The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.3.1.100     
Accepted name: chanoclavine-I aldehyde reductase
Reaction: dihydrochanoclavine-I aldehyde + NADP+ = chanoclavine-I aldehyde + NADPH + H+
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: chanoclavine-I aldehyde = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-enal
Other name(s): FgaOx3; easA (gene name)
Systematic name: chanoclavine-I aldehyde:NAD+ oxidoreductase
Comments: Contains FMN. The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some fungi of the Trichocomaceae family. The enzyme catalyses the reduction of chanoclavine-I aldehyde to dihydrochanoclavine-I aldehyde. This hydrolyses spontaneously to form 6,8-dimethyl-6,7-didehydroergoline, which is converted to festuclavine by EC 1.5.1.44, festuclavine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Coyle, C.M., Cheng, J.Z., O'Connor, S.E. and Panaccione, D.G. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl. Environ. Microbiol. 76 (2010) 3898–3903. [PMID: 20435769]
2.  Cheng, J.Z., Coyle, C.M., Panaccione, D.G. and O'Connor, S.E. A role for Old Yellow Enzyme in ergot alkaloid biosynthesis. J. Am. Chem. Soc. 132 (2010) 1776–1777. [PMID: 20102147]
3.  Wallwey, C., Matuschek, M., Xie, X.L. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org. Biomol. Chem. 8 (2010) 3500–3508. [PMID: 20526482]
4.  Xie, X., Wallwey, C., Matuschek, M., Steinbach, K. and Li, S.M. Formyl migration product of chanoclavine-I aldehyde in the presence of the old yellow enzyme FgaOx3 from Aspergillus fumigatus: a NMR structure elucidation. Magn. Reson. Chem. 49 (2011) 678–681. [PMID: 21898587]
[EC 1.3.1.100 created 2013]
 
 


Data © 2001–2016 IUBMB
Web site © 2005–2016 Andrew McDonald