The Enzyme Database

Your query returned 11 entries.    printer_iconPrintable version

Deleted entry:  glycolate oxidase. Now included with EC (S)-2-hydroxy-acid oxidase
[EC created 1961, deleted 1984]
Accepted name: pyranose oxidase
Reaction: D-glucose + O2 = 2-dehydro-D-glucose + H2O2
Other name(s): glucose 2-oxidase; pyranose-2-oxidase
Systematic name: pyranose:oxygen 2-oxidoreductase
Comments: A flavoprotein (FAD). Also oxidizes D-xylose, L-sorbose and D-glucono-1,5-lactone, which have the same ring conformation and configuration at C-2, C-3 and C-4.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37250-80-9
1.  Janssen, F.W. and Ruelius, H.W. Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. II. Specificity and characterization of reaction products. Biochim. Biophys. Acta 167 (1968) 501–510. [DOI] [PMID: 5722278]
2.  Machida, Y. and Nakanishi, T. Purification and properties of pyranose oxidase from Coriolus versicolor. Agric. Biol. Chem. 48 (1984) 2463–2470.
3.  Neidleman, S.L., Amon, W.F., Jr. and Geigert, J. Process for the production of fructose. Patent US4246347, 1981, Chem. Abstr., 94 (1981), 20737 (PDF).
4.  Ruelius, H.W., Kerwin, R.M. and Janssen, F.W. Carbohydrate oxidase, a novel enzyme from Polyporus obtusus. I. Isolation and purification. Biochim. Biophys. Acta 167 (1968) 493–500. [DOI] [PMID: 5725162]
[EC created 1972]
Accepted name: L-sorbose oxidase
Reaction: L-sorbose + O2 = 5-dehydro-D-fructose + H2O2
Systematic name: L-sorbose:oxygen 5-oxidoreductase
Comments: Also acts on D-glucose, D-galactose and D-xylose, but not on D-fructose. 2,6-Dichloroindophenol can act as acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-81-0
1.  Yamada, Y., Iizuka, K., Aida, K. and Uemura, T. Enzymatic studies on the oxidation of sugar and sugar alcohol. 3. Purification and properties of L-sorbose oxidase from Trametes sanguinea. J. Biochem. (Tokyo) 62 (1967) 223–229. [PMID: 5586487]
[EC created 1972]
Accepted name: pyridoxine 4-oxidase
Reaction: pyridoxine + O2 = pyridoxal + H2O2
Other name(s): pyridoxin 4-oxidase; pyridoxol 4-oxidase
Systematic name: pyridoxine:oxygen 4-oxidoreductase
Comments: A flavoprotein. Can also use 2,6-dichloroindophenol as an acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, UM-BBD, CAS registry number: 37250-82-1
1.  Sundaram, T.K. and Snell, E.E. The bacterial oxidation of vitamin B6. V. The enzymatic formation of pyridoxal and isopyridoxal from pyridoxine. J. Biol. Chem. 244 (1969) 2577–2584. [PMID: 5769992]
[EC created 1972, modified 1976]
Accepted name: alcohol oxidase
Reaction: a primary alcohol + O2 = an aldehyde + H2O2
Other name(s): ethanol oxidase; alcohol:oxygen oxidoreductase
Systematic name: alcohol:oxygen oxidoreductase (H2O2-forming)
Comments: The enzymes from the fungi Candida methanosorbosa and several Basidiomycetes species contain an FAD cofactor [1,3]. The enzyme from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides utilize a mononuclear copper-radical mechanism [4]. The enzyme acts on primary alcohols and unsaturated alcohols, and has much lower activity with branched-chain and secondary alcohols.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9073-63-6
1.  Janssen, F.W. and Ruelius, H.W. Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim. Biophys. Acta 151 (1968) 330–342. [DOI] [PMID: 5636370]
2.  Nishida, A., Ishihara, T. and Hiroi, T. Studies on enzymes related to lignan biodegradation. Baiomasu Henkan Keikaku Kenkyu Hokoku (1987) 38–59. (in Japanese)
3.  Suye, S. Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003. Curr. Microbiol. 34 (1997) 374–377. [PMID: 9142745]
4.  Yin, D.T., Urresti, S., Lafond, M., Johnston, E.M., Derikvand, F., Ciano, L., Berrin, J.G., Henrissat, B., Walton, P.H., Davies, G.J. and Brumer, H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat. Commun. 6:10197 (2015). [DOI] [PMID: 26680532]
[EC created 1972]
Accepted name: catechol oxidase (dimerizing)
Reaction: 4 catechol + 3 O2 = 2 dibenzo[1,4]dioxin-2,3-dione + 6 H2O
For diagram of reaction, click here
Systematic name: catechol:oxygen oxidoreductase (dimerizing)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37250-83-2
1.  Nair, P.M. and Vining, L.C. Enzymic oxidation of catechol to diphenylenedioxide-2,3-quinone. Arch. Biochem. Biophys. 106 (1964) 422–427. [PMID: 14217190]
[EC created 1972]
Accepted name: (S)-2-hydroxy-acid oxidase
Reaction: an (S)-2-hydroxy carboxylate + O2 = a 2-oxo carboxylate + H2O2
Other name(s): hydroxy-acid oxidase A; hydroxy-acid oxidase B; glycolate oxidase; L-2-hydroxy acid oxidase; hydroxyacid oxidase A; L-α-hydroxy acid oxidase
Systematic name: (S)-2-hydroxy carboxylate:oxygen 2-oxidoreductase
Comments: A flavoprotein (FMN). Exists as two major isoenzymes; the A form preferentially oxidizes short-chain aliphatic hydroxy acids, and was previously listed as EC, glycolate oxidase; the B form preferentially oxidizes long-chain and aromatic hydroxy acids. The rat isoenzyme B also acts as EC, L-amino-acid oxidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9028-71-1
1.  Blanchard, M., Green, D.E., Nocito-Carroll, V. and Ratner, S. l-Hydroxy acid oxidase. J. Biol. Chem. 163 (1946) 137–144. [PMID: 21023634]
2.  Frigerio, N.A. and Harbury, H.A. Preparation and some properties of crystalline glycolic acid oxidase of spinach. J. Biol. Chem. 231 (1958) 135–157. [PMID: 13538955]
3.  Kun, E., Dechary, J.M. and Pitot, H.C. The oxidation of glycolic acid by a liver enzyme. J. Biol. Chem. 210 (1954) 269–280. [PMID: 13201588]
4.  Nakano, M. and Danowski, T.S. Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria. J. Biol. Chem. 241 (1966) 2075–2083. [PMID: 5946631]
5.  Nakano, M., Ushijima, Y., Saga, M., Tsutsumi, Y. and Asami, H. Aliphatic L-α-hydroxyacid oxidase from rat livers: purification and properties. Biochim. Biophys. Acta 167 (1968) 9–22. [DOI] [PMID: 5686300]
6.  Phillips, D.R., Duley, J.A., Fennell, D.J. and Holmes, R.S. The self-association of L-α hydroxyacid oxidase. Biochim. Biophys. Acta 427 (1976) 679–687. [DOI] [PMID: 1268224]
7.  Schuman, M. and Massey, V. Purification and characterization of glycolic acid oxidase from pig liver. Biochim. Biophys. Acta 227 (1971) 500–520. [DOI] [PMID: 5569122]
8.  Jones, J.M., Morrell, J.C. and Gould, S.J. Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases. J. Biol. Chem. 275 (2000) 12590–12597. [DOI] [PMID: 10777549]
[EC created 1972 (EC created 1961, incorporated 1984)]
Accepted name: ecdysone oxidase
Reaction: ecdysone + O2 = 3-dehydroecdysone + H2O2
Other name(s): β-ecdysone oxidase
Systematic name: ecdysone:oxygen 3-oxidoreductase
Comments: 2,6-Dichloroindophenol can act as an acceptor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 56803-12-4
1.  Koolman, J. and Karlson, P. Ecdysone oxidase, an enzyme from the blowfly Calliphora erythrocephala (Meigen). Hoppe-Seyler's Z. Physiol. Chem. 35 (1975) 1131. [PMID: 297]
[EC created 1976]
Accepted name: choline oxidase
Reaction: choline + 2 O2 + H2O = betaine + 2 H2O2 (overall reaction)
(1a) choline + O2 = betaine aldehyde + H2O2
(1b) betaine aldehyde + O2 + H2O = betaine + H2O2
Glossary: choline = (2-hydroxyethyl)trimethylammonium
betaine aldehyde = N,N,N-trimethyl-2-oxoethylammonium
betaine = glycine betaine = N,N,N-trimethylglycine = N,N,N-trimethylammonioacetate
Systematic name: choline:oxygen 1-oxidoreductase
Comments: A flavoprotein (FAD). In many bacteria, plants and animals, the osmoprotectant betaine is synthesized using different enzymes to catalyse the conversion of (1) choline into betaine aldehyde and (2) betaine aldehyde into betaine. In plants, the first reaction is catalysed by EC, choline monooxygenase, whereas in animals and many bacteria, it is catalysed by either membrane-bound choline dehydrogenase (EC or soluble choline oxidase (EC [6]. The enzyme involved in the second step, EC, betaine-aldehyde dehydrogenase, appears to be the same in those plants, animals and bacteria that use two separate enzymes.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9028-67-5
1.  Ikuta, S., Imamura, S., Misaki, H. and Horiuti, Y. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. (Tokyo) 82 (1977) 1741–1749. [PMID: 599154]
2.  Rozwadowski, K.L., Khachatourians, G.G. and Selvaraj, G. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 173 (1991) 472–478. [DOI] [PMID: 1987142]
3.  Rand, T., Halkier, T. and Hansen, O.C. Structural characterization and mapping of the covalently linked FAD cofactor in choline oxidase from Arthrobacter globiformis. Biochemistry 42 (2003) 7188–7194. [DOI] [PMID: 12795615]
4.  Gadda, G., Powell, N.L. and Menon, P. The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase. Arch. Biochem. Biophys. 430 (2004) 264–273. [DOI] [PMID: 15369826]
5.  Fan, F. and Gadda, G. On the catalytic mechanism of choline oxidase. J. Am. Chem. Soc. 127 (2005) 2067–2074. [DOI] [PMID: 15713082]
6.  Waditee, R., Tanaka, Y., Aoki, K., Hibino, T., Jikuya, H., Takano, J., Takabe, T. and Takabe, T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278 (2003) 4932–4942. [DOI] [PMID: 12466265]
7.  Fan, F., Ghanem, M. and Gadda, G. Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Arch. Biochem. Biophys. 421 (2004) 149–158. [DOI] [PMID: 14678796]
8.  Gadda, G. Kinetic mechanism of choline oxidase from Arthrobacter globiformis. Biochim. Biophys. Acta 1646 (2003) 112–118. [DOI] [PMID: 12637017]
[EC created 1978, modified 2005, modified 2007]
Accepted name: secondary-alcohol oxidase
Reaction: a secondary alcohol + O2 = a ketone + H2O2
Other name(s): polyvinyl alcohol oxidase; secondary alcohol oxidase
Systematic name: secondary-alcohol:oxygen oxidoreductase
Comments: Acts on secondary alcohols with five or more carbons, and polyvinyl alcohols with molecular mass over 300 Da. The Pseudomonas enzyme contains one atom of non-heme iron per molecule.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 71245-08-4
1.  Morita, M., Hamada, N., Sakai, K. and Watanabe, Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric. Biol. Chem. 43 (1979) 1225–1235.
2.  Sakai, K., Hamada, N. and Watanabe, Y. Separation of secondary alcohol oxidase and oxidized poly(vinyl alcohol) hydrolase by hydrophobic and dye-ligand chromatographies. Agric. Biol. Chem. 47 (1983) 153–155.
3.  Suzuki, T. Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 40 (1976) 497–504.
4.  Suzuki, T. Oxidation of secondary alcohols by polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric. Biol. Chem. 42 (1977) 1187–1194.
[EC created 1981]
Accepted name: 4-hydroxymandelate oxidase (decarboxylating)
Reaction: (S)-4-hydroxymandelate + O2 = 4-hydroxybenzaldehyde + CO2 + H2O2
Glossary: (S)-4-hydroxymandelate = (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate
Other name(s): L-4-hydroxymandelate oxidase (decarboxylating); (S)-2-hydroxy-2-(4-hydroxyphenyl)acetate:oxygen 1-oxidoreductase; (S)-4-hydroxymandelate:oxygen 1-oxidoreductase; 4-hydroxymandelate oxidase
Systematic name: (S)-4-hydroxymandelate:oxygen 1-oxidoreductase (decarboxylating)
Comments: A flavoprotein (FAD), requires Mn2+. The enzyme from the bacterium Pseudomonas putida is involved in the degradation of mandelate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 60976-30-9
1.  Bhat, S.G. and Vaidyanathan, C.S. Purification and properties of L-4-hydroxymandelate oxidase from Pseudomonas convexa. Eur. J. Biochem. 68 (1976) 323–331. [DOI] [PMID: 976259]
[EC created 1984, modified 2014]

Data © 2001–2019 IUBMB
Web site © 2005–2019 Andrew McDonald