The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version



EC 2.4.1.21     
Accepted name: starch synthase (glycosyl-transferring)
Reaction: ADP-α-D-glucose + [(1→4)-α-D-glucosyl]n = ADP + [(1→4)-α-D-glucosyl]n+1
Other name(s): ADP-glucose—starch glucosyltransferase; adenosine diphosphate glucose-starch glucosyltransferase; adenosine diphosphoglucose-starch glucosyltransferase; ADP-glucose starch synthase; ADP-glucose synthase; ADP-glucose transglucosylase; ADP-glucose-starch glucosyltransferase; ADPG starch synthetase; ADPG-starch glucosyltransferase; starch synthetase; ADP-glucose:1,4-α-D-glucan 4-α-D-glucosyltransferase
Systematic name: ADP-α-D-glucose:(1→4)-α-D-glucan 4-α-D-glucosyltransferase
Comments: The accepted name varies according to the source of the enzyme and the nature of its synthetic product, e.g. starch synthase, bacterial glycogen synthase. Similar to EC 2.4.1.11 [glycogen(starch) synthase] but the preferred or mandatory nucleoside diphosphate sugar substrate is ADP-α-D-glucose. The entry covers starch and glycogen synthases utilizing ADP-α-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-10-8, 37338-93-5
References:
1.  Chambers, J.C. and Elbein, A.D. Biosynthesis of glucans in mung bean seedlings. Formation of β-(1,4)-glucans from GDP-glucose and β-(1,3)-glucans from UDP-glucose. Arch. Biochem. Biophys. 138 (1970) 620–631. [DOI] [PMID: 4317490]
2.  Frydman, R.B. and Cardini, C.E. Studies on adenosine diphosphate D-glucose: α-1,4-glucan α-4-glucosyltransferase of sweet-corn endosperm. Biochim. Biophys. Acta 96 (1965) 294–303. [DOI] [PMID: 14298833]
3.  Greenberg, E. and Preiss, J. Biosynthesis of bacterial glycogen. II. Purification and properties of the adenosine diphosphoglucose:glycogen transglucosylase of arthrobacter species NRRL B1973. J. Biol. Chem. 240 (1965) 2341–2348. [PMID: 14304835]
4.  Leloir, L.F., de Fekete, M.A. and Cardini, C.E. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. Biol. Chem. 236 (1961) 636–641. [PMID: 13760681]
5.  Preiss, J., Govins, S., Eidels, L., Lammel, C., Greenberg, E., Edelmann, P. and Sabraw, A. Regulatory mechanisms in the biosynthesis of α-1,4-glucans in bacteria and plants. In: Whelan, W.J. and Schultz, J. (Eds), Miami Winter Symposia, vol. 1, North Holland, Utrecht, 1970, pp. 122–138.
[EC 2.4.1.21 created 1965]
 
 
EC 2.4.1.210     
Accepted name: limonoid glucosyltransferase
Reaction: UDP-glucose + limonin = glucosyl-limonin + UDP
Other name(s): uridine diphosphoglucose-limonoid glucosyltransferase
Systematic name: UDP-glucose:limonin glucosyltransferase
Comments: The enzyme purified from navel orange albedo tissue also acts on the related tetranortriterpenoid nomilin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 195836-82-9
References:
1.  Shin, H., Suhayda, C.G., Hsu, W.-J. and Robertson, G.H. Purification of limonoid glucosyltransferase from navel orange albedo tissue. Phytochemistry 46 (1997) 33–37.
[EC 2.4.1.210 created 2000]
 
 
EC 2.4.1.211     
Accepted name: 1,3-β-galactosyl-N-acetylhexosamine phosphorylase
Reaction: β-D-galactopyranosyl-(1→3)-N-acetyl-D-glucosamine + phosphate = α-D-galactopyranose 1-phosphate + N-acetyl-D-glucosamine
Other name(s): lacto-N-biose phosphorylase; LNBP; galacto-N-biose phosphorylase
Systematic name: β-D-galactopyranosyl-(1→3)-N-acetyl-D-hexosamine:phosphate galactosyltransferase
Comments: Reaction also occurs with β-D-galactopyranosyl-(1→3)-N-acetyl-D-galactosamine as the substrate, giving N-acetyl-D-galactosamine as the product.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 224427-06-9
References:
1.  Derensy-Dron, D., Krzewinski, F., Brassart, C. and Bouquelet S. β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol. Appl. Biochem. 29 (1999) 3–10. [PMID: 9889079]
[EC 2.4.1.211 created 2001]
 
 
EC 2.4.1.212     
Accepted name: hyaluronan synthase
Reaction: (1) UDP-N-acetyl-α-D-glucosamine + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] = UDP + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan]
(2) UDP-α-D-glucuronate + N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan] = UDP + β-D-glucuronosyl-(1→3)-N-acetyl-β-D-glucosaminyl-(1→4)-β-D-glucuronosyl-(1→3)-[nascent hyaluronan]
For diagram of reaction, click here
Glossary: GlcA = glucuronic acid
Other name(s): spHAS; seHAS; Alternating UDP-α-N-acetyl-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase
Systematic name: Alternating UDP-N-acetyl-α-D-glucosamine:β-D-glucuronosyl-(1→3)-[nascent hyaluronan] 4-N-acetyl-β-D-glucosaminyltransferase and UDP-α-D-glucuronate:N-acetyl-β-D-glucosaminyl-(1→4)-[nascent hyaluronan] 3-β-D-glucuronosyltransferase (configuration-inverting)
Comments: The enzyme from Streptococcus Group A and Group C requires Mg2+. The enzyme adds GlcNAc to nascent hyaluronan when the non-reducing end is GlcA, but it adds GlcA when the non-reducing end is GlcNAc [3]. The enzyme is highly specific for UDP-GlcNAc and UDP-GlcA; no copolymerization is observed if either is replaced by UDP-Glc, UDP-Gal, UDP-GalNAc or UDP-GalA. Similar enzymes have been found in a variety of organisms.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 39346-43-5
References:
1.  DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. Molecular cloning, identification and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes. J. Biol. Chem. 268 (1993) 19181–19184. [PMID: 8366070]
2.  Jing, W. and DeAngelis, P.L. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 10 (2000) 883–889. [DOI] [PMID: 10988250]
3.  DeAngelis, P.L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 274 (1999) 26557–26562. [DOI] [PMID: 10473619]
4.  Tlapak-Simmons, V.L., Baron, C.A. and Weigel, P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43 (2004) 9234–9242. [DOI] [PMID: 15248781]
[EC 2.4.1.212 created 2001, modified 2007]
 
 
EC 2.4.1.213     
Accepted name: glucosylglycerol-phosphate synthase
Reaction: ADP-α-D-glucose + sn-glycerol 3-phosphate = 2-(α-D-glucopyranosyl)-sn-glycerol 3-phosphate + ADP
Other name(s): ADP-glucose:sn-glycerol-3-phosphate 2-β-D-glucosyltransferase (incorrect)
Systematic name: ADP-α-D-glucose:sn-glycerol-3-phosphate 2-α-D-glucopyranosyltransferase
Comments: Acts with EC 3.1.3.69 (glucosylglycerol phosphatase) to form glucosylglycerol, an osmolyte that endows cyanobacteria with resistance to salt.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 161515-13-5
References:
1.  Hagemann, M. and Erdmann, N. Activation and pathway of glucosylglycerol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140 (1994) 1427–1431.
2.  Marin, K., Zuther, E., Kerstan, T., Kunert, A. and Hagemann, M. The ggpS gene from Synechocystis sp. strain PCC 6803 encoding glucosylglycerol-phosphate synthase is involved in osmolyte synthesis. J. Bacteriol. 180 (1998) 4843–4849. [PMID: 9733686]
[EC 2.4.1.213 created 2001, modified 2015]
 
 
EC 2.4.1.214     
Accepted name: glycoprotein 3-α-L-fucosyltransferase
Reaction: GDP-β-L-fucose + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] = GDP + N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-[α-L-Fuc-(1→3)]-β-D-GlcNAc}-L-asparaginyl-[protein]
For diagram of mannosyl-glycoprotein fucosyl and xylosyl transferases, click here
Other name(s): GDP-L-Fuc:N-acetyl-β-D-glucosaminide α1,3-fucosyltransferase; GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase; GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of 4-N-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase; GDP-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase; GDP-β-L-fucose:glycoprotein (L-fucose to asparagine-linked N-acetylglucosamine of N4-{N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→2)-α-D-mannosyl-(1→6)]-β-D-mannosyl-(1→4)-N-acetyl-β-D-glucosaminyl-(1→4)-N-acetyl-β-D-glucosaminyl}asparagine) 3-α-L-fucosyl-transferase
Systematic name: GDP-β-L-fucose:N4-{β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein] 3-α-L-fucosyltransferase (configuration-retaining)
Comments: Requires Mn2+. The enzyme transfers to N-linked oligosaccharide structures (N-glycans), generally with a specificity for N-glycans with one unsubstituted non-reducing terminal GlcNAc residue. This enzyme catalyses a reaction similar to that of EC 2.4.1.68, glycoprotein 6-α-L-fucosyltransferase, but transferring the L-fucosyl group from GDP-β-L-fucose to form an α1,3-linkage rather than an α1,6-linkage. The N-glycan products of this enzyme are present in plants, insects and some other invertebrates (e.g., Schistosoma, Haemonchus, Lymnaea).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 68247-53-0
References:
1.  Wilson, I.B.H., Rendic, D., Freilinger, A., Dumic, J., Altmann, F., Mucha, J., Müller, S. and Hauser, M.-T. Cloning and expression of α1,3-fucosyltransferase homologues from Arabidopsis thaliana. Biochim. Biophys. Acta 1527 (2001) 88–96. [DOI] [PMID: 11420147]
2.  Fabini, G., Freilinger, A., Altmann, F. and Wilson, I.B.H. Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseradish peroxidase epitope. J. Biol. Chem. 276 (2001) 28058–28067. [DOI] [PMID: 11382750]
3.  Leiter, H., Mucha, J., Staudacher, E., Grimm, R., Glössl, J. and Altmann, F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc α1,3-fucosyltransferase from mung beans. J. Biol. Chem. 274 (1999) 21830–21839. [DOI] [PMID: 10419500]
4.  van Tetering, A., Schiphorst, W.E.C.M., van den Eijnden, D.H. and van Die, I. Characterization of core α1→3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex type N-glycans. FEBS Lett. 461 (1999) 311–314. [DOI] [PMID: 10567717]
5.  Staudacher, E., Altmann, F., Glössl, J., März, L., Schachter, H., Kamerling, J.P., Haard, K. and Vliegenthart, J.F.G. GDP-fucose:β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. Eur. J. Biochem. 199 (1991) 745–751. [DOI] [PMID: 1868856]
[EC 2.4.1.214 created 2001]
 
 
EC 2.4.1.215     
Accepted name: cis-zeatin O-β-D-glucosyltransferase
Reaction: UDP-glucose + cis-zeatin = UDP + O-β-D-glucosyl-cis-zeatin
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Systematic name: UDP-glucose:cis-zeatin O-β-D-glucosyltransferase
Comments: The enzyme from maize can use cis-zeatin and UDP-glucose as substrates, but not cis-ribosylzeatin, trans-zeatin or trans-ribosylzeatin. Unlike EC 2.4.1.203, trans-zeatin O-β-D-glucosyltransferase, UDP-D-xylose cannot act as a donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 123644-76-8
References:
1.  Martin, R.C., Mok, M.C., Habben, J.E. and Mok, D.W.S. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 98 (2001) 5922–5926. [DOI] [PMID: 11331778]
[EC 2.4.1.215 created 2001]
 
 
EC 2.4.1.216     
Accepted name: trehalose 6-phosphate phosphorylase
Reaction: α,α-trehalose 6-phosphate + phosphate = glucose 6-phosphate + β-D-glucose 1-phosphate
Other name(s): trehalose 6-phosphate:phosphate β-D-glucosyltransferase
Systematic name: α,α-trehalose 6-phosphate:phosphate β-D-glucosyltransferase
Comments: The enzyme from Lactococcus lactis is specific for trehalose 6-phosphate. Differs from EC 2.4.1.64, α,α-trehalose phosphorylase, in that trehalose is not a substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 403512-51-6
References:
1.  Andersson, U., Levander, F. and Radstrom, P. Trehalose 6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J. Biol. Chem. 276 (2001) 42707–42713. [DOI] [PMID: 11553642]
[EC 2.4.1.216 created 2001]
 
 
EC 2.4.1.217     
Accepted name: mannosyl-3-phosphoglycerate synthase
Reaction: GDP-mannose + 3-phospho-D-glycerate = GDP + 2-(α-D-mannosyl)-3-phosphoglycerate
Other name(s): MPG synthase; GDP-mannose:3-phosphoglycerate 3-α-D-mannosyltransferase
Systematic name: GDP-mannose:3-phospho-D-glycerate 3-α-D-mannosyltransferase
Comments: Requires Mg2+. The enzyme is absolutely specific for GDPmannose and 3-phosphoglycerate, and transfers the mannosyl group with retention of configuration. In the hyperthermophilic archaeon Pyrococcus horikoshii, the mannosyl-3-phosphoglycerate formed is subsequently dephosphorylated by a specific phosphatase, EC 3.1.3.70 (mannosyl-3-phosphoglycerate phosphatase), producing mannosylglycerate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 393512-63-5
References:
1.  Empadinhas, N., Marugg, J.D., Borges, N., Santos, H. and da Costa, M.S. Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key-enzymes. J. Biol. Chem. 276 (2001) 43580–43588. [DOI] [PMID: 11562374]
[EC 2.4.1.217 created 2002]
 
 
EC 2.4.1.218     
Accepted name: hydroquinone glucosyltransferase
Reaction: UDP-glucose + hydroquinone = UDP + hydroquinone-O-β-D-glucopyranoside
Other name(s): arbutin synthase; hydroquinone:O-glucosyltransferase
Systematic name: UDP-glucose:hydroquinone-O-β-D-glucosyltransferase
Comments: Hydroquinone is the most effective acceptor, but over 40 phenolic compounds are also glucosylated, but at lower rates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Arend, J., Warzecha, H. and Stöckigt, J. Hydroquinone:O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences. Phytochemistry 53 (2000) 187–193. [DOI] [PMID: 10680170]
2.  Arend, J., Warzecha, H., Hefner, T. and Stöckigt, J. Utilizing genetically engineered bacteria to produce plant specific glucosides. Biotechnol. Bioeng. 76 (2001) 126–131. [PMID: 11505382]
[EC 2.4.1.218 created 2002]
 
 
EC 2.4.1.219     
Accepted name: vomilenine glucosyltransferase
Reaction: UDP-glucose + vomilenine = UDP + raucaffricine
For diagram of ajmaline, vinorine, vomilenine and raucaffricine biosynthesis, click here
Other name(s): UDPG:vomilenine 21-β-D-glucosyltransferase
Systematic name: UDP-glucose:vomilenine 21-O-β-D-glucosyltransferase
Comments: The indole alkaloid raucaffricine accumulates during the culture of Rauvolfia cell suspensions.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Warzecha, H., Obitz, P. and Stöckigt, J. Purification, partial amino acid sequence and structure of the product of raucaffricine-O-β-D-glucosidase from plant cell cultures of Rauwolfia serpentina. Phytochemistry 50 (1999) 1099–1109. [DOI] [PMID: 10234858]
2.  Warzecha, H., Gerasimenko, I., Kutchan, T.M. and Stöckigt, J. Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54 (2000) 657–666. [DOI] [PMID: 10975500]
3.  Ruyter, C.M. and Stöckigt, J. Enzymatic formation of raucaffricine, the major indole alkaloid of Rauwolfia serpentina cell-suspension cultures. Helv. Chim. Acta 74 (1991) 1707–1712.
[EC 2.4.1.219 created 2002]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald