The Enzyme Database

Your query returned 1 entry.    printer_iconPrintable version

EC 1.14.13.108     
Accepted name: abieta-7,13-diene hydroxylase
Reaction: abieta-7,13-diene + NADPH + H+ + O2 = abieta-7,13-dien-18-ol + NADP+ + H2O
For diagram of abietadiene, abietate, isopimaradiene, labdadienol and sclareol biosynthesis, click here
Glossary: abieta-7,13-diene = (4aS,4bR,10aS)-7-isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene
abieta-7,13-dien-18-ol = ((1R,4aR,4bR,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthren-1-yl)methanol
Other name(s): abietadiene hydroxylase (ambiguous)
Systematic name: abieta-7,13-diene,NADPH:oxygen oxidoreductase (18-hydroxylating)
Comments: A heme-thiolate protein (P-450). This enzyme catalyses a step in the pathway of abietic acid biosynthesis. The activity has been demonstrated in cell-free stem extracts of Abies grandis (grand fir) and Pinus contorta (lodgepole pine). The enzyme is localized in the microsomal fraction and requires both oxygen and NADPH. Inhibition by carbon monoxide and several substituted N-heterocyclic inhibitors suggests that the enzyme is a cytochrome P-450-dependent monooxygenase [1]. Activity is induced by wounding of the plant tissue [2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Funk, C. and Croteau, R. Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Arch. Biochem. Biophys. 308 (1994) 258–266. [PMID: 8311462]
2.  Funk, C., Lewinsohn, E., Vogel, B.S., Steele, C.L. and Croteau, R. Regulation of oleoresinosis in grand fir (Abies grandis) (coordinate induction of monoterpene and diterpene cyclases and two cytochrome P450-dependent diterpenoid hydroxylases by stem wounding). Plant Physiol. 106 (1994) 999–1005. [PMID: 12232380]
[EC 1.14.13.108 created 2009, modified 2012]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald