The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.17.99.3     
Accepted name: 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA 24-hydroxylase
Reaction: (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oyl-CoA + H2O + acceptor = (24R,25R)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-26-oyl-CoA + reduced acceptor
For diagram of cholic-acid biosynthesis (sidechain), click here
Other name(s): trihydroxycoprostanoyl-CoA oxidase; THC-CoA oxidase; THCA-CoA oxidase; 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA oxidase; 3α,7α,12α-trihydroxy-5β-cholestan-26-oate 24-hydroxylase
Systematic name: (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oyl-CoA:acceptor 24-oxidoreductase (24R-hydroxylating)
Comments: Requires ATP. The reaction in mammals possibly involves dehydrogenation to give a 24(25)-double bond followed by hydration [1]. However, in amphibians such as the Oriental fire-bellied toad (Bombina orientalis), it is probable that the product is formed via direct hydroxylation of the saturated side chain of (25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oate and not via hydration of a 24(25) double bond [5]. In microsomes, the free acid is preferred to the coenzyme A ester, whereas in mitochondria, the coenzyme A ester is preferred to the free-acid form of the substrate [1].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 119799-47-2
References:
1.  Gustafsson, J. Biosynthesis of cholic acid in rat liver. 24-Hydroxylation of 3α,7α,12α-trihydroxy-5β-cholestanoic acid. J. Biol. Chem. 250 (1975) 8243–8247. [PMID: 240854]
2.  Schepers, L., Van Veldhoven, P.P., Casteels, M., Eyssen, H.J. and Mannaerts, G.P. Presence of three acyl-CoA oxidases in rat liver peroxisomes. An inducible fatty acyl-CoA oxidase, a noninducible fatty acyl-CoA oxidase, and a noninducible trihydroxycoprostanoyl-CoA oxidase. J. Biol. Chem. 265 (1990) 5242–5246. [PMID: 2156865]
3.  Dieuaide-Noubhani, M., Novikov, D., Baumgart, E., Vanhooren, J.C., Fransen, M., Goethals, M., Vandekerckhove, J., Van Veldhoven, P.P. and Mannaerts, G.P. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur. J. Biochem. 240 (1996) 660–666. [DOI] [PMID: 8856068]
4.  Dieuaide-Noubhani, M., Novikov, D., Baumgart, E., Vanhooren, J.C., Fransen, M., Goethals, M., Vandekerckhove, J., Van Veldhoven, P.P. and Mannaerts, G.P. Erratum report. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur. J. Biochem. 243 (1997) 537.
5.  Pedersen, J.I., Eggertsen, G., Hellman, U., Andersson, U. and Björkhem, I. Molecular cloning and expression of cDNA encoding 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA oxidase from rabbit liver. J. Biol. Chem. 272 (1997) 18481–18489. [DOI] [PMID: 9218493]
6.  Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72 (2003) 137–174. [DOI] [PMID: 12543708]
[EC 1.17.99.3 created 2005]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald