The Enzyme Database

Your query returned 31 entries.    printer_iconPrintable version



EC 1.3.1.1     
Accepted name: dihydropyrimidine dehydrogenase (NAD+)
Reaction: (1) 5,6-dihydrouracil + NAD+ = uracil + NADH + H+
(2) 5,6-dihydrothymine + NAD+ = thymine + NADH + H+
Other name(s): dihydropyrimidine dehydrogenase; dihydrothymine dehydrogenase; pyrimidine reductase; thymine reductase; uracil reductase; dihydrouracil dehydrogenase (NAD+)
Systematic name: 5,6-dihydropyrimidine:NAD+ oxidoreductase
Comments: An iron-sulfur flavoenzyme. The enzyme was originally discovered in the uracil-fermenting bacterium, Clostridium uracilicum, which utilizes uracil and thymine as nitrogen and carbon sources for growth [1]. Since then the enzyme was found in additional organisms including Alcaligenes eutrophus [2], Pseudomonas strains [3,4] and Escherichia coli [5,6].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9026-89-5
References:
1.  Campbell, L.L. Reductive degradation of pyrimidines. III. Purificaion and properties of dihydrouracil dehydrogenase. J. Biol. Chem. 227 (1957) 693–700. [PMID: 13462991]
2.  Schmitt, U., Jahnke, K., Rosenbaum, K., Cook, P.F. and Schnackerz, K.D. Purification and characterization of dihydropyrimidine dehydrogenase from Alcaligenes eutrophus. Arch. Biochem. Biophys. 332 (1996) 175–182. [DOI] [PMID: 8806723]
3.  Kim, S. and West, T.P. Pyrimidine catabolism in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 61 (1991) 175–179. [PMID: 1903745]
4.  West, T.P. Pyrimidine base catabolism in Pseudomonas putida biotype B. Antonie Van Leeuwenhoek 80 (2001) 163–167. [PMID: 11759049]
5.  West, T.P. Isolation and characterization of an Escherichia coli B mutant strain defective in uracil catabolism. Can. J. Microbiol. 44 (1998) 1106–1109. [PMID: 10030006]
6.  Hidese, R., Mihara, H., Kurihara, T. and Esaki, N. Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J. Bacteriol. 193 (2011) 989–993. [DOI] [PMID: 21169495]
[EC 1.3.1.1 created 1961, modified 2011]
 
 
EC 1.3.1.10     
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific)
Reaction: an acyl-[acyl-carrier protein] + NADP+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADPH + H+
Other name(s): acyl-ACP dehydrogenase (ambiguous); enoyl-[acyl carrier protein] (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADPH 2-enoyl Co A reductase; enoyl acyl-carrier-protein reductase (ambiguous); enoyl-ACP reductase (ambiguous); acyl-[acyl-carrier-protein]:NADP+ oxidoreductase (B-specific); acyl-[acyl-carrier protein]:NADP+ oxidoreductase (B-specific); enoyl-[acyl-carrier-protein] reductase (NADPH, B-specific)
Systematic name: acyl-[acyl-carrier protein]:NADP+ oxidoreductase (Si-specific)
Comments: One of the activities of EC 2.3.1.86, fatty-acyl-CoA synthase system, an enzyme found in yeasts (Ascomycota and Basidiomycota). Catalyses the reduction of enoyl-acyl-[acyl-carrier protein] derivatives of carbon chain length from 4 to 16. The yeast enzyme is Si-specific with respect to NADP+. cf. EC 1.3.1.39, enoyl-[acyl-carrier-protein] reductase (NADPH, Re-specific) and EC 1.3.1.104, enoyl-[acyl-carrier-protein] reductase (NADPH), which describes enzymes whose stereo-specificity towards NADPH is not known. See also EC 1.3.1.9, enoyl-[acyl-carrier-protein] reductase (NADH).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37251-09-5
References:
1.  Seyama, T., Kasama, T., Yamakawa, T., Kawaguchi, A., Saito, K. and Okuda, S. Origin of hydrogen atoms in the fatty acids synthesized with yeast fatty acid synthetase. J. Biochem. (Tokyo) 82 (1977) 1325–1329. [PMID: 338601]
[EC 1.3.1.10 created 1972, modified 1986, modified 2013, modified 2014, modified 2018]
 
 
EC 1.3.1.11     
Accepted name: 2-coumarate reductase
Reaction: 3-(2-hydroxyphenyl)propanoate + NAD+ = 2-coumarate + NADH + H+
Other name(s): melilotate dehydrogenase
Systematic name: 3-(2-hydroxyphenyl)propanoate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37251-10-8
References:
1.  Levy, C.C. and Weinstein, G.D. The metabolism of coumarin by a microorganism. II. The reduction of o-coumaric acid to melilotic acid. Biochemistry 3 (1964) 1944–1947. [PMID: 14269315]
[EC 1.3.1.11 created 1972]
 
 
EC 1.3.1.12     
Accepted name: prephenate dehydrogenase
Reaction: prephenate + NAD+ = 4-hydroxyphenylpyruvate + CO2 + NADH
For diagram of phenylalanine and tyrosine biosynthesis, click here
Other name(s): hydroxyphenylpyruvate synthase; chorismate mutase—prephenate dehydrogenase
Systematic name: prephenate:NAD+ oxidoreductase (decarboxylating)
Comments: This enzyme in the enteric bacteria also possesses chorismate mutase activity (EC 5.4.99.5 chorismate mutase) and converts chorismate into prephenate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9044-92-2
References:
1.  Koch, G.L.E., Shaw, D.C. and Gibson, F. Tyrosine biosynthesis in Aerobacter aerogenes. Purification and properties of chorismate mutase-prephenate dehydrogenase. Biochim. Biophys. Acta 212 (1970) 375–386. [DOI] [PMID: 5456988]
[EC 1.3.1.12 created 1972]
 
 
EC 1.3.1.13     
Accepted name: prephenate dehydrogenase (NADP+)
Reaction: prephenate + NADP+ = 4-hydroxyphenylpyruvate + CO2 + NADPH
For diagram of phenylalanine and tyrosine biosynthesis, click here
Other name(s): prephenate dehydrogenase; prephenate (nicotinamide adenine dinucleotide phosphate) dehydrogenase; prephenate dehydrogenase (NADP)
Systematic name: prephenate:NADP+ oxidoreductase (decarboxylating)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37251-11-9
References:
1.  Gamborg, O.L. and Keeley, F.W. Aromatic metabolism in plants. I. A study of the prephenate dehydrogenase from bean plants. Biochim. Biophys. Acta 115 (1966) 65–72. [DOI] [PMID: 4379953]
[EC 1.3.1.13 created 1972]
 
 
EC 1.3.1.14     
Accepted name: dihydroorotate dehydrogenase (NAD+)
Reaction: (S)-dihydroorotate + NAD+ = orotate + NADH + H+
Other name(s): orotate reductase (NADH); orotate reductase (NADH2); DHOdehase (ambiguous); DHOD (ambiguous); DHODase (ambiguous); dihydroorotate oxidase, pyrD (gene name)
Systematic name: (S)-dihydroorotate:NAD+ oxidoreductase
Comments: Binds FMN, FAD and a [2Fe-2S] cluster. The enzyme consists of two subunits, an FMN binding catalytic subunit and a FAD and iron-sulfur binding electron transfer subunit [4]. The reaction, which takes place in the cytosol, is the only redox reaction in the de-novo biosynthesis of pyrimidine nucleotides. Other class 1 dihydroorotate dehydrogenases use either fumarate (EC 1.3.98.1) or NADP+ (EC 1.3.1.15) as electron acceptor. The membrane bound class 2 dihydroorotate dehydrogenase (EC 1.3.5.2) uses quinone as electron acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37255-26-8
References:
1.  Friedmann, H.C. and Vennesland, B. Purification and properties of dihydroorotic acid dehydrogenase. J. Biol. Chem. 233 (1958) 1398–1406. [PMID: 13610849]
2.  Friedmann, H.C. and Vennesland, B. Crystalline dihydroorotic dehydrogenase. J. Biol. Chem. 235 (1960) 1526–1532. [PMID: 13825167]
3.  Lieberman, I. and Kornberg, A. Enzymic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydro-orotic dehydrogenase. Biochim. Biophys. Acta 12 (1953) 223–234. [DOI] [PMID: 13115431]
4.  Nielsen, F.S., Andersen, P.S. and Jensen, K.F. The B form of dihydroorotate dehydrogenase from Lactococcus lactis consists of two different subunits, encoded by the pyrDb and pyrK genes, and contains FMN, FAD, and [FeS] redox centers. J. Biol. Chem. 271 (1996) 29359–29365. [DOI] [PMID: 8910599]
5.  Rowland, P., Nørager, S., Jensen, K.F. and Larsen, S. Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster. Structure 8 (2000) 1227–1238. [DOI] [PMID: 11188687]
6.  Kahler, A.E., Nielsen, F.S. and Switzer, R.L. Biochemical characterization of the heteromeric Bacillus subtilis dihydroorotate dehydrogenase and its isolated subunits. Arch. Biochem. Biophys. 371 (1999) 191–201. [DOI] [PMID: 10545205]
7.  Marcinkeviciene, J., Tinney, L.M., Wang, K.H., Rogers, M.J. and Copeland, R.A. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism. Biochemistry 38 (1999) 13129–13137. [DOI] [PMID: 10529184]
[EC 1.3.1.14 created 1972, modified 2011]
 
 
EC 1.3.1.15     
Accepted name: dihydroorotate dehydrogenase (NADP+)
Reaction: (S)-dihydroorotate + NADP+ = orotate + NADPH + H+
Other name(s): orotate reductase; dihydro-orotic dehydrogenase; L-5,6-dihydro-orotate:NAD+ oxidoreductase; orotate reductase (NADPH)
Systematic name: (S)-dihydroorotate:NADP+ oxidoreductase
Comments: Binds FMN and FAD [2]. Other class 1 dihydroorotate dehydrogenases use either fumarate (EC 1.3.98.1) or NAD+ (EC 1.3.1.14) as electron acceptor. The membrane bound class 2 dihydroorotate dehydrogenase (EC 1.3.5.2) uses quinone as electron acceptor .
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37255-27-9
References:
1.  Taylor, W.H., Taylor, M.L. and Eames, D.F. Two functionally different dihydroorotic dehydrogenases in bacteria. J. Bacteriol. 91 (1966) 2251–2256. [PMID: 4380263]
2.  Udaka, S. and Vennesland, B. Properties of triphosphopyridine nucleotide-linked dihydroorotic dehydrogenase. J. Biol. Chem. 237 (1962) 2018–2024. [PMID: 13923427]
[EC 1.3.1.15 created 1972, modified 2011]
 
 
EC 1.3.1.16     
Accepted name: β-nitroacrylate reductase
Reaction: 3-nitropropanoate + NADP+ = 3-nitroacrylate + NADPH + H+
Systematic name: 3-nitropropanoate:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37255-28-0
References:
1.  Shaw, P.D. Biosynthesis of nitro compounds. III. The enzymatic reduction of β-nitroacrylic acid to β-nitropropionic acid. Biochemistry 6 (1967) 2253–2260.
[EC 1.3.1.16 created 1972]
 
 
EC 1.3.1.17     
Accepted name: 3-methyleneoxindole reductase
Reaction: 3-methyl-1,3-dihydroindol-2-one + NADP+ = 3-methylene-1,3-dihydro-2H-indol-2-one + NADPH + H+
Glossary: 3-methyloxindole = 3-methylindolin-2-one = 3-methyl-1,3-dihydroindol-2-one
Other name(s): 3-methyloxindole:NADP+ oxidoreductase
Systematic name: 3-methyl-1,3-dihydroindol-2-one:NADP+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37255-29-1
References:
1.  Moyed, H.S. and Williamson, V. Multiple 3-methyleneoxindole reductases of peas, differential inhibition by synthetic auxins. J. Biol. Chem. 242 (1967) 1075–1077. [PMID: 6021071]
[EC 1.3.1.17 created 1972]
 
 
EC 1.3.1.18     
Accepted name: kynurenate-7,8-dihydrodiol dehydrogenase
Reaction: 7,8-dihydro-7,8-dihydroxykynurenate + NAD+ = 7,8-dihydroxykynurenate + NADH + H+
Other name(s): 7,8-dihydro-7,8-dihydroxykynurenate dehydrogenase; 7,8-dihydroxykynurenic acid 7,8-diol dehydrogenase
Systematic name: 7,8-dihydro-7,8-dihydroxykynurenate:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37255-30-4
References:
1.  Taniuchi, H. and Hayaishi, O. Studies on the metabolism of kynurenic acid. III. Enzymatic formation of 7,8-dihydroxykynurenic acid from kynurenic acid. J. Biol. Chem. 238 (1963) 283–293. [PMID: 13984873]
[EC 1.3.1.18 created 1972]
 
 
EC 1.3.1.19     
Accepted name: cis-1,2-dihydrobenzene-1,2-diol dehydrogenase
Reaction: cis-1,2-dihydrobenzene-1,2-diol + NAD+ = catechol + NADH + H+
Other name(s): cis-benzene glycol dehydrogenase; cis-1,2-dihydrocyclohexa-3,5-diene (nicotinamide adenine dinucleotide) oxidoreductase;
Systematic name: cis-1,2-dihydrobenzene-1,2-diol:NAD+ oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 51923-03-6
References:
1.  Axcell, B.C. and Geary, P.J. The metabolism of benzene by bacteria. Purification and some properties of the enzyme cis-1,2-dihydroxycyclohexa-3,5-diene (nicotinamide adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase). Biochem. J. 136 (1973) 927–934. [PMID: 4362337]
2.  Gibson, D.T., Koch, J.R. and Kallio, R.E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7 (1968) 2653–2662. [PMID: 4298226]
[EC 1.3.1.19 created 1972]
 
 
EC 1.3.1.100     
Accepted name: chanoclavine-I aldehyde reductase
Reaction: dihydrochanoclavine-I aldehyde + NADP+ = chanoclavine-I aldehyde + NADPH + H+
For diagram of fumigaclavin alkaloid biosynthesis, click here
Glossary: chanoclavine-I aldehyde = (1E)-2-methyl-3-[(4R,5R)-4-(methylamino)-1,3,4,5-tetrahydrobenz[cd]indol-5-yl]prop-2-enal
Other name(s): FgaOx3; easA (gene name)
Systematic name: chanoclavine-I aldehyde:NAD+ oxidoreductase
Comments: Contains FMN. The enzyme participates in the biosynthesis of fumigaclavine C, an ergot alkaloid produced by some fungi of the Trichocomaceae family. The enzyme catalyses the reduction of chanoclavine-I aldehyde to dihydrochanoclavine-I aldehyde. This hydrolyses spontaneously to form 6,8-dimethyl-6,7-didehydroergoline, which is converted to festuclavine by EC 1.5.1.44, festuclavine dehydrogenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Coyle, C.M., Cheng, J.Z., O'Connor, S.E. and Panaccione, D.G. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl. Environ. Microbiol. 76 (2010) 3898–3903. [DOI] [PMID: 20435769]
2.  Cheng, J.Z., Coyle, C.M., Panaccione, D.G. and O'Connor, S.E. A role for Old Yellow Enzyme in ergot alkaloid biosynthesis. J. Am. Chem. Soc. 132 (2010) 1776–1777. [DOI] [PMID: 20102147]
3.  Wallwey, C., Matuschek, M., Xie, X.L. and Li, S.M. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org. Biomol. Chem. 8 (2010) 3500–3508. [DOI] [PMID: 20526482]
4.  Xie, X., Wallwey, C., Matuschek, M., Steinbach, K. and Li, S.M. Formyl migration product of chanoclavine-I aldehyde in the presence of the old yellow enzyme FgaOx3 from Aspergillus fumigatus: a NMR structure elucidation. Magn. Reson. Chem. 49 (2011) 678–681. [DOI] [PMID: 21898587]
[EC 1.3.1.100 created 2013]
 
 
EC 1.3.1.101     
Accepted name: 2,3-bis-O-geranylgeranyl-sn-glycerol 1-phosphate reductase [NAD(P)H]
Reaction: 2,3-bis-(O-phytanyl)-sn-glycerol 1-phosphate + 8 NAD(P)+ = 2,3-bis-(O-geranylgeranyl)-sn-glycerol 1-phosphate + 8 NAD(P)H + 8 H+
For diagram of archaetidylserine biosynthesis, click here
Glossary: phytanol = (7R,11R,15R)-3,7,11,15-tetramethylhexadecan-1-ol
Other name(s): digeranylgeranylglycerophospholipid reductase; Ta0516m (gene name); DGGGPL reductase; 2,3-digeranylgeranylglycerophospholipid reductase
Systematic name: 2,3-bis-(O-phytany)l-sn-glycerol 1-phosphate:NAD(P)+ oxidoreductase
Comments: A flavoprotein (FAD). The enzyme from the archaeon Thermoplasma acidophilum is involved in the biosynthesis of membrane lipids. In vivo the reaction occurs in the reverse direction with the formation of 2,3-bis-O-phytanyl-sn-glycerol 1-phosphate. cf. EC 1.3.7.11, 2,3-bis-O-geranylgeranyl-sn-glycero-phospholipid reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nishimura, Y. and Eguchi, T. Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum. J. Biochem. 139 (2006) 1073–1081. [DOI] [PMID: 16788058]
2.  Nishimura, Y. and Eguchi, T. Stereochemistry of reduction in digeranylgeranylglycerophospholipid reductase involved in the biosynthesis of archaeal membrane lipids from Thermoplasma acidophilum. Bioorg. Chem. 35 (2007) 276–283. [DOI] [PMID: 17275067]
3.  Xu, Q., Eguchi, T., Mathews, I.I., Rife, C.L., Chiu, H.J., Farr, C.L., Feuerhelm, J., Jaroszewski, L., Klock, H.E., Knuth, M.W., Miller, M.D., Weekes, D., Elsliger, M.A., Deacon, A.M., Godzik, A., Lesley, S.A. and Wilson, I.A. Insights into substrate specificity of geranylgeranyl reductases revealed by the structure of digeranylgeranylglycerophospholipid reductase, an essential enzyme in the biosynthesis of archaeal membrane lipids. J. Mol. Biol. 404 (2010) 403–417. [DOI] [PMID: 20869368]
[EC 1.3.1.101 created 2013]
 
 
EC 1.3.1.102     
Accepted name: 2-alkenal reductase (NADP+)
Reaction: an n-alkanal + NADP+ = an alk-2-enal + NADPH + H+
Other name(s): NADPH-dependent alkenal/one oxidoreductase; NADPH:2-alkenal α,β-hydrogenase
Systematic name: n-alkanal:NADP+ 2-oxidoreductase
Comments: Shows highest activity with 1-nitrocyclohexene but also has significant activity with 2-methylpentenal and trans-cinnamaldehyde [3]. Involved in the detoxication of α,β-unsaturated aldehydes and ketones. Has very low activity with NAD as reductant (cf. EC 1.3.1.74, 2-alkenal reductase [NAD(P)+]).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hirata, T., Tamura, Y., Yokobatake, N., Shimoda, K. and Ashida, Y. A 38 kDa allylic alcohol dehydrogenase from the cultured cells of Nicotiana tabacum. Phytochemistry 55 (2000) 297–303. [DOI] [PMID: 11117876]
2.  Matsushima, A., Sato, Y., Otsuka, M., Watanabe, T., Yamamoto, H. and Hirata, T. An enone reductase from Nicotiana tabacum: cDNA cloning, expression in Escherichia coli, and reduction of enones with the recombinant proteins. Bioorg. Chem. 36 (2008) 23–28. [DOI] [PMID: 17945329]
3.  Mansell, D.J., Toogood, H.S., Waller, J., Hughes, J.M.X., Levy, C.W., Gardiner, J.M., and Scrutton, N.S. Biocatalytic asymmetric alkene reduction: crystal structure and characterization of a double bond reductase from Nicotiana tabacum. ACS Catal. 3 (2013) 370–379. [PMID: 27547488]
[EC 1.3.1.102 created 2013]
 
 
EC 1.3.1.103     
Accepted name: 2-haloacrylate reductase
Reaction: (S)-2-chloropropanoate + NADP+ = 2-chloroacrylate + NADPH + H+
Other name(s): CAA43 (gene name)
Systematic name: (S)-2-chloropropanoate:NADP+ oxidoreductase
Comments: The enzyme acts in the degradation pathway of unsaturated organohalogen compounds by the bacterium Burkholderia sp. WS.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kurata, A., Kurihara, T., Kamachi, H. and Esaki, N. 2-Haloacrylate reductase, a novel enzyme of the medium chain dehydrogenase/reductase superfamily that catalyzes the reduction of a carbon-carbon double bond of unsaturated organohalogen compounds. J. Biol. Chem. 280 (2005) 20286–20291. [DOI] [PMID: 15781461]
[EC 1.3.1.103 created 2013]
 
 
EC 1.3.1.104     
Accepted name: enoyl-[acyl-carrier-protein] reductase (NADPH)
Reaction: an acyl-[acyl-carrier protein] + NADP+ = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADPH + H+
Other name(s): acyl-ACP dehydrogenase (ambiguous); enoyl-[acyl carrier protein] (reduced nicotinamide adenine dinucleotide phosphate) reductase; NADPH 2-enoyl Co A reductase; enoyl-ACP reductase (ambiguous); fabL (gene name)
Systematic name: acyl-[acyl-carrier protein]:NADP+ oxidoreductase
Comments: The enzyme completes each cycle of fatty acid elongation by catalysing the stereospecific reduction of the double bond at position 2 of a growing fatty acid chain, while linked to the acyl-carrier protein, in an NADPH-dependent manner. This entry stands for enzymes whose stereo-specificity with respect to NADP+ is not known. [cf. EC 1.3.1.39 enoyl-[acyl-carrier-protein] reductase (NADPH, Re-specific), EC 1.3.1.10, enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific) and EC 1.3.1.9, enoyl-[acyl-carrier-protein] reductase (NADH)].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Heath, R.J., Su, N., Murphy, C.K. and Rock, C.O. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275 (2000) 40128–40133. [DOI] [PMID: 11007778]
2.  Kim, K.H., Park, J.K., Ha, B.H., Moon, J.H. and Kim, E.E. Crystallization and preliminary X-ray crystallographic analysis of enoyl-ACP reductase III (FabL) from Bacillus subtilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 (2007) 246–248. [DOI] [PMID: 17329825]
3.  Kim, K.H., Ha, B.H., Kim, S.J., Hong, S.K., Hwang, K.Y. and Kim, E.E. Crystal structures of Enoyl-ACP reductases I (FabI) and III (FabL) from B. subtilis. J. Mol. Biol. 406 (2011) 403–415. [DOI] [PMID: 21185310]
[EC 1.3.1.104 created 2013]
 
 
EC 1.3.1.105     
Accepted name: 2-methylene-furan-3-one reductase
Reaction: 4-hydroxy-2,5-dimethylfuran-3(2H)-one + NADP+ = 4-hydroxy-5-methyl-2-methylenefuran-3(2H)-one + NADPH + H+
Glossary: furaneol = 4-hydroxy-2,5-dimethylfuran-3(2H)-one
homofuraneol = 2-ethyl-4-hydroxy-5-methylfuran-3(2H)-one
Other name(s): FaEO; SIEO; enone oxidoreductase; 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NAD(P)+ oxidoreductase
Systematic name: 4-hydroxy-2,5-dimethylfuran-3(2H)-one:NADP+ oxidoreductase
Comments: The enzyme was dicovered in strawberry (Fragaria x ananassa), where it produces furaneol, one of the major aroma compounds in the fruits. It has also been detected in tomato (Solanum lycopersicum) and pineapple (Ananas comosus). The enzyme can also act on derivatives substituted at the methylene functional group. The enzyme from the yeast Saccharomyces cerevisiae acts on (2E)-2-ethylidene-4-hydroxy-5-methylfuran-3(2H)-one and produces homofuraneol, an important aroma compound in soy sauce and miso. NADPH is the preferred cofactor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Raab, T., Lopez-Raez, J.A., Klein, D., Caballero, J.L., Moyano, E., Schwab, W. and Munoz-Blanco, J. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18 (2006) 1023–1037. [DOI] [PMID: 16517758]
2.  Klein, D., Fink, B., Arold, B., Eisenreich, W. and Schwab, W. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. J. Agric. Food Chem. 55 (2007) 6705–6711. [DOI] [PMID: 17636940]
3.  Schiefner, A., Sinz, Q., Neumaier, I., Schwab, W. and Skerra, A. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone. J. Biol. Chem. 288 (2013) 16815–16826. [DOI] [PMID: 23589283]
4.  Uehara, K., Watanabe, J., Mogi, Y. and Tsukioka, Y. Identification and characterization of an enzyme involved in the biosynthesis of the 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone in yeast. J. Biosci. Bioeng. 123 (2017) 333–341. [DOI] [PMID: 27865643]
[EC 1.3.1.105 created 2013]
 
 
EC 1.3.1.106     
Accepted name: cobalt-precorrin-6A reductase
Reaction: cobalt-precorrin-6B + NAD+ = cobalt-precorrin-6A + NADH + H+
For diagram of anaerobic corrin biosynthesis (part 2), click here
Other name(s): cbiJ (gene name)
Systematic name: cobalt-precorrin-6B:NAD+ oxidoreductase
Comments: The enzyme catalyses a step in the anaerobic (early cobalt insertion) pathway of adenosylcobalamin biosynthesis. The enzyme from the bacterium Bacillus megaterium has no activity with NADPH. The equivalent enzyme in the aerobic pathway is EC 1.3.1.54, precorrin-6A reductase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, W., Major, T.A. and Whitman, W.B. Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis. Archaea 1 (2005) 375–384. [PMID: 16243778]
2.  Moore, S.J., Lawrence, A.D., Biedendieck, R., Deery, E., Frank, S., Howard, M.J., Rigby, S.E. and Warren, M.J. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc. Natl Acad. Sci. USA 110 (2013) 14906–14911. [DOI] [PMID: 23922391]
[EC 1.3.1.106 created 2014]
 
 
EC 1.3.1.107     
Accepted name: sanguinarine reductase
Reaction: (1) dihydrosanguinarine + NAD(P)+ = sanguinarine + NAD(P)H + H+
(2) dihydrochelirubine + NAD(P)+ = chelirubine + NAD(P)H + H+
For diagram of chelirubine, macarpine and sanguinarine biosynthesis, click here
Glossary: sanguinarine = 13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4′,5′:4,5]benzo[1,2-c]phenanthridinium
dihydrosanguinarine = 13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4′,5′:4,5]benzo[1,2-c]phenanthridine
chelirubine = 5-methoxy-13-methyl-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4′,5′:4,5]benzo[1,2-c]phenanthridinium
dihydrochelirubine = 5-methoxy-13-methyl-13,14-dihydro-2H,10H-[1,3]dioxolo[4,5-i][1,3]dioxolo[4′,5′:4,5]benzo[1,2-c]phenanthridinium
Systematic name: dihydrosanguinarine:NAD(P)+ oxidoreductase
Comments: The enzyme, purified from the California poppy (Eschscholzia californica), is involved in detoxifying the phytoalexin sanguinarine produced by poppy itself (cf. EC 1.5.3.12, dihydrobenzophenanthridine oxidase), when it binds to the cell wall of the poppy cell. The reaction with NADPH is up to three times faster than that with NADH at low concentrations (<10 uM) of the dinucleotide. At higher concentrations the reaction with NADPH is inhibited but not that with NADH [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Weiss, D., Baumert, A., Vogel, M. and Roos, W. Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification. Plant Cell Environ 29 (2006) 291–302. [DOI] [PMID: 17080644]
2.  Vogel, M., Lawson, M., Sippl, W., Conrad, U. and Roos, W. Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification. J. Biol. Chem. 285 (2010) 18397–18406. [DOI] [PMID: 20378534]
[EC 1.3.1.107 created 2014]
 
 
EC 1.3.1.108     
Accepted name: caffeoyl-CoA reductase
Reaction: 3-(3,4-dihydroxyphenyl)propanoyl-CoA + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl-CoA + 2 NADH + 2 oxidized ferredoxin [iron-sulfur] cluster
Glossary: (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl-CoA = (2E)-3-(3,4-dihydroxyphenyl)acryloyl-CoA = trans-caffeoyl-CoA
3-(3,4-dihydroxyphenyl)propanoyl-CoA = hydrocaffeoyl-CoA
Other name(s): electron-bifurcating caffeoyl-CoA reductase; caffeoyl-CoA reductase-Etf complex; hydrocaffeoyl-CoA:NAD+,ferredoxin oxidoreductase
Systematic name: 3-(3,4-dihydroxyphenyl)propanoyl-CoA:NAD+,ferredoxin oxidoreductase
Comments: The enzyme, characterized from the bacterium Acetobacterium woodii, contains two [4Fe-4S] clusters and FAD. The enzyme couples the endergonic ferredoxin reduction with NADH as reductant to the exergonic reduction of caffeoyl-CoA with the same reductant. It uses the mechanism of electron bifurcation to overcome the steep energy barrier in ferredoxin reduction. It also reduces 4-coumaroyl-CoA and feruloyl-CoA.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bertsch, J., Parthasarathy, A., Buckel, W. and Muller, V. An electron-bifurcating caffeyl-CoA reductase. J. Biol. Chem. 288 (2013) 11304–11311. [DOI] [PMID: 23479729]
[EC 1.3.1.108 created 2015]
 
 
EC 1.3.1.109     
Accepted name: butanoyl-CoA dehydrogenase (NAD+, ferredoxin)
Reaction: butanoyl-CoA + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = (E)-but-2-enoyl-CoA + 2 NADH + 2 oxidized ferredoxin [iron-sulfur] cluster
Glossary: (E)-but-2-enoyl-CoA = crotonyl-CoA
Other name(s): bifurcating butyryl-CoA dehydrogenase; butyryl-CoA dehydrogenase/Etf complex; Etf-Bcd complex; bifurcating butanoyl-CoA dehydrogenase; butanoyl-CoA dehydrogenase/Etf complex
Systematic name: butanoyl-CoA:NAD+, ferredoxin oxidoreductase
Comments: This flavin containg enzyme, isolated from the bacteria Acidaminococcus fermentans and butanoate-producing Clostridia species, couples the exergonic reduction of (E)-but-2-enoyl-CoA to butanoyl-CoA with NADH to the endergonic reduction of ferredoxin by NADH, using electron bifurcation to overcome the steep energy barrier in ferredoxin reduction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W. and Thauer, R.K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190 (2008) 843–850. [DOI] [PMID: 17993531]
2.  Aboulnaga el,-H., Pinkenburg, O., Schiffels, J., El-Refai, A., Buckel, W. and Selmer, T. Effect of an oxygen-tolerant bifurcating butyryl coenzyme A dehydrogenase/electron-transferring flavoprotein complex from Clostridium difficile on butyrate production in Escherichia coli. J. Bacteriol. 195 (2013) 3704–3713. [DOI] [PMID: 23772070]
3.  Chowdhury, N.P., Mowafy, A.M., Demmer, J.K., Upadhyay, V., Koelzer, S., Jayamani, E., Kahnt, J., Hornung, M., Demmer, U., Ermler, U. and Buckel, W. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J. Biol. Chem. 289 (2014) 5145–5157. [DOI] [PMID: 24379410]
[EC 1.3.1.109 created 2015]
 
 
EC 1.3.1.110     
Accepted name: lactate dehydrogenase (NAD+,ferredoxin)
Reaction: lactate + 2 NAD+ + 2 reduced ferredoxin [iron-sulfur] cluster = pyruvate + 2 NADH + 2 oxidized ferredoxin [iron-sulfur] cluster
Other name(s): electron bifurcating LDH/Etf complex
Systematic name: lactate:NAD+,ferredoxin oxidoreductase
Comments: The enzyme, isolated from the bacterium Acetobacterium woodii, uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD+ as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin to NAD+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Weghoff, M.C., Bertsch, J. and Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17 (2015) 670–677. [DOI] [PMID: 24762045]
[EC 1.3.1.110 created 2015]
 
 
EC 1.3.1.111     
Accepted name: geranylgeranyl-bacteriochlorophyllide a reductase
Reaction: bacteriochlorophyll a + 3 NADP+ = geranylgeranyl bacteriochlorophyllide a + 3 NADPH + 3 H+
For diagram of bacteriochlorophyl a biosynthesis, click here
Other name(s): geranylgeranyl-bacteriopheophytin reductase; bchP (gene name)
Systematic name: bacteriochlorophyll-a:NADP+ oxidoreductase (geranylgeranyl-reducing)
Comments: The enzyme catalyses the successive reduction of the geranylgeraniol esterifying group to phytol, reducing three out of four double bonds, and transforming geranylgeranyl bacteriochlorophyllide a via dihydrogeranylgeranyl bacteriochlorophyllide a and tetrahydrogeranylgeranyl bacteriochlorophyllide a to bacteriochlorophyll a. The enzyme can also accept the pheophytin derivative geranylgeranyl bacteriopheophytin, converting it to bacteriopheophytin a.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Bollivar, D.W., Wang, S., Allen, J.P. and Bauer, C.E. Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry 33 (1994) 12763–12768. [PMID: 7947681]
2.  Addlesee, H.A. and Hunter, C.N. Physical mapping and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J. Bacteriol. 181 (1999) 7248–7255. [PMID: 10572128]
3.  Addlesee, H.A. and Hunter, C.N. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. J. Bacteriol. 184 (2002) 1578–1586. [DOI] [PMID: 11872709]
4.  Harada, J., Miyago, S., Mizoguchi, T., Azai, C., Inoue, K., Tamiaki, H. and Oh-oka, H. Accumulation of chlorophyllous pigments esterified with the geranylgeranyl group and photosynthetic competence in the CT2256-deleted mutant of the green sulfur bacterium Chlorobium tepidum. Photochem Photobiol Sci 7 (2008) 1179–1187. [DOI] [PMID: 18846281]
[EC 1.3.1.111 created 2016]
 
 
EC 1.3.1.112     
Accepted name: anthocyanidin reductase [(2S)-flavan-3-ol-forming]
Reaction: (1) a (2S,3R)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+
(2) a (2S,3S)-flavan-3-ol + 2 NADP+ = an anthocyanidin with a 3-hydroxy group + 2 NADPH + H+
Systematic name: (2S)-flavan-3-ol:NAD(P)+ oxidoreductase
Comments: The enzyme, characterized from Vitis vinifera (grape), participates in the flavonoid biosynthesis pathway. It catalyses the double reduction of anthocyanidins, producing a mixture of (2S,3S)- and (2S,3R)-flavan-3-ols. The enzyme catalyses sequential hydride transfers to C-2 and C-4, respectively. Epimerization at C-3 is achieved by tautomerization that occurs between the two hydride transfers. cf. EC 1.3.1.77, anthocyanidin reductase [(2R,3R)-flavan-3-ol-forming].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gargouri, M., Manigand, C., Mauge, C., Granier, T., Langlois d'Estaintot, B., Cala, O., Pianet, I., Bathany, K., Chaudiere, J. and Gallois, B. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Acta Crystallogr. D Biol. Crystallogr. 65 (2009) 989–1000. [DOI] [PMID: 19690377]
2.  Gargouri, M., Chaudiere, J., Manigand, C., Mauge, C., Bathany, K., Schmitter, J.M. and Gallois, B. The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers. Biol. Chem. 391 (2010) 219–227. [DOI] [PMID: 20030585]
[EC 1.3.1.112 created 2016]
 
 
EC 1.3.1.113     
Accepted name: (4-alkanoyl-5-oxo-2,5-dihydrofuran-3-yl)methyl phosphate reductase
Reaction: a [(3S)-4-alkanoyl-5-oxooxolan-3-yl]methyl phosphate + NADP+ = a (4-alkanoyl-5-oxo-2,5-dihydrofuran-3-yl)methyl phosphate + NADPH + H+
Other name(s): bprA (gene name); scbB (gene name)
Systematic name: [(3S)-4-alkanoyl-5-oxooxolan-3-yl]methyl phosphate:NADP+ oxidoreductase
Comments: The enzyme, characterized from the bacteria Streptomyces griseus and Streptomyces coelicolor, is involved in the biosynthesis of γ-butyrolactone autoregulators that control secondary metabolism and morphological development in Streptomyces bacteria.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kato, J.Y., Funa, N., Watanabe, H., Ohnishi, Y. and Horinouchi, S. Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl Acad. Sci. USA 104 (2007) 2378–2383. [DOI] [PMID: 17277085]
[EC 1.3.1.113 created 2017]
 
 
EC 1.3.1.114     
Accepted name: 3-dehydro-bile acid Δ4,6-reductase
Reaction: (1) 3-oxocholan-24-oyl-CoA + NAD+ = 3-oxochol-4-en-24-oyl-CoA + NADH + H+
(2) 3-oxochol-4-en-24-oyl-CoA + NAD+ = 3-oxochol-4,6-dien-24-oyl-CoA + NADH + H+
(3) 12α-hydroxy-3-oxocholan-24-oyl-CoA + NAD+ = 12α-hydroxy-3-oxochol-4-en-24-oyl-CoA + NADH + H+
(4) 12α-hydroxy-3-oxochol-4-en-24-oyl-CoA + NAD+ = 12α-hydroxy-3-oxochol-4,6-dien-24-oyl-CoA + NADH + H+
Other name(s): baiN (gene name)
Systematic name: 3-oxocholan-24-oyl-CoA Δ4,6-oxidoreductase
Comments: Contains flavin. The enzyme, characterized from the bacterium Clostridium scindens, participates in the bile acid 7α-dehydroxylation pathway. The enzyme catalyses two subsequent reductions of the double bonds within the bile acid A/B rings, following 7α-dehydration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Harris, S.C., Devendran, S., Alves, J.MP., Mythen, S.M., Hylemon, P.B. and Ridlon, J.M. Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. Biochim. Biophys. Acta 1863 (2018) 276–283. [DOI] [PMID: 29217478]
[EC 1.3.1.114 created 2018]
 
 
EC 1.3.1.115     
Accepted name: 3-oxocholoyl-CoA 4-desaturase
Reaction: (1) 7α,12α-dihydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7α,12α-dihydroxy-3-oxochol-4-en-24-oyl-CoA + NADH + H+
(2) 7α-hydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7α-hydroxy-3-oxochol-4-en-24-oyl-CoA + NADH + H+
Glossary: 7α,12α-dihydroxy-3-oxochol-24-oyl-CoA = 3-oxocholoyl-CoA
7α-hydroxy-3-oxochol-24-oyl-CoA = 3-oxochenodeoxycholoyl-CoA
Other name(s): baiCD (gene name); 3-oxo-choloyl-CoA dehydrogenase
Systematic name: 3-oxocholoyl-CoA Δ4-oxidoreductase
Comments: Contains flavin. The enzyme, characterized from the bacterium Clostridium scindens, participates in the bile acid 7α-dehydroxylation pathway. The enzyme catalyses the stereo-specific oxidation of its substrates and has no activity with the 7β anomers. cf. EC 1.3.1.116, 7β-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kang, D.J., Ridlon, J.M., Moore, D.R., 2nd, Barnes, S. and Hylemon, P.B. Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases. Biochim. Biophys. Acta 1781 (2008) 16–25. [PMID: 18047844]
[EC 1.3.1.115 created 2018]
 
 
EC 1.3.1.116     
Accepted name: 7β-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase
Reaction: 7β-hydroxy-3-oxochol-24-oyl-CoA + NAD+ = 7β-hydroxy-3-oxochol-4-en-24-oyl-CoA + NADH + H+
Other name(s): baiH (gene name)
Systematic name: 7β-hydroxy-3-oxochol-24-oyl-CoA Δ4-oxidoreductase
Comments: Contains FAD and FMN. The enzyme, characterized from the bacterium Clostridium scindens, participates in the bile acid 7α-dehydroxylation pathway. The enzyme catalyses the stereo-specific oxidation of its substrate and has no activity with the 7α anomer. cf. EC 1.3.1.115, 3-oxocholoyl-CoA 4-desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Baron, S.F. and Hylemon, P.B. Expression of the bile acid-inducible NADH:flavin oxidoreductase gene of Eubacterium sp. VPI 12708 in Escherichia coli. Biochim. Biophys. Acta 1249 (1995) 145–154. [PMID: 7599167]
2.  Franklund, C.V., Baron, S.F. and Hylemon, P.B. Characterization of the baiH gene encoding a bile acid-inducible NADH:flavin oxidoreductase from Eubacterium sp. strain VPI 12708. J. Bacteriol. 175 (1993) 3002–3012. [PMID: 8491719]
3.  Kang, D.J., Ridlon, J.M., Moore, D.R., 2nd, Barnes, S. and Hylemon, P.B. Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases. Biochim. Biophys. Acta 1781 (2008) 16–25. [PMID: 18047844]
[EC 1.3.1.116 created 2018]
 
 
EC 1.3.1.117     
Accepted name: hydroxycinnamoyl-CoA reductase
Reaction: (1) dihydro-4-coumaroyl-CoA + NADP+ = trans-4-coumaroyl-CoA + NADPH + H+
(2) dihydroferuloyl-CoA + NADP+ = trans-feruloyl-CoA + NADPH + H+
For diagram of phloretin biosynthesis, click here
Glossary: trans-4-coumaroyl-CoA = (E)-3-(4-hydroxyphenyl)prop-2-enoyl-CoA
trans-feruloyl-CoA = (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl-CoA
dihydro-4-coumaroyl-CoA = 3-(4-hydroxyphenyl)propanoyl-CoA
dihydroferuloyl-CoA = 3-(4-hydroxy-3-methoxyphenyl)propanoyl-CoA
Other name(s): MdHCDBR; hydroxycinnamoyl-CoA double bond reductase
Systematic name: dihydro-4-coumaroyl-CoA:NADP+ 2,3-oxidoreductase
Comments: Isolated from Malus X domestica (apple). Involved in dihydrochalcone biosynthesis.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ibdah, M., Berim, A., Martens, S., Valderrama, A.L.H., Palmieri, L., Lewinsohn, E. and Gang, D.R. Identification and cloning of an NADPH-dependant hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus X domestica Borkh. Phytochemistry 107 (2014) 24-31. [DOI] [PMID: 25152451]
[EC 1.3.1.117 created 2018]
 
 
EC 1.3.1.118     
Accepted name: meromycolic acid enoyl-[acyl-carrier-protein] reductase
Reaction: a meromycolyl-[acyl-carrier protein] + NAD+ = a trans2-meromycolyl-[acyl-carrier protein] + NADH + H+
Glossary: meromycolic acids are one of the two precursors of the mycolic acids produced by Mycobacteria. They consist of a long chain typically of 50–60 carbons, which is functionalized by different groups.
Other name(s): inhA (gene name)
Systematic name: meromycolyl-[acyl-carrier protein]:NAD+ oxidoreductase
Comments: InhA is a component of the fatty acid synthase (FAS) II system of Mycobacterium tuberculosis, catalysing an enoyl-[acyl-carrier-protein] reductase step. The enzyme acts on very long and unsaturated fatty acids that form the meromycolic component of mycolic acids. It extends FASI-derived C20 fatty acids to form C60 to C90 mycolic acids. The enzyme, which forms a homotetramer, is the target of the preferred antitubercular drug isoniazid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Quemard, A., Sacchettini, J.C., Dessen, A., Vilcheze, C., Bittman, R., Jacobs, W.R., Jr. and Blanchard, J.S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34 (1995) 8235–8241. [PMID: 7599116]
2.  Rozwarski, D.A., Vilcheze, C., Sugantino, M., Bittman, R. and Sacchettini, J.C. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J. Biol. Chem. 274 (1999) 15582–15589. [PMID: 10336454]
3.  Marrakchi, H., Laneelle, G. and Quemard, A. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146 (2000) 289–296. [PMID: 10708367]
4.  Vilcheze, C., Morbidoni, H.R., Weisbrod, T.R., Iwamoto, H., Kuo, M., Sacchettini, J.C. and Jacobs, W.R., Jr. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182 (2000) 4059–4067. [PMID: 10869086]
5.  Gurvitz, A., Hiltunen, J.K. and Kastaniotis, A.J. Function of heterologous Mycobacterium tuberculosis InhA, a type 2 fatty acid synthase enzyme involved in extending C20 fatty acids to C60-to-C90 mycolic acids, during de novo lipoic acid synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74 (2008) 5078–5085. [PMID: 18552191]
6.  Chollet, A., Mourey, L., Lherbet, C., Delbot, A., Julien, S., Baltas, M., Bernadou, J., Pratviel, G., Maveyraud, L. and Bernardes-Genisson, V. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J. Struct. Biol. 190 (2015) 328–337. [PMID: 25891098]
[EC 1.3.1.118 created 2018]
 
 
EC 1.3.1.119     
Accepted name: chlorobenzene dihydrodiol dehydrogenase
Reaction: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol + NAD+ = 3-chlorocatechol + NADH + H+
Other name(s): tecB (gene name)
Systematic name: (1R,2R)-3-chlorocyclohexa-3,5-diene-1,2-diol:NAD+ oxidoreductase
Comments: This bacterial enzyme can transform various dihydrodiols of chlorobenzenes into the respective catechols, including the dihydrodiols of mono-, di-, tri-, and tetra-chlorinated benzenes. It also accepts the dihydrodiols of various chlorotoluenes. Substrates for the enzyme are generated by the broad spectrum EC 1.14.12.26, chlorobenzene dioxygenase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Spiess, E. and Gorisch, H. Purification and characterization of chlorobenzene cis-dihydrodiol dehydrogenase from Xanthobacter flavus 14p1. Arch. Microbiol. 165 (1996) 201–205. [PMID: 8599538]
2.  Pollmann, K., Beil, S. and Pieper, D.H. Transformation of chlorinated benzenes and toluenes by Ralstonia sp. strain PS12 tecA (tetrachlorobenzene dioxygenase) and tecB (chlorobenzene dihydrodiol dehydrogenase) gene products. Appl. Environ. Microbiol. 67 (2001) 4057–4063. [PMID: 11526005]
3.  Pollmann, K., Wray, V. and Pieper, D.H. Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. J. Bacteriol. 187 (2005) 2332–2340. [PMID: 15774876]
[EC 1.3.1.119 created 2018]
 
 


Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald