The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version



EC 2.3.1.18     
Accepted name: galactoside O-acetyltransferase
Reaction: acetyl-CoA + a β-D-galactoside = CoA + a 6-acetyl-β-D-galactoside
Other name(s): thiogalactoside acetyltransferase; galactoside acetyltransferase; thiogalactoside transacetylase
Systematic name: acetyl-CoA:β-D-galactoside 6-acetyltransferase
Comments: Acts on thiogalactosides and phenylgalactoside.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-94-1
References:
1.  Zabin, I. Crystalline thiogalactoside transacetylase. J. Biol. Chem. 238 (1963) 3300–3306. [PMID: 14085376]
2.  Zabin, I., Kepes, A. and Monod, J. Thiogalactoside transacetylase. J. Biol. Chem. 237 (1962) 253–257. [PMID: 14009486]
[EC 2.3.1.18 created 1965]
 
 
EC 2.3.1.180     
Accepted name: β-ketoacyl-[acyl-carrier-protein] synthase III
Reaction: acetyl-CoA + a malonyl-[acyl-carrier protein] = an acetoacetyl-[acyl-carrier protein] + CoA + CO2
Other name(s): 3-oxoacyl:ACP synthase III; 3-ketoacyl-acyl carrier protein synthase III; KASIII; KAS III; FabH; β-ketoacyl-acyl carrier protein synthase III; β-ketoacyl-ACP synthase III; β-ketoacyl (acyl carrier protein) synthase III; acetyl-CoA:malonyl-[acyl-carrier-protein] C-acyltransferase
Systematic name: acetyl-CoA:malonyl-[acyl-carrier protein] C-acyltransferase
Comments: Involved in the dissociated (or type II) fatty-acid biosynthesis system that occurs in plants and bacteria. In contrast to EC 2.3.1.41 (β-ketoacyl-ACP synthase I) and EC 2.3.1.179 (β-ketoacyl-ACP synthase II), this enzyme specifically uses CoA thioesters rather than acyl-ACP as the primer [1]. In addition to the above reaction, the enzyme can also catalyse the reaction of EC 2.3.1.38, [acyl-carrier-protein] S-acetyltransferase, but to a much lesser extent [1]. The enzyme is responsible for initiating both straight- and branched-chain fatty-acid biosynthesis [2], with the substrate specificity in an organism reflecting the fatty-acid composition found in that organism [2,5]. For example, Streptococcus pneumoniae, a Gram-positive bacterium, is able to use both straight- and branched-chain (C4-C6) acyl-CoA primers [3] whereas Escherichia coli, a Gram-negative organism, uses primarily short straight-chain acyl CoAs, with a preference for acetyl-CoA [4,5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 1048646-78-1
References:
1.  Tsay, J.T., Oh, W., Larson, T.J., Jackowski, S. and Rock, C.O. Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 267 (1992) 6807–6814. [PMID: 1551888]
2.  Han, L., Lobo, S. and Reynolds, K.A. Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J. Bacteriol. 180 (1998) 4481–4486. [PMID: 9721286]
3.  Khandekar, S.S., Gentry, D.R., Van Aller, G.S., Warren, P., Xiang, H., Silverman, C., Doyle, M.L., Chambers, P.A., Konstantinidis, A.K., Brandt, M., Daines, R.A. and Lonsdale, J.T. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae β-ketoacyl-acyl carrier protein synthase III (FabH). J. Biol. Chem. 276 (2001) 30024–30030. [DOI] [PMID: 11375394]
4.  Choi, K.H., Kremer, L., Besra, G.S. and Rock, C.O. Identification and substrate specificity of β-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 275 (2000) 28201–28207. [DOI] [PMID: 10840036]
5.  Qiu, X., Choudhry, A.E., Janson, C.A., Grooms, M., Daines, R.A., Lonsdale, J.T. and Khandekar, S.S. Crystal structure and substrate specificity of the β-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Protein Sci. 14 (2005) 2087–2094. [DOI] [PMID: 15987898]
6.  Li, Y., Florova, G. and Reynolds, K.A. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH). J. Bacteriol. 187 (2005) 3795–3799. [DOI] [PMID: 15901703]
7.  Cronan, J.E., Jr. and Rock, C.O. Biosynthesis of membrane lipids. In: Neidhardt, F.C. (Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, vol. 1, ASM Press, Washington, DC, 1996, pp. 612–636.
[EC 2.3.1.180 created 2006]
 
 
EC 2.3.1.181     
Accepted name: lipoyl(octanoyl) transferase
Reaction: an octanoyl-[acyl-carrier protein] + a protein = a protein N6-(octanoyl)lysine + an [acyl-carrier protein]
Glossary: lipoyl group
Other name(s): LipB; lipoyl (octanoyl)-[acyl-carrier-protein]-protein N-lipoyltransferase; lipoyl (octanoyl)-acyl carrier protein:protein transferase; lipoate/octanoate transferase; lipoyltransferase; octanoyl-[acyl carrier protein]-protein N-octanoyltransferase; lipoyl(octanoyl)transferase; octanoyl-[acyl-carrier-protein]:protein N-octanoyltransferase
Systematic name: octanoyl-[acyl-carrier protein]:protein N-octanoyltransferase
Comments: This is the first committed step in the biosynthesis of lipoyl cofactor. Lipoylation is essential for the function of several key enzymes involved in oxidative metabolism, as it converts apoprotein into the biologically active holoprotein. Examples of such lipoylated proteins include pyruvate dehydrogenase (E2 domain), 2-oxoglutarate dehydrogenase (E2 domain), the branched-chain 2-oxoacid dehydrogenases and the glycine cleavage system (H protein) [2,3]. Lipoyl-ACP can also act as a substrate [4] although octanoyl-ACP is likely to be the true substrate [6]. The other enzyme involved in the biosynthesis of lipoyl cofactor is EC 2.8.1.8, lipoyl synthase. An alternative lipoylation pathway involves EC 6.3.1.20, lipoate—protein ligase, which can lipoylate apoproteins using exogenous lipoic acid (or its analogues).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 392687-64-8
References:
1.  Nesbitt, N.M., Baleanu-Gogonea, C., Cicchillo, R.M., Goodson, K., Iwig, D.F., Broadwater, J.A., Haas, J.A., Fox, B.G. and Booker, S.J. Expression, purification, and physical characterization of Escherichia coli lipoyl(octanoyl)transferase. Protein Expr. Purif. 39 (2005) 269–282. [DOI] [PMID: 15642479]
2.  Vanden Boom, T.J., Reed, K.E. and Cronan, J.E., Jr. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J. Bacteriol. 173 (1991) 6411–6420. [DOI] [PMID: 1655709]
3.  Jordan, S.W. and Cronan, J.E., Jr. A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J. Biol. Chem. 272 (1997) 17903–17906. [DOI] [PMID: 9218413]
4.  Zhao, X., Miller, J.R., Jiang, Y., Marletta, M.A. and Cronan, J.E. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem. Biol. 10 (2003) 1293–1302. [DOI] [PMID: 14700636]
5.  Wada, M., Yasuno, R., Jordan, S.W., Cronan, J.E., Jr. and Wada, H. Lipoic acid metabolism in Arabidopsis thaliana: cloning and characterization of a cDNA encoding lipoyltransferase. Plant Cell Physiol. 42 (2001) 650–656. [PMID: 11427685]
6.  Perham, R.N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69 (2000) 961–1004. [DOI] [PMID: 10966480]
[EC 2.3.1.181 created 2006, modified 2016]
 
 
EC 2.3.1.182     
Accepted name: (R)-citramalate synthase
Reaction: acetyl-CoA + pyruvate + H2O = CoA + (2R)-2-hydroxy-2-methylbutanedioate
Glossary: (-)-citramalate = (2R)-2-methylmalate = (2R)-2-hydroxy-2-methylbutanedioate
α-ketoisovalerate = 3-methyl-2-oxobutanoate
α-ketobutyrate = 2-oxobutanoate
α-ketoisocaproate = 4-methyl-2-oxopentanoate
α-ketopimelate = 2-oxohexanoate
α-ketoglutarate = 2-oxoglutarate
Other name(s): CimA
Comments: One of the enzymes involved in a novel pyruvate pathway for isoleucine biosynthesis that is found in some, mainly archaeal, bacteria [1,2]. The enzyme can be inhibited by isoleucine, the end-product of the pathway, but not by leucine [2]. The enzyme is highly specific for pyruvate as substrate, as the 2-oxo acids 3-methyl-2-oxobutanoate, 2-oxobutanoate, 4-methyl-2-oxopentanoate, 2-oxohexanoate and 2-oxoglutarate cannot act as substrate [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Howell, D.M., Xu, H. and White, R.H. (R)-Citramalate synthase in methanogenic archaea. J. Bacteriol. 181 (1999) 331–333. [PMID: 9864346]
2.  Xu, H., Zhang, Y., Guo, X., Ren, S., Staempfli, A.A., Chiao, J., Jiang, W. and Zhao, G. Isoleucine biosynthesis in Leptospira interrogans serotype 1ai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol. 186 (2004) 5400–5409. [DOI] [PMID: 15292141]
[EC 2.3.1.182 created 2007]
 
 
EC 2.3.1.183     
Accepted name: phosphinothricin acetyltransferase
Reaction: acetyl-CoA + phosphinothricin = CoA + N-acetylphosphinothricin
Glossary: phosphinothricin = glufosinate = 2-amino-4-[hydroxy(methyl)phosphoryl]butanoate
Other name(s): PAT; PPT acetyltransferase; Pt-N-acetyltransferase; ac-Pt
Systematic name: acetyl-CoA:phosphinothricin N-acetyltransferase
Comments: The substrate phosphinothricin is used as a nonselective herbicide and is a potent inhibitor of EC 6.3.1.2, glutamate—ammonia ligase, a key enzyme of nitrogen metabolism in plants [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Botterman, J., Gosselé, V., Thoen, C. and Lauwereys, M. Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Gene 102 (1991) 33–37. [DOI] [PMID: 1864506]
2.  Dröge-Laser, W., Siemeling, U., Pühler, A. and Broer, I. The metabolites of the herbicide L-phosphinothricin (glufosinate) (identification, stability, and mobility in transgenic, herbicide-resistant, and untransformed plants). Plant Physiol. 105 (1994) 159–166. [PMID: 12232195]
[EC 2.3.1.183 created 2007]
 
 
EC 2.3.1.184     
Accepted name: acyl-homoserine-lactone synthase
Reaction: an acyl-[acyl-carrier protein] + S-adenosyl-L-methionine = an [acyl-carrier protein] + S-methyl-5′-thioadenosine + an N-acyl-L-homoserine lactone
For diagram of reaction, click here
Other name(s): acyl-homoserine lactone synthase; acyl homoserine lactone synthase; acyl-homoserinelactone synthase; acylhomoserine lactone synthase; AHL synthase; AHS; AHSL synthase; AhyI; AinS; AinS protein; autoinducer synthase; autoinducer synthesis protein rhlI; EsaI; ExpISCC1; ExpISCC3065; LasI; LasR; LuxI; LuxI protein; LuxM; N-acyl homoserine lactone synthase; RhlI; YspI ; acyl-[acyl carrier protein]:S-adenosyl-L-methionine acyltranserase (lactone-forming, methylthioadenosine-releasing)
Systematic name: acyl-[acyl-carrier protein]:S-adenosyl-L-methionine acyltranserase (lactone-forming, methylthioadenosine-releasing)
Comments: Acyl-homoserine lactones (AHLs) are produced by a number of bacterial species and are used by them to regulate the expression of virulence genes in a process known as quorum-sensing. Each bacterial cell has a basal level of AHL and, once the population density reaches a critical level, it triggers AHL-signalling which, in turn, initiates the expression of particular virulence genes [5]. N-(3-Oxohexanoyl)-[acyl-carrier protein] and hexanoyl-[acyl-carrier protein] are the best substrates [1]. The fatty-acyl substrate is derived from fatty-acid biosynthesis through acyl-[acyl-carrier protein] rather than from fatty-acid degradation through acyl-CoA [1]. S-Adenosyl-L-methionine cannot be replaced by methionine, S-adenosylhomocysteine, homoserine or homoserine lactone [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 176023-66-8
References:
1.  Schaefer, A.L., Val, D.L., Hanzelka, B.L., Cronan, J.E., Jr. and Greenberg, E.P. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93 (1996) 9505–9509. [DOI] [PMID: 8790360]
2.  Watson, W.T., Murphy, F.V., 4th, Gould, T.A., Jambeck, P., Val, D.L., Cronan, J.E., Jr., Beck von Bodman, S. and Churchill, M.E. Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI. Acta Crystallogr. D Biol. Crystallogr. 57 (2001) 1945–1949. [PMID: 11717525]
3.  Chakrabarti, S. and Sowdhamini, R. Functional sites and evolutionary connections of acylhomoserine lactone synthases. Protein Eng. 16 (2003) 271–278. [PMID: 12736370]
4.  Hanzelka, B.L., Parsek, M.R., Val, D.L., Dunlap, P.V., Cronan, J.E., Jr. and Greenberg, E.P. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181 (1999) 5766–5770. [PMID: 10482519]
5.  Parsek, M.R., Val, D.L., Hanzelka, B.L., Cronan, J.E., Jr. and Greenberg, E.P. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96 (1999) 4360–4365. [DOI] [PMID: 10200267]
6.  Ulrich, R.L. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70 (2004) 6173–6180. [DOI] [PMID: 15466564]
7.  Gould, T.A., Schweizer, H.P. and Churchill, M.E. Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol. Microbiol. 53 (2004) 1135–1146. [DOI] [PMID: 15306017]
8.  Raychaudhuri, A., Jerga, A. and Tipton, P.A. Chemical mechanism and substrate specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas aeruginosa. Biochemistry 44 (2005) 2974–2981. [DOI] [PMID: 15723540]
9.  Gould, T.A., Herman, J., Krank, J., Murphy, R.C. and Churchill, M.E. Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J. Bacteriol. 188 (2006) 773–783. [DOI] [PMID: 16385066]
[EC 2.3.1.184 created 2007]
 
 
EC 2.3.1.185     
Accepted name: tropine acyltransferase
Reaction: an acyl-CoA + tropine = CoA + an O-acyltropine
For diagram of tropane alkaloid biosynthesis, click here
Glossary: tropine = tropan-3α-ol = 3α-hydroxytropane
Other name(s): tropine:acyl-CoA transferase; acetyl-CoA:tropan-3-ol acyltransferase; tropine acetyltransferase; tropine tigloyltransferase; TAT
Systematic name: acyl-CoA:tropine O-acyltransferase
Comments: This enzyme exhibits absolute specificity for the endo/3α configuration found in tropine as pseudotropine (tropan-3β-ol; see EC 2.3.1.186, pseudotropine acyltransferase) is not a substrate [3]. Acts on a wide range of aliphatic acyl-CoA derivatives, with tigloyl-CoA and acetyl-CoA being the best substrates. It is probably involved in the formation of the tropane alkaloid littorine, which is a precursor of hyoscyamine [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 138440-79-6, 162535-29-7
References:
1.  Robins, R.J., Bachmann, P., Robinson, T., Rhodes, M.J. and Yamada, Y. The formation of 3α- and 3β-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases. FEBS Lett. 292 (1991) 293–297. [DOI] [PMID: 1959620]
2.  Robins, R.J., Bachmann,P., Peerless, A.C.J. and Rabot, S. Esterification reactions in the biosynthesis of tropane alkaloids in transformed root cultures. Plant Cell, Tissue Organ Cult. 38 (1994) 241–247.
3.  Boswell, H.D., Dräger, B., McLauchlan, W.R., Portsteffen, A., Robins, D.J., Robins, R.J. and Walton, N.J. Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura. Phytochemistry 52 (1999) 871–878. [DOI] [PMID: 10626376]
4.  Li, R., Reed, D.W., Liu, E., Nowak, J., Pelcher, L.E., Page, J.E. and Covello, P.S. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem. Biol. 13 (2006) 513–520. [DOI] [PMID: 16720272]
[EC 2.3.1.185 created 2008]
 
 
EC 2.3.1.186     
Accepted name: pseudotropine acyltransferase
Reaction: an acyl-CoA + pseudotropine = CoA + an O-acylpseudotropine
For diagram of tropane alkaloid biosynthesis, click here
Glossary: tropine = tropan-3β-ol = 3β-hydroxytropane
Other name(s): pseudotropine:acyl-CoA transferase; tigloyl-CoA:pseudotropine acyltransferase; acetyl-CoA:pseudotropine acyltransferase; pseudotropine acetyltransferase; pseudotropine tigloyltransferase; PAT
Systematic name: acyl-CoA:pseudotropine O-acyltransferase
Comments: This enzyme exhibits absolute specificity for the exo/3β configuration found in pseudotropine as tropine (tropan-3α-ol; see EC 2.3.1.185, tropine acyltransferase) and nortropine are not substrates [1]. Acts on a wide range of aliphatic acyl-CoA derivatives, including acetyl-CoA, β-methylcrotonyl-CoA and tigloyl-CoA [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 138440-78-5, 162535-26-4
References:
1.  Rabot, S., Peerless, A.C.J. and Robins, R.J. Tigloyl-CoA:pseudotropine acyltransferase — an enzyme of tropane alkaloid biosynthesis. Phytochemistry 39 (1995) 315–322.
2.  Robins, R.J., Bachmann, P., Robinson, T., Rhodes, M.J. and Yamada, Y. The formation of 3α- and 3β-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases. FEBS Lett. 292 (1991) 293–297. [DOI] [PMID: 1959620]
3.  Robins, R.J., Bachmann,P., Peerless, A.C.J. and Rabot, S. Esterification reactions in the biosynthesis of tropane alkaloids in transformed root cultures. Plant Cell, Tissue Organ Cult. 38 (1994) 241–247.
4.  Boswell, H.D., Dräger, B., McLauchlan, W.R., Portsteffen, A., Robins, D.J., Robins, R.J. and Walton, N.J. Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura. Phytochemistry 52 (1999) 871–878. [DOI] [PMID: 10626376]
[EC 2.3.1.186 created 2008]
 
 
EC 2.3.1.187     
Accepted name: acetyl-S-ACP:malonate ACP transferase
Reaction: an acetyl-[acyl-carrier protein] + malonate = a malonyl-[acyl-carrier protein] + acetate
For diagram of the reactions involved in the multienzyme complex malonate decarboxylase, click here
Other name(s): acetyl-S-ACP:malonate ACP-SH transferase; acetyl-S-acyl-carrier protein:malonate acyl-carrier-protein-transferase; MdcA; MadA; ACP transferase; malonate/acetyl-CoA transferase; malonate:ACP transferase; acetyl-S-acyl carrier protein:malonate acyl carrier protein-SH transferase
Systematic name: acetyl-[acyl-carrier-protein]:malonate S-[acyl-carrier-protein]transferase
Comments: This is the first step in the catalysis of malonate decarboxylation and involves the exchange of an acetyl thioester residue bound to the activated acyl-carrier protein (ACP) subunit of the malonate decarboxylase complex for a malonyl thioester residue [2]. This enzyme forms the α subunit of the multienzyme complexes biotin-independent malonate decarboxylase (EC 4.1.1.88) and biotin-dependent malonate decarboxylase (EC 4.1.1.89). The enzyme can also use acetyl-CoA as a substrate but more slowly [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hilbi, H. and Dimroth, P. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase. Arch. Microbiol. 162 (1994) 48–56. [PMID: 18251085]
2.  Hoenke, S., Schmid, M. and Dimroth, P. Sequence of a gene cluster from Klebsiella pneumoniae encoding malonate decarboxylase and expression of the enzyme in Escherichia coli. Eur. J. Biochem. 246 (1997) 530–538. [DOI] [PMID: 9208947]
3.  Koo, J.H. and Kim, Y.S. Functional evaluation of the genes involved in malonate decarboxylation by Acinetobacter calcoaceticus. Eur. J. Biochem. 266 (1999) 683–690. [DOI] [PMID: 10561613]
4.  Chohnan, S., Akagi, K. and Takamura, Y. Functions of malonate decarboxylase subunits from Pseudomonas putida. Biosci. Biotechnol. Biochem. 67 (2003) 214–217. [DOI] [PMID: 12619701]
5.  Dimroth, P. and Hilbi, H. Enzymic and genetic basis for bacterial growth on malonate. Mol. Microbiol. 25 (1997) 3–10. [DOI] [PMID: 11902724]
[EC 2.3.1.187 created 2008]
 
 
EC 2.3.1.188     
Accepted name: ω-hydroxypalmitate O-feruloyl transferase
Reaction: feruloyl-CoA + 16-hydroxypalmitate = CoA + 16-feruloyloxypalmitate
Other name(s): hydroxycinnamoyl-CoA ω-hydroxypalmitic acid O-hydroxycinnamoyltransferase; HHT
Systematic name: feruloyl-CoA:16-hydroxypalmitate feruloyltransferase
Comments: p-Coumaroyl-CoA and sinapoyl-CoA also act as substrates. The enzyme is widely distributed in roots of higher plants.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Lotfy, S., Negrel, J. and Javelle, F. Formation of feruloyloxypalmitic acid by an enzyme from wound-healing potato tuber discs. Phytochemistry 35 (1994) 1419–1424.
2.  Lotfy, S. Javelle, F. and Negrel, J. Distribution of hydroxycinnamoyl-CoA ω-hydroxypalmitic acid O-hydroxycinnamoyltransferase in higher plants. Phytochemistry 40 (1995) 389–391.
3.  Lotfy, S. Javelle, F. and Negrel, J. Purification and characterization of hydroxycinnamoyl-CoA ω-hydroxypalmitic acid O-hydroxycinnamoyltransferase from tobacco (Nicotiana tabacum L.) cell-suspension cultures. Planta 199 (1996) 475–480.
[EC 2.3.1.188 created 2009]
 
 
EC 2.3.1.189     
Accepted name: mycothiol synthase
Reaction: desacetylmycothiol + acetyl-CoA = CoA + mycothiol
For diagram of mycothiol biosynthesis, click here
Glossary: desacetylmycothiol = 1-O-[2-(L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
mycothiol = 1-O-[2-(N2-acetyl-L-cysteinamido)-2-deoxy-α-D-glucopyranosyl]-1D-myo-inositol
Other name(s): MshD
Systematic name: acetyl-CoA:desacetylmycothiol O-acetyltransferase
Comments: This enzyme catalyses the last step in the biosynthesis of mycothiol, the major thiol in most actinomycetes, including Mycobacterium [1]. The enzyme is a member of a large family of GCN5-related N-acetyltransferases (GNATs) [2]. The enzyme has been purified from Mycobacterium tuberculosis H37Rv. Acetyl-CoA is the preferred CoA thioester but propionyl-CoA is also a substrate [3].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Spies, H.S. and Steenkamp, D.J. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur. J. Biochem. 224 (1994) 203–213. [DOI] [PMID: 8076641]
2.  Koledin, T., Newton, G.L. and Fahey, R.C. Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch. Microbiol. 178 (2002) 331–337. [DOI] [PMID: 12375100]
3.  Vetting, M.W., Roderick, S.L., Yu, M. and Blanchard, J.S. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci. 12 (2003) 1954–1959. [DOI] [PMID: 12930994]
[EC 2.3.1.189 created 2010]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald