The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

EC 1.3.1.9     
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADH)
Reaction: an acyl-[acyl-carrier protein] + NAD+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADH + H+
Other name(s): enoyl-[acyl carrier protein] reductase; enoyl-ACP reductase; NADH-enoyl acyl carrier protein reductase; NADH-specific enoyl-ACP reductase; acyl-[acyl-carrier-protein]:NAD+ oxidoreductase; fabI (gene name)
Systematic name: acyl-[acyl-carrier protein]:NAD+ oxidoreductase
Comments: The enzyme catalyses an essential step in fatty acid biosynthesis, the reduction of the 2,3-double bond in enoyl-acyl-[acyl-carrier-protein] derivatives of the elongating fatty acid moiety. The enzyme from the bacterium Escherichia coli accepts substrates with carbon chain length from 4 to 18 [3]. The FAS-I enzyme from the bacterium Mycobacterium tuberculosis prefers substrates with carbon chain length from 12 to 24 carbons.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37251-08-4
References:
1.  Shimakata, T. and Stumpf, P.K. Purification and characterizations of β-ketoacyl-[acyl-carrier-protein] reductase, β-hydroxyacyl-[acylcarrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves. Arch. Biochem. Biophys. 218 (1982) 77–91. [DOI] [PMID: 6756317]
2.  Weeks, G. and Wakil, S.J. Studies on the mechanism of fatty acid synthesis. 18. Preparation and general properties of the enoyl acyl carrier protein reductases from Escherichia coli. J. Biol. Chem. 243 (1968) 1180–1189. [PMID: 4384650]
3.  Yu, X., Liu, T., Zhu, F. and Khosla, C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc. Natl. Acad. Sci. USA 108 (2011) 18643–18648. [DOI] [PMID: 22042840]
[EC 1.3.1.9 created 1972, modified 2013]
 
 
EC 1.3.1.90     
Accepted name: tRNA-dihydrouridine20a/20b synthase [NAD(P)+]
Reaction: (1) 5,6-dihydrouracil20a in tRNA + NAD(P)+ = uracil20a in tRNA + NAD(P)H + H+
(2) 5,6-dihydrouracil20b in tRNA + NAD(P)+ = uracil20b in tRNA + NAD(P)H + H+
Other name(s): Dus4p
Systematic name: tRNA-5,6-dihydrouracil20a/20b:NAD(P)+ oxidoreductase
Comments: A flavoenzyme. The enzyme specifically modifies uracil20a and uracil20b in tRNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xing, F., Hiley, S.L., Hughes, T.R. and Phizicky, E.M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem. 279 (2004) 17850–17860. [DOI] [PMID: 14970222]
[EC 1.3.1.90 created 2011]
 
 
EC 1.3.1.91     
Accepted name: tRNA-dihydrouridine20 synthase [NAD(P)+]
Reaction: 5,6-dihydrouracil20 in tRNA + NAD(P)+ = uracil20 in tRNA + NAD(P)H + H+
Other name(s): Dus2p; tRNA-dihydrouridine synthase 2
Systematic name: tRNA-5,6-dihydrouracil20:NAD(P)+ oxidoreductase
Comments: A flavoenzyme [3]. The enzyme specifically modifies uracil20 in tRNA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Xing, F., Hiley, S.L., Hughes, T.R. and Phizicky, E.M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem. 279 (2004) 17850–17860. [DOI] [PMID: 14970222]
2.  Xing, F., Martzen, M.R. and Phizicky, E.M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8 (2002) 370–381. [PMID: 12003496]
3.  Rider, L.W., Ottosen, M.B., Gattis, S.G. and Palfey, B.A. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J. Biol. Chem. 284 (2009) 10324–10333. [DOI] [PMID: 19139092]
4.  Kato, T., Daigo, Y., Hayama, S., Ishikawa, N., Yamabuki, T., Ito, T., Miyamoto, M., Kondo, S. and Nakamura, Y. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 65 (2005) 5638–5646. [DOI] [PMID: 15994936]
[EC 1.3.1.91 created 2011]
 
 
EC 1.3.1.92     
Accepted name: artemisinic aldehyde Δ11(13)-reductase
Reaction: (11R)-dihydroartemisinic aldehyde + NADP+ = artemisinic aldehyde + NADPH + H+
For diagram of artemisinin biosynthesis, click here
Other name(s): Dbr2
Systematic name: artemisinic aldehyde:NADP+ oxidoreductase
Comments: Cloned from Artemisia annua. In addition to the reduction of artemisinic aldehyde it is also able to a lesser extent to reduce artemisinic alcohol and artemisinic acid. Part of the biosyntheis of artemisinin.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Bertea, C.M., Freije, J.R., van der Woude, H., Verstappen, F.W., Perk, L., Marquez, V., De Kraker, J.W., Posthumus, M.A., Jansen, B.J., de Groot, A., Franssen, M.C. and Bouwmeester, H.J. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71 (2005) 40–47. [DOI] [PMID: 15678372]
2.  Zhang, Y., Teoh, K.H., Reed, D.W., Maes, L., Goossens, A., Olson, D.J., Ross, A.R. and Covello, P.S. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283 (2008) 21501–21508. [DOI] [PMID: 18495659]
[EC 1.3.1.92 created 2012]
 
 
EC 1.3.1.93     
Accepted name: very-long-chain enoyl-CoA reductase
Reaction: a very-long-chain acyl-CoA + NADP+ = a very-long-chain trans-2,3-dehydroacyl-CoA + NADPH + H+
Glossary: a very-long-chain acyl-CoA = an acyl-CoA thioester where the acyl chain contains 23 or more carbon atoms.
Other name(s): TSC13 (gene name); CER10 (gene name)
Systematic name: very-long-chain acyl-CoA:NADP+ oxidoreductase
Comments: This is the fourth component of the elongase, a microsomal protein complex responsible for extending palmitoyl-CoA and stearoyl-CoA (and modified forms thereof) to very-long-chain acyl CoAs. cf. EC 2.3.1.199, very-long-chain 3-oxoacyl-CoA synthase, EC 1.1.1.330, very-long-chain 3-oxoacyl-CoA reductase, and EC 4.2.1.134, very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kohlwein, S.D., Eder, S., Oh, C.S., Martin, C.E., Gable, K., Bacikova, D. and Dunn, T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol. Cell Biol. 21 (2001) 109–125. [DOI] [PMID: 11113186]
2.  Gable, K., Garton, S., Napier, J.A. and Dunn, T.M. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J. Exp. Bot. 55 (2004) 543–545. [DOI] [PMID: 14673020]
3.  Kvam, E., Gable, K., Dunn, T.M. and Goldfarb, D.S. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol. Biol. Cell 16 (2005) 3987–3998. [DOI] [PMID: 15958487]
4.  Zheng, H., Rowland, O. and Kunst, L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17 (2005) 1467–1481. [DOI] [PMID: 15829606]
[EC 1.3.1.93 created 2012]
 
 
EC 1.3.1.94     
Accepted name: polyprenol reductase
Reaction: ditrans,polycis-dolichol + NADP+ = ditrans,polycis-polyprenol + NADPH + H+
Other name(s): SRD5A3 (gene name); DFG10 (gene name)
Systematic name: ditrans,polycis-dolichol:NADP+ 2,3-oxidoreductase
Comments: The reaction occurs in the reverse direction with reduction of the terminal double bond next to the alcohol group. Isolated from human fetal brain tissue but present in all eukaryotes. In mammalian cells dolichols are predominantly 18-21 isoprene units in length.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sagami, H., Kurisaki, A. and Ogura, K. Formation of dolichol from dehydrodolichol is catalyzed by NADPH-dependent reductase localized in microsomes of rat liver. J. Biol. Chem. 268 (1993) 10109–10113. [PMID: 8486680]
2.  Cantagrel, V., Lefeber, D.J., Ng, B.G., Guan, Z., Silhavy, J.L., Bielas, S.L., Lehle, L., Hombauer, H., Adamowicz, M., Swiezewska, E., De Brouwer, A.P., Blumel, P., Sykut-Cegielska, J., Houliston, S., Swistun, D., Ali, B.R., Dobyns, W.B., Babovic-Vuksanovic, D., van Bokhoven, H., Wevers, R.A., Raetz, C.R., Freeze, H.H., Morava, E., Al-Gazali, L. and Gleeson, J.G. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142 (2010) 203–217. [DOI] [PMID: 20637498]
[EC 1.3.1.94 created 2012]
 
 
EC 1.3.1.95     
Accepted name: acrylyl-CoA reductase (NADH)
Reaction: propanoyl-CoA + NAD+ = acryloyl-CoA + NADH + H+
For diagram of 3-(dimethylsulfonio)propanoate metabolism, click here
Glossary: propanoyl-CoA = propionyl-CoA
Systematic name: propanoyl-CoA:NAD+ oxidoreductase
Comments: Contains FAD. The reaction is catalysed in the opposite direction to that shown. The enzyme from the bacterium Clostridium propionicum is a complex that includes an electron-transfer flavoprotein (ETF). The ETF is reduced by NADH and transfers the electrons to the active site. Catalyses a step in a pathway for L-alanine fermentation to propanoate [1]. cf. EC 1.3.1.84, acrylyl-CoA reductase (NADPH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hetzel, M., Brock, M., Selmer, T., Pierik, A.J., Golding, B.T. and Buckel, W. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur. J. Biochem. 270 (2003) 902–910. [DOI] [PMID: 12603323]
2.  Kandasamy, V., Vaidyanathan, H., Djurdjevic, I., Jayamani, E., Ramachandran, K.B., Buckel, W., Jayaraman, G. and Ramalingam, S. Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl. Microbiol. Biotechnol. 97 (2013) 1191–1200. [DOI] [PMID: 22810300]
[EC 1.3.1.95 created 2012]
 
 
EC 1.3.1.96     
Accepted name: Botryococcus squalene synthase
Reaction: squalene + diphosphate + NADP+ = presqualene diphosphate + NADPH + H+
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Other name(s): SSL-2 (gene name)
Systematic name: squalene:NADP+ oxidoreductase
Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. cf. EC 2.5.1.21, squalene synthase, where squalene is formed directly from farnesyl diphosphate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V. and Chappell, J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl. Acad. Sci. USA 108 (2011) 12260–12265. [DOI] [PMID: 21746901]
[EC 1.3.1.96 created 2012]
 
 
EC 1.3.1.97     
Accepted name: botryococcene synthase
Reaction: C30 botryococcene + NADP+ + diphosphate = presqualene diphosphate + NADPH + H+
For diagram of botryococcus braunii BOT22 squalene and botrycoccene biosynthesis, click here
Glossary: C30 botryococcene = (10S,13R)-10-ethenyl-2,6,10,13,17,21-hexamethyldocosa-2,5,11,16,20-pentaene
Other name(s): SSL-3 (gene name)
Systematic name: C30 botryococcene:NADP+ oxidoreductase
Comments: Isolated from the green alga Botryococcus braunii BOT22. Acts in the reverse direction. Involved in the production of botryococcenes, which are triterpenoid hydrocarbons of isoprenoid origin produced in large amount by this alga.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Niehaus, T.D., Okada, S., Devarenne, T.P., Watt, D.S., Sviripa, V. and Chappell, J. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl. Acad. Sci. USA 108 (2011) 12260–12265. [DOI] [PMID: 21746901]
[EC 1.3.1.97 created 2012]
 
 
EC 1.3.1.98     
Accepted name: UDP-N-acetylmuramate dehydrogenase
Reaction: UDP-N-acetyl-α-D-muramate + NADP+ = UDP-N-acetyl-3-O-(1-carboxyvinyl)-α-D-glucosamine + NADPH + H+
Other name(s): MurB reductase; UDP-N-acetylenolpyruvoylglucosamine reductase; UDP-N-acetylglucosamine-enoylpyruvate reductase; UDP-GlcNAc-enoylpyruvate reductase; uridine diphosphoacetylpyruvoylglucosamine reductase; uridine diphospho-N-acetylglucosamine-enolpyruvate reductase; uridine-5′-diphospho-N-acetyl-2-amino-2-deoxy-3-O-lactylglucose:NADP-oxidoreductase
Systematic name: UDP-N-acetyl-α-D-muramate:NADP+ oxidoreductase
Comments: A flavoprotein (FAD). NADH can to a lesser extent replace NADPH.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 39307-28-3
References:
1.  Taku, A. and Anwar, R.A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. IV. Activation of uridine diphospho-N-acetylenolpyruvylglucosamine reductase by monovalent cations. J. Biol. Chem. 248 (1973) 4971. [PMID: 4717533]
2.  Taku, A., Gunetileke, K.G. and Anwar, R.A. Biosynthesis of uridine diphospho-N-acetylmuramic acid. 3. Purification and properties of uridine diphospho-N-acetylenolpyruvyl-glucosamine reductase. J. Biol. Chem. 245 (1970) 5012–5016. [PMID: 4394163]
3.  van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18 (2001) 503–519. [PMID: 11699883]
[EC 1.3.1.98 created 1976 as EC 1.1.1.158, modified 1983, modified 2002, transferred 2013 to EC 1.3.1.98]
 
 
EC 1.3.1.99      
Transferred entry: iridoid synthase. Now known to be catalyzed by two different enzymes, EC 1.3.1.122, (S)-8-oxocitronellyl enol synthase, and EC 5.5.1.34, (+)-cis,trans-nepetalactol synthase
[EC 1.3.1.99 created 2013, deleted 2019]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald