2003) 1953–1958. [DOI] [PMID: 12727863]
5.  Paone, G., Stevens, L.A., Levine, R.L., Bourgeois, C., Steagall, W.K., Gochuico, B.R. and Moss, J. ADP-ribosyltransferase-specific modification of human neutrophil peptide-1. J. Biol. Chem. 281 (2006) 17054–17060. [DOI] [PMID: 16627471]
[EC 2.4.2.31 created 1984, modified 1990, modified 2006]
 
 
EC 2.4.2.32     
Accepted name: dolichyl-phosphate D-xylosyltransferase
Reaction: UDP-D-xylose + dolichyl phosphate = UDP + dolichyl D-xylosyl phosphate
Glossary: dolichol
Systematic name: UDP-D-xylose:dolichyl-phosphate D-xylosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Waechter, C.J., Lucas, J.J. and Lennarz, W.J. Evidence for xylosyl lipids as intermediates in xylosyl transfers in hen oviduct membranes. Biochem. Biophys. Res. Commun. 56 (1974) 343–350. [DOI] [PMID: 4823870]
[EC 2.4.2.32 created 1984, modified 2003]
 
 
EC 2.4.2.33     
Accepted name: dolichyl-xylosyl-phosphate—protein xylosyltransferase
Reaction: dolichyl D-xylosyl phosphate + protein = dolichyl phosphate + D-xylosylprotein
Systematic name: dolichyl-D-xylosyl-phosphate:protein D-xylosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Waechter, C.J., Lucas, J.J. and Lennarz, W.J. Evidence for xylosyl lipids as intermediates in xylosyl transfers in hen oviduct membranes. Biochem. Biophys. Res. Commun. 56 (1974) 343–350. [DOI] [PMID: 4823870]
[EC 2.4.2.33 created 1984]
 
 
EC 2.4.2.34     
Accepted name: indolylacetylinositol arabinosyltransferase
Reaction: UDP-L-arabinose + (indol-3-yl)acetyl-1D-myo-inositol = UDP + (indol-3-yl)acetyl-myo-inositol 3-L-arabinoside
Other name(s): arabinosylindolylacetylinositol synthase; UDP-L-arabinose:indol-3-ylacetyl-myo-inositol L-arabinosyltransferase; UDP-L-arabinose:(indol-3-yl)acetyl-myo-inositol L-arabinosyltransferase
Systematic name: UDP-L-arabinose:(indol-3-yl)acetyl-1D-myo-inositol L-arabinosyltransferase
Comments: The position of acylation is indeterminate because of the ease of acyl transfer between hydroxy groups. For a diagram showing the biosynthesis of UDP-L-arabinose, click here.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 84720-96-7
References:
1.  Corcuera, L.J. and Bandurski, R.S. Biosynthesis of indol-3-yl-acetyl-myo-inositol arabinoside in kernels of Zea mays L. Plant Physiol. 70 (1982) 1664–1666. [PMID: 16662740]
[EC 2.4.2.34 created 1986, modified 2003]
 
 
EC 2.4.2.35     
Accepted name: flavonol-3-O-glycoside xylosyltransferase
Reaction: UDP-α-D-xylose + a flavonol 3-O-glycoside = UDP + a flavonol 3-[β-D-xylosyl-(1→2)-β-D-glycoside]
For diagram of quercetin 3-o-glycoside derivatives biosynthesis, click here
Other name(s): UDP-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:flavonol-3-O-glycoside 2′′-O-β-D-xylosyltransferase
Comments: Flavonol 3-O-glucoside, flavonol 3-O-galactoside and, more slowly, rutin, can act as acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 83380-90-9
References:
1.  Kleinehollenhorst, G., Behrens, H., Pegels, G., Srunk, N. and Wiermann, R. Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv apeldoorn - characterization and activity of 3 different O-glycosyltransferases during anther development. Z. Natursforsch. C: Biosci. 37 (1982) 587–599.
[EC 2.4.2.35 created 1986, modified 2014]
 
 
EC 2.4.2.36     
Accepted name: NAD+—diphthamide ADP-ribosyltransferase
Reaction: NAD+ + diphthamide-[translation elongation factor 2] = nicotinamide + N-(ADP-D-ribosyl)diphthamide-[translation elongation factor 2]
For diagram of diphthamide biosynthesis, click here
Glossary: diphthamide = 2-[4-amino-4-oxo-3-(trimethylammonio)butyl]-L-histidine
Other name(s): ADP-ribosyltransferase; mono(ADPribosyl)transferase; NAD—diphthamide ADP-ribosyltransferase; NAD+:peptide-diphthamide N-(ADP-D-ribosyl)transferase
Systematic name: NAD+:diphthamide-[translation elongation factor 2] N-(ADP-D-ribosyl)transferase
Comments: Diphtheria toxin and some other bacterial toxins catalyse this reaction, which inactivates translation elongation factor 2 (EF2). The acceptor is diphthamide, a unique modification of a histidine residue in the elongation factor found in archaebacteria and all eukaryotes, but not in eubacteria. cf. EC 2.4.2.31 NAD(P)+—protein-arginine ADP-ribosyltransferase. The relevant histidine of EF2 is His715 in mammals, His699 in yeast and His600 in Pyrococcus horikoshii.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 52933-21-8
References:
1.  Lee, H. and Iglewski, W.J. Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc. Natl. Acad. Sci. USA 81 (1984) 2703–2707. [DOI] [PMID: 6326138]
2.  Ueda, K. and Hayaishi, O. ADP-ribosylation. Annu. Rev. Biochem. 54 (1985) 73–100. [DOI] [PMID: 3927821]
[EC 2.4.2.36 created 1990, modified 2013]
 
 
EC 2.4.2.37     
Accepted name: NAD+—dinitrogen-reductase ADP-D-ribosyltransferase
Reaction: NAD+ + [dinitrogen reductase]-L-arginine = nicotinamide + [dinitrogen reductase]-Nω-α-(ADP-D-ribosyl)-L-arginine
Other name(s): NAD-azoferredoxin (ADPribose)transferase; NAD-dinitrogen-reductase ADP-D-ribosyltransferase; draT (gene name)
Systematic name: NAD+:[dinitrogen reductase] (ADP-D-ribosyl)transferase
Comments: The combined action of this enzyme and EC 3.2.2.24, ADP-ribosyl-[dinitrogen reductase] hydrolase, controls the activity level of nitrogenase (EC 1.18.6.1). In the presence of ammonium, the product of nitrogenase, this enzyme covalently links an ADP-ribose moiety to a specific arginine residue of the dinitrogenase reductase component of nitrogenase, blocking its activity.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 117590-45-1
References:
1.  Lowery, R.G. and Ludden, P.W. Purification and properties of dinitrogenase reductase ADP-ribosyltransferase from the photosynthetic bacterium Rhodospirillum rubrum. J. Biol. Chem. 263 (1988) 16714–16719. [PMID: 3141411]
2.  Fitzmaurice, W.P., Saari, L.L., Lowery, R.G., Ludden, P.W. and Roberts, G.P. Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum. Mol. Gen. Genet. 218 (1989) 340–347. [PMID: 2506427]
3.  Moure, V.R., Costa, F.F., Cruz, L.M., Pedrosa, F.O., Souza, E.M., Li, X.D., Winkler, F. and Huergo, L.F. Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr. Top. Microbiol. Immunol. 384 (2015) 89–106. [DOI] [PMID: 24934999]
[EC 2.4.2.37 created 1992, modified 2015]
 
 
EC 2.4.2.38     
Accepted name: glycoprotein 2-β-D-xylosyltransferase
Reaction: UDP-α-D-xylose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = UDP + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-[β-D-Xyl-(1→2)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
For diagram of mannosyl-glycoprotein fucosyl and xylosyl transferases, click here
Other name(s): β1,2-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase; UDP-D-xylose:glycoprotein (D-xylose to the 3,6-disubstituted mannose of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 2-β-D-xylosyltransferase
Systematic name: UDP-α-D-xylose:N4-{β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→3)-[β-D-GlcNAc-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 2-β-D-xylosyltransferase (configuration-inverting)
Comments: Specific for N-linked oligosaccharides (N-glycans).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 141256-56-6
References:
1.  Zeng, Y., Bannon, G., Thomas, V.H., Rice, K., Drake, R. and Elbein, A. Purification and specificity of β1,2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J. Biol. Chem. 272 (1997) 31340–31347. [DOI] [PMID: 9395463]
2.  Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glössl, J. and Steinkellner, H. Molecular cloning and functional expression of β1,2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472 (2000) 105–108. [DOI] [PMID: 10781814]
[EC 2.4.2.38 created 2001]
 
 
EC 2.4.2.39     
Accepted name: xyloglucan 6-xylosyltransferase
Reaction: Transfers an α-D-xylosyl residue from UDP-D-xylose to a glucose residue in xyloglucan, forming an α-(1→6)-D-xylosyl-D-glucose linkage
Other name(s): uridine diphosphoxylose-xyloglucan 6α-xylosyltransferase; xyloglucan 6-α-D-xylosyltransferase; UDP-D-xylose:xyloglucan 1,6-α-D-xylosyltransferase
Systematic name: UDP-D-xylose:xyloglucan 6-α-D-xylosyltransferase
Comments: In association with EC 2.4.1.168 (xyloglucan 4-glucosyltransferase), this enzyme brings about the synthesis of xyloglucan; concurrent transfers of glucose and xylose are necessary for this synthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 80238-01-3
References:
1.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells. Occurrence and some properties of xyloglucan 4-β-D-glucosyltransferase and 6-α-D-xylosyltransferase. J. Biol. Chem. 256 (1981) 11117–11122. [PMID: 6457048]
2.  Hayashi, T. and Matsuda, K. Biosynthesis of xyloglucan in suspension-cultured soybean cells - synthesis of xyloglucan from UDP-glucose and UDP-xylose in the cell-free system. Plant Cell Physiol. 22 (1981) 517–523.
[EC 2.4.2.39 created 1989 as EC 2.4.1.169, transferred 2003 to EC 2.4.2.39]
 
 
EC 2.4.2.40     
Accepted name: zeatin O-β-D-xylosyltransferase
Reaction: UDP-D-xylose + zeatin = UDP + O-β-D-xylosylzeatin
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Other name(s): uridine diphosphoxylose-zeatin xylosyltransferase; zeatin O-xylosyltransferase
Systematic name: UDP-D-xylose:zeatin O-β-D-xylosyltransferase
Comments: Does not act on UDP-glucose (cf. EC 2.4.1.103 alizarin 2-β-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 110541-22-5
References:
1.  Turner, J.E., Mok, D.W.S., Mok, M.C. and Shaw, G. Isolation and partial-purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc. Natl. Acad. Sci. USA 84 (1987) 3714–3717. [DOI] [PMID: 16593839]
[EC 2.4.2.40 created 1992 as EC 2.4.1.204, transferred 2003 to EC 2.4.2.40]
 
 
EC 2.4.2.41     
Accepted name: xylogalacturonan β-1,3-xylosyltransferase
Reaction: Transfers a xylosyl residue from UDP-D-xylose to a D-galactose residue in xylogalacturonan, forming a β-1,3-D-xylosyl-D-galactose linkage.
Other name(s): xylogalacturonan xylosyltransferase; XGA xylosyltransferase
Systematic name: UDP-D-xylose:xylogalacturonan 3-β-D-xylosyltransferase
Comments: Involved in plant cell wall synthesis. The enzyme from Arabidopsis thaliana also transfers D-xylose from UDP-D-xylose onto oligogalacturonide acceptors. The enzyme did not show significant activity with UDP-glucose, UDP-galactose, or UDP-N-acetyl-D-glucosamine as sugar donors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Jensen, J.K., Sorensen, S.O., Harholt, J., Geshi, N., Sakuragi, Y., Moller, I., Zandleven, J., Bernal, A.J., Jensen, N.B., Sorensen, C., Pauly, M., Beldman, G., Willats, W.G. and Scheller, H.V. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20 (2008) 1289–1302. [DOI] [PMID: 18460606]
[EC 2.4.2.41 created 2009]
 
 
EC 2.4.2.42     
Accepted name: UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase
Reaction: UDP-α-D-xylose + [protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine = UDP + [protein with EGF-like domain]-3-O-[α-D-xylosyl-(1→3)-β-D-glucosyl]-L-serine
Other name(s): β-glucoside α-1,3-xylosyltransferase; UDP-α-D-xylose:β-D-glucoside 3-α-D-xylosyltransferase; GXYLT1 (gene name); GXYLT2 (gene name)
Systematic name: UDP-α-D-xylose:[protein with EGF-like domain]-3-O-(β-D-glucosyl)-L-serine 3-α-D-xylosyltransferase (configuration-retaining)
Comments: The enzyme, found in animals and insects, is involved in the biosynthesis of the α-D-xylosyl-(1→3)-α-D-xylosyl-(1→3)-β-D-glucosyl trisaccharide on epidermal growth factor-like (EGF-like) domains [2,3]. When present on Notch proteins, the trisaccharide functions as a modulator of the signalling activity of this protein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Omichi, K., Aoki, K., Minamida, S. and Hase, S. Presence of UDP-D-xylose: β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α 1-3Glc β-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur. J. Biochem. 245 (1997) 143–146. [DOI] [PMID: 9128735]
2.  Ishimizu, T., Sano, K., Uchida, T., Teshima, H., Omichi, K., Hojo, H., Nakahara, Y. and Hase, S. Purification and substrate specificity of UDP-D-xylose:β-D-glucoside α-1,3-D-xylosyltransferase involved in the biosynthesis of the Xyl α1-3Xyl α1-3Glc β1-O-Ser on epidermal growth factor-like domains. J. Biochem. 141 (2007) 593–600. [DOI] [PMID: 17317689]
3.  Sethi, M.K., Buettner, F.F., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R. and Bakker, H. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285 (2010) 1582–1586. [PMID: 19940119]
[EC 2.4.2.42 created 2010, modified 2020]
 
 
EC 2.4.2.43     
Accepted name: lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase
Reaction: (1) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = α-Kdo-(2→4)-α-Kdo-(2→6)-[4-P-L-Ara4N]-lipid A + ditrans,octacis-undecaprenyl phosphate
(2) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + lipid IVA = lipid IIA + ditrans,octacis-undecaprenyl phosphate
(3) 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate + α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA + ditrans,octacis-undecaprenyl phosphate
For diagram of lipid IIA biosynthesis, click here
Glossary: lipid IVA = 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
lipid IIA = 4-amino-4-deoxy-β-L-arabinopyranosyl 2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-α-D-glucopyranosyl phosphate
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-hydroxytetradecanoyl]amino}-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
4′-α-L-Ara4N-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA = 4-amino-4-deoxy-α-L-arabinopyranosyl 2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-phospho-β-D-glucopyranosy-(1→6)-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucopyranosyl phosphate
lipid A = lipid A of Escherichia coli = 2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
α-Kdo-(2→4)-α-Kdo-(2→6)-[4′-P-α-L-Ara4N]-lipid A = (3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→4)-(3-deoxy-α-D-manno-oct-2-ulopyranosylonate)-(2→6)-2-deoxy-2-{[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino}-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-(4-amino-4-deoxy-α-L-arabinopyranosyl)phospho-β-D-glucopyranosyl-(1→6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-{[(3R)-3-hydroxytetradecanoyl]amino}-1-O-phosphono-α-D-glucopyranose
Other name(s): undecaprenyl phosphate-α-L-Ara4N transferase; 4-amino-4-deoxy-L-arabinose lipid A transferase; polymyxin resistance protein PmrK; arnT (gene name)
Systematic name: 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl-phosphate:lipid IVA 4-amino-4-deoxy-L-arabinopyranosyltransferase
Comments: Integral membrane protein present in the inner membrane of certain Gram negative endobacteria. In strains that do not produce 3-deoxy-D-manno-octulosonic acid (Kdo), the enzyme adds a single arabinose unit to the 1-phosphate moiety of the tetra-acylated lipid A precursor, lipid IVA. In the presence of a Kdo disaccharide, the enzyme primarily adds an arabinose unit to the 4-phosphate of lipid A molecules. The Salmonella typhimurium enzyme can add arabinose units to both positions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J. and Raetz, C.R. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276 (2001) 43122–43131. [DOI] [PMID: 11535604]
2.  Trent, M.S., Ribeiro, A.A., Doerrler, W.T., Lin, S., Cotter, R.J. and Raetz, C.R. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J. Biol. Chem. 276 (2001) 43132–43144. [DOI] [PMID: 11535605]
3.  Zhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I. and Raetz, C.R. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J. Biol. Chem. 276 (2001) 43111–43121. [DOI] [PMID: 11535603]
4.  Bretscher, L.E., Morrell, M.T., Funk, A.L. and Klug, C.S. Purification and characterization of the L-Ara4N transferase protein ArnT from Salmonella typhimurium. Protein Expr. Purif. 46 (2006) 33–39. [DOI] [PMID: 16226890]
5.  Impellitteri, N.A., Merten, J.A., Bretscher, L.E. and Klug, C.S. Identification of a functionally important loop in Salmonella typhimurium ArnT. Biochemistry 49 (2010) 29–35. [DOI] [PMID: 19947657]
[EC 2.4.2.43 created 2010, modified 2011]
 
 
EC 2.4.2.44     
Accepted name: S-methyl-5′-thioinosine phosphorylase
Reaction: S-methyl-5′-thioinosine + phosphate = hypoxanthine + S-methyl-5-thio-α-D-ribose 1-phosphate
Other name(s): MTIP; MTI phosphorylase; methylthioinosine phosphorylase
Systematic name: S-methyl-5′-thioinosine:phosphate S-methyl-5-thio-α-D-ribosyl-transferase
Comments: No activity with S-methyl-5′-thioadenosine. The catabolism of of 5′-methylthioadenosine in Pseudomonas aeruginosa involves deamination to S-methyl-5′-thioinosine (EC 3.5.4.31, S-methyl-5′-thioadenosine deaminase) and phosphorolysis to hypoxanthine [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Guan, R., Ho, M.C., Almo, S.C. and Schramm, V.L. Methylthioinosine phosphorylase from Pseudomonas aeruginosa. Structure and annotation of a novel enzyme in quorum sensing. Biochemistry 50 (2011) 1247–1254. [DOI] [PMID: 21197954]
[EC 2.4.2.44 created 2011]
 
 
EC 2.4.2.45     
Accepted name: decaprenyl-phosphate phosphoribosyltransferase
Reaction: trans,octacis-decaprenyl phosphate + 5-phospho-α-D-ribose 1-diphosphate = trans,octacis-decaprenylphospho-β-D-ribofuranose 5-phosphate + diphosphate
For diagram of decaprenylphosphoarabinofuranose biosynthesis, click here
Other name(s): 5-phospho-α-D-ribose-1-diphosphate:decaprenyl-phosphate 5-phosphoribosyltransferase; 5-phospho-α-D-ribose 1-pyrophosphate:decaprenyl phosphate 5-phosphoribosyltransferase; DPPR synthase; Rv3806
Systematic name: trans,octacis-decaprenylphospho-β-D-ribofuranose 5-phosphate:diphosphate phospho-α-D-ribosyltransferase
Comments: Requires Mg2+. Isolated from Mycobacterium tuberculosis. Has some activity with other polyprenyl phosphates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Huang, H., Scherman, M.S., D'Haeze, W., Vereecke, D., Holsters, M., Crick, D.C. and McNeil, M.R. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-α-D-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-D-arabinose synthesis. J. Biol. Chem. 280 (2005) 24539–24543. [DOI] [PMID: 15878857]
[EC 2.4.2.45 created 2012]
 
 
EC 2.4.2.46     
Accepted name: galactan 5-O-arabinofuranosyltransferase
Reaction: Adds an α-D-arabinofuranosyl group from trans,octacis-decaprenylphospho-β-D-arabinofuranose at the 5-O-position of the eighth, tenth and twelfth galactofuranose unit of the galactofuranan chain of [β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→6)]14-β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-N-acetyl-α-D-glucosaminyl-diphospho-trans,octacis-decaprenol
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): AftA; Rv3792
Systematic name: galactofuranan:trans,octacis-decaprenylphospho-β-D-arabinofuranose 5-O-α-D-arabinofuranosyltransferase
Comments: Isolated from Mycobacterium tuberculosis and Corynebacterium glutamicum. These arabinofuranosyl groups form the start of an arabinofuranan chain as part of the of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Alderwick, L.J., Seidel, M., Sahm, H., Besra, G.S. and Eggeling, L. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 281 (2006) 15653–15661. [DOI] [PMID: 16595677]
[EC 2.4.2.46 created 2012]
 
 
EC 2.4.2.47     
Accepted name: arabinofuranan 3-O-arabinosyltransferase
Reaction: Adds an α-D-arabinofuranosyl group from trans,octacis-decaprenylphospho-β-D-arabinofuranose at the 3-O-position of an α-(1→5)-arabinofuranan chain attached to a β-(1→5)-galactofuranan chain
For diagram of arabinofuranogalactofuranan biosynthesis, click here
Other name(s): AftC
Systematic name: α-(1→5)-arabinofuranan:trans,octacis-decaprenylphospho-β-D-arabinofuranose 3-O-α-D-arabinofuranosyltransferase
Comments: Isolated from Mycobacterium smegmatis. Involved in the formation of the cell wall in mycobacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Birch, H.L., Alderwick, L.J., Bhatt, A., Rittmann, D., Krumbach, K., Singh, A., Bai, Y., Lowary, T.L., Eggeling, L. and Besra, G.S. Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1-→3) arabinofuranosyltransferase. Mol. Microbiol. 69 (2008) 1191–1206. [DOI] [PMID: 18627460]
2.  Zhang, J., Angala, S.K., Pramanik, P.K., Li, K., Crick, D.C., Liav, A., Jozwiak, A., Swiezewska, E., Jackson, M. and Chatterjee, D. Reconstitution of functional mycobacterial arabinosyltransferase AftC proteoliposome and assessment of decaprenylphosphorylarabinose analogues as arabinofuranosyl donors. ACS Chem. Biol. 6 (2011) 819–828. [DOI] [PMID: 21595486]
[EC 2.4.2.47 created 2012]
 
 
EC 2.4.2.48     
Accepted name: tRNA-guanine15 transglycosylase
Reaction: guanine15 in tRNA + 7-cyano-7-carbaguanine = 7-cyano-7-carbaguanine15 in tRNA + guanine
Glossary: 7-cyano-7-carbaguanine = preQ0 = 7-cyano-7-deazaguanine
archaeosine = G* = 7-amidino-7-deazaguanosine
Other name(s): tRNA transglycosylase (ambiguous); transfer ribonucleate glycosyltransferase (ambiguous); tRNA guanine15 transglycosidase; TGT (ambiguous); transfer ribonucleic acid guanine15 transglycosylase
Systematic name: tRNA-guanine15:7-cyano-7-carbaguanine tRNA-D-ribosyltransferase
Comments: Archaeal tRNAs contain the modified nucleoside archaeosine at position 15. This archaeal enzyme catalyses the exchange of guanine at position 15 of tRNA with the base preQ0, which is ultimately modified to form the nucleoside archaeosine (cf. EC 2.6.1.97) [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bai, Y., Fox, D.T., Lacy, J.A., Van Lanen, S.G. and Iwata-Reuyl, D. Hypermodification of tRNA in thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. J. Biol. Chem. 275 (2000) 28731–28738. [DOI] [PMID: 10862614]
[EC 2.4.2.48 created 2012]
 
 
EC 2.4.2.49     
Accepted name: neamine phosphoribosyltransferase
Reaction: neamine + 5-phospho-α-D-ribose 1-diphosphate = 5′′-phosphoribostamycin + diphosphate
For diagram of neamine and ribostamycin biosynthesis, click here
Glossary: neamine = (2R,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-{[(1R,2R,3S,4R,6S)-4,6-diamino-2,3-dihydroxycyclohexyl]oxy}oxane-3,4-diol
ribostamycin = (2R,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-{[(1R,2R,3S,4R,6S)-4,6-diamino-2-{[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxycyclohexyl]oxy}oxane-3,4-diol
Other name(s): btrL (gene name); neoM (gene name)
Systematic name: neamine:5-phospho-α-D-ribose 1-diphosphate phosphoribosyltransferase
Comments: Involved in the biosynthetic pathways of several clinically important aminocyclitol antibiotics, including ribostamycin, neomycin and butirosin. The enzyme requires a divalent metal ion, optimally Mg2+, Ni2+ or Co2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kudo, F., Fujii, T., Kinoshita, S. and Eguchi, T. Unique O-ribosylation in the biosynthesis of butirosin. Bioorg. Med. Chem. 15 (2007) 4360–4368. [DOI] [PMID: 17482823]
[EC 2.4.2.49 created 2013]
 
 
EC 2.4.2.50     
Accepted name: cyanidin 3-O-galactoside 2′′-O-xylosyltransferase
Reaction: UDP-α-D-xylose + cyanidin 3-O-β-D-galactoside = UDP + cyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-galactoside)
For diagram of cyanidin galactoside biosynthesis, click here
Glossary: cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): CGXT
Systematic name: UDP-α-D-xylose:cyanidin-3-O-β-D-galactoside 2′′-O-xylosyltransferase
Comments: Isolated from the plant Daucus carota (Afghan cultivar carrot).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rose, A., Glassgen, W.E., Hopp, W. and Seitz, H.U. Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198 (1996) 397–403. [PMID: 8717136]
[EC 2.4.2.50 created 2013]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald