The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

Accepted name: long-chain acyl-CoA dehydrogenase
Reaction: a long-chain acyl-CoA + electron-transfer flavoprotein = a long-chain trans-2,3-dehydroacyl-CoA + reduced electron-transfer flavoprotein
Glossary: a long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 13 to 22 carbon atoms.
Other name(s): palmitoyl-CoA dehydrogenase; palmitoyl-coenzyme A dehydrogenase; long-chain acyl-coenzyme A dehydrogenase; long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase; ACADL (gene name).
Systematic name: long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase
Comments: Contains FAD as prosthetic group. One of several enzymes that catalyse the first step in fatty acids β-oxidation. The enzyme from pig liver can accept substrates with acyl chain lengths of 6 to at least 16 carbon atoms. The highest activity was found with C12, and the rates with C8 and C16 were 80 and 70%, respectively [2]. The enzyme from rat can accept substrates with C8-C22. It is most active with C14 and C16, and has no activity with C4, C6 or C24 [4]. cf. EC, short-chain acyl-CoA dehydrogenase, EC, medium-chain acyl-CoA dehydrogenase, and EC, very-long-chain acyl-CoA dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 59536-74-2
1.  Crane, F.L., Hauge, J.G. and Beinert, H. Flavoproteins involved in the first oxidative step of the fatty acid cycle. Biochim. Biophys. Acta 17 (1955) 292–294. [PMID: 13239683]
2.  Hauge, J.G., Crane, F.L. and Beinert, H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. III. Palmityl CoA dehydrogenase. J. Biol. Chem. 219 (1956) 727–733. [PMID: 13319294]
3.  Hall, C.L., Heijkenkjold, L., Bartfai, T., Ernster, L. and Kamin, H. Acyl coenzyme A dehydrogenases and electron-transferring flavoprotein from beef heart mitochondria. Arch. Biochem. Biophys. 177 (1976) 402–414. [PMID: 1015826]
4.  Ikeda, Y., Ikeda, K.O. and Tanaka, K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J. Biol. Chem. 260 (1985) 1311–1325. [PMID: 3968063]
5.  Djordjevic, S., Dong, Y., Paschke, R., Frerman, F.E., Strauss, A.W. and Kim, J.J. Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Biochemistry 33 (1994) 4258–4264. [PMID: 8155643]
[EC created 1989 as EC, part transferred 2012 to EC]

Data © 2001–2016 IUBMB
Web site © 2005–2016 Andrew McDonald