The Enzyme Database

Your query returned 4 entries.    printer_iconPrintable version



EC 2.2.1.1     
Accepted name: transketolase
Reaction: sedoheptulose 7-phosphate + D-glyceraldehyde 3-phosphate = D-ribose 5-phosphate + D-xylulose 5-phosphate
For diagram of reaction, click here, for diagram of the calvin cycle, click here, for diagram of the calvin cycle, click here, for diagram of the calvin cycle, click here and for diagram of the pentose phosphate pathway (later stages), click here
Glossary: thiamine diphosphate
Other name(s): glycolaldehydetransferase
Systematic name: sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate glycolaldehydetransferase
Comments: A thiamine-diphosphate protein. Wide specificity for both reactants, e.g. converts hydroxypyruvate and R-CHO into CO2 and R-CHOH-CO-CH2OH. The enzyme from the bacterium Alcaligenes faecalis shows high activity with D-erythrose 4-phosphate as acceptor.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9014-48-6
References:
1.  De La Haba, G., Leder, I.G and Racker, E. Crystalline transketolase from bakers' yeast: isolation and properties. J. Biol. Chem. 214 (1955) 409–426. [PMID: 14367398]
2.  Domagk, G.F. and Horecker, B.L. Fructose and erythrose metabolism in Alcaligenes faecalis. Arch. Biochem. Biophys. 109 (1965) 342–349.
3.  Horecker, B.L., Smyrniotis, P.Z. and Hurwitz, J. The role of xylulose 5-phosphate in the transketolase reaction. J. Biol. Chem. 223 (1956) 1009–1019. [PMID: 13385248]
4.  Racker, E. Transketolase. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 5, Academic Press, New York, 1961, pp. 397–412.
[EC 2.2.1.1 created 1961]
 
 
EC 2.2.1.10     
Accepted name: 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase
Reaction: L-aspartate 4-semialdehyde + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate + 2,3-dioxopropyl phosphate
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 6-deoxy-5-ketofructose 1-phosphate
2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate = 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate
Other name(s): ADH synthase; ADHS; MJ0400 (gene name)
Systematic name: L-aspartate 4-semialdehyde:1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate methylglyoxaltransferase
Comments: The enzyme plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme can also catalyse the reaction of EC 4.1.2.13, fructose-bisphosphate aldolase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  White, R.H. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43 (2004) 7618–7627. [DOI] [PMID: 15182204]
2.  Samland, A.K., Wang, M. and Sprenger, G.A. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. FEMS Microbiol. Lett. 281 (2008) 36–41. [DOI] [PMID: 18318840]
3.  Morar, M., White, R.H. and Ealick, S.E. Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids. Biochemistry 46 (2007) 10562–10571. [DOI] [PMID: 17713928]
[EC 2.2.1.10 created 2012]
 
 
EC 2.2.1.11     
Accepted name: 6-deoxy-5-ketofructose 1-phosphate synthase
Reaction: (1) 2-oxopropanal + D-fructose 1,6-bisphosphate = D-glyceraldehyde 3-phosphate + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate
(2) 2-oxopropanal + D-fructose 1-phosphate = D-glyceraldehyde + 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate
For diagram of 3-dehydroquinate biosynthesis in archaea, click here
Glossary: 2-oxopropanal = methylglyoxal
1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate = 6-deoxy-5-ketofructose 1-phosphate
Other name(s): DKFP synthase
Systematic name: 2-oxopropanal:D-fructose 1,6-bisphosphate glycerone-phosphotransferase
Comments: The enzyme plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids. The enzyme can also catalyse the reaction of EC 4.1.2.13, fructose-bisphosphate aldolase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  White, R.H. and Xu, H. Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. Biochemistry 45 (2006) 12366–12379. [DOI] [PMID: 17014089]
2.  Samland, A.K., Wang, M. and Sprenger, G.A. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. FEMS Microbiol. Lett. 281 (2008) 36–41. [DOI] [PMID: 18318840]
[EC 2.2.1.11 created 2012]
 
 
EC 2.2.1.12     
Accepted name: 3-acetyloctanal synthase
Reaction: pyruvate + (E)-oct-2-enal = (S)-3-acetyloctanal + CO2
Other name(s): pigD (gene name)
Systematic name: pyruvate:(E)-oct-2-enal acetaldehydetransferase (decarboxylating)
Comments: Requires thiamine diphosphate. The enzyme, characterized from the bacterium Serratia marcescens, participates in the biosynthesis of the antibiotic prodigiosin. The enzyme decarboxylates pyruvate, followed by attack of the resulting two-carbon fragment on (E)-oct-2-enal, resulting in a Stetter reaction. In vitro the enzyme can act on a number of α,β-unsaturated carbonyl compounds, including aldehydes and ketones, and can catalyse both 1-2 and 1-4 carboligations depending on the substrate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Williamson, N.R., Simonsen, H.T., Ahmed, R.A., Goldet, G., Slater, H., Woodley, L., Leeper, F.J. and Salmond, G.P. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56 (2005) 971–989. [DOI] [PMID: 15853884]
2.  Dresen, C., Richter, M., Pohl, M., Ludeke, S. and Müller, M. The enzymatic asymmetric conjugate umpolung reaction. Angew. Chem. Int. Ed. Engl. 49 (2010) 6600–6603. [DOI] [PMID: 20669204]
3.  Kasparyan, E., Richter, M., Dresen, C., Walter, L.S., Fuchs, G., Leeper, F.J., Wacker, T., Andrade, S.L., Kolter, G., Pohl, M. and Müller, M. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes. Appl. Microbiol. Biotechnol. 98 (2014) 9681–9690. [DOI] [PMID: 24957249]
[EC 2.2.1.12 created 2014]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald