The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version



EC 1.13.11.5     
Accepted name: homogentisate 1,2-dioxygenase
Reaction: homogentisate + O2 = 4-maleylacetoacetate
Other name(s): homogentisicase; homogentisate oxygenase; homogentisate dioxygenase; homogentisate oxidase; homogentisic acid oxidase; homogentisic acid oxygenase; homogentisic oxygenase; homogentisate:oxygen 1,2-oxidoreductase (decyclizing)
Systematic name: homogentisate:oxygen 1,2-oxidoreductase (ring-opening)
Comments: Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9029-49-6
References:
1.  Adachi, K., Iwayama, Y., Tanioka, H. and Takeda, Y. Purification and properties of homogentisate oxygenase from Pseudomonas fluorescens. Biochim. Biophys. Acta 118 (1966) 88–97. [PMID: 5954067]
2.  Crandall, D.I. and Halikis, D.N. Homogentisic acid oxidase. I. Distribution in animal tissues and relation to tyrosine metabolism in rat kidney. J. Biol. Chem. 208 (1954) 629–638. [PMID: 13174573]
3.  Hayaishi, O. Direct oxygenation by O2, oxygenases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 353–371.
4.  Kita, H., Kamimoto, M., Senoh, S., Adachi, T. and Takeda, Y. Cystallization and some properties of 3,4-dihydroxyphenylacetate-2,3-oxygenase. Biochem. Biophys. Res. Commun. 18 (1965) 66–70. [DOI] [PMID: 14265758]
5.  Knox, W.E. and Edwards, S.W. Homogentisate oxidase of liver. J. Biol. Chem. 216 (1955) 479–487. [PMID: 13271328]
6.  Ravdin, R.G. and Crandall, D.I. The enzymatic conversion of homogentisic acid to 4-fumarylacetoacetic acid. J. Biol. Chem. 189 (1951) 137–149. [PMID: 14832225]
[EC 1.13.11.5 created 1961 as EC 1.99.2.5, transferred 1965 to EC 1.13.1.5, transferred 1972 to EC 1.13.11.5]
 
 
EC 1.13.11.50     
Accepted name: acetylacetone-cleaving enzyme
Reaction: pentane-2,4-dione + O2 = acetate + 2-oxopropanal
Glossary: 2-oxopropanal = methylglyoxal
Other name(s): Dke1; acetylacetone dioxygenase; diketone cleaving dioxygenase; diketone cleaving enzyme
Systematic name: acetylacetone:oxygen oxidoreductase
Comments: An Fe(II)-dependent enzyme. Forms the first step in the acetylacetone degradation pathway of Acinetobacter johnsonii. While acetylacetone is by far the best substrate, heptane-3,5-dione, octane-2,4-dione, 2-acetylcyclohexanone and ethyl acetoacetate can also act as substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 524047-53-8
References:
1.  Straganz, G.D., Glieder, A., Brecker, L., Ribbons, D.W. and Steiner, W. Acetylacetone-cleaving enzyme Dke1: a novel C-C-bond-cleaving enzyme from Acinetobacter johnsonii. Biochem. J. 369 (2003) 573–581. [DOI] [PMID: 12379146]
[EC 1.13.11.50 created 2003]
 
 
EC 1.13.11.51     
Accepted name: 9-cis-epoxycarotenoid dioxygenase
Reaction: (1) a 9-cis-epoxycarotenoid + O2 = 2-cis,4-trans-xanthoxin + a 12′-apo-carotenal
(2) 9-cis-violaxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6S)-5,6-epoxy-3-hydroxy-5,6-dihydro-12′-apo-β-caroten-12′-al
(3) 9′-cis-neoxanthin + O2 = 2-cis,4-trans-xanthoxin + (3S,5R,6R)-5,6-dihydroxy-6,7-didehydro-5,6-dihydro-12′-apo-β-caroten-12′-al
For diagram of abscisic-acid biosynthesis, click here
Other name(s): nine-cis-epoxycarotenoid dioxygenase; NCED; AtNCED3; PvNCED1; VP14
Systematic name: 9-cis-epoxycarotenoid 11,12-dioxygenase
Comments: Requires iron(II). Acts on 9-cis-violaxanthin and 9′-cis-neoxanthin but not on the all-trans isomers [2,3]. In vitro, it will cleave 9-cis-zeaxanthin. Catalyses the first step of abscisic-acid biosynthesis from carotenoids in chloroplasts, in response to water stress. The other enzymes involved in the abscisic-acid biosynthesis pathway are EC 1.1.1.288 (xanthoxin dehydrogenase), EC 1.2.3.14 (abscisic-aldehyde oxidase) and EC 1.14.13.93 [(+)-abscisic acid 8′-hydroxylase].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 199877-10-6
References:
1.  Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A. and McCarty, D.R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276 (1997) 1872–1874. [DOI] [PMID: 9188535]
2.  Tan, B.C., Schwartz, S.H., Zeevaart, J.A. and McCarty, D.R. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94 (1997) 12235–12240. [DOI] [PMID: 9342392]
3.  Qin, X. and Zeevaart, J.A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. USA 96 (1999) 15354–15361. [DOI] [PMID: 10611388]
4.  Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23 (2000) 363–374. [DOI] [PMID: 10929129]
5.  Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27 (2001) 325–333. [DOI] [PMID: 11532178]
6.  Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 30 (2002) 611.
[EC 1.13.11.51 created 2005]
 
 
EC 1.13.11.52     
Accepted name: indoleamine 2,3-dioxygenase
Reaction: (1) D-tryptophan + O2 = N-formyl-D-kynurenine
(2) L-tryptophan + O2 = N-formyl-L-kynurenine
For diagram of tryptophan catabolism, click here
Other name(s): IDO (ambiguous); tryptophan pyrrolase (ambiguous); D-tryptophan:oxygen 2,3-oxidoreductase (decyclizing)
Systematic name: D-tryptophan:oxygen 2,3-oxidoreductase (ring-opening)
Comments: A protohemoprotein. Requires ascorbic acid and methylene blue for activity. This enzyme has broader substrate specificity than EC 1.13.11.11, tryptophan 2,3-dioxygenase [1]. It is induced in response to pathological conditions and host-defense mechanisms and its distribution in mammals is not confined to the liver [2]. While the enzyme is more active with D-tryptophan than L-tryptophan, its only known function to date is in the metabolism of L-tryptophan [2,6]. Superoxide radicals can replace O2 as oxygen donor [4,7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9014-51-1
References:
1.  Yamamoto, S. and Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 242 (1967) 5260–5266. [PMID: 6065097]
2.  Yasui, H., Takai, K., Yoshida, R. and Hayaishi, O. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc. Natl. Acad. Sci. USA 83 (1986) 6622–6626. [DOI] [PMID: 2428037]
3.  Takikawa, O., Yoshida, R., Kido, R. and Hayaishi, O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem. 261 (1986) 3648–3653. [PMID: 2419335]
4.  Hirata, F., Ohnishi, T. and Hayaishi, O. Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. O2- complex. J. Biol. Chem. 252 (1977) 4637–4642. [PMID: 194886]
5.  Dang, Y., Dale, W.E. and Brown, O.R. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic. Biol. Med. 28 (2000) 615–624. [DOI] [PMID: 10719243]
6.  Littlejohn, T.K., Takikawa, O., Truscott, R.J. and Walker, M.J. Asp274 and His346 are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase. J. Biol. Chem. 278 (2003) 29525–29531. [DOI] [PMID: 12766158]
7.  Thomas, S.R. and Stocker, R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 4 (1999) 199–220. [DOI] [PMID: 10731095]
8.  Sono, M. Spectroscopic and equilibrium studies of ligand and organic substrate binding to indolamine 2,3-dioxygenase. Biochemistry 29 (1990) 1451–1460. [PMID: 2334706]
[EC 1.13.11.52 created 2006]
 
 
EC 1.13.11.53     
Accepted name: acireductone dioxygenase (Ni2+-requiring)
Reaction: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 3-(methylsulfanyl)propanoate + formate + CO
For diagram of methionine salvage, click here and for diagram of reaction, click here
Glossary: acireductone = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one
Other name(s): ARD; 2-hydroxy-3-keto-5-thiomethylpent-1-ene dioxygenase (ambiguous); acireductone dioxygenase (ambiguous); E-2; 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one:oxygen oxidoreductase (formate- and CO-forming)
Systematic name: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one:oxygen oxidoreductase (formate- and CO-forming)
Comments: Requires Ni2+. If iron(II) is bound instead of Ni2+, the reaction catalysed by EC 1.13.11.54, acireductone dioxygenase [iron(II)-requiring], occurs instead [1]. The enzyme from the bacterium Klebsiella oxytoca (formerly Klebsiella pneumoniae) ATCC strain 8724 is involved in the methionine salvage pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wray, J.W. and Abeles, R.H. A bacterial enzyme that catalyzes formation of carbon monoxide. J. Biol. Chem. 268 (1993) 21466–21469. [PMID: 8407993]
2.  Wray, J.W. and Abeles, R.H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J. Biol. Chem. 270 (1995) 3147–3153. [DOI] [PMID: 7852397]
3.  Furfine, E.S. and Abeles, R.H. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J. Biol. Chem. 263 (1988) 9598–9606. [PMID: 2838472]
4.  Dai, Y., Wensink, P.C. and Abeles, R.H. One protein, two enzymes. J. Biol. Chem. 274 (1999) 1193–1195. [DOI] [PMID: 9880484]
5.  Mo, H., Dai, Y., Pochapsky, S.S. and Pochapsky, T.C. 1H, 13C and 15N NMR assignments for a carbon monoxide generating metalloenzyme from Klebsiella pneumoniae. J. Biomol. NMR 14 (1999) 287–288. [PMID: 10481280]
6.  Dai, Y., Pochapsky, T.C. and Abeles, R.H. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae. Biochemistry 40 (2001) 6379–6387. [DOI] [PMID: 11371200]
7.  Al-Mjeni, F., Ju, T., Pochapsky, T.C. and Maroney, M.J. XAS investigation of the structure and function of Ni in acireductone dioxygenase. Biochemistry 41 (2002) 6761–6769. [DOI] [PMID: 12022880]
8.  Pochapsky, T.C., Pochapsky, S.S., Ju, T., Mo, H., Al-Mjeni, F. and Maroney, M.J. Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat. Struct. Biol. 9 (2002) 966–972. [DOI] [PMID: 12402029]
[EC 1.13.11.53 created 2006]
 
 
EC 1.13.11.54     
Accepted name: acireductone dioxygenase [iron(II)-requiring]
Reaction: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one + O2 = 4-(methylsulfanyl)-2-oxobutanoate + formate
For diagram of methionine salvage, click here and for diagram of reaction, click here
Glossary: acireductone = 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one
Other name(s): ARD′; 2-hydroxy-3-keto-5-thiomethylpent-1-ene dioxygenase (ambiguous); acireductone dioxygenase (ambiguous); E-2′; E-3 dioxygenase; 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one:oxygen oxidoreductase (formate-forming)
Systematic name: 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one:oxygen oxidoreductase (formate-forming)
Comments: Requires iron(II). If Ni2+ is bound instead of iron(II), the reaction catalysed by EC 1.13.11.53, acireductone dioxygenase (Ni2+-requiring), occurs instead. The enzyme from the bacterium Klebsiella oxytoca (formerly Klebsiella pneumoniae) ATCC strain 8724 is involved in the methionine salvage pathway.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Wray, J.W. and Abeles, R.H. A bacterial enzyme that catalyzes formation of carbon monoxide. J. Biol. Chem. 268 (1993) 21466–21469. [PMID: 8407993]
2.  Wray, J.W. and Abeles, R.H. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J. Biol. Chem. 270 (1995) 3147–3153. [DOI] [PMID: 7852397]
3.  Furfine, E.S. and Abeles, R.H. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae. J. Biol. Chem. 263 (1988) 9598–9606. [PMID: 2838472]
4.  Dai, Y., Wensink, P.C. and Abeles, R.H. One protein, two enzymes. J. Biol. Chem. 274 (1999) 1193–1195. [DOI] [PMID: 9880484]
5.  Mo, H., Dai, Y., Pochapsky, S.S. and Pochapsky, T.C. 1H, 13C and 15N NMR assignments for a carbon monoxide generating metalloenzyme from Klebsiella pneumoniae. J. Biomol. NMR 14 (1999) 287–288. [PMID: 10481280]
6.  Dai, Y., Pochapsky, T.C. and Abeles, R.H. Mechanistic studies of two dioxygenases in the methionine salvage pathway of Klebsiella pneumoniae. Biochemistry 40 (2001) 6379–6387. [DOI] [PMID: 11371200]
7.  Al-Mjeni, F., Ju, T., Pochapsky, T.C. and Maroney, M.J. XAS investigation of the structure and function of Ni in acireductone dioxygenase. Biochemistry 41 (2002) 6761–6769. [DOI] [PMID: 12022880]
8.  Pochapsky, T.C., Pochapsky, S.S., Ju, T., Mo, H., Al-Mjeni, F. and Maroney, M.J. Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat. Struct. Biol. 9 (2002) 966–972. [DOI] [PMID: 12402029]
[EC 1.13.11.54 created 2006]
 
 
EC 1.13.11.55     
Accepted name: sulfur oxygenase/reductase
Reaction: 4 sulfur + 4 H2O + O2 = 2 hydrogen sulfide + 2 sulfite
Other name(s): SOR; sulfur oxygenase; sulfur oxygenase reductase
Systematic name: sulfur:oxygen oxidoreductase (hydrogen-sulfide- and sulfite-forming)
Comments: This enzyme, which is found in thermophilic microorganisms, contains one mononuclear none-heme iron centre per subunit. Elemental sulfur is both the electron donor and one of the two known acceptors, the other being oxygen. Thiosulfate is also observed as a product, but is likely formed non-enzymically by a reaction between sulfite and sulfur [1]. This enzyme differs from EC 1.13.11.18, sulfur dioxygenase and EC 1.12.98.4, sulfhydrogenase, in that both activities occur simultaneously.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 120598-92-7
References:
1.  Kletzin, A. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J. Bacteriol. 171 (1989) 1638–1643. [DOI] [PMID: 2493451]
2.  Kletzin, A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. J. Bacteriol. 174 (1992) 5854–5859. [DOI] [PMID: 1522063]
3.  Sun, C.W., Chen, Z.W., He, Z.G., Zhou, P.J. and Liu, S.J. Purification and properties of the sulfur oxygenase/reductase from the acidothermophilic archaeon, Acidianus strain S5. Extremophiles 7 (2003) 131–134. [DOI] [PMID: 12664265]
4.  Urich, T., Bandeiras, T.M., Leal, S.S., Rachel, R., Albrecht, T., Zimmermann, P., Scholz, C., Teixeira, M., Gomes, C.M. and Kletzin, A. The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem. J. 381 (2004) 137–146. [DOI] [PMID: 15030315]
[EC 1.13.11.55 created 2006]
 
 
EC 1.13.11.56     
Accepted name: 1,2-dihydroxynaphthalene dioxygenase
Reaction: naphthalene-1,2-diol + O2 = 2-hydroxy-2H-chromene-2-carboxylate
For diagram of naphthalene metabolism, click here
Other name(s): 1,2-DHN dioxygenase; DHNDO; 1,2-dihydroxynaphthalene oxygenase; 1,2-dihydroxynaphthalene:oxygen oxidoreductase
Systematic name: naphthalene-1,2-diol:oxygen oxidoreductase
Comments: This enzyme is involved in naphthalene degradation. Requires Fe2+.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Kuhm, A.E., Stolz, A., Ngai, K.L. and Knackmuss, H.J. Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J. Bacteriol. 173 (1991) 3795–3802. [DOI] [PMID: 2050635]
2.  Keck, A., Conradt, D., Mahler, A., Stolz, A., Mattes, R. and Klein, J. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152 (2006) 1929–1940. [DOI] [PMID: 16804169]
3.  Patel, T.R. and Barnsley, E.A. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J. Bacteriol. 143 (1980) 668–673. [PMID: 7204331]
[EC 1.13.11.56 created 2010, modified 2010]
 
 
EC 1.13.11.57     
Accepted name: gallate dioxygenase
Reaction: 3,4,5-trihydroxybenzoate + O2 = (1E)-4-oxobut-1-ene-1,2,4-tricarboxylate
For diagram of the protocatechuate 3,4-cleavage pathway, click here
Glossary: 3,4,5-trihydroxybenzoate = gallate
Other name(s): GalA; gallate:oxygen oxidoreductase
Systematic name: 3,4,5-trihydroxybenzoate:oxygen oxidoreductase
Comments: Contains non-heme Fe2+. The enzyme is a ring-cleavage dioxygenase that acts specifically on 3,4,5-trihydroxybenzoate to produce the keto-tautomer of 4-oxalomesaconate [1,2].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD
References:
1.  Nogales, J., Canales, A., Jiménez-Barbero, J., García, J.L. and Díaz, E. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J. Biol. Chem. 280 (2005) 35382–35390. [DOI] [PMID: 16030014]
2.  Nogales, J., Canales, A., Jiménez-Barbero, J., Serra B., Pingarrón, J. M., García, J. L. and Díaz, E. Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol. Microbiol. 79 (2011) 359–374. [DOI] [PMID: 21219457]
[EC 1.13.11.57 created 2011]
 
 
EC 1.13.11.58     
Accepted name: linoleate 9S-lipoxygenase
Reaction: linoleate + O2 = (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoate
Glossary: linoleate = (9Z,12Z)-octadeca-9,12-dienoate
Other name(s): 9-lipoxygenase; 9S-lipoxygenase; linoleate 9-lipoxygenase; LOX1 (gene name); 9S-LOX
Systematic name: linoleate:oxygen 9S-oxidoreductase
Comments: Contains nonheme iron. A common plant lipoxygenase that oxidizes linoleate and α-linolenate, the two most common polyunsaturated fatty acids in plants, by inserting molecular oxygen at the C9 position with (S)-configuration. The enzyme plays a physiological role during the early stages of seedling growth. The enzyme from Arabidopsis thaliana shows comparable activity towards linoleate and linolenate [4]. EC 1.13.11.12 (linoleate 13S-lipoxygenase) catalyses a similar reaction at another position of these fatty acids.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vellosillo, T., Martinez, M., Lopez, M.A., Vicente, J., Cascon, T., Dolan, L., Hamberg, M. and Castresana, C. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19 (2007) 831–846. [DOI] [PMID: 17369372]
2.  Boeglin, W.E., Itoh, A., Zheng, Y., Coffa, G., Howe, G.A. and Brash, A.R. Investigation of substrate binding and product stereochemistry issues in two linoleate 9-lipoxygenases. Lipids 43 (2008) 979–987. [DOI] [PMID: 18795358]
3.  Andreou, A.Z., Hornung, E., Kunze, S., Rosahl, S. and Feussner, I. On the substrate binding of linoleate 9-lipoxygenases. Lipids 44 (2009) 207–215. [DOI] [PMID: 19037675]
4.  Bannenberg, G., Martinez, M., Hamberg, M. and Castresana, C. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44 (2009) 85–95. [DOI] [PMID: 18949503]
[EC 1.13.11.58 created 2011]
 
 
EC 1.13.11.59     
Accepted name: torulene dioxygenase
Reaction: torulene + O2 = 4′-apo-β,ψ-caroten-4′-al + 3-methylbut-2-enal
Glossary: torulene = 3′,4′-didehydro-β,ψ-carotene
Other name(s): CAO-2; CarT
Systematic name: torulene:oxygen oxidoreductase
Comments: It is assumed that 3-methylbut-2-enal is formed. The enzyme cannot cleave the saturated 3′,4′-bond of γ-carotene which implies that a 3′,4′-double bond is neccessary for this reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Prado-Cabrero, A., Estrada, A.F., Al-Babili, S. and Avalos, J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol. Microbiol. 64 (2007) 448–460. [DOI] [PMID: 17493127]
2.  Saelices, L., Youssar, L., Holdermann, I., Al-Babili, S. and Avalos, J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol. Genet. Genomics 278 (2007) 527–537. [DOI] [PMID: 17610084]
3.  Estrada, A.F., Maier, D., Scherzinger, D., Avalos, J. and Al-Babili, S. Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet. Biol. 45 (2008) 1497–1505. [DOI] [PMID: 18812228]
[EC 1.13.11.59 created 2011]
 
 


Data © 2001–2018 IUBMB
Web site © 2005–2018 Andrew McDonald