The Enzyme Database

Your query returned 6 entries.    printer_iconPrintable version

EC 1.1.5.1      
Deleted entry:  cellobiose dehydrogenase (quinone). Now known to be proteolytic product of EC 1.1.99.18, cellobiose dehydrogenase (acceptor)
[EC 1.1.5.1 created 1983, deleted 2002]
 
 
EC 1.1.5.10     
Accepted name: D-2-hydroxyacid dehydrogenase (quinone)
Reaction: (R)-2-hydroxyacid + a quinone = 2-oxoacid + a quinol
Other name(s): (R)-2-hydroxy acid dehydrogenase; (R)-2-hydroxy-acid:(acceptor) 2-oxidoreductase; D-lactate dehydrogenase (ambiguous)
Systematic name: (R)-2-hydroxyacid:quinone oxidoreductase
Comments: The enzyme from mammalian kidney contains one mole of FAD per mole of enzyme.(R)-lactate, (R)-malate and meso-tartrate are good substrates. Ubiquinone-1 and the dye 2,6-dichloroindophenol can act as acceptors; NAD+ and NADP+ are not acceptors.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Tubbs, P.K. and Greville, G.D. Dehydrogenation of D-lactate by a soluble enzyme from kidney mitochondria. Biochim. Biophys. Acta 34 (1959) 290–291. [DOI] [PMID: 13839714]
2.  Tubbs, P.K. and Greville, G.D. The oxidation of D-α-hydroxy acids in animal tissues. Biochem. J. 81 (1961) 104–114. [PMID: 13922962]
3.  Cammack, R. Assay, purification and properties of mammalian D-2-hydroxy acid dehydrogenase. Biochem. J. 115 (1969) 55–64. [PMID: 5359443]
4.  Cammack, R. D-2-hydroxy acid dehydrogenase from animal tissue. Methods Enzymol. 41 (1975) 323–329. [DOI] [PMID: 236454]
[EC 1.1.5.10 created 2014]
 
 
EC 1.1.5.11     
Accepted name: 1-butanol dehydrogenase (quinone)
Reaction: butan-1-ol + a quinone = butanal + a quinol
Other name(s): BOH
Systematic name: butan-1-ol:quinone oxidoreductase
Comments: This periplasmic quinoprotein alcohol dehydrogenase, characterized from the bacterium Thauera butanivorans, is involved in butane degradation. It contains a tightly-bound pyrroloquinoline quinone (PQQ) cofactor. cf. EC 1.1.2.9, 1-butanol dehydrogenase (cytochrome c).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vangnai, A.S., Arp, D.J. and Sayavedra-Soto, L.A. Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora. J. Bacteriol. 184 (2002) 1916–1924. [DOI] [PMID: 11889098]
2.  Vangnai, A.S., Sayavedra-Soto, L.A. and Arp, D.J. Roles for the two 1-butanol dehydrogenases of Pseudomonas butanovora in butane and 1-butanol metabolism. J. Bacteriol. 184 (2002) 4343–4350. [DOI] [PMID: 12142403]
[EC 1.1.5.11 created 2016]
 
 
EC 1.1.5.12     
Accepted name: D-lactate dehydrogenase (quinone)
Reaction: (R)-lactate + a quinone = pyruvate + a quinol
Other name(s): dld (gene name)
Systematic name: (R)-lactate:quinone 2-oxidoreductase
Comments: The enzyme is an FAD-dependent peripheral membrane dehydrogenase that participates in respiration. Electrons derived from D-lactate oxidation are transferred to the membrane soluble quinone pool.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kohn, L.D. and Kaback, H.R. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J. Biol. Chem. 248 (1973) 7012–7017. [PMID: 4582730]
2.  Futai, M. Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry 12 (1973) 2468–2474. [PMID: 4575624]
3.  Matsushita, K. and Kaback, H.R. D-Lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase. Biochemistry 25 (1986) 2321–2327. [PMID: 3013300]
4.  Peersen, O.B., Pratt, E.A., Truong, H.T., Ho, C. and Rule, G.S. Site-specific incorporation of 5-fluorotryptophan as a probe of the structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli: a 19F nuclear magnetic resonance study. Biochemistry 29 (1990) 3256–3262. [PMID: 2185834]
5.  Dym, O., Pratt, E.A., Ho, C. and Eisenberg, D. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc. Natl. Acad. Sci. USA 97 (2000) 9413–9418. [DOI] [PMID: 10944213]
[EC 1.1.5.12 created 2017]
 
 
EC 1.1.5.13     
Accepted name: (S)-2-hydroxyglutarate dehydrogenase
Reaction: (S)-2-hydroxyglutarate + a quinone = 2-oxoglutarate + a quinol
Other name(s): L-2-hydroxyglutarate dehydrogenase; lhgO (gene name); ygaF (gene name)
Systematic name: (S)-2-hydroxyglutarate:quinone oxidoreductase
Comments: The enzyme, characterized from the bacterium Escherichia coli, contains an FAD cofactor that is not covalently attached. It is bound to the cytoplasmic membrane and is coupled to the membrane quinone pool.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Kalliri, E., Mulrooney, S.B. and Hausinger, R.P. Identification of Escherichia coli YgaF as an L-2-hydroxyglutarate oxidase. J. Bacteriol. 190 (2008) 3793–3798. [PMID: 18390652]
2.  Knorr, S., Sinn, M., Galetskiy, D., Williams, R.M., Wang, C., Muller, N., Mayans, O., Schleheck, D. and Hartig, J.S. Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Nat. Commun. 9:5071 (2018). [PMID: 30498244]
[EC 1.1.5.13 created 2019]
 
 
EC 1.1.5.14     
Accepted name: fructose 5-dehydrogenase
Reaction: D-fructose + a ubiquinone = 5-dehydro-D-fructose + a ubiquinol
Other name(s): fructose 5-dehydrogenase (acceptor); D-fructose dehydrogenase; D-fructose:(acceptor) 5-oxidoreductase
Systematic name: D-fructose:ubiquinone 5-oxidoreductase
Comments: The enzyme, characterized from the bacterium Gluconobacter japonicus, is a heterotrimer composed of an FAD-containing large subunit, a small subunit, and a heme c-containing subunit, which is responsible for anchoring the complex to the cytoplasmic membrane and for transferring the electrons to ubiquinone.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-85-4
References:
1.  Yamada, Y., Aida, K. and Uemura, T. Enzymatic studies on the oxidation of sugar and sugar alcohol. I. Purification and properties of particle-bound fructose dehydrogenase. J. Biochem. (Tokyo) 61 (1967) 636–646. [PMID: 6059959]
2.  Ameyama, M. and Adachi, O. D-Fructose dehydrogenase from Gluconobacter industrius, membrane-bound. Methods Enzymol. 89 (1982) 154–159.
3.  Nakashima, K., Takei, H., Adachi, O., Shinagawa, E. and Ameyama, M. Determination of seminal fructose using D-fructose dehydrogenase. Clin. Chim. Acta 151 (1985) 307–310. [DOI] [PMID: 4053391]
4.  Kawai, S., Goda-Tsutsumi, M., Yakushi, T., Kano, K. and Matsushita, K. Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl. Environ. Microbiol. 79 (2013) 1654–1660. [DOI] [PMID: 23275508]
[EC 1.1.5.14 created 1972 as EC 1.1.99.11, transferred 2021 to EC 1.1.5.14]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald