The Enzyme Database

Your query returned 23 entries.    printer_iconPrintable version



EC 1.11.1.1     
Accepted name: NADH peroxidase
Reaction: NADH + H+ + H2O2 = NAD+ + 2 H2O
Other name(s): DPNH peroxidase; NAD peroxidase; diphosphopyridine nucleotide peroxidase; NADH-peroxidase; nicotinamide adenine dinucleotide peroxidase; NADH2 peroxidase
Systematic name: NADH:hydrogen-peroxide oxidoreductase
Comments: A flavoprotein (FAD). Ferricyanide, quinones, etc., can replace H2O2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9032-24-0
References:
1.  Domagk, G.F. and Horecker, B.L. Fructose and erythrose metabolism in Alcaligenes faecalis. Arch. Biochem. Biophys. 109 (1965) 342–349.
2.  Mizushima, S. and Kitahara, K. Purification and properties of DPNH peroxidase in Lactobacillus casei. J. Gen. Appl. Microbiol. 8 (1962) 56–62.
3.  Walker, G.A. and Kilgour, G.L. Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Arch. Biochem. Biophys. 131 (1965) 534–539. [PMID: 4285876]
[EC 1.11.1.1 created 1961]
 
 
EC 1.11.1.2     
Accepted name: NADPH peroxidase
Reaction: NADPH + H+ + H2O2 = NADP+ + 2 H2O
Other name(s): TPNH peroxidase; NADP peroxidase; nicotinamide adenine dinucleotide phosphate peroxidase; TPN peroxidase; triphosphopyridine nucleotide peroxidase; NADPH2 peroxidase
Systematic name: NADPH:hydrogen-peroxide oxidoreductase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9029-51-0
References:
1.  Conn, E.E., Kraemer, L.M., Liu, P.N. and Vennesland, B. The aerobic oxidation of reduced triphosphopyridine nucleotide by a wheat germ enzyme system. J. Biol. Chem. 194 (1952) 143–151. [PMID: 14927602]
[EC 1.11.1.2 created 1961]
 
 
EC 1.11.1.3     
Accepted name: fatty-acid peroxidase
Reaction: palmitate + 2 H2O2 = pentadecanal + CO2 + 3 H2O
Other name(s): long chain fatty acid peroxidase
Systematic name: hexadecanoate:hydrogen-peroxide oxidoreductase
Comments: Acts on long-chain fatty acids from dodecanoic to octadecanoic acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9029-52-1
References:
1.  Martin, R.O. and Stumpf, P.K. Fat metabolism in higher plants. XII. α-Oxidation of long chain fatty acids. J. Biol. Chem. 234 (1959) 2548–2554. [PMID: 14421733]
[EC 1.11.1.3 created 1961]
 
 
EC 1.11.1.4     
Transferred entry: now EC 1.13.11.11 tryptophan 2,3-dioxygenase
[EC 1.11.1.4 created 1961, deleted 1964, reinstated 1965 as EC 1.13.1.12, deleted 1972]
 
 
EC 1.11.1.5     
Accepted name: cytochrome-c peroxidase
Reaction: 2 ferrocytochrome c + H2O2 = 2 ferricytochrome c + 2 H2O
Other name(s): cytochrome peroxidase; cytochrome c-551 peroxidase; apocytochrome c peroxidase; mesocytochrome c peroxidase azide; mesocytochrome c peroxidase cyanide; mesocytochrome c peroxidase cyanate; cytochrome c-H2O oxidoreductase; cytochrome c peroxidase
Systematic name: ferrocytochrome-c:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9029-53-2
References:
1.  Altschul, A.M., Abrams, R. and Hogness, T.R. Cytochrome c peroxidase. J. Biol. Chem. 136 (1940) 777–794.
2.  Yamanaka, T. and Okunuki, K. Isolation of a cytochrome peroxidase from Thiobacillus novellus. Biochim. Biophys. Acta 220 (1970) 354–356. [PMID: 5487887]
3.  Yonetani, T. Cytochrome c peroxidase. Adv. Enzymol. Relat. Areas Mol. Biol. 33 (1970) 309–335. [PMID: 4318313]
[EC 1.11.1.5 created 1961]
 
 
EC 1.11.1.6     
Accepted name: catalase
Reaction: 2 H2O2 = O2 + 2 H2O
Other name(s): equilase; caperase; optidase; catalase-peroxidase; CAT
Systematic name: hydrogen-peroxide:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. A manganese protein containing MnIII in the resting state, which also belongs here, is often called pseudocatalase. The enzymes from some organisms, such as Penicillium simplicissimum, can also act as a peroxidase (EC 1.11.1.7) for which several organic substances, especially ethanol, can act as a hydrogen donor. Enzymes that exhibit both catalase and peroxidase activity belong under EC 1.11.1.21, catalase-peroxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 9001-05-2
References:
1.  Herbert, D. and Pinsent, J. Crystalline bacterial catalase. Biochem. J. 43 (1948) 193–202. [PMID: 16748386]
2.  Herbert, D. and Pinsent, J. Crystalline human erythrocyte catalase. Biochem. J. 43 (1948) 203–205. [PMID: 16748387]
3.  Keilin, D. and Hartree, E.F. Coupled oxidation of alcohol. Proc. R. Soc. Lond. B Biol. Sci. 119 (1936) 141–159.
4.  Kono, Y. and Fridovich, I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J. Biol. Chem. 258 (1983) 6015–6019. [PMID: 6853475]
5.  Nicholls, P. and Schonbaum, G.R. Catalases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 147–225.
[EC 1.11.1.6 created 1961, modified 1986, modified 1999, modified 2013]
 
 
EC 1.11.1.7     
Accepted name: peroxidase
Reaction: 2 phenolic donor + H2O2 = 2 phenoxyl radical of the donor + 2 H2O
Other name(s): lactoperoxidase; guaiacol peroxidase; plant peroxidase; Japanese radish peroxidase; horseradish peroxidase (HRP); soybean peroxidase (SBP); extensin peroxidase; heme peroxidase; oxyperoxidase; protoheme peroxidase; pyrocatechol peroxidase; scopoletin peroxidase; Coprinus cinereus peroxidase; Arthromyces ramosus peroxidase
Systematic name: phenolic donor:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with histidine as proximal ligand. The iron in the resting enzyme is Fe(III). They also peroxidize non-phenolic substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB) and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Certain peroxidases (e.g. lactoperoxidase, SBP) oxidize bromide, iodide and thiocyanate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9003-99-0
References:
1.  Kenten, R.H. and Mann, P.J.G. Simple method for the preparation of horseradish peroxidase. Biochem. J. 57 (1954) 347–348. [PMID: 13172193]
2.  Morrison, M., Hamilton, H.B. and Stotz, E. The isolation and purification of lactoperoxidase by ion exchange chromatography. J. Biol. Chem. 228 (1957) 767–776. [PMID: 13475358]
3.  Paul, K.G. Peroxidases. In: Boyer, P.D., Lardy, H. and Myrbäck, K. (Eds), The Enzymes, 2nd edn, vol. 8, Academic Press, New York, 1963, pp. 227–274.
4.  Tagawa, K., Shin, M. and Okunuki, K. Peroxidases from wheat germ. Nature (Lond.) 183 (1959) 111. [PMID: 13622706]
5.  Theorell, H. The preparation and some properties of crystalline horse-radish peroxidase. Ark. Kemi Mineral. Geol. 16A No. 2 (1943) 1–11.
6.  Farhangrazi, Z.S., Copeland, B.R., Nakayama, T., Amachi, T., Yamazaki, I. and Powers, L.S. Oxidation-reduction properties of compounds I and II of Arthromyces ramosus peroxidase. Biochemistry 33 (1994) 5647–5652. [PMID: 8180190]
7.  Aitken, M.D. and Heck, P.E. Turnover capacity of coprinus cinereus peroxidase for phenol and monosubstituted phenol. Biotechnol. Prog. 14 (1998) 487–492. [PMID: 9622531]
8.  Dunford, H.B. Heme peroxidases, Wiley-VCH, New York, 1999, pp. 33–218.
9.  Torres, E and Ayala, M. Biocatalysis based on heme peroxidases, Springer, Berlin, 2010, pp. 7–110.
[EC 1.11.1.7 created 1961, modified 2011]
 
 
EC 1.11.1.8     
Accepted name: iodide peroxidase
Reaction: (1) 2 iodide + H2O2 + 2 H+ = diiodine + 2 H2O
(2) [thyroglobulin]-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3-iodo-L-tyrosine + 2 H2O
(3) [thyroglobulin]-3-iodo-L-tyrosine + iodide + H2O2 = [thyroglobulin]-3,5-diiodo-L-tyrosine + 2 H2O
(4) 2 [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 = [thyroglobulin]-L-thyroxine + [thyroglobulin]-aminoacrylate + 2 H2O
(5) [thyroglobulin]-3-iodo-L-tyrosine + [thyroglobulin]-3,5-diiodo-L-tyrosine + H2O2 = [thyroglobulin]-3,5,3′-triiodo-L-thyronine + [thyroglobulin]-aminoacrylate + 2 H2O
Glossary: 3,5,3′-triiodo-L-thyronine = triiodo-L-thyronine
Other name(s): thyroid peroxidase; iodotyrosine deiodase; iodinase; iodoperoxidase (heme type); iodide peroxidase-tyrosine iodinase; iodotyrosine deiodinase; monoiodotyrosine deiodinase; thyroperoxidase; tyrosine iodinase; TPO
Systematic name: iodide:hydrogen-peroxide oxidoreductase
Comments: Thyroid peroxidase catalyses the biosynthesis of the thyroid hormones L-thyroxine and triiodo-L-thyronine. It catalyses both the iodination of tyrosine residues in thyroglobulin (forming mono- and di-iodinated forms) and their coupling to form either L-thyroxine or triiodo-L-thyronine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9031-28-1
References:
1.  Cunningham, B.A. and Kirkwood, S. Enzyme systems concerned with the synthesis of monoiodotyrosine. III. Ion requirements of the soluble system. J. Biol. Chem. 236 (1961) 485–489. [PMID: 13718859]
2.  Hosoya, T., Kondo, Y. and Ui, N. Peroxidase activity in thyroid gland and partial purification of the enzyme. J. Biochem. (Tokyo) 52 (1962) 180–189. [PMID: 13964156]
3.  Coval, M.L. and Taurog, A. Purification and iodinating activity of hog thyroid peroxidase. J. Biol. Chem. 242 (1967) 5510–5523. [PMID: 12325367]
4.  Gavaret, J.M., Cahnmann, H.J. and Nunez, J. Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J. Biol. Chem. 256 (1981) 9167–9173. [PMID: 7021557]
5.  Ohtaki, S., Nakagawa, H., Nakamura, M. and Yamazaki, I. One- and two-electron oxidations of tyrosine, monoiodotyrosine, and diiodotyrosine catalyzed by hog thyroid peroxidase. J. Biol. Chem. 257 (1982) 13398–13403. [PMID: 7142155]
6.  Magnusson, R.P., Taurog, A. and Dorris, M.L. Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase. J. Biol. Chem. 259 (1984) 197–205. [PMID: 6706930]
7.  Virion, A., Courtin, F., Deme, D., Michot, J.L., Kaniewski, J. and Pommier, J. Spectral characteristics and catalytic properties of thyroid peroxidase-H2O2 compounds in the iodination and coupling reactions. Arch. Biochem. Biophys. 242 (1985) 41–47. [PMID: 2996435]
8.  Rawitch, A.B., Pollock, G., Yang, S.X. and Taurog, A. Thyroid peroxidase glycosylation: the location and nature of the N-linked oligosaccharide units in porcine thyroid peroxidase. Arch. Biochem. Biophys. 297 (1992) 321–327. [PMID: 1497352]
9.  Sun, W. and Dunford, H.B. Kinetics and mechanism of the peroxidase-catalyzed iodination of tyrosine. Biochemistry 32 (1993) 1324–1331. [PMID: 8448141]
10.  Taurog, A., Dorris, M.L. and Doerge, D.R. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch. Biochem. Biophys. 330 (1996) 24–32. [PMID: 8651700]
11.  Ruf, J. and Carayon, P. Structural and functional aspects of thyroid peroxidase. Arch. Biochem. Biophys. 445 (2006) 269–277. [PMID: 16098474]
[EC 1.11.1.8 created 1961, modified 2012]
 
 
EC 1.11.1.9     
Accepted name: glutathione peroxidase
Reaction: 2 glutathione + H2O2 = glutathione disulfide + 2 H2O
Other name(s): GSH peroxidase; selenium-glutathione peroxidase; reduced glutathione peroxidase
Systematic name: glutathione:hydrogen-peroxide oxidoreductase
Comments: A protein containing a selenocysteine residue. Steroid and lipid hydroperoxides, but not the product of reaction of EC 1.13.11.12 lipoxygenase on phospholipids, can act as acceptor, but more slowly than H2O2 (cf. EC 1.11.1.12 phospholipid-hydroperoxide glutathione peroxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9013-66-5
References:
1.  Chaudiere, J. and Tappel, A.L. Purification and characterization of selenium-glutathione peroxidase from hamster liver. Arch. Biochem. Biophys. 226 (1983) 448–457. [PMID: 6227287]
2.  Grossmann, A. and Wendel, A. Non-reactivity of the selenoenzyme glutathione peroxidase with enzymatically hydroperoxidized phospholipids. Eur. J. Biochem. 135 (1983) 549–552. [PMID: 6413205]
3.  Nakamura, W., Hosoda, S. and Hayashi, K. Purification and properties of rat liver glutathione peroxidase. Biochim. Biophys. Acta 358 (1974) 251–261.
[EC 1.11.1.9 created 1965, modified 1989]
 
 
EC 1.11.1.10     
Accepted name: chloride peroxidase
Reaction: RH + chloride + H2O2 = RCl + 2 H2O
Other name(s): chloroperoxidase; CPO; vanadium haloperoxidase
Systematic name: chloride:hydrogen-peroxide oxidoreductase
Comments: Brings about the chlorination of a range of organic molecules, forming stable C-Cl bonds. Also oxidizes bromide and iodide. Enzymes of this type are either heme-thiolate proteins, or contain vanadate. A secreted enzyme produced by the ascomycetous fungus Caldariomyces fumago (Leptoxyphium fumago) is an example of the heme-thiolate type. It catalyses the production of hypochlorous acid by transferring one oxygen atom from H2O2 to chloride. At a separate site it catalyses the chlorination of activated aliphatic and aromatic substrates, via HClO and derived chlorine species. In the absence of halides, it shows peroxidase (e.g. phenol oxidation) and peroxygenase activities. The latter inserts oxygen from H2O2 into, for example, styrene (side chain epoxidation) and toluene (benzylic hydroxylation), however, these activities are less pronounced than its activity with halides. Has little activity with non-activated substrates such as aromatic rings, ethers or saturated alkanes. The chlorinating peroxidase produced by ascomycetous fungi (e.g. Curvularia inaequalis) is an example of a vanadium chloroperoxidase, and is related to bromide peroxidase (EC 1.11.1.18). It contains vanadate and oxidizes chloride, bromide and iodide into hypohalous acids. In the absence of halides, it peroxygenates organic sulfides and oxidizes ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] but no phenols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9055-20-3
References:
1.  Morris, D.R. and Hager, L.P. Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J. Biol. Chem. 241 (1966) 1763–1768. [PMID: 5949836]
2.  Hager, L.P., Hollenberg, P.F., Rand-Meir, T., Chiang, R. and Doubek, D.L. Chemistry of peroxidase intermediates. Ann. N.Y. Acad. Sci. 244 (1975) 80–93. [PMID: 1056179]
3.  Theiler, R., Cook, J.C., Hager, L.P. and Siuda, J.F. Halohydrocarbon synthesis by bromoperoxidase. Science 202 (1978) 1094–1096. [PMID: 17777960]
4.  Sundaramoorthy, M., Terner, J. and Poulos, T.L. The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. Structure 3 (1995) 1367–1377. [PMID: 8747463]
5.  ten Brink, H.B., Tuynman, A., Dekker, H.L., Hemrika, W., Izumi, Y., Oshiro, T., Schoemaker, H.E. and Wever, R. Enantioselective sulfoxidation catalyzed by vanadium haloperoxidases. Inorg. Chem. 37 (1998) 6780–6784. [PMID: 11670813]
6.  ten Brink, H.B., Dekker, H.L., Schoemaker, H.E. and Wever, R. Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. J. Inorg. Biochem. 80 (2000) 91–98. [PMID: 10885468]
7.  Manoj, K.M. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim. Biophys. Acta 1764 (2006) 1325–1339. [PMID: 16870515]
8.  Kuhnel, K., Blankenfeldt, W., Terner, J. and Schlichting, I. Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate. J. Biol. Chem. 281 (2006) 23990–23998. [PMID: 16790441]
9.  Manoj, K.M. and Hager, L.P. Chloroperoxidase, a janus enzyme. Biochemistry 47 (2008) 2997–3003. [PMID: 18220360]
[EC 1.11.1.10 created 1972, modified 2011]
 
 
EC 1.11.1.11     
Accepted name: L-ascorbate peroxidase
Reaction: 2 L-ascorbate + H2O2 + 2 H+ = L-ascorbate + L-dehydroascorbate + 2 H2O (overall reaction)
(1a) 2 L-ascorbate + H2O2 + 2 H+ = 2 monodehydroascorbate + 2 H2O
(1b) 2 monodehydroascorbate = L-ascorbate + L-dehydroascorbate (spontaneous)
Glossary: monodehydroascorbate = ascorbate radical
Other name(s): L-ascorbic acid peroxidase; L-ascorbic acid-specific peroxidase; ascorbate peroxidase; ascorbic acid peroxidase
Systematic name: L-ascorbate:hydrogen-peroxide oxidoreductase
Comments: A heme protein. Oxidizes ascorbate and low molecular weight aromatic substrates. The monodehydroascorbate radical produced is either directly reduced back to ascorbate by EC 1.6.5.4 [monodehydroascorbate reductase (NADH)] or undergoes non-enzymic disproportionation to ascorbate and dehydroascorbate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 72906-87-7
References:
1.  Shigeoka, S., Nakano, Y. and Kitaoka, S. Purification and some properties of L-ascorbic-acid-specific peroxidase in Euglena gracilis. Z. Arch. Biochem. Biophys. 201 (1980) 121–127. [PMID: 6772104]
2.  Shigeoka, S., Nakano, Y. and Kitaoka, S. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem. J. 186 (1980) 377–380. [PMID: 6768357]
3.  Nakano, Y and Asada, K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28 (1987) 131–140.
4.  Patterson, W.R. and Poulos, T.L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34 (1995) 4331–4341. [PMID: 7703247]
5.  Sharp, K.H., Moody, P.C., Brown, K.A. and Raven, E.L. Crystal structure of the ascorbate peroxidase-salicylhydroxamic acid complex. Biochemistry 43 (2004) 8644–8651. [PMID: 15236572]
6.  Macdonald, I.K., Badyal, S.K., Ghamsari, L., Moody, P.C. and Raven, E.L. Interaction of ascorbate peroxidase with substrates: a mechanistic and structural analysis. Biochemistry 45 (2006) 7808–7817. [PMID: 16784232]
[EC 1.11.1.11 created 1983, modified 2010, modified 2011]
 
 
EC 1.11.1.12     
Accepted name: phospholipid-hydroperoxide glutathione peroxidase
Reaction: 2 glutathione + a hydroperoxy-fatty-acyl-[lipid] = glutathione disulfide + a hydroxy-fatty-acyl-[lipid] + H2O
Other name(s): peroxidation-inhibiting protein; PHGPX; peroxidation-inhibiting protein:peroxidase,glutathione (phospholipid hydroperoxide-reducing); phospholipid hydroperoxide glutathione peroxidase; hydroperoxide glutathione peroxidase
Systematic name: glutathione:lipid-hydroperoxide oxidoreductase
Comments: A protein containing a selenocysteine residue. The products of action of EC 1.13.11.12 lipoxygenase on phospholipids can act as acceptors; H2O2 can also act, but much more slowly (cf. EC 1.11.1.9 glutathione peroxidase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 97089-70-8
References:
1.  Ursini, F., Maiorino, M. and Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839 (1985) 62–70. [PMID: 3978121]
2.  Schnurr, K., Belkner, J., Ursini, F., Schewe, T. and Kuhn, H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J. Biol. Chem. 271 (1996) 4653–4658. [PMID: 8617728]
[EC 1.11.1.12 created 1989, modified 2015]
 
 
EC 1.11.1.13     
Accepted name: manganese peroxidase
Reaction: 2 Mn(II) + 2 H+ + H2O2 = 2 Mn(III) + 2 H2O
Other name(s): peroxidase-M2; Mn-dependent (NADH-oxidizing) peroxidase
Systematic name: Mn(II):hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. The enzyme from white rot basidiomycetes is involved in the oxidative degradation of lignin. The enzyme oxidizes a bound Mn2+ ion to Mn3+ in the presence of hydrogen peroxide. The product, Mn3+, is released from the active site in the presence of a chelator (mostly oxalate and malate) that stabilizes it against disproportionation to Mn2+ and insoluble Mn4+ [4]. The complexed Mn3+ ion can diffuse into the lignified cell wall, where it oxidizes phenolic components of lignin and other organic substrates [1]. It is inactive with veratryl alcohol or nonphenolic substrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 114995-15-2
References:
1.  Glenn, J.K., Akileswaran, L. and Gold, M.H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251 (1986) 688–696. [PMID: 3800395]
2.  Paszczynski, A., Huynh, V.-B. and Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244 (1986) 750–765. [PMID: 3080953]
3.  Wariishi, H., Akileswaran, L. and Gold, M.H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27 (1988) 5365–5370. [PMID: 3167051]
4.  Kuan, I.C. and Tien, M. Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc. Natl. Acad. Sci. USA 90 (1993) 1242–1246. [PMID: 8433984]
[EC 1.11.1.13 created 1992]
 
 
EC 1.11.1.14     
Accepted name: lignin peroxidase
Reaction: (1) 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 3,4-dimethoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 (3,4-dimethoxyphenyl)methanol + H2O2 = 2 (3,4-dimethoxyphenyl)methanol radical + 2 H2O
Glossary: veratryl alcohol = (3,4-dimethoxyphenyl)methanol
veratraldehyde = 3,4-dimethoxybenzaldehyde
2-methoxyphenol = guaiacol
Other name(s): diarylpropane oxygenase; ligninase I; diarylpropane peroxidase; LiP; diarylpropane:oxygen,hydrogen-peroxide oxidoreductase (C-C-bond-cleaving); 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase (incorrect); (3,4-dimethoxyphenyl)methanol:hydrogen-peroxide oxidoreductase
Systematic name: 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein, involved in the oxidative breakdown of lignin by white-rot basidiomycete fungi. The reaction involves an initial oxidation of the heme iron by hydrogen peroxide, forming compound I (FeIV=O radical cation) at the active site. A single one-electron reduction of compound I by an electron derived from a substrate molecule yields compound II (FeIV=O non-radical cation), followed by a second one-electron transfer that returns the enzyme to the ferric oxidation state. The electron transfer events convert the substrate molecule into a transient cation radical intermediate that fragments spontaneously. The enzyme can act on a wide range of aromatic compounds, including methoxybenzenes and nonphenolic β-O-4 linked arylglycerol β-aryl ethers, but cannot act directly on the lignin molecule, which is too large to fit into the active site. However larger lignin molecules can be degraded in the presence of veratryl alcohol. It has been suggested that the free radical that is formed when the enzyme acts on veratryl alcohol can diffuse into the lignified cell wall, where it oxidizes lignin and other organic substrates. In the presence of high concentration of hydrogen peroxide and lack of substrate, the enzyme forms a catalytically inactive form (compound III). This form can be rescued by interaction with two molecules of the free radical products. In the case of veratryl alcohol, such an interaction yields two molecules of veratryl aldehyde.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 93792-13-3
References:
1.  Kersten, P.J., Tien, M., Kalyanaraman, B. and Kirk, T.K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J. Biol. Chem. 260 (1985) 2609–2612. [PMID: 2982828]
2.  Paszczynski, A., Huynh, V.-B. and Crawford, R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244 (1986) 750–765. [PMID: 3080953]
3.  Harvey, P.J., Schoemaker, H.E. and Palmer, J.M. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett. 195 (1986) 242–246.
4.  Wariishi, H., Marquez, L., Dunford, H.B. and Gold, M.H. Lignin peroxidase compounds II and III. Spectral and kinetic characterization of reactions with peroxides. J. Biol. Chem. 265 (1990) 11137–11142. [PMID: 2162833]
5.  Cai, D.Y. and Tien, M. Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry 29 (1990) 2085–2091. [PMID: 2328240]
6.  Khindaria, A., Yamazaki, I. and Aust, S.D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry 34 (1995) 16860–16869. [PMID: 8527462]
7.  Khindaria, A., Yamazaki, I. and Aust, S.D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry 35 (1996) 6418–6424. [PMID: 8639588]
8.  Khindaria, A., Nie, G. and Aust, S.D. Detection and characterization of the lignin peroxidase compound II-veratryl alcohol cation radical complex. Biochemistry 36 (1997) 14181–14185. [PMID: 9369491]
9.  Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K. and Smith, A.T. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37 (1998) 15097–15105. [PMID: 9790672]
10.  Pollegioni, L., Tonin, F. and Rosini, E. Lignin-degrading enzymes. FEBS J. 282 (2015) 1190–1213. [PMID: 25649492]
[EC 1.11.1.14 created 1992, modified 2006, modified 2011, modified 2016]
 
 
EC 1.11.1.15     
Accepted name: peroxiredoxin
Reaction: 2 R′-SH + ROOH = R′-S-S-R′ + H2O + ROH
For diagram of reaction, click here and for mechanism, click here
Other name(s): thioredoxin peroxidase; tryparedoxin peroxidase; alkyl hydroperoxide reductase C22; AhpC; TrxPx; TXNPx; Prx; PRDX
Systematic name: thiol-containing-reductant:hydroperoxide oxidoreductase
Comments: Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins. They can be divided into three classes: typical 2-Cys, atypical 2-Cys and 1-Cys peroxiredoxins [1]. The peroxidase reaction comprises two steps centred around a redox-active cysteine called the peroxidatic cysteine. All three peroxiredoxin classes have the first step in common, in which the peroxidatic cysteine attacks the peroxide substrate and is oxidized to S-hydroxycysteine (a sulfenic acid) (see mechanism). The second step of the peroxidase reaction, the regeneration of cysteine from S-hydroxycysteine, distinguishes the three peroxiredoxin classes. For typical 2-Cys Prxs, in the second step, the peroxidatic S-hydroxycysteine from one subunit is attacked by the ’resolving’ cysteine located in the C-terminus of the second subunit, to form an intersubunit disulfide bond, which is then reduced by one of several cell-specific thiol-containing reductants (R′-SH) (e.g. thioredoxin, AhpF, tryparedoxin or AhpD), completing the catalytic cycle. In the atypical 2-Cys Prxs, both the peroxidatic cysteine and its resolving cysteine are in the same polypeptide, so their reaction forms an intrachain disulfide bond [1]. To recycle the disulfide, known atypical 2-Cys Prxs appear to use thioredoxin as an electron donor [3]. The 1-Cys Prxs conserve only the peroxidatic cysteine, so that its oxidized form is directly reduced to cysteine by the reductant molecule [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, UM-BBD, CAS registry number: 207137-51-7
References:
1.  Wood, Z.A., Schröder, E., Harris, J.R. and Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28 (2003) 32–40. [PMID: 12517450]
2.  Hofmann, B., Hecht, H.J. and Flohé, L. Peroxiredoxins. Biol. Chem. 383 (2002) 347–364. [PMID: 12033427]
3.  Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H. and Rhee, S.G. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275 (2000) 20346–20354. [PMID: 10751410]
4.  Choi, H.J., Kang, S.W., Yang, C.H., Rhee, S.G. and Ryu, S.E. Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nat. Struct. Biol. 5 (1998) 400–406. [PMID: 9587003]
[EC 1.11.1.15 created 2004]
 
 
EC 1.11.1.16     
Accepted name: versatile peroxidase
Reaction: (1) 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol + H2O2 = 4-hydroxy-3-methoxybenzaldehyde + 2-methoxyphenol + glycolaldehyde + H2O
(2) 2 manganese(II) + 2 H+ + H2O2 = 2 manganese(III) + 2 H2O
Glossary: 4-hydroxy-3-methoxybenzaldehyde = vanillin
2-methoxyphenol = guaiacol
Other name(s): VP; hybrid peroxidase; polyvalent peroxidase; reactive-black-5:hydrogen-peroxide oxidoreductase
Systematic name: 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol:hydrogen-peroxide oxidoreductase
Comments: A hemoprotein. This ligninolytic peroxidase combines the substrate-specificity characteristics of the two other ligninolytic peroxidases, EC 1.11.1.13, manganese peroxidase and EC 1.11.1.14, lignin peroxidase. Unlike these two enzymes, it is also able to oxidize phenols, hydroquinones and both low- and high-redox-potential dyes, due to a hybrid molecular architecture that involves multiple binding sites for substrates [2,4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 42613-30-9, 114995-15-2
References:
1.  Martínez, M.J., Ruiz-Dueñas, F.J., Guillén, F. and Martínez, A.T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237 (1996) 424–432. [PMID: 8647081]
2.  Heinfling, A., Ruiz-Dueñas, F.J., Martínez, M.J., Bergbauer, M., Szewzyk, U. and Martínez, A.T. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428 (1998) 141–146. [PMID: 9654123]
3.  Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31 (1999) 223–235. [PMID: 9987124]
4.  Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274 (1999) 10324–10330. [PMID: 10187820]
5.  Ruiz-Dueñas, F.J., Martínez, M.J. and Martínez, A.T. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl. Environ. Microbiol. 65 (1999) 4705–4707. [PMID: 10508113]
6.  Camarero, S., Ruiz-Dueñas, F.J., Sarkar, S., Martínez, M.J. and Martínez, A.T. The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol. Lett. 191 (2000) 37–43. [PMID: 11004397]
7.  Ruiz-Dueñas, F.J., Camarero, S., Pérez-Boada, M., Martínez, M.J. and Martínez, A.T. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29 (2001) 116–122. [PMID: 11356138]
8.  Banci, L., Camarero, S., Martínez, A.T., Martínez, M.J., Pérez-Boada, M., Pierattelli, R. and Ruiz-Dueñas, F.J. NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J. Biol. Inorg. Chem. 8 (2003) 751–760. [PMID: 12884090]
9.  Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Basosi, R., Choinowski, T., Martínez, M.J., Piontek, K. and Martínez, A.T. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J. Mol. Biol. 354 (2005) 385–402. [PMID: 16246366]
10.  Caramelo, L., Martínez, M.J. and Martínez, A.T. A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimer. Appl. Environ. Microbiol. 65 (1999) 916–922. [PMID: 10049842]
[EC 1.11.1.16 created 2006, modified 2016]
 
 
EC 1.11.1.17     
Accepted name: glutathione amide-dependent peroxidase
Reaction: 2 glutathione amide + H2O2 = glutathione amide disulfide + 2 H2O
Systematic name: glutathione amide:hydrogen-peroxide oxidoreductase
Comments: This enzyme, which has been characterized from the proteobacterium Marichromatium gracile, is a chimeric protein, containing a peroxiredoxin-like N-terminus and a glutaredoxin-like C terminus. The enzyme has peroxidase activity towards hydrogen peroxide and several small alkyl hydroperoxides, and is thought to represent an early adaptation for fighting oxidative stress [1]. The glutathione amide disulfide produced by this enzyme can be restored to glutathione amide by EC 1.8.1.16 (glutathione amide reductase).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G. and Van Beeumen, J.J. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem. 276 (2001) 20890–20897. [PMID: 11399772]
[EC 1.11.1.17 created 2010]
 
 
EC 1.11.1.18     
Accepted name: bromide peroxidase
Reaction: RH + HBr + H2O2 = RBr + 2 H2O
Other name(s): bromoperoxidase; haloperoxidase (ambiguous); eosinophil peroxidase
Systematic name: bromide:hydrogen-peroxide oxidoreductase
Comments: Bromoperoxidases of red and brown marine algae (Rhodophyta and Phaeophyta) contain vanadate. They catalyse the bromination of a range of organic molecules such as sesquiterpenes, forming stable C-Br bonds. Bromoperoxidases also oxidize iodides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  De Boer, E., Tromp, M.G.M., Plat, H., Krenn, G.E. and Wever, R Vanadium(v) as an essential element for haloperoxidase activity in marine brown-algae - purification and characterization of a vanadium(V)-containing bromoperoxidase from Laminaria saccharina. Biochim. Biophys. Acta 872 (1986) 104–115.
2.  Tromp, M.G., Olafsson, G., Krenn, B.E. and Wever, R. Some structural aspects of vanadium bromoperoxidase from Ascophyllum nodosum. Biochim. Biophys. Acta 1040 (1990) 192–198. [PMID: 2400770]
3.  Isupov, M.N., Dalby, A.R., Brindley, A.A., Izumi, Y., Tanabe, T., Murshudov, G.N. and Littlechild, J.A. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. J. Mol. Biol. 299 (2000) 1035–1049. [PMID: 10843856]
4.  Carter-Franklin, J.N. and Butler, A. Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J. Am. Chem. Soc. 126 (2004) 15060–15066. [PMID: 15548002]
5.  Ohshiro, T., Littlechild, J., Garcia-Rodriguez, E., Isupov, M.N., Iida, Y., Kobayashi, T. and Izumi, Y. Modification of halogen specificity of a vanadium-dependent bromoperoxidase. Protein Sci. 13 (2004) 1566–1571. [PMID: 15133166]
[EC 1.11.1.18 created 2010]
 
 
EC 1.11.1.19     
Accepted name: dye decolorizing peroxidase
Reaction: Reactive Blue 5 + 2 H2O2 = phthalate + 2,2′-disulfonyl azobenzene + 3-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]benzenesulfonate + 2 H2O
Glossary: Reactive Blue 5 = 1-amino-4-{[3-({4-chloro-6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl}amino)-4-sulfophenyl]amino}-9,10-dihydro-9,10-dioxoanthracene-2-sulfonic acid
Other name(s): DyP; DyP-type peroxidase
Systematic name: Reactive-Blue-5:hydrogen-peroxide oxidoreductase
Comments: Heme proteins with proximal histidine secreted by basidiomycetous fungi and eubacteria. They are similar to EC 1.11.1.16 versatile peroxidase (oxidation of Reactive Black 5, phenols, veratryl alcohol), but differ from the latter in their ability to efficiently oxidize a number of recalcitrant anthraquinone dyes, and inability to oxidize Mn(II). The model substrate Reactive Blue 5 is converted with high efficiency via a so far unique mechanism that combines oxidative and hydrolytic steps and leads to the formation of phthalic acid. Bacterial TfuDyP catalyses sulfoxidation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kim, S.J. and Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65 (1999) 1029–1035. [PMID: 10049859]
2.  Sugano, Y., Ishii, Y. and Shoda, M. Role of H164 in a unique dye-decolorizing heme peroxidase DyP. Biochem. Biophys. Res. Commun. 322 (2004) 126–132. [PMID: 15313183]
3.  Zubieta, C., Joseph, R., Krishna, S.S., McMullan, D., Kapoor, M., Axelrod, H.L., Miller, M.D., Abdubek, P., Acosta, C., Astakhova, T., Carlton, D., Chiu, H.J., Clayton, T., Deller, M.C., Duan, L., Elias, Y., Elsliger, M.A., Feuerhelm, J., Grzechnik, S.K., Hale, J., Han, G.W., Jaroszewski, L., Jin, K.K., Klock, H.E., Knuth, M.W., Kozbial, P., Kumar, A., Marciano, D., Morse, A.T., Murphy, K.D., Nigoghossian, E., Okach, L., Oommachen, S., Reyes, R., Rife, C.L., Schimmel, P., Trout, C.V., van den Bedem, H., Weekes, D., White, A., Xu, Q., Hodgson, K.O., Wooley, J., Deacon, A.M., Godzik, A., Lesley, S.A. and Wilson, I.A. Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69 (2007) 234–243. [PMID: 17654547]
4.  Sugano, Y., Matsushima, Y., Tsuchiya, K., Aoki, H., Hirai, M. and Shoda, M. Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20 (2009) 433–440. [PMID: 19009358]
5.  Sugano, Y. DyP-type peroxidases comprise a novel heme peroxidase family. Cell. Mol. Life Sci. 66 (2009) 1387–1403. [PMID: 19099183]
6.  Ogola, H.J., Kamiike, T., Hashimoto, N., Ashida, H., Ishikawa, T., Shibata, H. and Sawa, Y. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl. Environ. Microbiol. 75 (2009) 7509–7518. [PMID: 19801472]
7.  van Bloois, E., Torres Pazmino, D.E., Winter, R.T. and Fraaije, M.W. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl. Microbiol. Biotechnol. 86 (2010) 1419–1430. [PMID: 19967355]
8.  Liers, C., Bobeth, C., Pecyna, M., Ullrich, R. and Hofrichter, M. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl. Microbiol. Biotechnol. 85 (2010) 1869–1879. [PMID: 19756587]
9.  Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C. and Lundell, T. New and classic families of secreted fungal heme peroxidases. Appl. Microbiol. Biotechnol. 87 (2010) 871–897. [PMID: 20495915]
[EC 1.11.1.19 created 2011, modified 2015]
 
 
EC 1.11.1.20     
Accepted name: prostamide/prostaglandin F synthase
Reaction: thioredoxin + (5Z,9α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate = thioredoxin disulfide + (5Z,9α,11α,13E,15S)-9,11,15-trihydroxyprosta-5,13-dienoate
Glossary: prostamide H2 = (5Z)-N-(2-hydroxyethyl)-7-{(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]hept-5-yl}hept-5-enamide
prostamide F = (5Z,9α,11α,13E,15S)-9,11,15-trihydroxy-N-(2-hydroxyethyl)prosta-5,13-dien-1-amide
prostaglandin H2 = (5Z,9α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate
prostaglandin F = (5Z,9α,11α,13E,15S)-9,11,15-trihydroxyprosta-5,13-dienoate
Other name(s): prostamide/PGF synthase; prostamide F synthase; prostamide/prostaglandin F synthase; tPGF synthase
Systematic name: thioredoxin:(5Z,9α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate oxidoreductase
Comments: The enzyme contains a thioredoxin-type disulfide as a catalytic group. Prostamide H2 and prostaglandin H2 are the best substrates; the latter is converted to prostaglandin F. The enzyme also reduces tert-butyl hydroperoxide, cumene hydroperoxide and H2O2, but not prostaglandin D2 or prostaglandin E2.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Moriuchi, H., Koda, N., Okuda-Ashitaka, E., Daiyasu, H., Ogasawara, K., Toh, H., Ito, S., Woodward, D.F. and Watanabe, K. Molecular characterization of a novel type of prostamide/prostaglandin F synthase, belonging to the thioredoxin-like superfamily. J. Biol. Chem. 283 (2008) 792–801. [PMID: 18006499]
2.  Yoshikawa, K., Takei, S., Hasegawa-Ishii, S., Chiba, Y., Furukawa, A., Kawamura, N., Hosokawa, M., Woodward, D.F., Watanabe, K. and Shimada, A. Preferential localization of prostamide/prostaglandin F synthase in myelin sheaths of the central nervous system. Brain Res. 1367 (2011) 22–32. [PMID: 20950588]
[EC 1.11.1.20 created 2011]
 
 
EC 1.11.1.21     
Accepted name: catalase-peroxidase
Reaction: (1) donor + H2O2 = oxidized donor + 2 H2O
(2) 2 H2O2 = O2 + 2 H2O
Other name(s): katG (gene name)
Systematic name: donor:hydrogen-peroxide oxidoreductase
Comments: Differs from EC 1.11.1.7, peroxidase in having a relatively high catalase (EC 1.11.1.6) activity with H2O2 as donor, releasing O2; both activities use the same heme active site. In Mycobacterium tuberculosis it is responsible for activation of the commonly used antitubercular drug, isoniazid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Loewen, P.C., Triggs, B.L., George, C.S. and Hrabarchuk, B.E. Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. J. Bacteriol. 162 (1985) 661–667. [PMID: 3886630]
2.  Hochman, A. and Goldberg, I. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim. Biophys. Acta 1077 (1991) 299–307. [PMID: 2029529]
3.  Fraaije, M.W., Roubroeks, H.P., van Berkel, W.H.J. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur. J. Biochem. 235 (1996) 192–198. [PMID: 8631329]
4.  Bertrand, T., Eady, N.A., Jones, J.N., Jesmin, Nagy, J.M., Jamart-Gregoire, B., Raven, E.L. and Brown, K.A. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem. 279 (2004) 38991–38999. [PMID: 15231843]
5.  Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmuller, P.G. and Obinger, C. Mechanisms of catalase activity of heme peroxidases. Arch. Biochem. Biophys. 500 (2010) 74–81. [PMID: 20434429]
[EC 1.11.1.21 created 2011]
 
 
EC 1.11.1.22     
Accepted name: hydroperoxy fatty acid reductase
Reaction: a hydroperoxy fatty acid + NADPH + H+ = a hydroxy fatty acid + NADP+ + H2O
Other name(s): slr1171 (gene name); slr1992 (gene name); hydroperoxy fatty acid:NADPH oxidoreductase
Systematic name: NADPH:hydroperoxy fatty acid oxidoreductase
Comments: The enzyme, characterized from the cyanobacterium Synechocystis PCC 6803, can reduce unsaturated fatty acid hydroperoxides and alkyl hydroperoxides. The enzyme, which utilizes NADPH generated by the photosynthetic electron transfer system, protects the cells from lipid peroxidation.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Gaber, A., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett. 499 (2001) 32–36. [PMID: 11418106]
2.  Gaber, A., Yoshimura, K., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol. 136 (2004) 2855–2861. [PMID: 15347790]
[EC 1.11.1.22 created 2013]
 
 
EC 1.11.1.23     
Accepted name: (S)-2-hydroxypropylphosphonic acid epoxidase
Reaction: (S)-2-hydroxypropylphosphonate + H2O2 = (1R,2S)-1,2-epoxypropylphosphonate + 2 H2O
For diagram of fosfomycin biosynthesis, click here
Glossary: (1R,2S)-1,2-epoxypropylphosphonate = fosfomycin = [(2R,3S)-3-methyloxiran-2-yl]phosphonate
Other name(s): HPP epoxidase; HppE; 2-hydroxypropylphosphonic acid epoxidase; Fom4; (S)-2-hydroxypropylphosphonate epoxidase
Systematic name: (S)-2-hydroxypropylphosphonate:hydrogen-peroxide epoxidase
Comments: This is the last enzyme in the biosynthetic pathway of fosfomycin, a broad-spectrum antibiotic produced by certain Streptomyces species. Contains non heme iron that forms a iron(IV)-oxo (ferryl) complex with hydrogen peroxide, which functions as a proton abstractor from the substrate [7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Munos, J.W., Moon, S.J., Mansoorabadi, S.O., Chang, W., Hong, L., Yan, F., Liu, A. and Liu, H.W. Purification and characterization of the epoxidase catalyzing the formation of fosfomycin from Pseudomonas syringae. Biochemistry 47 (2008) 8726–8735. [PMID: 18656958]
2.  Yan, F., Moon, S.J., Liu, P., Zhao, Z., Lipscomb, J.D., Liu, A. and Liu, H.W. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues. Biochemistry 46 (2007) 12628–12638. [PMID: 17927218]
3.  Hidaka, T., Goda, M., Kuzuyama, T., Takei, N., Hidaka, M. and Seto, H. Cloning and nucleotide sequence of fosfomycin biosynthetic genes of Streptomyces wedmorensis. Mol. Gen. Genet. 249 (1995) 274–280. [PMID: 7500951]
4.  Liu, P., Mehn, M.P., Yan, F., Zhao, Z., Que, L., Jr. and Liu, H.W. Oxygenase activity in the self-hydroxylation of (S)-2-hydroxypropylphosphonic acid epoxidase involved in fosfomycin biosynthesis. J. Am. Chem. Soc. 126 (2004) 10306–10312. [PMID: 15315444]
5.  Higgins, L.J., Yan, F., Liu, P., Liu, H.W. and Drennan, C.L. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature 437 (2005) 838–844. [PMID: 16015285]
6.  Cameron, S., McLuskey, K., Chamberlayne, R., Hallyburton, I. and Hunter, W.N. Initiating a crystallographic analysis of recombinant (S)-2-hydroxypropylphosphonic acid epoxidase from Streptomyces wedmorensis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (2005) 534–536. [PMID: 16511089]
7.  Wang, C., Chang, W.C., Guo, Y., Huang, H., Peck, S.C., Pandelia, M.E., Lin, G.M., Liu, H.W., Krebs, C. and Bollinger, J.M., Jr. Evidence that the fosfomycin-producing epoxidase, HppE, is a non-heme-iron peroxidase. Science 342 (2013) 991–995. [PMID: 24114783]
[EC 1.11.1.23 created 2011 as EC 1.14.19.7, transferred 2014 to EC 1.11.1.23]
 
 


Data © 2001–2017 IUBMB
Web site © 2005–2017 Andrew McDonald