The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 2.1.1.320     
Accepted name: type II protein arginine methyltransferase
Reaction: 2 S-adenosyl-L-methionine + [protein]-L-arginine = 2 S-adenosyl-L-homocysteine + [protein]-Nω,Nω′-dimethyl-L-arginine (overall reaction)
(1a) S-adenosyl-L-methionine + [protein]-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω-methyl-L-arginine
(1b) S-adenosyl-L-methionine + [protein]-Nω-methyl-L-arginine = S-adenosyl-L-homocysteine + [protein]-Nω,Nω′-dimethyl-L-arginine
Other name(s): PRMT5 (gene name); PRMT9 (gene name)
Systematic name: S-adenosyl-L-methionine:[protein]-L-arginine N-methyltransferase ([protein]-Nω,Nω′-dimethyl-L-arginine-forming)
Comments: The enzyme catalyses the methylation of one of the terminal guanidino nitrogen atoms in arginine residues within proteins, forming monomethylarginine, followed by the methylation of the second terminal nitrogen atom to form a symmetrical dimethylarginine. The mammalian enzyme is active in both the nucleus and the cytoplasm, and plays a role in the assembly of snRNP core particles by methylating certain small nuclear ribonucleoproteins. cf. EC 2.1.1.319, type I protein arginine methyltransferase, EC 2.1.1.321, type III protein arginine methyltransferase, and EC 2.1.1.322, type IV protein arginine methyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Branscombe, T.L., Frankel, A., Lee, J.H., Cook, J.R., Yang, Z., Pestka, S. and Clarke, S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276 (2001) 32971–32976. [DOI] [PMID: 11413150]
2.  Wang, X., Zhang, Y., Ma, Q., Zhang, Z., Xue, Y., Bao, S. and Chong, K. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO J. 26 (2007) 1934–1941. [DOI] [PMID: 17363895]
3.  Lacroix, M., El Messaoudi, S., Rodier, G., Le Cam, A., Sardet, C. and Fabbrizio, E. The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep. 9 (2008) 452–458. [DOI] [PMID: 18404153]
4.  Chari, A., Golas, M.M., Klingenhager, M., Neuenkirchen, N., Sander, B., Englbrecht, C., Sickmann, A., Stark, H. and Fischer, U. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135 (2008) 497–509. [DOI] [PMID: 18984161]
5.  Antonysamy, S., Bonday, Z., Campbell, R.M., Doyle, B., Druzina, Z., Gheyi, T., Han, B., Jungheim, L.N., Qian, Y., Rauch, C., Russell, M., Sauder, J.M., Wasserman, S.R., Weichert, K., Willard, F.S., Zhang, A. and Emtage, S. Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. USA 109 (2012) 17960–17965. [DOI] [PMID: 23071334]
6.  Hadjikyriacou, A., Yang, Y., Espejo, A., Bedford, M.T. and Clarke, S.G. Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem. 290 (2015) 16723–16743. [DOI] [PMID: 25979344]
[EC 2.1.1.320 created 2015]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald