The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.16.99.1     
Accepted name: [Co(II) methylated amine-specific corrinoid protein] reductase
Reaction: (1) ATP + a [Co(II) methylamine-specific corrinoid protein] + reduced acceptor + H2O = ADP + phosphate + a [Co(I) methylamine-specific corrinoid protein] + acceptor
(2) ATP + a [Co(II) dimethylamine-specific corrinoid protein] + reduced acceptor + H2O = ADP + phosphate + a [Co(I) dimethylamine-specific corrinoid protein] + acceptor
(3) ATP + a [Co(II) trimethylamine-specific corrinoid protein] + reduced acceptor + H2O = ADP + phosphate + a [Co(I) trimethylamine-specific corrinoid protein] + acceptor
Glossary: ramA (gene name)
Systematic name: acceptor:[cobalt(II) methylated amines-specific corrinoid protein] oxidoreductase (ATP-hydrolysing)
Comments: Methyltrophic corrinoid proteins must have the cobalt atom in the active cobalt(I) state to become methylated. Because the cobalt(I)/cobalt(II) transformation has a very low redox potential the corrinoid cofactor is subject to adventitious oxidation to the cobalt(II) state, which renders the proteins inactive. This enzyme, characterized from the methanogenic archaeon Methanosarcina barkeri, reduces cobalt(II) back to cobalt(I), restoring activity. The enzyme acts on the corrinoid proteins involved in methanogenesis from methylamine, dimethylamine, and trimethylamine, namely MtmC, MtbC, and MttC, respectively. While in vitro the enzyme can use Ti(III)-citrate as the electron donor, the in vivo donor is not known. The enzyme from Methanosarcina barkeri contains a C-terminal [4Fe-4S] ferredoxin-like domain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Ferguson, T., Soares, J.A., Lienard, T., Gottschalk, G. and Krzycki, J.A. RamA, a protein required for reductive activation of corrinoid-dependent methylamine methyltransferase reactions in methanogenic archaea. J. Biol. Chem. 284 (2009) 2285–2295. [DOI] [PMID: 19043046]
2.  Durichen, H., Diekert, G. and Studenik, S. Redox potential changes during ATP-dependent corrinoid reduction determined by redox titrations with europium(II)-DTPA. Protein Sci. 28 (2019) 1902–1908. [DOI] [PMID: 31359509]
[EC 1.16.99.1 created 2021]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald