The Enzyme Database

Displaying entries 1-50 of 111.

<< Previous | Next >>    printer_iconPrintable version



EC 2.4.1.1     
Accepted name: glycogen phosphorylase
Reaction: [(1→4)-α-D-glucosyl]n + phosphate = [(1→4)-α-D-glucosyl]n-1 + α-D-glucose 1-phosphate
For diagram of glycogen, click here
Other name(s): muscle phosphorylase a and b; amylophosphorylase; polyphosphorylase; amylopectin phosphorylase; glucan phosphorylase; α-glucan phosphorylase; 1,4-α-glucan phosphorylase; glucosan phosphorylase; granulose phosphorylase; maltodextrin phosphorylase; muscle phosphorylase; myophosphorylase; potato phosphorylase; starch phosphorylase; 1,4-α-D-glucan:phosphate α-D-glucosyltransferase; phosphorylase (ambiguous)
Systematic name: (1→4)-α-D-glucan:phosphate α-D-glucosyltransferase
Comments: This entry covers several enzymes from different sources that act in vivo on different forms of (1→4)-α-D-glucans. Some of these enzymes catalyse the first step in the degradation of large branched glycan polymers - the phosphorolytic cleavage of α-1,4-glucosidic bonds from the non-reducing ends of linear poly(1→4)-α-D-glucosyl chains within the polymers. The enzyme stops when it reaches the fourth residue away from an α-1,6 branching point, leaving a highly branched core known as a limit dextrin. The accepted name of the enzyme should be modified for each specific instance by substituting "glycogen" with the name of the natural substrate, e.g. maltodextrin phosphorylase, starch phosphorylase, etc.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9035-74-9
References:
1.  Hanes, C.S. The breakdown and synthesis of starch by an enzyme from pea seeds. Proc. R. Soc. Lond. B Biol. Sci. 128 (1940) 421–450.
2.  Green, A.A. and Cori, G.T. Crystalline muscle phosphorylase. I. Preparation, properties, and molecular weight. J. Biol. Chem. 151 (1943) 21–29.
3.  Baum, H. and Gilbert, G.A. A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature 171 (1953) 983–984. [PMID: 13063502]
4.  Cowgill, R.W. Lobster muscle phosphorylase: purfication and properties. J. Biol. Chem. 234 (1959) 3146–3153. [PMID: 13812491]
5.  Chen, G.S. and Segel, I.H. Purification and properties of glycogen phosphorylase from Escherichia coli. Arch. Biochem. Biophys. 127 (1968) 175–186. [DOI] [PMID: 4878695]
6.  Fischer, E.H., Pocker, A. and Saari, J.C. The structure, function and control of glycogen phosphorylase. In: Campbell, P.N. and Greville, G.D. (Eds), Essays in Biochemistry, vol. 6, Academic Press, London and New York, 1970, pp. 23–68.
[EC 2.4.1.1 created 1961, modified 2013]
 
 
EC 2.4.1.10     
Accepted name: levansucrase
Reaction: sucrose + [6)-β-D-fructofuranosyl-(2→]n α-D-glucopyranoside = D-glucose + [6)-β-D-fructofuranosyl-(2→]n+1 α-D-glucopyranoside
For diagram of reaction, click here
Other name(s): sucrose 6-fructosyltransferase; β-2,6-fructosyltransferase; β-2,6-fructan:D-glucose 1-fructosyltransferase; sucrose:2,6-β-D-fructan 6-β-D-fructosyltransferase; sucrose:(2→6)-β-D-fructan 6-β-D-fructosyltransferase
Systematic name: sucrose:[6)-β-D-fructofuranosyl-(2→]n α-D-glucopyranoside 6-β-D-fructosyltransferase
Comments: Some other sugars can act as D-fructosyl acceptors.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-17-5
References:
1.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
2.  Hestrin, S., Feingold, D.S. and Avigad, G. The mechanism of polysaccharide production from sucrose. 3. Donor-acceptor specificity of levansucrase from Aerobacter levanicum. Biochem. J. 64 (1956) 340–351. [PMID: 13363847]
3.  Reese, E.T. and Avigad, G. Purification of levansucrase by precipitation with levan. Biochim. Biophys. Acta 113 (1966) 79–83. [PMID: 5940635]
4.  Meng, G. and Futterer, K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat. Struct. Biol. 10 (2003) 935–941. [DOI] [PMID: 14517548]
[EC 2.4.1.10 created 1961, modified 2011]
 
 
EC 2.4.1.11     
Accepted name: glycogen(starch) synthase
Reaction: UDP-α-D-glucose + [(1→4)-α-D-glucosyl]n = UDP + [(1→4)-α-D-glucosyl]n+1
For diagram of glycogen, click here
Other name(s): UDP-glucose—glycogen glucosyltransferase; glycogen (starch) synthetase; UDP-glucose-glycogen glucosyltransferase; UDP-glycogen synthase; UDPG-glycogen synthetase; UDPG-glycogen transglucosylase; uridine diphosphoglucose-glycogen glucosyltransferase; UDP-glucose:glycogen 4-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:glycogen 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The accepted name varies according to the source of the enzyme and the nature of its synthetic product (cf. EC 2.4.1.1, phosphorylase). Glycogen synthase from animal tissues is a complex of a catalytic subunit and the protein glycogenin. The enzyme requires glucosylated glycogenin as a primer; this is the reaction product of EC 2.4.1.186 (glycogenin glucosyltransferase). A similar enzyme utilizes ADP-glucose (EC 2.4.1.21, starch synthase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9014-56-6
References:
1.  Algranati, I.D. and Cabib, E. The synthesis of glycogen in yeast. Biochim. Biophys. Acta 43 (1960) 141–142. [DOI] [PMID: 13682402]
2.  Basu, D.K. and Bachhawat, B.K. Purification of uridine diphosphoglucose-glycogen transglucosylase from sheep brain. Biochim. Biophys. Acta 50 (1961) 123–128. [DOI] [PMID: 13687710]
3.  Leloir, L.F. and Cardini, C.E. UDPG-glycogen transglucosylase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 6, Academic Press, New York, 1962, pp. 317–326.
4.  Leloir, L.F. and Goldemberg, S.H. Synthesis of glycogen from uridine diphosphate glucose in liver. J. Biol. Chem. 235 (1960) 919–923. [PMID: 14415527]
5.  Pitcher, J., Smythe, C. and Cohen, P. Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur. J. Biochem. 176 (1988) 391–395. [DOI] [PMID: 2970965]
[EC 2.4.1.11 created 1961]
 
 
EC 2.4.1.12     
Accepted name: cellulose synthase (UDP-forming)
Reaction: UDP-α-D-glucose + [(1→4)-β-D-glucosyl]n = UDP + [(1→4)-β-D-glucosyl]n+1
Other name(s): UDP-glucose—β-glucan glucosyltransferase; UDP-glucose-cellulose glucosyltransferase; GS-I; β-1,4-glucosyltransferase; uridine diphosphoglucose-1,4-β-glucan glucosyltransferase; β-1,4-glucan synthase; β-1,4-glucan synthetase; β-glucan synthase; 1,4-β-D-glucan synthase; 1,4-β-glucan synthase; glucan synthase; UDP-glucose-1,4-β-glucan glucosyltransferase; uridine diphosphoglucose-cellulose glucosyltransferase; UDP-glucose:1,4-β-D-glucan 4-β-D-glucosyltransferase; UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase (configuration-inverting)
Comments: Involved in the synthesis of cellulose. A similar enzyme utilizes GDP-glucose [EC 2.4.1.29 cellulose synthase (GDP-forming)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9027-19-4
References:
1.  Glaser, L. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232 (1958) 627–636. [PMID: 13549448]
[EC 2.4.1.12 created 1961]
 
 
EC 2.4.1.13     
Accepted name: sucrose synthase
Reaction: NDP-α-D-glucose + D-fructose = NDP + sucrose
Other name(s): UDPglucose-fructose glucosyltransferase; sucrose synthetase; sucrose-UDP glucosyltransferase; sucrose-uridine diphosphate glucosyltransferase; uridine diphosphoglucose-fructose glucosyltransferase; NDP-glucose:D-fructose 2-α-D-glucosyltransferase
Systematic name: NDP-α-D-glucose:D-fructose 2-α-D-glucosyltransferase (configuration-retaining)
Comments: Although UDP is generally considered to be the preferred nucleoside diphosphate for sucrose synthase, numerous studies have shown that ADP serves as an effective acceptor molecule to produce ADP-glucose [3-9]. Sucrose synthase has a dual role in producing both UDP-glucose (necessary for cell wall and glycoprotein biosynthesis) and ADP-glucose (necessary for starch biosynthesis) [10].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 9030-05-1
References:
1.  Avigad, G. and Milner, Y. UDP-glucose:fructose transglucosylase from sugar beet roots. Methods Enzymol. 8 (1966) 341–345.
2.  Cardini, C.E., Leloir, L.F. and Chiriboga, J. The biosynthesis of sucrose. J. Biol. Chem. 214 (1955) 149–155. [PMID: 14367373]
3.  Delmer, D.P. The purification and properties of sucrose synthetase from etiolated Phaseolus aureus seedlings. J. Biol. Chem. 247 (1972) 3822–3828. [PMID: 4624446]
4.  Murata, T., Sugiyama, T., Minamikawa, T. and Akazawa, T. Enzymic mechanism of starch synthesis in ripening rice grains. Mechanism of the sucrose-starch conversion. Arch. Biochem. Biophys. 113 (1966) 34–44. [DOI] [PMID: 5941994]
5.  Nakai, T., Konishi, T., Zhang, X.-Q., Chollet, R., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Mori, H., Sakai, F. and Hayashi, T. An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol. 39 (1998) 1337–1341. [PMID: 10050318]
6.  Porchia, A.C., Curatti, L. and Salerno, G.L. Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210 (1999) 34–40. [DOI] [PMID: 10592030]
7.  Ross, H.A. and Davies, H.V. Purification and characterization of sucrose synthase from the cotyledons of Vicia fava L. Plant Physiol. 100 (1992) 1008–1013. [PMID: 16653008]
8.  Silvius, J.E. and Snyder, F.W. Comparative enzymic studies of sucrose metabolism in the taproots and fibrous roots of Beta vulgaris L. Plant Physiol. 64 (1979) 1070–1073. [PMID: 16661094]
9.  Tanase, K. and Yamaki, S. Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant Cell Physiol. 41 (2000) 408–414. [DOI] [PMID: 10845453]
10.  Baroja-Fernández, E., Muñnoz, F.J., Saikusa, T., Rodríguez-López, M., Akazawa, T. and Pozueta-Romero, J. Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44 (2003) 500–509. [PMID: 12773636]
[EC 2.4.1.13 created 1961, modified 2003]
 
 
EC 2.4.1.14     
Accepted name: sucrose-phosphate synthase
Reaction: UDP-α-D-glucose + D-fructose 6-phosphate = UDP + sucrose 6F-phosphate
Other name(s): UDP-glucose—fructose-phosphate glucosyltransferase; sucrosephosphate—UDP glucosyltransferase; UDP-glucose-fructose-phosphate glucosyltransferase; SPS; uridine diphosphoglucose-fructose phosphate glucosyltransferase; sucrose 6-phosphate synthase; sucrose phosphate synthetase; sucrose phosphate-uridine diphosphate glucosyltransferase; sucrose phosphate synthase; UDP-glucose:D-fructose-6-phosphate 2-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:D-fructose-6-phosphate 2-α-D-glucosyltransferase (configuration-retaining)
Comments: Requires Mg2+ or Mn2+ for maximal activity [2]. The enzyme from Synechocystis sp. strain PCC 6803 is not specific for UDP-glucose as it can use ADP-glucose and, to a lesser extent, GDP-glucose as substrates [2]. The enzyme from rice leaves is activated by glucose 6-phosphate but that from cyanobacterial species is not [2]. While the reaction catalysed by this enzyme is reversible, the enzyme usually works in concert with EC 3.1.3.24, sucrose-phosphate phosphatase, to form sucrose, making the above reaction essentially irreversible [3]. The F in sucrose 6F-phosphate is used to indicate that the fructose residue of sucrose carries the substituent.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-06-2
References:
1.  Mendicino, J. Sucrose phosphate synthesis in wheat germ and green leaves. J. Biol. Chem. 235 (1960) 3347–3352. [PMID: 13769376]
2.  Curatti, L., Folco, E., Desplats, P., Abratti, G., Limones, V., Herrera-Estrella, L. and Salerno, G. Sucrose-phosphate synthase from Synechocystis sp. strain PCC 6803: identification of the spsA gene and characterization of the enzyme expressed in Escherichia coli. J. Bacteriol. 180 (1998) 6776–6779. [PMID: 9852031]
3.  Huber, S.C. and Huber, J.L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 431–444. [DOI] [PMID: 15012296]
4.  Cumino, A., Curatti, L., Giarrocco, L. and Salerno, G.L. Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Lett. 517 (2002) 19–23. [DOI] [PMID: 12062401]
5.  Chua, T.K., Bujnicki, J.M., Tan, T.C., Huynh, F., Patel, B.K. and Sivaraman, J. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 20 (2008) 1059–1072. [DOI] [PMID: 18424616]
[EC 2.4.1.14 created 1961, modified 2008]
 
 
EC 2.4.1.15     
Accepted name: α,α-trehalose-phosphate synthase (UDP-forming)
Reaction: UDP-α-D-glucose + D-glucose 6-phosphate = UDP + α,α-trehalose 6-phosphate
Other name(s): UDP-glucose—glucose-phosphate glucosyltransferase; trehalosephosphate-UDP glucosyltransferase; UDP-glucose-glucose-phosphate glucosyltransferase; α,α-trehalose phosphate synthase (UDP-forming); phosphotrehalose-uridine diphosphate transglucosylase; trehalose 6-phosphate synthase; trehalose 6-phosphate synthetase; trehalose phosphate synthase; trehalose phosphate synthetase; trehalose phosphate-uridine diphosphate glucosyltransferase; trehalose-P synthetase; transglucosylase; uridine diphosphoglucose phosphate glucosyltransferase; UDP-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: See also EC 2.4.1.36 [α,α-trehalose-phosphate synthase (GDP-forming)].
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-07-3
References:
1.  Cabib, E. and Leloir, L.F. The biosynthesis of trehalose phosphate. J. Biol. Chem. 231 (1958) 259–275. [PMID: 13538966]
2.  Candy, D.J. and Kilby, B.A. The biosynthesis of trehalose in the locust fat body. Biochem. J. 78 (1961) 531–536. [PMID: 13690400]
3.  Lornitzo, F.A. and Goldman, D.S. Purification and properties of the transglucosylase inhibitor of Mycobacterium tuberculosis. J. Biol. Chem. 239 (1964) 2730–2734. [PMID: 14216421]
4.  Murphy, T.A. and Wyatt, G.R. The enzymes of glycogen and trehalose synthesis in silk moth fat body. J. Biol. Chem. 240 (1965) 1500–1508. [PMID: 14285483]
[EC 2.4.1.15 created 1961]
 
 
EC 2.4.1.16     
Accepted name: chitin synthase
Reaction: UDP-N-acetyl-α-D-glucosamine + [(1→4)-N-acetyl-β-D-glucosaminyl]n = UDP + [(1→4)-N-acetyl-β-D-glucosaminyl]n+1
Glossary: chitin = [(1→4)-N-acetyl-β-D-glucosaminyl]n
Other name(s): chitin-UDP N-acetylglucosaminyltransferase; chitin-uridine diphosphate acetylglucosaminyltransferase; chitin synthetase; trans-N-acetylglucosaminosylase; UDP-N-acetyl-D-glucosamine:chitin 4-β-N-acetylglucosaminyl-transferase; UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:chitin 4-β-N-acetylglucosaminyltransferase (configuration-inverting)
Comments: Converts UDP-N-acetyl-α-D-glucosamine into chitin and UDP.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-18-6
References:
1.  Glaser, L. and Brown, D.H. The synthesis of chitin in cell-free extracts of Neurospora crassa. J. Biol. Chem. 228 (1957) 729–742. [PMID: 13475355]
2.  Sburlati, A. and Cabib, E. Chitin synthetase 2, a presumptive participant in septum formation in Saccharomyces cerevisiae. J. Biol. Chem. 261 (1986) 15147–15152. [PMID: 2945823]
[EC 2.4.1.16 created 1961]
 
 
EC 2.4.1.17     
Accepted name: glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + acceptor = UDP + acceptor β-D-glucuronoside
Other name(s): 1-naphthol glucuronyltransferase; 1-naphthol-UDP-glucuronosyltransferase; 17β-hydroxysteroid UDP-glucuronosyltransferase; 3α-hydroxysteroid UDP-glucuronosyltransferase; 4-hydroxybiphenyl UDP-glucuronosyltransferase; 4-methylumbelliferone UDP-glucuronosyltransferase; 4-nitrophenol UDP-glucuronyltransferase; 4-nitrophenol UDPGT; 17-OH steroid UDPGT; 3-OH androgenic UDPGT; bilirubin uridine diphosphoglucuronyltransferase; bilirubin UDP-glucuronosyltransferase; bilirubin monoglucuronide glucuronyltransferase; bilirubin UDPGT; bilirubin glucuronyltransferase; ciramadol UDP-glucuronyltransferase; estriol UDP-glucuronosyltransferase; estrone UDP-glucuronosyltransferase; uridine diphosphoglucuronosyltransferase; uridine diphosphoglucuronate-bilirubin glucuronoside glucuronosyltransferase; uridine diphosphoglucuronate-bilirubin glucuronosyltransferase; uridine diphosphoglucuronate-estriol glucuronosyltransferase; uridine diphosphoglucuronate-estradiol glucuronosyltransferase; uridine diphosphoglucuronate-4-hydroxybiphenyl glucuronosyltransferase; uridine diphosphoglucuronate-1,2-diacylglycerol glucuronosyltransferase; uridine diphosphoglucuronate-estriol 16α-glucuronosyltransferase; GT; morphine glucuronyltransferase; p-hydroxybiphenyl UDP glucuronyltransferase; p-nitrophenol UDP-glucuronosyltransferase; p-nitrophenol UDP-glucuronyltransferase; p-nitrophenylglucuronosyltransferase; p-phenylphenol glucuronyltransferase; phenyl-UDP-glucuronosyltransferase; PNP-UDPGT; UDP glucuronate-estradiol-glucuronosyltransferase; UDP glucuronosyltransferase; UDP glucuronate-estriol glucuronosyltransferase; UDP glucuronic acid transferase; UDP glucuronyltransferase; UDP-glucuronate-4-hydroxybiphenyl glucuronosyltransferase; UDP-glucuronate-bilirubin glucuronyltransferase; UDP-glucuronosyltransferase; UDP-glucuronyltransferase; UDPGA transferase; UDPGA-glucuronyltransferase; UDPGT; uridine diphosphoglucuronyltransferase; uridine diphosphate glucuronyltransferase; uridine 5′-diphosphoglucuronyltransferase; UDP-glucuronate β-D-glucuronosyltransferase (acceptor-unspecific)
Systematic name: UDP-α-D-glucuronate β-D-glucuronosyltransferase (acceptor-unspecific; configuration-inverting)
Comments: This entry denotes a family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines and fatty acids. Some of the activities catalysed were previously listed separately as EC 2.4.1.42, EC 2.4.1.59, EC 2.4.1.61, EC 2.4.1.76, EC 2.4.1.77, EC 2.4.1.84, EC 2.4.1.107 and EC 2.4.1.108. A temporary nomenclature for the various forms, whose delineation is in a state of flux, is suggested in Ref. 1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-08-4
References:
1.  Bock, K.W., Burchell, B., Dutton, G.J., Hanninen, O., Mulder, G.J., Owens, I.S., Siest, G. and Jephly, T.R. UDP-glucuronosyltransferase activities. Guidelines for consistent interim terminology and assay conditions. Biochem. Pharmacol. 32 (1983) 953–955. [DOI] [PMID: 6404284]
2.  Bock, K.W., Josting, D., Lilienblum, W. and Pfeil, H. Purification of rat-liver microsomal UDP-glucuronyltransferase. Separation of two enzyme forms inducible by 3-methylcholanthrene or phenobarbital. Eur. J. Biochem. 98 (1979) 19–26. [DOI] [PMID: 111930]
3.  Burchell, B. Identification and purification of multiple forms of UDP-glucuronosyltransferase. Rev. Biochem. Toxicol. 3 (1981) 1–32.
4.  Dutton, G.J. Glucuronidation of Drugs and Other Compounds, C.R.C. Press, Boca Raton, Florida, 1980.
5.  Green, M.D., Falany, C.N., Kirkpatrick, R.B. and Tephly, T.R. Strain differences in purified rat hepatic 3α-hydroxysteroid UDP-glucuronosyltransferase. Biochem. J. 230 (1985) 403–409. [PMID: 3931633]
6.  Jansen, P.L.M. The enzyme-catalyzed formation of bilirubin diglucuronide by a solublized preparation from cat liver microsomes. Biochim. Biophys. Acta 338 (1974) 170–182.
[EC 2.4.1.17 created 1961 (EC 2.4.1.42, EC 2.4.1.59 and EC 2.4.1.61 all created 1972, EC 2.4.1.76, EC 2.4.1.77 and EC 2.4.1.84 all created 1976, EC 2.4.1.107 and EC 2.4.1.108 both created 1983, all incorporated 1984)]
 
 
EC 2.4.1.18     
Accepted name: 1,4-α-glucan branching enzyme
Reaction: Transfers a segment of a (1→4)-α-D-glucan chain to a primary hydroxy group in a similar glucan chain
Other name(s): branching enzyme; amylo-(1,4→1,6)-transglycosylase; Q-enzyme; α-glucan-branching glycosyltransferase; amylose isomerase; enzymatic branching factor; branching glycosyltransferase; enzyme Q; glucosan transglycosylase; glycogen branching enzyme; plant branching enzyme; α-1,4-glucan:α-1,4-glucan-6-glycosyltransferase; starch branching enzyme; 1,4-α-D-glucan:1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 6-α-D-[(1→4)-α-D-glucano]-transferase
Comments: Converts amylose into amylopectin. The accepted name requires a qualification depending on the product, glycogen or amylopectin, e.g. glycogen branching enzyme, amylopectin branching enzyme. The latter has frequently been termed Q-enzyme.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9001-97-2
References:
1.  Barker, S.A., Bourne, E. and Peat, S. The enzymic synthesis and degradation of starch. Part IV. The purification and storage of the Q-enzyme of the potato. J. Chem. Soc. (Lond.) (1949) 1705–1711.
2.  Baum, H. and Gilbert, G.A. A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature 171 (1953) 983–984. [PMID: 13063502]
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
4.  Illingworth Brown, B. and Brown, D.H. α-1,4-Glucan:α-1,4-glucan 6-glycosyltransferase from mammalian muscle. Methods Enzymol. 8 (1966) 395–403.
[EC 2.4.1.18 created 1961]
 
 
EC 2.4.1.19     
Accepted name: cyclomaltodextrin glucanotransferase
Reaction: Cyclizes part of a (1→4)-α-D-glucan chain by formation of a (1→4)-α-D-glucosidic bond
For diagram of glycoprotein biosynthesis, click here
Other name(s): Bacillus macerans amylase; cyclodextrin glucanotransferase; α-cyclodextrin glucanotransferase; α-cyclodextrin glycosyltransferase; β-cyclodextrin glucanotransferase; β-cyclodextrin glycosyltransferase; γ-cyclodextrin glycosyltransferase; cyclodextrin glycosyltransferase; cyclomaltodextrin glucotransferase; cyclomaltodextrin glycosyltransferase; konchizaimu; α-1,4-glucan 4-glycosyltransferase, cyclizing; BMA; CGTase; neutral-cyclodextrin glycosyltransferase; 1,4-α-D-glucan 4-α-D-(1,4-α-D-glucano)-transferase (cyclizing)
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan 4-α-D-[(1→4)-α-D-glucano]-transferase (cyclizing)
Comments: Cyclomaltodextrins (Schardinger dextrins) of various sizes (6,7,8, etc. glucose units) are formed reversibly from starch and similar substrates. Will also disproportionate linear maltodextrins without cyclizing (cf. EC 2.4.1.25, 4-α-glucanotransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9030-09-5
References:
1.  DePinto, J.A. and Campbell, L.L. Purification and properties of the amylase of Bacillus macerans. Biochemistry 7 (1968) 114–120. [PMID: 5758537]
2.  French, D., Levine, M.L., Norberg, E., Norden, P., Pazur, J.H. and Wild, G.M. Studies on the Schardinger dextrins. VII. Co-substrate specificity in coupling reactions of Macerans amylase. J. Am. Chem. Soc. 76 (1954) 2387–2390.
3.  Hehre, E.J. Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv. Enzymol. Relat. Subj. Biochem. 11 (1951) 297–337. [PMID: 24540594]
4.  Schwimmer, S. Evidence for the purity of Schardinger dextrinogenase. Arch. Biochem. Biophys. 43 (1953) 108–117. [DOI] [PMID: 13031665]
[EC 2.4.1.19 created 1961]
 
 
EC 2.4.1.100     
Accepted name: 2,1-fructan:2,1-fructan 1-fructosyltransferase
Reaction: [β-D-fructosyl-(2→1)-]m + [β-D-fructosyl-(2→1)-]n = [β-D-fructosyl-(2→1)-]m-1 + [β-D-fructosyl-(2→1)-]n+1
Other name(s): 1,2-β-D-fructan 1F-fructosyltransferase; fructan:fructan fructosyl transferase; FFT; 1,2-β-fructan 1F-fructosyltransferase; 1,2-β-D-fructan:1,2-β-D-fructan 1F-β-D-fructosyltransferase; fructan:fructan 1-fructosyl transferase; 2,1-β-D-fructan:2,1-β-D-fructan 1-β-D-fructosyltransferase
Systematic name: (2→1)-β-D-fructan:(2→1)-β-D-fructan 1-β-D-fructosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 73379-55-2
References:
1.  Henry, R.J. and Darbyshire, B. Sucrose:sucrose fructosyltransferase and fructan:fructan fructosyltransferase from Allium cepa. Phytochemistry 19 (1980) 1017–1020.
2.  Vergauwen, R., Van Laere, A. and Van den Ende, W. Properties of fructan:fructan 1-fructosyltransferases from chicory and globe thistle, two asteracean plants storing greatly different types of inulin. Plant Physiol. 133 (2003) 391–401. [DOI] [PMID: 12970504]
[EC 2.4.1.100 created 1981, modified 2004]
 
 
EC 2.4.1.101     
Accepted name: α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + Man5GlcNAc2-[protein] = UDP + Man5GlcNAc3-[protein]
For diagram of mannosyl-glycoprotein N-acetylglucosaminyltransferases, click here
Glossary: Man5GlcNAc2-[protein] = α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Man5GlcNAc3-[protein]= β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-N-Asn-[protein]
Other name(s): MGAT1 (gene name); N-acetylglucosaminyltransferase I; N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; uridine diphosphoacetylglucosamine-α-1,3-mannosylglycoprotein β-1,2-N-acetylglucosaminyltransferase; UDP-N-acetylglucosaminyl:α-1,3-D-mannoside-β-1,2-N-acetylglucosaminyltransferase I; UDP-N-acetylglucosaminyl:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I; α-1,3-mannosyl-glycoprotein β-1,2-N-acetylglucosaminyltransferase; GnTI; GlcNAc-T I; UDP-N-acetyl-D-glucosamine:3-(α-D-mannosyl)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-β-D-mannosyl-glycoprotein 2-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme, found in plants and animals, participates in the processing of N-glycans in the Golgi apparatus. Its action is required before the other N-acetylglucosaminyltransferases involved in the process (GlcNAcT-II through VI) can act. While the natural substrate (produced by EC 3.2.1.113, mannosyl-oligosaccharide 1,2-α-mannosidase) is described here, the minimal substrate recognized by the enzyme is α-D-Man-(1→3)-β-D-Man-R.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 102576-81-8
References:
1.  Harpaz, N. and Schachter, H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. J. Biol. Chem. 255 (1980) 4885–4893. [PMID: 6445358]
2.  Mendicino, J., Chandrasekaran, E.V., Anumula, K.R. and Davila, M. Isolation and properties of α-D-mannose:β-1,2-N-acetylglucosaminyltransferase from trachea mucosa. Biochemistry 20 (1981) 967–976. [PMID: 6452163]
3.  Oppenheimer, C.L. and Hill, R.L. Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256 (1981) 799–804. [PMID: 6450208]
4.  Oppenheimer, C.L., Eckhardt, A.E. and Hill, R.L. The nonidentity of porcine N-acetylglucosaminyltransferases I and II. J. Biol. Chem. 256 (1981) 11477–11482. [PMID: 6457827]
5.  Miyagi, T. and Tsuiki, S. Studies on UDP-N-acetylglucosamine : α-mannoside β-N-acetylglucosaminyltransferase of rat liver and hepatomas. Biochim. Biophys. Acta 661 (1981) 148–157. [DOI] [PMID: 6170335]
6.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
7.  Vella, G.J., Paulsen, H. and Schachter, H. Control of glycoprotein synthesis. IX. A terminal Man alphal-3Man β1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: α-D-mannoside (GlcNAc to Man α1-3) β2-N-acetylglucosaminyltransferase I. Can. J. Biochem. Cell Biol. 62 (1984) 409–417. [PMID: 6235906]
8.  Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J.M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19 (2000) 5269–5280. [DOI] [PMID: 11032794]
[EC 2.4.1.101 created 1983, modified 2001 (EC 2.4.1.51 created 1972, part incorporated 1984), modified 2018]
 
 
EC 2.4.1.102     
Accepted name: β-1,3-galactosyl-O-glycosyl-glycoprotein β-1,6-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-L-seryl/threonyl-[protein] = UDP + O3-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Glossary: core 1 = O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-L-seryl/threonyl-[protein]
core 2 = O3-{β-D-galactosyl-(1→3)-[N-acetyl-β-D-glucosaminyl-(1→6)]-N-acetyl-α-D-galactosaminyl}-L-seryl/threonyl-[protein]
Other name(s): O-glycosyl-oligosaccharide-glycoprotein N-acetylglucosaminyltransferase I; β6-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine-mucin β-(1→6)-acetylglucosaminyltransferase; core 2 acetylglucosaminyltransferase; core 6-β-GlcNAc-transferase A; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosamine of β-D-galactosyl-1,3-N-acetyl-D-galactosaminyl-R) β-1,6-N-acetyl-D-glucosaminyltransferase; GCNT1; GCNT3; UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein (N-acetyl-D-glucosamine to N-acetyl-D-galactosamine of β-D-galactosyl-(1→3)-N-acetyl-D-galactosaminyl-R) 6-β-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:O3-[β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl]-glycoprotein 6-β-N-acetyl-D-glucosaminyltransferase (configuration-inverting)
Comments: The enzyme catalyses the addition of N-acetyl-α-D-glucosamine to the core 1 structure of O-glycans forming core 2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 95978-15-7
References:
1.  Brockhausen, I., Rachaman, E.S., Matta, K.L. and Schachter, H. The separation by liquid chromatography (under elevated pressure) of phenyl, benzyl, and O-nitrophenyl glycosides of oligosaccharides. Analysis of substrates and products for four N-acetyl-D-glucosaminyl-transferases involved in mucin synthesis. Carbohydr. Res. 120 (1983) 3–16. [DOI] [PMID: 6226356]
2.  Williams, D., Longmore, G., Matta, K.L. and Schachter, H. Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Gal β1-3GalNAc(GlcNAc→GalNAc) β6-N-acetylglucosaminyltransferase. J. Biol. Chem. 255 (1980) 11253–11261. [PMID: 6449508]
3.  Williams, D. and Schachter, H. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J. Biol. Chem. 255 (1980) 11247–11252. [PMID: 6449507]
[EC 2.4.1.102 created 1983, modified 2018]
 
 
EC 2.4.1.103     
Accepted name: alizarin 2-β-glucosyltransferase
Reaction: UDP-glucose + 1,2-dihydroxy-9,10-anthraquinone = UDP + 1-hydroxy-2-(β-D-glucosyloxy)-9,10-anthraquinone
Glossary: alizarin = 1,2-dihydroxy-9,10-anthraquinone
Other name(s): uridine diphosphoglucose-alizarin glucosyltransferase
Systematic name: UDP-glucose:1,2-dihydroxy-9,10-anthraquinone 2-O-β-D-glucosyltransferase
Comments: Acts on other hydroxy- and dihydroxy-derivatives of 9,10-anthraquinone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74506-41-5
References:
1.  Mateju, J., Cudlin, J., Steinerova, N., Blumauerova, M. and Vanek, Z. Partial purification and properties of glucosyltransferase from Streptomyces aureofaciens. Folia Microbiol. 24 (1979) 205–210. [PMID: 38193]
[EC 2.4.1.103 created 1983]
 
 
EC 2.4.1.104     
Accepted name: o-dihydroxycoumarin 7-O-glucosyltransferase
Reaction: UDP-glucose + 7,8-dihydroxycoumarin = UDP + daphnin
Other name(s): uridine diphosphoglucose-o-dihydroxycoumarin 7-O-glucosyltransferase; UDP-glucose:o-dihydroxycoumarin glucosyltransferase
Systematic name: UDP-glucose:7,8-dihydroxycoumarin 7-O-β-D-glucosyltransferase
Comments: Converts the aglycone daphetin into daphnin and, more slowly, esculetin into cichoriin, umbelliferone into skimmin, hydrangetin into hydrangin and scopoletin into scopolin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74114-37-7
References:
1.  Ibrahim, R.K. and Boulay, B. Purification and some properties of UDP-glucose:o-hydroxycoumarin 7-O-glucosyltransferase from tobacco cell cultures. Plant Sci. Lett. 18 (1980) 177–184.
[EC 2.4.1.104 created 1983]
 
 
EC 2.4.1.105     
Accepted name: vitexin β-glucosyltransferase
Reaction: UDP-glucose + vitexin = UDP + vitexin 2′′-O-β-D-glucoside
For diagram of the biosynthesis of vitexin and isovitexin derivatives, click here
Other name(s): uridine diphosphoglucose-vitexin 2′′-glucosyltransferase
Systematic name: UDP-glucose:vitexin 2′′-O-β-D-glucosyltransferase
Comments: Vitexin is a flavonoid from Cannabis sativa (hemp) and some populations of Silene alba.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 76828-68-7
References:
1.  Heinsbroek, R., Van Brederode, J., Van Nigtevecht, G., Maas, J., Kamsteeg, J., Besson, E. and Chopin, J. The 2′′-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two dfferent enzymes. Phytochemistry 19 (1980) 1935–1937.
[EC 2.4.1.105 created 1983]
 
 
EC 2.4.1.106     
Accepted name: isovitexin β-glucosyltransferase
Reaction: UDP-glucose + isovitexin = UDP + isovitexin 2′′-O-β-D-glucoside
For diagram of the biosynthesis of vitexin and isovitexin derivatives, click here
Other name(s): uridine diphosphoglucose-isovitexin 2′′-glucosyltransferase
Systematic name: UDP-glucose:isovitexin 2′′-O-β-D-glucosyltransferase
Comments: Isovitexin is a flavonoid from petals of Silene alba.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72102-99-9
References:
1.  Heinsbroek, R., Van Brederode, J., Van Nigtevecht, G., Maas, J., Kamsteeg, J., Besson, E. and Chopin, J. The 2′′-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two dfferent enzymes. Phytochemistry 19 (1980) 1935–1937.
[EC 2.4.1.106 created 1983]
 
 
EC 2.4.1.107      
Deleted entry:  UDP-glucuronate—testosterone glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.107 created 1983, deleted 1984]
 
 
EC 2.4.1.108      
Deleted entry:  UDP-glucuronate—phenol glucuronosyltransferase. Now included with EC 2.4.1.17, glucuronosyltransferase
[EC 2.4.1.108 created 1983, deleted 1984]
 
 
EC 2.4.1.109     
Accepted name: dolichyl-phosphate-mannose—protein mannosyltransferase
Reaction: (1) dolichyl β-D-mannosyl phosphate + L-threonyl-[protein] = dolichyl phosphate + 3-O-(α-D-mannosyl)-L-threonyl-[protein]
(2) dolichyl β-D-mannosyl phosphate + L-seryl-[protein] = dolichyl phosphate + 3-O-(α-D-mannosyl)-L-seryl-[protein]
For diagram of glycoprotein biosynthesis, click here
Other name(s): dolichol phosphomannose-protein mannosyltransferase; protein O-D-mannosyltransferase; dolichyl-phosphate-D-mannose:protein O-D-mannosyltransferase; dolichyl-phosphate-mannose-protein mannosyltransferase; dolichyl-D-mannosyl-phosphate:protein O-D-mannosyltransferase
Systematic name: dolichyl β-D-mannosyl-phosphate:L-threonyl/L-seryl-[protein] O-D-mannosyltransferase (configuration-inverting)
Comments: The enzyme transfers mannosyl residues to the hydroxy group of serine or threonine residues, producing cell-wall mannoproteins. It acts only on long-chain α-dihydropolyprenyl derivatives, larger than C35.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74315-99-4
References:
1.  Babczinski, P., Haselbeck, A. and Tanner, W. Yeast mannosyl transferases requiring dolichyl phosphate and dolichyl phosphate mannose as substrate. Partial purification and characterization of the solubilized enzyme. Eur. J. Biochem. 105 (1980) 509–515. [DOI] [PMID: 6989607]
2.  Palamarczyk, G., Lehle, L., Mankowski, T., Chojnacki, T. and Tanner, W. Specificity of solubilized yeast glycosyl transferases for polyprenyl derivatives. Eur. J. Biochem. 105 (1980) 517–523. [DOI] [PMID: 6445267]
[EC 2.4.1.109 created 1983, modified 2014]
 
 
EC 2.4.1.110     
Accepted name: tRNA-queuosine β-mannosyltransferase
Reaction: GDP-mannose + tRNAAsp-queuosine = GDP + tRNAAsp-O-5′′-β-D-mannosylqueuosine
Systematic name: GDP-mannose:tRNAAsp-queuosine O-5′′-β-D-mannosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9055-06-5
References:
1.  Okada, N. and Nishimura, S. Enzymatic synthesis of Q nucleoside containing mannose in the anticodon of tRNA: isolation of a novel mannosyltransferase from a cell-free extract of rat liver. Nucleic Acids Res. 4 (1977) 2931–2938. [DOI] [PMID: 20603]
[EC 2.4.1.110 created 1984]
 
 
EC 2.4.1.111     
Accepted name: coniferyl-alcohol glucosyltransferase
Reaction: UDP-glucose + coniferyl alcohol = UDP + coniferin
Other name(s): uridine diphosphoglucose-coniferyl alcohol glucosyltransferase; UDP-glucose coniferyl alcohol glucosyltransferase
Systematic name: UDP-glucose:coniferyl-alcohol 4′-β-D-glucosyltransferase
Comments: Sinapyl alcohol can also act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 61116-23-2
References:
1.  Ibrahim, R.K. and Grisebach, H. Purification and properties of UDP-glucose: coniferyl alcohol glucosyltransferase from suspension cultures of Paul's scarlet rose. Arch. Biochem. Biophys. 176 (1976) 700–708. [DOI] [PMID: 10853]
[EC 2.4.1.111 created 1984]
 
 
EC 2.4.1.112      
Deleted entry: α-1,4-glucan-protein synthase (UDP-forming). The protein referred to in this entry is now known to be glycogenin so the entry has been incorporated into EC 2.4.1.186, glycogenin glucosyltransferase
[EC 2.4.1.112 created 1984, deleted 2007]
 
 
EC 2.4.1.113     
Accepted name: α-1,4-glucan-protein synthase (ADP-forming)
Reaction: ADP-glucose + protein = ADP + α-D-glucosyl-protein
Other name(s): ADP-glucose:protein glucosyltransferase; adenosine diphosphoglucose-protein glucosyltransferase
Systematic name: ADP-glucose:protein 4-α-D-glucosyltransferase
Comments: The enzyme builds up α-1,4-glucan chains covalently bound to protein, thus acting as an initiator of glycogen synthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 67053-99-0
References:
1.  Barengo, R. and Krisman, C.R. Initiation of glycogen biosynthesis in Escherichia coli. Studies of the properties of the enzymes involved. Biochim. Biophys. Acta 540 (1978) 190–196. [DOI] [PMID: 418819]
[EC 2.4.1.113 created 1984]
 
 
EC 2.4.1.114     
Accepted name: 2-coumarate O-β-glucosyltransferase
Reaction: UDP-glucose + trans-2-hydroxycinnamate = UDP + trans-β-D-glucosyl-2-hydroxycinnamate
Other name(s): uridine diphosphoglucose-o-coumarate glucosyltransferase; UDPG:o-coumaric acid O-glucosyltransferase
Systematic name: UDP-glucose:trans-2-hydroxycinnamate O-β-D-glucosyltransferase
Comments: Coumarinate (cis-2-hydroxycinnamate) does not act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 73665-97-1
References:
1.  Kleinhofs, A., Haskins, F.A. and Gorz, H.J. trans-o-Hydroxylcinnamic acid glucosylation in cell-free extracts of Melilotus alba. Phytochemistry 6 (1967) 1313–1318.
2.  Poulton, J.E., McRee, B.E. and Conn, E.E. Intracellular localization of two enzymes involved in coumarin biosynthesis in Melilotus alba. Plant Physiol. 65 (1980) 171–175. [PMID: 16661155]
[EC 2.4.1.114 created 1984]
 
 
EC 2.4.1.115     
Accepted name: anthocyanidin 3-O-glucosyltransferase
Reaction: UDP-D-glucose + an anthocyanidin = UDP + an anthocyanidin-3-O-β-D-glucoside
For diagram of anthocyanin biosynthesis, click here
Other name(s): uridine diphosphoglucose-anthocyanidin 3-O-glucosyltransferase; UDP-glucose:anthocyanidin/flavonol 3-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-glucosyltransferase; UDP-glucose:anthocyanidin 3-O-D-glucosyltransferase; 3-GT
Systematic name: UDP-D-glucose:anthocyanidin 3-O-β-D-glucosyltransferase
Comments: The anthocyanidin compounds cyanidin, delphinidin, peonidin and to a lesser extent pelargonidin can act as substrates. The enzyme does not catalyse glucosylation of the 5-position of cyanidin and does not act on flavanols such as quercetin and kaempferol (cf. EC 2.4.1.91 flavonol 3-O-glucosyltransferase). In conjunction with EC 1.14.20.4, anthocyanidin oxygenase, it is involved in the conversion of leucoanthocyanidin into anthocyanidin 3-glucoside. It may act on the pseudobase precursor of the anthocyanidin rather than on the anthocyanidin itself [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 65607-32-1
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification and properties of UDP-glucose: cyanidin-3-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1045–1058. [PMID: 751640]
2.  Ford, C.M., Boss, P.K. and Høj, P.B. Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 273 (1998) 9224–9233. [DOI] [PMID: 9535914]
3.  Nakajima, J., Tanaka, Y., Yamazaki, M. and Saito, K. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276 (2001) 25797–25803. [DOI] [PMID: 11316805]
[EC 2.4.1.115 created 1984 (EC 2.4.1.233 created 2004, incorporated 2005), modified 2005]
 
 
EC 2.4.1.116     
Accepted name: cyanidin 3-O-rutinoside 5-O-glucosyltransferase
Reaction: UDP-α-D-glucose + cyanidin-3-O-rutinoside = UDP + cyanidin 3-O-rutinoside 5-O-β-D-glucoside
For diagram of anthocyanidin rutoside biosynthesis, click here
Glossary: cyanidin 3-O-rutinoside = cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside
cyanidin = 3,3′,4′,5,7-pentahydroxyflavylium
Other name(s): uridine diphosphoglucose-cyanidin 3-rhamnosylglucoside 5-O-glucosyltransferase; cyanidin-3-rhamnosylglucoside 5-O-glucosyltransferase; UDP-glucose:cyanidin-3-O-D-rhamnosyl-1,6-D-glucoside 5-O-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:cyanidin-3-O-α-L-rhamnosyl-(1→6)-β-D-glucoside 5-O-β-D-glucosyltransferase
Comments: Isolated from the plants Silene dioica (red campion) [1], Iris ensata (Japanese iris) [2] and Iris hollandica (Dutch iris) [3]. Also acts on the 3-O-rutinosides of pelargonidin, delphinidin and malvidin, but not the corresponding glucosides or 6-acylglucosides. The enzyme does not catalyse the glucosylation of the 5-hydroxy group of cyanidin 3-glucoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 70248-66-7
References:
1.  Kamsteeg, J., van Brederode, J. and van Nigtevecht, G. Identification, properties, and genetic control of UDP-glucose: cyanidin-3-rhamnosyl-(1→6)-glucoside-5-O-glucosyltransferase isolated from petals of the red campion (Silene dioica). Biochem. Genet. 16 (1978) 1059–1071. [PMID: 751641]
2.  Yabuya, T., Yamaguchi, M., Imayama, T., Katoh, K. and Ino I. Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata. Plant Sci. 162 (2002) 779–784.
3.  Imayama, T., Yoshihara, Y., Fukuchi-Mizutani, M., Tanaka, Y., Ino, I. and Yabuya, T. Isolation and characterization of a cDNA clone of UDP-glucose:anthocyanin 5-O-glucosyltransferase in Iris hollandica. Plant Sci. 167 (2004) 1243–1248.
[EC 2.4.1.116 created 1984 (EC 2.4.1.235 created 2004, incorporated 2006), modified 2006, modified 2013]
 
 
EC 2.4.1.117     
Accepted name: dolichyl-phosphate β-glucosyltransferase
Reaction: UDP-α-D-glucose + dolichyl phosphate = UDP + dolichyl β-D-glucosyl phosphate
Other name(s): polyprenyl phosphate:UDP-D-glucose glucosyltransferase; UDP-glucose dolichyl-phosphate glucosyltransferase; uridine diphosphoglucose-dolichol glucosyltransferase; UDP-glucose:dolichol phosphate glucosyltransferase; UDP-glucose:dolicholphosphoryl glucosyltransferase; UDP-glucose:dolichyl monophosphate glucosyltransferase; UDP-glucose:dolichyl phosphate glucosyltransferase; UDP-glucose:dolichyl-phosphate β-D-glucosyltransferase
Systematic name: UDP-α-D-glucose:dolichyl-phosphate β-D-glucosyltransferase (configuration-inverting)
Comments: Solanesyl phosphate and ficaprenyl phosphate can act as acceptors, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71061-42-2
References:
1.  Behrens, N.H. and Leloir, L.F. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc. Natl Acad. Sci. USA 66 (1970) 153–159. [DOI] [PMID: 5273893]
2.  Herscovics, A., Bugge, B. and Jeanloz, R.W. Glucosyltransferase activity in calf pancreas microsomes. Formation of dolichyl D[14C]glucosyl phosphate and 14C-labeled lipid-linked oligosaccharides from UDP-D-[14C]glucose. J. Biol. Chem. 252 (1977) 2271–2277. [PMID: 849929]
3.  Villemez, C.L. and Carlo, P.L. Properties of a soluble polyprenyl phosphate: UDP-D-glucose glucosyltransferase. J. Biol. Chem. 254 (1979) 4814–4819. [PMID: 438216]
[EC 2.4.1.117 created 1984]
 
 
EC 2.4.1.118     
Accepted name: cytokinin 7-β-glucosyltransferase
Reaction: UDP-glucose + an N6-alkylaminopurine = UDP + an N6-alkylaminopurine-7-β-D-glucoside
Glossary: zeatin = (E)-2-methyl-4-(9H-purin-6-ylamino)but-2-en-1-ol = (E)-N6-(4-hydroxy-3-methylbut-2-enyl)adenine
Other name(s): uridine diphosphoglucose-zeatin 7-glucosyltransferase; cytokinin 7-glucosyltransferase; UDP-glucose:zeatin 7-glucosyltransferase
Systematic name: UDP-glucose:N6-alkylaminopurine 7-glucosyltransferase
Comments: Acts on a range of N6-substituted adenines, including zeatin and N6-benzylaminopurine, but not N6-benzyladenine. With some acceptors, 9-β-D-glucosides are also formed.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 72103-03-8
References:
1.  Entsch, B. and Letham, D.S. Enzymic glucosylation of the cytokinin, 6-benzylaminopurine. Plant Sci. Lett. 14 (1979) 205–212.
2.  Entsch, B., Parker, C.W., Letham, D.S. and Summons, R.E. Preparation and characterization, using high-performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochim. Biophys. Acta 570 (1979) 124–139. [DOI] [PMID: 486500]
[EC 2.4.1.118 created 1984]
 
 
EC 2.4.1.119      
Transferred entry: dolichyl-diphosphooligosaccharideprotein glycotransferase. As the enzyme transfers more than one hexosyl group, it has been transferred to EC 2.4.99.18, dolichyl-diphosphooligosaccharideprotein glycotransferase
[EC 2.4.1.119 created 1984, deleted 2012]
 
 
EC 2.4.1.120     
Accepted name: sinapate 1-glucosyltransferase
Reaction: UDP-α-D-glucose + sinapate = UDP + 1-O-sinapoyl-β-D-glucose
Glossary: sinapate = (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
Other name(s): uridine diphosphoglucose-sinapate glucosyltransferase; UDP-glucose:sinapic acid glucosyltransferase; uridine 5′-diphosphoglucose-hydroxycinnamic acid acylglucosyltransferase; UDP-glucose:sinapate D-glucosyltransferase
Systematic name: UDP-α-D-glucose:sinapate D-glucosyltransferase
Comments: Some other hydroxycinnamates, including 4-coumarate, ferulate and caffeate, can act as acceptors, but more slowly. Only glucose esters, not glucosides, are formed (cf. EC 2.4.1.126 hydroxycinnamate 4-β-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, CAS registry number: 74082-53-4
References:
1.  Strack, D. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell free system from Raphanus sativus seedlings. Z. Naturforsch. C: Biosci. 35 (1980) 204–208.
[EC 2.4.1.120 created 1984]
 
 
EC 2.4.1.121     
Accepted name: indole-3-acetate β-glucosyltransferase
Reaction: UDP-glucose + (indol-3-yl)acetate = UDP + 1-O-(indol-3-yl)acetyl-β-D-glucose
Other name(s): uridine diphosphoglucose-indoleacetate glucosyltransferase; UDPG-indol-3-ylacetyl glucosyl transferase; UDP-glucose:indol-3-ylacetate glucosyltransferase; indol-3-ylacetylglucose synthase; UDP-glucose:indol-3-ylacetate glucosyl-transferase; IAGlu synthase; IAA-glucose synthase; UDP-glucose:indole-3-acetate β-D-glucosyltransferase
Systematic name: UDP-glucose:(indol-3-yl)acetate β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74082-56-7
References:
1.  Michalczuk, L. and Bandurski, R.S. Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207 (1982) 273–281. [PMID: 6218801]
[EC 2.4.1.121 created 1984]
 
 
EC 2.4.1.122     
Accepted name: N-acetylgalactosaminide β-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + N-acetyl-α-D-galactosaminyl-R = UDP + β-D-galactosyl-(1→3)-N-acetyl-α-D-galactosaminyl-R
Other name(s): glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase; uridine diphosphogalactose-mucin β-(1→3)-galactosyltransferase; UDP-galactose:glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase; UDP-Gal:α-D-GalNAc-1,3-α-D-GalNAc-diphosphoundecaprenol β-1,3-galactosyltransferase; wbnJ (gene name); wbiP (gene name); C1GALT1 (gene name); UDP-α-D-galactose:glycoprotein-N-acetyl-D-galactosamine 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:N-acetyl-α-D-galactosaminyl-R β-1,3-galactosyltransferase (configuration-inverting)
Comments: The eukaryotic enzyme can act on non-reducing O-serine-linked N-acetylgalactosamine residues in mucin glycoproteins, forming the T-antigen. The bacterial enzyme, found in some pathogenic strains, is involved in biosynthesis of the O-antigen repeating unit.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 97089-61-7
References:
1.  Hesford, F.J., Berger, E.G. and van den Eijnden, D.H. Identification of the product formed by human erythrocyte galactosyltransferase. Biochim. Biophys. Acta 659 (1981) 302–311. [DOI] [PMID: 6789880]
2.  Mendicino, J., Sivakami, S., Davila, M. and Chandrasekaran, E.V. Purification and properties of UDP-gal:N-acetylgalactosaminide mucin:β1,3-galactosyltransferase from swine trachea mucosa. J. Biol. Chem. 257 (1982) 3987–3994. [PMID: 6801057]
3.  Schachter, H., Narasimhan, S., Gleeson, P. and Vella, G. Glycosyltransferases involved in elongation of N-glycosidically linked oligosaccharides of the complex or N-acetyllactosamine type. Methods Enzymol. 98 (1983) 98–134. [PMID: 6366476]
4.  Ju, T., Brewer, K., D'Souza, A., Cummings, R.D. and Canfield, W.M. Cloning and expression of human core 1 β1,3-galactosyltransferase. J. Biol. Chem. 277 (2002) 178–186. [DOI] [PMID: 11677243]
5.  Yi, W., Perali, R.S., Eguchi, H., Motari, E., Woodward, R. and Wang, P.G. Characterization of a bacterial β-1,3-galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47 (2008) 1241–1248. [DOI] [PMID: 18179256]
6.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [DOI] [PMID: 20418877]
[EC 2.4.1.122 created 1984 (EC 2.4.1.307 created 2013, incorporated 2016), modified 2016]
 
 
EC 2.4.1.123     
Accepted name: inositol 3-α-galactosyltransferase
Reaction: UDP-α-D-galactose + myo-inositol = UDP + O-α-D-galactosyl-(1→3)-1D-myo-inositol
For diagram of stachyose biosynthesis, click here
Glossary: O-α-D-galactosyl-(1→3)-1D-myo-inositol = galactinol
Other name(s): UDP-D-galactose:inositol galactosyltransferase; UDP-galactose:myo-inositol 1-α-D-galactosyltransferase; UDPgalactose:myo-inositol 1-α-D-galactosyltransferase; galactinol synthase; inositol 1-α-galactosyltransferase; uridine diphosphogalactose-inositol galactosyltransferase; GolS; UDP-galactose:myo-inositol 3-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:myo-inositol 3-α-D-galactosyltransferase
Comments: An enzyme from plants involved in the formation of raffinose and stachyose [cf. EC 2.4.1.67 (galactinol—raffinose galactosyltransferase) and EC 2.4.1.82 (galactinol—sucrose galactosyltransferase)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 79955-89-8
References:
1.  Pharr, D.M., Sox, H.N., Locy, R.D. and Huber, S.C. Partial characterization of the galactinol forming enzyme from leaves of Cucumis sativus L. Plant Sci. Lett. 23 (1981) 25–33.
[EC 2.4.1.123 created 1984, modified 2003]
 
 
EC 2.4.1.124      
Transferred entry: N-acetyllactosamine 3-α-galactosyltransferase. Now EC 2.4.1.87, N-acetyllactosaminide 3-α-galactosyltransferase
[EC 2.4.1.124 created 1984, deleted 2002]
 
 
EC 2.4.1.125     
Accepted name: sucrose—1,6-α-glucan 3(6)-α-glucosyltransferase
Reaction: (1) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
(2) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + (1→3)-α-D-glucosyl-[(1→6)-α-D-glucosyl]n
Other name(s): water-soluble-glucan synthase (misleading); GTF-I; GTF-S; GTF-SI; sucrose-1,6-α-glucan 3(6)-α-glucosyltransferase; sucrose:1,6-α-D-glucan 3-α- and 6-α-glucosyltransferase; sucrose:1,6-, 1,3-α-D-glucan 3-α- and 6-α-D-glucosyltransferase; sucrose:1,6-α-D-glucan 3(6)-α-D-glucosyltransferase; gtfB (gene name); gtfC (gene name); gtfD (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3(6)-α-D-glucosyltransferase
Comments: The enzyme was characterized from the dental caries bacterium Streptococcus mutans. It transfers glucosyl residues from sucrose to either the 6- or the 3-positions of glucose residues in glucans, producing a highly-branched extracellular D-glucan polymers that promote attachment of the bacteria to teeth. Three types of the enzyme have been described; the insoluble polymers produced by GTF-I and GTF-SI contain 85% α(1→3) bonds and 15% α(1→6) bonds, while the soluble polymers produced by GTF-S contain only 30% of α(1→3) bonds and 70% α(1→6) bonds. cf. EC 2.4.1.5, dextransucrase [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81725-87-3
References:
1.  Mukasa, H., Shimamura, A. and Tsumori, H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim. Biophys. Acta 719 (1982) 81–89. [DOI] [PMID: 6216919]
2.  Shimamura, A., Tsumori, H. and Mukasa, H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta 702 (1982) 72–80. [DOI] [PMID: 6461359]
3.  Tsumori, H., Shimamura, A. and Mukasa, H. Purification and properties of extracellular glucosyltransferase synthesizing 1,6-, 1,3-α-D-glucan from Streptococcus mutans serotype a. J. Gen. Microbiol. 131 (1985) 3347–3353. [DOI] [PMID: 2937877]
4.  Fujiwara, T., Tamesada, M., Bian, Z., Kawabata, S., Kimura, S. and Hamada, S. Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Microb Pathog 20 (1996) 225–233. [DOI] [PMID: 8737492]
5.  Monchois, V., Willemot, R.M. and Monsan, P. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23 (1999) 131–151. [DOI] [PMID: 10234842]
6.  Ito, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A.D. and Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408 (2011) 177–186. [DOI] [PMID: 21354427]
[EC 2.4.1.125 created 1984]
 
 
EC 2.4.1.126     
Accepted name: hydroxycinnamate 4-β-glucosyltransferase
Reaction: UDP-glucose + trans-4-hydroxycinnamate = UDP + 4-O-β-D-glucosyl-4-hydroxycinnamate
Other name(s): uridine diphosphoglucose-hydroxycinnamate glucosyltransferase; UDP-glucose-hydroxycinnamate glucosyltransferase; hydroxycinnamoyl glucosyltransferase
Systematic name: UDP-glucose:trans-4-hydroxycinnamate 4-O-β-D-glucosyltransferase
Comments: Acts on 4-coumarate, ferulate, caffeate and sinapate, forming a mixture of 4-glucosides and glucose esters (cf. EC 2.4.1.120 sinapate 1-glucosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 77848-85-2
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.126 created 1984]
 
 
EC 2.4.1.127     
Accepted name: monoterpenol β-glucosyltransferase
Reaction: UDP-glucose + (-)-menthol = UDP + (-)-menthyl O-β-D-glucoside
For diagram of menthol biosynthesis, click here
Other name(s): uridine diphosphoglucose-monoterpenol glucosyltransferase; UDPglucose:monoterpenol glucosyltransferase
Systematic name: UDP-glucose:(-)-menthol O-β-D-glucosyltransferase
Comments: (+)-Neomenthol can also act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 78990-64-4
References:
1.  Fleuriet, A., Macheix, J.J., Suen, R. and Ibrahim, R.K. Partial purifiction and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. C: Biosci. 35 (1980) 967–972.
[EC 2.4.1.127 created 1984]
 
 
EC 2.4.1.128     
Accepted name: scopoletin glucosyltransferase
Reaction: UDP-glucose + scopoletin = UDP + scopolin
Other name(s): uridine diphosphoglucose-scopoletin glucosyltransferase; UDP-glucose:scopoletin glucosyltransferase; SGTase
Systematic name: UDP-glucose:scopoletin O-β-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81210-69-7
References:
1.  Hino, F., Okazaki, M. and Miura, Y. Effect of 2,4-dichlorophenoxyacetic acid on glucosylation of scopoletin to scopolin in tobacco tissue-culture. Plant Physiol. 69 (1982) 810–813. [PMID: 16662301]
[EC 2.4.1.128 created 1984]
 
 
EC 2.4.1.129     
Accepted name: peptidoglycan glycosyltransferase
Reaction: [GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)]n-diphosphoundecaprenol + GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = [GlcNAc-(1→4)-Mur2Ac(oyl-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala)]n+1-diphosphoundecaprenol + undecaprenyl diphosphate
Glossary: Mur2Ac = N-acetylmuramic acid
Other name(s): PG-II; bactoprenyldiphospho-N-acetylmuramoyl-(N-acetyl-D-glucosaminyl)-pentapeptide:peptidoglycan N-acetylmuramoyl-N-acetyl-D-glucosaminyltransferase; penicillin binding protein (3 or 1B); peptidoglycan transglycosylase; undecaprenyldiphospho-(N-acetyl-D-glucosaminyl-(1→4)-N-acetyl-D-muramoylpentapeptide):undecaprenyldiphospho-(N-acetyl-D-glucosaminyl-(1→4)-N-acetyl-D-muramoylpentapeptide) disaccharidetransferase
Systematic name: [poly-N-acetyl-D-glucosaminyl-(1→4)-(N-acetyl-D-muramoylpentapeptide)]-diphosphoundecaprenol:[N-acetyl-D-glucosaminyl-(1→4)-N-acetyl-D-muramoylpentapeptide]-diphosphoundecaprenol disaccharidetransferase
Comments: The enzyme also works when the lysine residue is replaced by meso-2,6-diaminoheptanedioate (meso-2,6-diaminopimelate, A2pm) combined with adjacent residues through its L-centre, as it is in Gram-negative and some Gram-positive organisms. The undecaprenol involved is ditrans,octacis-undecaprenol (for definitions, click here). Involved in the synthesis of cell-wall peptidoglycan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 79079-04-2
References:
1.  Taku, A., Stuckey, M. and Fan, D.P. Purification of the peptidoglycan transglycosylase of Bacillus megaterium. J. Biol. Chem. 257 (1982) 5018–5022. [PMID: 6802846]
2.  Goffin, C. and Ghuysen, J.-M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62 (1998) 1079–1093. [PMID: 9841666]
3.  van Heijenoort, J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11 (2001) 25. [DOI] [PMID: 11320055]
[EC 2.4.1.129 created 1984, modified 2002]
 
 
EC 2.4.1.130      
Transferred entry: dolichyl-phosphate-mannose—glycolipid α-mannosyltransferase. Now covered by EC 2.4.1.258 (Dol-P-Man:Man5GlcNAc2-PP-Dol α-1,3-mannosyltransferase), EC 2.4.1.259 (Dol-P-Man:Man6GlcNAc2-PP-Dol α-1,2-mannosyltransferase), EC 2.4.1.260 (Dol-P-Man:Man7GlcNAc2-PP-Dol α-1,6-mannosyltransferase) and EC 2.4.1.261 (Dol-P-Man:Man8GlcNAc2-PP-Dol α-1,2-mannosyltransferase).
[EC 2.4.1.130 created 1984, deleted 2011]
 
 
EC 2.4.1.131     
Accepted name: GDP-Man:Man3GlcNAc2-PP-dolichol α-1,2-mannosyltransferase
Reaction: 2 GDP-α-D-mannose + α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = 2 GDP + α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Other name(s): ALG11; ALG11 mannosyltransferase; LEW3 (gene name); At2G40190 (gene name); gmd3 (gene name); galactomannan deficiency protein 3; GDP-mannose:glycolipid 1,2-α-D-mannosyltransferase; glycolipid 2-α-mannosyltransferase; GDP-mannose:glycolipid 2-α-D-mannosyltransferase; GDP-Man:Man3GlcNAc2-PP-Dol α-1,2-mannosyltransferase; GDP-α-D-mannose:D-Man-α-(1→3)-[D-Man-α-(1→6)]-D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase
Systematic name: GDP-α-D-mannose:α-D-Man-(1→3)-[α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 2-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins (N-linked protein glycosylation) utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. ALG11 mannosyltransferase from Saccharomyces cerevisiae carries out two sequential steps in the formation of the lipid-linked core oligosaccharide, adding two mannose residues in α(1→2) linkages to the nascent oligosaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 74506-43-7
References:
1.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [DOI] [PMID: 16878994]
2.  Absmanner, B., Schmeiser, V., Kampf, M. and Lehle, L. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem. J. 426 (2010) 205–217. [DOI] [PMID: 19929855]
3.  Schutzbach, J.S., Springfield, J.D. and Jensen, J.W. The biosynthesis of oligosaccharide-lipids. Formation of an α-1,2-mannosyl-mannose linkage. J. Biol. Chem. 255 (1980) 4170–4175. [PMID: 6154707]
[EC 2.4.1.131 created 1984, modified 2011, modified 2012]
 
 
EC 2.4.1.132     
Accepted name: GDP-Man:Man1GlcNAc2-PP-dolichol α-1,3-mannosyltransferase
Reaction: GDP-α-D-mannose + β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = GDP + α-D-Man-(1→3)-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
For diagram of dolichyltetradecasaccharide biosynthesis, click here
Glossary: β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol = β-D-mannosyl-(1→4)-N,N′-diacetylchitobiosyldiphosphodolichol
Other name(s): Alg2 mannosyltransferase (ambiguous); ALG2 (gene name, ambiguous); glycolipid 3-α-mannosyltransferase; GDP-mannose:glycolipid 3-α-D-mannosyltransferase; GDP-Man:Man1GlcNAc2-PP-Dol α-1,3-mannosyltransferase; GDP-D-mannose:D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol 3-α-mannosyltransferase
Systematic name: GDP-α-D-mannose:β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol 3-α-D-mannosyltransferase (configuration-retaining)
Comments: The biosynthesis of asparagine-linked glycoproteins utilizes a dolichyl diphosphate-linked glycosyl donor, which is assembled by the series of membrane-bound glycosyltransferases that comprise the dolichol pathway. Alg2 mannosyltransferase from Saccharomyces cerevisiae carries out an α1,3-mannosylation of D-Man-β-(1→4)-D-GlcNAc-β-(1→4)-D-GlcNAc-diphosphodolichol, followed by an α1,6-mannosylation (cf. EC 2.4.1.257), to form the first branched pentasaccharide intermediate of the dolichol pathway [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81181-76-2
References:
1.  Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J. Biol. Chem. 284 (2009) 11900–11912. [DOI] [PMID: 19282279]
2.  O'Reilly, M.K., Zhang, G. and Imperiali, B. In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry 45 (2006) 9593–9603. [DOI] [PMID: 16878994]
[EC 2.4.1.132 created 1984, modified 2011, modified 2012]
 
 
EC 2.4.1.133     
Accepted name: xylosylprotein 4-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Other name(s): UDP-D-galactose:D-xylose galactosyltransferase; UDP-D-galactose:xylose galactosyltransferase; galactosyltransferase I; uridine diphosphogalactose-xylose galactosyltransferase; UDP-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosylprotein 4-β-D-galactosyltransferase; UDP-α-D-galactose:O-β-D-xylosyl-[protein] 4-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-xylosyl)-L-serine 4-β-D-galactosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 52227-72-2
References:
1.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
2.  Okajima, T., Yoshida, K., Kondo, T. and Furukawa, K. Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 274 (1999) 22915–22918. [DOI] [PMID: 10438455]
[EC 2.4.1.133 created 1984, modified 2002]
 
 
EC 2.4.1.134     
Accepted name: galactosylxylosylprotein 3-β-galactosyltransferase
Reaction: UDP-α-D-galactose + [protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Other name(s): galactosyltransferase II; uridine diphosphogalactose-galactosylxylose galactosyltransferase; UDP-galactose:4-β-D-galactosyl-O-β-D-xylosylprotein 3-β-D-galactosyltransferase; UDP-α-D-galactose:4-β-D-galactosyl-O-β-D-xylosylprotein 3-β-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:[protein]-3-O-(β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56626-21-2, 56626-19-8
References:
1.  Robinson, J.A. and Robinson, H.C. Initiation of chondroitin sulphate synthesis by β-D-galactosides. Substrates for galactosyltransferase II. Biochem. J. 227 (1985) 805–814. [PMID: 3924029]
2.  Schwartz, N.B. and Roden, L. Biosynthesis of chondroitin sulfate. Solubilization of chondroitin sulfate glycosyltransferases and partial purification of uridine diphosphate-D-galactose:D-xylose galactosyltransferase. J. Biol. Chem. 250 (1975) 5200–5207. [PMID: 1150655]
3.  Bai, X., Zhou, D., Brown, J.R., Crawford, B.E., Hennet, T. and Esko, J.D. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the β1,3-galactosyltransferase family (β3GalT6). J. Biol. Chem. 276 (2001) 48189–48195. [DOI] [PMID: 11551958]
[EC 2.4.1.134 created 1984, modified 2002]
 
 
EC 2.4.1.135     
Accepted name: galactosylgalactosylxylosylprotein 3-β-glucuronosyltransferase
Reaction: UDP-α-D-glucuronate + [protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine = UDP + [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine
For diagram of heparan and chondroitin biosynthesis (early stages), click here
Glossary: [protein]-3-O-(β-D-GlcA-(1→3)-β-D-Gal-(1→3)-β-D-Gal-(1→4)-β-D-Xyl)-L-serine = [protein]-3-O-(β-D-glucuronosyl-(1→3)-β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine
Other name(s): glucuronosyltransferase I; uridine diphosphate glucuronic acid:acceptor glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosyl-protein D-glucuronosyltransferase; UDP-glucuronate:3-β-D-galactosyl-4-β-D-galactosyl-O-β-D-xylosylprotein D-glucuronosyltransferase
Systematic name: UDP-α-D-glucuronate:[protein]-3-O-(β-D-galactosyl-(1→3)-β-D-galactosyl-(1→4)-β-D-xylosyl)-L-serine D-glucuronosyltransferase (configuration-inverting)
Comments: Involved in the biosynthesis of the linkage region of glycosaminoglycan chains as part of proteoglycan biosynthesis (chondroitin, dermatan and heparan sulfates). Requires Mn2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 227184-75-0
References:
1.  Helting, J. and Roden, L. Biosynthesis of chondroitin sulfate. II. Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J. Biol. Chem. 244 (1969) 2799–2805. [PMID: 5770003]
2.  Helting, T. Biosynthesis of heparin. Solubilization and partial purification of uridine diphosphate glucuronic acid: acceptor glucuronosyltransferase from mouse mastocytoma. J. Biol. Chem. 247 (1972) 4327–4332. [PMID: 4260846]
3.  Kitagawa, H., Tone, Y., Tamura, J., Neumann, K.W., Ogawa, T., Oka, S., Kawasaki, T. and Sugahara, K. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273 (1998) 6615–6618. [DOI] [PMID: 9506957]
[EC 2.4.1.135 created 1984, modified 2002, modified 2016]
 
 
EC 2.4.1.136     
Accepted name: gallate 1-β-glucosyltransferase
Reaction: UDP-glucose + gallate = UDP + 1-galloyl-β-D-glucose
Other name(s): UDP-glucose—vanillate 1-glucosyltransferase; UDPglucose:vanillate 1-O-glucosyltransferase; UDPglucose:gallate glucosyltransferase
Systematic name: UDP-glucose:gallate β-D-glucosyltransferase
Comments: A number of substituted benzoic acids and, more slowly, cinnamic acids, can act as acceptors. Vanillin is the best acceptor investigated.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 89700-30-1
References:
1.  Gross, G.G. Synthesis of β-glucogallin from UDP-glucose and gallic acid by an enzyme preparation from oak leaves. FEBS Lett. 148 (1982) 67–70.
2.  Gross, G.G. Partial-purification and properties of UDP-glucose-vanillate 1-O-glucosyl transferase from oak leaves. Phytochemistry 22 (1983) 2179–2182.
[EC 2.4.1.136 created 1984]
 
 
EC 2.4.1.137     
Accepted name: sn-glycerol-3-phosphate 2-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sn-glycerol 3-phosphate = UDP + 2-(α-D-galactosyl)-sn-glycerol 3-phosphate
Other name(s): floridoside-phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate-2-D-galactosyl transferase; FPS; UDP-galactose,sn-3-glycerol phosphate:1→2′ galactosyltransferase; floridoside phosphate synthetase; floridoside phosphate synthase; UDP-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sn-glycerol-3-phosphate 2-α-D-galactosyltransferase
Comments: The product is hydrolysed by a phosphatase to floridoside (cf. EC 2.4.1.96 sn-glycerol-3-phosphate 1-galactosyltransferase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 80747-34-8
References:
1.  Gray, N.C.C. and Strickland, K.P. The purification and characterization of a phospholipase A2 activity from the 106,000 x g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60 (1982) 108–117. [PMID: 7083039]
[EC 2.4.1.137 created 1984]
 
 
EC 2.4.1.138     
Accepted name: mannotetraose 2-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man = UDP + α-D-Man-(1→3)-[α-D-GlcNAc-(1→2)]-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man
Other name(s): α-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine mannoside α1→2-αcetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:mannotetraose α-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-D-mannose α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81032-47-5
References:
1.  Douglas, R.H. and Ballou, C.E. Purification of an α-N-acetylglucosaminyltransferase from the yeast Kluyveromyces lactis and a study of mutants defective in this enzyme activity. Biochemistry 21 (1982) 1561–1570. [PMID: 6211189]
[EC 2.4.1.138 created 1984]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald